101
|
Anft M, Netter P, Urlaub D, Prager I, Schaffner S, Watzl C. NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell Mol Immunol 2019; 17:347-355. [PMID: 31471588 DOI: 10.1038/s41423-019-0277-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells participate in early immune defenses against pathogens and tumors and play a major role as immune effector and regulatory cells. The NK cell-mediated elimination of an infected or cancerous cell is a highly regulated process that requires the formation of a cell contact, the establishment of an immunological synapse and the polarization and release of lytic granules. Additionally, the detachment of NK cells from target cells is important for NK cells to bind and kill other cells in a process called serial killing. However, very little is known about this detachment process. Here, we show that NK detachment is directly connected to the successful killing of a target cell. The inhibition of killing due to reduced NK cell cytotoxicity or increased target cell resistance results in defective detachment and prolonged contact times. This effect leads to sustained Ca2+ flux in NK cells and the hypersecretion of proinflammatory cytokines. Linking defective cytotoxicity with enhanced cytokine secretion via reduced detachment may explain inflammatory pathologies in several diseases.
Collapse
Affiliation(s)
- Moritz Anft
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Petra Netter
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Doris Urlaub
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Isabel Prager
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Samantha Schaffner
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany.,University of British Columbia, Vancouver, BC, Canada
| | - Carsten Watzl
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany.
| |
Collapse
|
102
|
Shembrey C, Huntington ND, Hollande F. Impact of Tumor and Immunological Heterogeneity on the Anti-Cancer Immune Response. Cancers (Basel) 2019; 11:E1217. [PMID: 31438563 PMCID: PMC6770225 DOI: 10.3390/cancers11091217] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Metastatic tumors are the primary cause of cancer-related mortality. In recent years, interest in the immunologic control of malignancy has helped establish escape from immunosurveillance as a critical requirement for incipient metastases. Our improved understanding of the immune system's interactions with cancer cells has led to major therapeutic advances but has also unraveled a previously unsuspected level of complexity. This review will discuss the vast spatial and functional heterogeneity in the tumor-infiltrating immune system, with particular focus on natural killer (NK) cells, as well as the impact of tumor cell-specific factors, such as secretome composition, receptor-ligand repertoire, and neoantigen diversity, which can further drive immunological heterogeneity. We emphasize how tumor and immunological heterogeneity may undermine the efficacy of T-cell directed immunotherapies and explore the potential of NK cells to be harnessed to circumvent these limitations.
Collapse
Affiliation(s)
- Carolyn Shembrey
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC 3000, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC 3000, Australia.
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
103
|
Lucar O, Reeves RK, Jost S. A Natural Impact: NK Cells at the Intersection of Cancer and HIV Disease. Front Immunol 2019; 10:1850. [PMID: 31474977 PMCID: PMC6705184 DOI: 10.3389/fimmu.2019.01850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Despite efficient suppression of plasma viremia in people living with HIV (PLWH) on cART, evidence of HIV-induced immunosuppression remains, and normally benign and opportunistic pathogens become major sources of co-morbidities, including virus-induced cancers. In fact, cancer remains a primary cause of death even in virally suppressed PLWH. Natural killer (NK) cells provide rapid early responses to HIV infection, contribute substantially to disease modulation and vaccine protection, and are also major therapeutic targets for cancer immunotherapy. However, much like other lymphocyte populations, recent burgeoning evidence suggests that in chronic conditions like HIV, NK cells can become functionally exhausted with impaired cytotoxic function, altered cytokine production and impaired antibody-dependent cell-mediated cytotoxicity. Recent work suggests functional anergy is likely due to low-level ongoing virus replication, increased inflammatory cytokines, or increased presence of MHClow target cells. Indeed, HIV-induced loss of NK cell-mediated control of lytic EBV infection has been specifically shown to cause lymphoma and also increases replication of CMV. In this review, we will discuss current understanding of NK cell modulation of HIV disease, reciprocal exhaustion of NK cells, and how this may impact increased cancer incidences and prospects for NK cell-targeted immunotherapies. Finally, we will review the most recent evidence supporting adaptive functions of NK cells and highlight the potential of adaptive NK cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| | - Stephanie Jost
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
104
|
Bonaccorsi I, Spinelli D, Cantoni C, Barillà C, Pipitò N, De Pasquale C, Oliveri D, Cavaliere R, Carrega P, Benedetto F, Ferlazzo G. Symptomatic Carotid Atherosclerotic Plaques Are Associated With Increased Infiltration of Natural Killer (NK) Cells and Higher Serum Levels of NK Activating Receptor Ligands. Front Immunol 2019; 10:1503. [PMID: 31354703 PMCID: PMC6639781 DOI: 10.3389/fimmu.2019.01503] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022] Open
Abstract
A wide array of immune cells, including lymphocytes, is known to be present and to play a pathogenetic role in atherosclerotic lesions. However, limited information is currently available regarding the presence of Natural Killer (NK) cell subsets within vessel plaque, and more in general, regarding their role in human atherosclerosis. We evaluated the distribution of NK cells in human carotid atherosclerotic plaques, dissecting asymptomatic and symptomatic patients (identified as affected by stroke, transient ischemic attack, or amaurosis fugax within 6 months) with the aim of shedding light on the putative contribution of NK cells to the pathogenic process that leads to plaque instability and subsequent clinical complications. We observed that carotid plaques were consistently infiltrated by NK cells and, among them, CD56brightperforinlow NK cells were abundantly present and displayed different markers of tissue residency (i.e., CD103 CD69 and CD49a). Interestingly, carotid atherosclerotic plaques of symptomatic patients showed a higher content of NK cells and an increased ratio between CD56brightperforinlow NK cells and their CD56dimperforinhigh counterpart. NK cells isolated from plaques of symptomatic patients were also stronger producers of IFN-γ. Analysis of the expression of NK activating receptor ligands (including MICA/B, ULBP-3, and B7-H6) in atherosclerotic carotid plaques revealed that they were abundantly expressed by a HLA-DR+CD11c+ myeloid cell population resident in the plaques. Remarkably, sera of symptomatic patients contained significant higher levels of soluble ligands for NK activating receptors. Our observations indicate that CD56bright NK cells accumulate within human atherosclerotic lesions and suggest a possible contribution of NK cells to the process determining plaque instability.
Collapse
Affiliation(s)
- Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy
| | - Domenico Spinelli
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Barillà
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Narayana Pipitò
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy
| | - Daniela Oliveri
- Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy
| | - Filippo Benedetto
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| |
Collapse
|
105
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
106
|
Di Vito C, Mikulak J, Zaghi E, Pesce S, Marcenaro E, Mavilio D. NK cells to cure cancer. Semin Immunol 2019; 41:101272. [PMID: 31085114 DOI: 10.1016/j.smim.2019.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are innate lymphocytes able to mediate immune-surveillance and clearance of viral infected and tumor-transformed cells. Growing experimental and clinical evidence highlighted a dual role of NK cells either in the control of cancer development/progression or in promoting the onset of immune-suppressant tumor microenvironments. Indeed, several mechanisms of NK cell-mediated tumor escape have been described and these includes cancer-induced aberrant expression of activating and inhibitory receptors (i.e. NK cell immune checkpoints), impairments of NK cell migration to tumor sites and altered NK cell effector-functions. These phenomena highly contribute to tumor progression and metastasis formation. In this review, we discuss the latest insights on those NK cell receptors and related molecules that are currently being implemented in clinics either as possible prognostic factors or therapeutic targets to unleash NK cell anti-tumor effector-functions in vivo. Moreover, we address here the major recent advances in regard to the genetic modification and ex vivo expansion of anti-tumor specific NK cells used in innovative adoptive cellular transfer approaches.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy.
| |
Collapse
|
107
|
Barrow AD, Martin CJ, Colonna M. The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 2019; 10:909. [PMID: 31134055 PMCID: PMC6514059 DOI: 10.3389/fimmu.2019.00909] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claudia Jane Martin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
108
|
Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 2019; 16:430-441. [PMID: 30778167 PMCID: PMC6474200 DOI: 10.1038/s41423-019-0206-4] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
NK cells play important roles in innate defenses against viruses and in the control of tumor growth and metastasis. The regulation/induction of NK cell function is mediated by an array of activating or inhibitory surface receptors. In humans, major activating receptors involved in target cell killing are the natural cytotoxicity receptors (NCRs) and NKG2D. Activating receptors recognize ligands that are overexpressed or expressed de novo upon cell stress, viral infection, or tumor transformation. The HLA-class I-specific inhibitory receptors, including KIRs recognizing HLA-class I allotypic determinants and CD94/NKG2A recognizing the class-Ib HLA-E, constitute a fail-safe mechanism to avoid unwanted NK-mediated damage to healthy cells. Other receptors such as PD-1, primarily expressed by activated T lymphocytes, are important inhibitory checkpoints of immune responses that ensure T-cell tolerance. PD-1 also may be expressed by NK cells in cancer patients. Since PD-1 ligand (PD-L1) may be expressed by different tumors, PD-1/PD-L1 interactions inactivate both T and NK cells. Thus, the reliable evaluation of PD-L1 expression in tumors has become a major issue to select patients who may benefit from therapy with mAbs disrupting PD-1/PD-L1 interactions. Recently, NKG2A was revealed to be an important checkpoint controlling both NK and T-cell activation. Since most tumors express HLA-E, mAbs targeting NKG2A has been used alone or in combination with other therapeutic mAbs targeting PD-1 or tumor antigens (e.g., EGFR), with encouraging results. The translational value of NK cells and their receptors is evidenced by the extraordinary therapeutic success of haploidentical HSCT to cure otherwise fatal high-risk leukemias.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine (DIMES) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Genny Del Zotto
- Department of Research and Diagnostics, Istituto G. Gaslini, Genoa, Italy
| | - Enrico Munari
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Pathology, Sacro Cuore Don Calabria, Negrar, VR, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
109
|
Parodi M, Favoreel H, Candiano G, Gaggero S, Sivori S, Mingari MC, Moretta L, Vitale M, Cantoni C. NKp44-NKp44 Ligand Interactions in the Regulation of Natural Killer Cells and Other Innate Lymphoid Cells in Humans. Front Immunol 2019; 10:719. [PMID: 31024551 PMCID: PMC6465645 DOI: 10.3389/fimmu.2019.00719] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Natural Killer (NK) cells are potent cytotoxic cells belonging to the family of Innate Lymphoid Cells (ILCs). Their most characterized effector functions are directed to the control of aberrant cells in the body, including both transformed and virus-infected cells. NK cell-mediated recognition of abnormal cells primarily occurs through receptor-ligand interactions, involving an array of inhibitory and activating NK receptors and different types of ligands expressed on target cells. While most of the receptors have become known over many years, their respective ligands were only defined later and their impressive complexity has only recently become evident. NKp44, a member of Natural Cytotoxicity Receptors (NCRs), is an activating receptor playing a crucial role in most functions exerted by activated NK cells and also by other NKp44+ immune cells. The large and heterogeneous panel of NKp44 ligands (NKp44L) now includes surface expressed glycoproteins and proteoglycans, nuclear proteins that can be exposed outside the cell, and molecules that can be either released in the extracellular space or carried in extracellular vesicles. Recent findings have extended our knowledge on the nature of NKp44L to soluble plasma glycoproteins, such as secreted growth factors or extracellular matrix (ECM)-derived glycoproteins. NKp44L are induced upon tumor transformation or viral infection but may also be expressed in normal cells and tissues. In addition, NKp44-NKp44L interactions are involved in the crosstalk between NK cells and different innate and adaptive immune cell types. NKp44 expression in different ILCs located in tissues further extends the potential role of NKp44-NKp44L interactions.
Collapse
Affiliation(s)
- Monica Parodi
- Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Herman Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Gaggero
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Maria Cristina Mingari
- Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Massimo Vitale
- Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
110
|
Mantovani S, Oliviero B, Lombardi A, Varchetta S, Mele D, Sangiovanni A, Rossi G, Donadon M, Torzilli G, Soldani C, Porta C, Pedrazzoli P, Chiellino S, Santambrogio R, Opocher E, Maestri M, Bernuzzi S, Rossello A, Clément S, De Vito C, Rubbia-Brandt L, Negro F, Mondelli MU. Deficient Natural Killer Cell NKp30-Mediated Function and Altered NCR3 Splice Variants in Hepatocellular Carcinoma. Hepatology 2019; 69:1165-1179. [PMID: 30153337 DOI: 10.1002/hep.30235] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022]
Abstract
The activating natural cytotoxicity receptor NKp30 is critical for natural killer (NK) cell function and tumor immune surveillance. The natural cytotoxicity receptor-3 (NCR3) gene is transcribed into several splice variants whose physiological relevance is still incompletely understood. In this study, we investigated the role of NKp30 and its major ligand B7 homolog 6 (B7-H6) in patients with hepatocellular carcinoma (HCC). Peripheral blood NK cell phenotype was skewed toward a defective/exhausted immune profile with decreased frequencies of cells expressing NKp30 and natural killer group 2, member D and an increased proportion of cells expressing T-cell immunoglobulin and mucin-domain containing-3. Moreover, NKp30-positive NK cells had a reduced expression of NCR3 immunostimulatory splice variants and an increased expression of the inhibitory variant in patients with advanced tumor, resulting in deficient NKp30-mediated functionality. Tumor-infiltrating lymphocytes showed a prevalent inhibitory NKp30 isoform profile, consistent with decreased NKp30-mediated function. Of note, there were significant differences in the cytokine milieu between the neoplastic and the surrounding non-neoplastic tissue, which may have further influenced NKp30 function. Exposure of NK cells to B7-H6-expressing HCC cells significantly down-modulated NKp30, that was prevented by small interfering RNA-mediated knockdown, suggesting a role for this ligand in inhibiting NKp30-mediated responses. Interestingly, B7-H6 expression was reduced in HCC tissue and simultaneously augmented as a soluble form in HCC patients, particularly those with advanced staging or larger nodule size. Conclusion: These findings provide evidence in support of a role of NKp30 and its major ligand in HCC development and evolution.
Collapse
Affiliation(s)
- Stefania Mantovani
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Lombardi
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy.,Division of Clinical Pathology, University Hospitals, Geneva, Switzerland
| | - Stefania Varchetta
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Angelo Sangiovanni
- CRC "A. M. and A. Migliavacca" Center for Liver Disease, Division of Gastroenterology and Hepatology
| | - Giorgio Rossi
- Liver Transplant Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Camillo Porta
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Chiellino
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberto Santambrogio
- Division of Gastrointestinal Surgery, San Paolo Hospital, University of Milan School of Medicine, Milan, Italy
| | - Enrico Opocher
- Division of Gastrointestinal Surgery, San Paolo Hospital, University of Milan School of Medicine, Milan, Italy
| | - Marcello Maestri
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Bernuzzi
- Immunohematological and Transfusional Service and Centre of Transplantation Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Sophie Clément
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland
| | - Claudio De Vito
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland
| | | | - Francesco Negro
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.,Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland
| | - Mario U Mondelli
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Italy
| |
Collapse
|
111
|
Conlon GA, Murray GI. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 2019; 247:629-640. [DOI: 10.1002/path.5225] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Guy A Conlon
- Department of PathologyNHS Grampian, Aberdeen Royal Infirmary Aberdeen UK
| | - Graeme I Murray
- Department of Pathology, School of MedicineMedical Sciences and Nutrition, University of Aberdeen Aberdeen UK
| |
Collapse
|
112
|
Roato I, Vitale M. The Uncovered Role of Immune Cells and NK Cells in the Regulation of Bone Metastasis. Front Endocrinol (Lausanne) 2019; 10:145. [PMID: 30930851 PMCID: PMC6423901 DOI: 10.3389/fendo.2019.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the main metastatic sites of solid tumors like breast, lung, and prostate cancer. Disseminated tumor cells (DTCs) and cancer stem cells (CSCs) represent the main target to counteract bone metastatization. These cells often localize in bone marrow (BM) at level of pre-metastatic niche: they can remain dormant for years or directly grow and create bone lesion, according to the different stimulations received in BM. The immune system in bone marrow is dampened and represents an appealing site for DTCs/CSCs. NK cells have an important role in controlling tumor progression, but their involvement in bone metastasis formation is an interesting and not fully investigated issue. Indeed, whether NK cells can interfere with CSC formation, kill them at the site of primary tumor, during circulation or in the pre-metastic niche needs to be elucidated. This review focuses on different aspects that regulate DTC/CSC life in bone and how NK cells potentially control bone metastasis formation.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- *Correspondence: Ilaria Roato
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
113
|
Shemesh A, Brusilovsky M, Kundu K, Ottolenghi A, Campbell KS, Porgador A. Splice variants of human natural cytotoxicity receptors: novel innate immune checkpoints. Cancer Immunol Immunother 2018; 67:1871-1883. [PMID: 29264698 PMCID: PMC11028282 DOI: 10.1007/s00262-017-2104-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023]
Abstract
The natural cytotoxicity receptors (NCRs; NKp30, NKp44, and NKp46) were first defined as activating receptors on human NK cells that are important in recognition of and response to tumors. A flurry of recent research, however, has revealed that differential splicing can occur during transcription of each of the NCR genes, resulting in some transcripts that encode receptor isoforms with inhibitory functions. These alternative transcripts can arise in certain tissue microenvironments and appear to be induced by cytokines. Evidence indicates that some of the inhibitory NCRs are triggered by specific ligands, such as the interaction of the inhibitory isoform of NKp44 with PCNA on the surface of tumor cells. Here, we review the different NCR splice variants, cytokines that modulate their expression, their functional impacts on innate immune cells, and their differential expression in the contexts of cancer, pregnancy, and infections. The recent discovery of these inhibitory NCR isoforms has revealed novel innate immune checkpoints, many of which still lack defined ligands and clear mechanisms driving their expression. These NCR checkpoint pathways offer exciting potential therapeutic targets to manipulate innate immune functions under defined pathological conditions, such as cancer, pregnancy disorders, and pathogen exposure.
Collapse
Affiliation(s)
- Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Goldman Building, Room 143, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kiran Kundu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Goldman Building, Room 143, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Goldman Building, Room 143, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kerry S Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Goldman Building, Room 143, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
114
|
Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, Eva A, Varesio L, Pietra G, Moretta L, Mingari MC, Vitale M, Bosco MC. Hypoxia Modifies the Transcriptome of Human NK Cells, Modulates Their Immunoregulatory Profile, and Influences NK Cell Subset Migration. Front Immunol 2018; 9:2358. [PMID: 30459756 PMCID: PMC6232835 DOI: 10.3389/fimmu.2018.02358] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
Hypoxia, which characterizes most tumor tissues, can alter the function of different immune cell types, favoring tumor escape mechanisms. In this study, we show that hypoxia profoundly acts on NK cells by influencing their transcriptome, affecting their immunoregulatory functions, and changing the chemotactic responses of different NK cell subsets. Exposure of human peripheral blood NK cells to hypoxia for 16 or 96 h caused significant changes in the expression of 729 or 1,100 genes, respectively. Gene Set Enrichment Analysis demonstrated that these changes followed a consensus hypoxia transcriptional profile. As assessed by Gene Ontology annotation, hypoxia-targeted genes were implicated in several biological processes: metabolism, cell cycle, differentiation, apoptosis, cell stress, and cytoskeleton organization. The hypoxic transcriptome also showed changes in genes with immunological relevance including those coding for proinflammatory cytokines, chemokines, and chemokine-receptors. Quantitative RT-PCR analysis confirmed the modulation of several immune-related genes, prompting further immunophenotypic and functional studies. Multiplex ELISA demonstrated that hypoxia could variably reduce NK cell ability to release IFNγ, TNFα, GM-CSF, CCL3, and CCL5 following PMA+Ionomycin or IL15+IL18 stimulation, while it poorly affected the response to IL12+IL18. Cytofluorimetric analysis showed that hypoxia could influence NK chemokine receptor pattern by sustaining the expression of CCR7 and CXCR4. Remarkably, this effect occurred selectively (CCR7) or preferentially (CXCR4) on CD56bright NK cells, which indeed showed higher chemotaxis to CCL19, CCL21, or CXCL12. Collectively, our data suggest that the hypoxic environment may profoundly influence the nature of the NK cell infiltrate and its effects on immune-mediated responses within tumor tissues.
Collapse
Affiliation(s)
- Monica Parodi
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Raggi
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudia Manzini
- Laboratorio di Immunologia Clinica e Sperimentale, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mirna Balsamo
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Fabiola Blengio
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Eva
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luigi Varesio
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gabriella Pietra
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Lorenzo Moretta
- Immunology Area, Ospedale Pediatrico Bambin Gesù, Rome, Italy
| | - Maria Cristina Mingari
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Carla Bosco
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
115
|
Granato DC, E Costa RAP, Kawahara R, Yokoo S, Aragão AZ, Domingues RR, Pauletti BA, Honorato RV, Fattori J, Figueira ACM, Oliveira PSL, Consonni SR, Fernandes D, Laurindo F, Hansen HP, Paes Leme AF. Thioredoxin-1 Negatively Modulates ADAM17 Activity Through Direct Binding and Indirect Reductive Activity. Antioxid Redox Signal 2018; 29:717-734. [PMID: 29334756 DOI: 10.1089/ars.2017.7297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS A disintegrin and metalloprotease 17 (ADAM17) modulates signaling events by releasing surface protein ectodomains such as TNFa and the EGFR-ligands. We have previously characterized cytoplasmic thioredoxin-1 (Trx-1) as a partner of ADAM17 cytoplasmic domain. Still, the mechanism of ADAM17 regulation by Trx-1 is unknown, and it has become of paramount importance to assess the degree of influence that Trx-1 has on metalloproteinase ADAM17. RESULTS Combining discovery and targeted proteomic approaches, we uncovered that Trx-1 negatively regulates ADAM17 by direct and indirect effect. We performed cell-based assays with synthetic peptides and site-directed mutagenesis, and we demonstrated that the interaction interface of Trx-1 and ADAM17 is important for the negative regulation of ADAM17 activity. However, both Trx-1K72A and catalytic site mutant Trx-1C32/35S rescued ADAM17 activity, although the interaction with Trx-1C32/35S was unaffected, suggesting an indirect effect of Trx-1. We confirmed that the Trx-1C32/35S mutant showed diminished reductive capacity, explaining this indirect effect on increasing ADAM17 activity through oxidant levels. Interestingly, Trx-1K72A mutant showed similar oxidant levels to Trx-1C32/35S, even though its catalytic site was preserved. We further demonstrated that the general reactive oxygen species inhibitor, Nacetylcysteine (NAC), maintained the regulation of ADAM17 dependent of Trx-1 reductase activity levels; whereas the electron transport chain modulator, rotenone, abolished Trx-1 effect on ADAM17 activity. INNOVATION We show for the first time that the mechanism of ADAM17 regulation, Trx-1 dependent, can be by direct interaction and indirect effect, bringing new insights into the cross-talk between isomerases and mammalian metalloproteinases. CONCLUSION This unexpected Trx-1K72A behavior was due to more dimer formation and, consequently, the reduction of its Trx-1 reductase activity, evaluated through dimer verification, by gel filtration and mass spectrometry analysis. Antioxid. Redox Signal. 29, 717-734.
Collapse
Affiliation(s)
- Daniela C Granato
- 1 Laboratório Nacional de Biociências , LNBio, CNPEM, Campinas, Brazil
| | - Rute A P E Costa
- 1 Laboratório Nacional de Biociências , LNBio, CNPEM, Campinas, Brazil
| | - Rebeca Kawahara
- 1 Laboratório Nacional de Biociências , LNBio, CNPEM, Campinas, Brazil
| | - Sami Yokoo
- 1 Laboratório Nacional de Biociências , LNBio, CNPEM, Campinas, Brazil
| | - Annelize Z Aragão
- 1 Laboratório Nacional de Biociências , LNBio, CNPEM, Campinas, Brazil
| | | | - Bianca A Pauletti
- 1 Laboratório Nacional de Biociências , LNBio, CNPEM, Campinas, Brazil
| | | | - Juliana Fattori
- 1 Laboratório Nacional de Biociências , LNBio, CNPEM, Campinas, Brazil
| | | | | | - Silvio R Consonni
- 1 Laboratório Nacional de Biociências , LNBio, CNPEM, Campinas, Brazil
| | - Denise Fernandes
- 2 Instituto do Coração , Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco Laurindo
- 2 Instituto do Coração , Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hinrich P Hansen
- 3 Department of Internal Medicine I, University Hospital Cologne , Cologne, Germany
| | | |
Collapse
|
116
|
Gaggero S, Bruschi M, Petretto A, Parodi M, Del Zotto G, Lavarello C, Prato C, Santucci L, Barbuto A, Bottino C, Candiano G, Moretta A, Vitale M, Moretta L, Cantoni C. Nidogen-1 is a novel extracellular ligand for the NKp44 activating receptor. Oncoimmunology 2018; 7:e1470730. [PMID: 30228939 PMCID: PMC6140582 DOI: 10.1080/2162402x.2018.1470730] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/09/2018] [Accepted: 04/25/2018] [Indexed: 11/25/2022] Open
Abstract
The release of soluble ligands of activating Natural Killer (NK) cell receptors may represent a regulatory mechanism of NK cell function both in physiologic and in pathologic conditions. Here, we identified the extracellular matrix protein Nidogen-1 (NID1) as a ligand of NKp44, an important activating receptor expressed by activated NK cells. When released as soluble molecule, NID1 regulates NK cell function by modulating NKp44-induced IFN-γ production or cytotoxicity. In particular, it also modulates IFN-γ production induced by Platelet-Derived Growth Factor (PDGF)-DD following NKp44 engagement. We also show that NID1 may be present at the cell surface. In this form or when bound to a solid support (bNID1), NID1 fails to induce NK cell cytotoxicity or cytokine release. However, analysis by mass spectrometry revealed that exposure to bNID1 can induce in human NK cells relevant changes in the proteomic profiles suggesting an effect on different biological processes.
Collapse
Affiliation(s)
- Silvia Gaggero
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maurizio Bruschi
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Monica Parodi
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Genny Del Zotto
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Carola Prato
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Laura Santucci
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandra Barbuto
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Candiano
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Moretta
- Immunology area, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
117
|
Abstract
Natural Killer (NK) cells are innate immune lymphocytes that are important for early and effective immune responses against infections and cancer. The antitumor immunity mediated by NK cells can be exerted through several direct or indirect “immunosurveillance” mechanisms that control tumor growth and prevent the rapid dissemination of metastatic tumors. NK cells express an array of activating and inhibitory receptors that enable them to recognize and bind non-self as well as self-ligands expressed on the surface of malignant or virally infected cells. The family of Natural Cytotoxicity Receptors (NCRs) comprises three activating receptors; NKp30, NKp44, and NKp46 that are important for the stimulation of NK cell effector functions. This review summarizes the mechanisms of antitumor immunity mediated by natural killer cells with focus on the role of the family of the NCRs and their tumor associated ligands.
Collapse
|
118
|
Abouelghar A, Hasnah R, Taouk G, Saad M, Karam M. Prognostic values of the mRNA expression of natural killer receptor ligands and their association with clinicopathological features in breast cancer patients. Oncotarget 2018; 9:27171-27196. [PMID: 29930758 PMCID: PMC6007477 DOI: 10.18632/oncotarget.25506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells are lymphocytes of the innate immune system that have potent cytotoxic activity against tumor cells. NK cell recognition and activity towards cancer cells are regulated by an integrated interplay between numerous inhibitory and activating receptors acting in concert to eliminate tumor cells expressing cognate ligands. Despite strong evidence supporting the role of NK cells in breast cancer (BC) control, BC still develops and progresses to form large tumors and metastases. A major mechanism of BC escape from NK immunity is the alteration of the expression of NK receptor ligands. The aim of this study was to determine whether NK receptor ligands' mRNA expression might influence prognosis in BC patients and whether these effects differ by molecular subtypes and clinicopathological features. METHODS We used the KM plotter platform to analyze the correlation between mRNA expression of 32 NK receptor ligands and relapse-free survival (RFS) and overall survival (OS) in 3951 and 1402 BC patients, respectively. The association with tumor subtypes and clinicopathological features was determined. BC samples were split into high and low expression groups according to the best cutoff value and the two patient cohorts were compared by Kaplan-Meier survival plots. The hazard ratios with 95% confidence intervals and log rank P values were calculated and FDR-adjusted for multiple testing correction. The data was considered to be statistically significant when FDR-adjusted P value < 0.05. RESULTS High mRNA expression of around 80% of ligands for NK activating and inhibitory receptors associated with better RFS, which correlated with longer OS for only about half of the NK-activating ligands but for most NK-inhibitory ligands. Also, five NK-activating ligands correlated with worse prognosis. These prognostic values were differentially associated with the BC clinical criteria. In addition, the favorable prognostic influence of NK-activating ligands' upregulation, as a whole, was mainly significantly associated with HER2-positive and basal-like subtypes, lymph node positive phenotype, and high-grade tumors. CONCLUSIONS NK receptor ligands appear to play an important role in defining BC patient prognosis. Identification of a group of patients with worse prognosis expressing high levels of NK-activating ligands and low levels of NK-inhibitory ligands makes them ideal potential candidates for NK-based immunotherapy to eliminate residual tumor cells, prevent relapse and improve patient survival.
Collapse
Affiliation(s)
- Ali Abouelghar
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Reem Hasnah
- Department of Biological Sciences, Carnegie Mellon University in Qatar, Doha, Qatar
| | - Ghina Taouk
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Manale Karam
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
119
|
Guia S, Fenis A, Vivier E, Narni-Mancinelli E. Activating and inhibitory receptors expressed on innate lymphoid cells. Semin Immunopathol 2018; 40:331-341. [DOI: 10.1007/s00281-018-0685-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
|
120
|
Gacerez AT, Hua CK, Ackerman ME, Sentman CL. Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression. Cancer Immunol Immunother 2018; 67:749-759. [PMID: 29453518 PMCID: PMC11028385 DOI: 10.1007/s00262-018-2124-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/06/2018] [Indexed: 01/21/2023]
Abstract
B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.
Collapse
Affiliation(s)
- Albert T Gacerez
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
- Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Casey K Hua
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| |
Collapse
|
121
|
Chretien AS, Fauriat C, Orlanducci F, Rey J, Borg GB, Gautherot E, Granjeaud S, Demerle C, Hamel JF, Cerwenka A, von Strandmann EP, Ifrah N, Lacombe C, Cornillet-Lefebvre P, Delaunay J, Toubert A, Arnoulet C, Vey N, Olive D. NKp30 expression is a prognostic immune biomarker for stratification of patients with intermediate-risk acute myeloid leukemia. Oncotarget 2018; 8:49548-49563. [PMID: 28548938 PMCID: PMC5564787 DOI: 10.18632/oncotarget.17747] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
Cytogenetics and European Leukemia Net (ELN) genetic classification predict patients at increased risk of relapse in acute myeloid leukemia (AML) except in the intermediate risk group for which further prognostic determinants are required. We have previously shown that Natural Killer (NK) cell defects in AML are predictors of poor overall survival (OS). This study aimins at validating NKp30, a receptor that mediates NK activation, as a prognostic biomarker for AML patients with intermediate prognosis. NKp30 expression was prospectively assessed at diagnosis on NK cells from peripheral blood by flow cytometry (N = 201 patients). Clinical outcome was evaluated with regard to NKp30 status. In patients with intermediate cytogenetic (N = 162), NKp30high phenotype at diagnosis was predictive of better OS (HR = 0.26; 95%CI = [0.14-0.50]; P < 0.0001) and relapse-free survival (RFS) (HR = 0.21; 95%CI = [0.08-0.52]; P = 0.0007). In patients with intermediate ELN (N = 116), NKp30high phenotype at diagnosis was predictive of better OS (HR = 0.33; 95%CI = [0.16–0.67]; P = 0.0019) and RFS (HR = 0.24; 95%CI = [0.08-0.67]; P = 0.0058). In multivariate analysis, high NKp30 expression independently predicted improved OS (HR = 0.56, P = 0.046) and RFS (HR = 0.37, P = 0.048). Consistently, cumulative incidence of relapse (CIR) was lower in patients with high NKp30 expression (HR = 0.37, P = 0.026). In conclusion, we propose NKp30 status as a simple and early prognostic biomarker that identifies intermediate-risk patients with poor prognosis who otherwise may not be identified with existing risk stratification systems.
Collapse
Affiliation(s)
- Anne-Sophie Chretien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring Platform, Institut Paoli-Calmettes, Marseille, France
| | - Cyril Fauriat
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring Platform, Institut Paoli-Calmettes, Marseille, France
| | | | - Jerome Rey
- Hematology Department, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | | | | | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Clemence Demerle
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring Platform, Institut Paoli-Calmettes, Marseille, France
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany
| | - Elke Pogge von Strandmann
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Clinic for Hematology, Oncology and Immunology, Experimental Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | | | - Catherine Lacombe
- GOELAMStheque, FILO French Innovative Leukemia Organization, Cochin Hospital, APHP, Paris, France
| | | | - Jacques Delaunay
- Service d'Hématologie, Centre Catherine de Sienne, Nantes, France
| | - Antoine Toubert
- INSERM UMRS-1160, Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Immunology and Histocompatibility Department, Hôpital Saint-Louis, APHP, Paris, France
| | - Christine Arnoulet
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Biopathology Department, Institut Paoli Calmettes, Marseille, France
| | - Norbert Vey
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Hematology Department, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring Platform, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
122
|
B7-H6 expression is induced by lipopolysaccharide and facilitates cancer invasion and metastasis in human gliomas. Int Immunopharmacol 2018; 59:318-327. [PMID: 29679856 DOI: 10.1016/j.intimp.2018.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023]
Abstract
Although great progress has been made in treatment regimens, gliomas are still incurable and the 5-year survival remains poor. Studies focusing on molecules that regulate tumorigenesis or tumor immunity may provide potential therapeutic strategies for patients with glioma. B7-H6 is selectively expressed in tumor cells and plays vital roles in host immune responses. In this study, we demonstrated that B7-H6 was expressed in glioma cell lines, including CRT, U251, SHG-44, SF-295, TG-905 and U373, and tumor tissues isolated from glioma patients. Moreover, the expression levels of B7-H6 were significantly correlated with glioma grade. Previous studies reported that inflammatory mediators and cytokines induced the expression of B7 family members including programmed death-ligand 1, B7-H2 and B7-H4. Therefore, we explored the regulation of B7-H6 expression in gliomas and showed that lipopolysaccharide induced the expression of B7-H6 in glioma cells. To further analyze the roles of B7-H6 in gliomas, the expression of B7-H6 in glioma cells was knocked down. The results of cell counting kit-8, colony formation, wound healing, and transwell migration and invasion assays demonstrated that the proliferation, migration and invasion of glioma cells were inhibited after knocking down B7-H6. To elucidate the specific mechanisms of B7-H6 function in cancer progression, we examined the expression levels of proteins involved in cell apoptosis, migration and invasion. We demonstrated that the expression levels of E-cadherin and Bcl-2 associated X protein increased, and the expression levels of vimentin, N-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9 and survivin decreased after knocking down B7-H6. In conclusion, B7-H6 plays important roles in glioma, and targeting B7-H6 may provide a novel therapeutic strategy for glioma patients.
Collapse
|
123
|
Ni L, Dong C. New B7 Family Checkpoints in Human Cancers. Mol Cancer Ther 2018; 16:1203-1211. [PMID: 28679835 DOI: 10.1158/1535-7163.mct-16-0761] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/17/2017] [Accepted: 04/20/2017] [Indexed: 01/22/2023]
Abstract
T cells are the main effector cells in immune response against tumors. The activation of T cells is regulated by the innate immune system through positive and negative costimulatory molecules. Targeting immune checkpoint regulators such as programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) and CTL antigen 4 (CTLA-4) has achieved notable benefit in a variety of cancers, which leads to multiple clinical trials with antibodies targeting the other related B7/CD28 family members. Recently, five new B7 family ligands, B7-H3, B7-H4, B7-H5, B7-H6, and B7-H7, were identified. Here we review recent understanding of new B7 family checkpoint molecules as they have come to the front of cancer research with the concept that tumor cells exploit them to escape immune surveillance. The aim of this article is to address the structure and expression of the new B7 family molecules as well as their roles in controlling and suppressing immune responses of T cells as well as NK cells. We also discuss clinical significance and contribution of these checkpoint expressions in human cancers. Mol Cancer Ther; 16(7); 1203-11. ©2017 AACR.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
124
|
Jiang T, Wu W, Zhang H, Zhang X, Zhang D, Wang Q, Huang L, Wang Y, Hang C. High expression of B7-H6 in human glioma tissues promotes tumor progression. Oncotarget 2018; 8:37435-37447. [PMID: 28415577 PMCID: PMC5514920 DOI: 10.18632/oncotarget.16391] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
B7-H6, a new member of B7-family ligand, also known as NCR3LG1, plays an important role in NK cells mediated immune responses. Many studies have shown that it is highly expressed in various human cancers, and its expression levels are significantly associated with cancer patients’ clinicopathological parameters and postoperative prognoses. But, still the exact role of B7-H6 expression in human glioma remains elusive. In the present study, we have characterized the B7-H6 expression in the human glioma tissues as well as glioma cell lines, U87 and U251. We observed that B7-H6 was highly expressed in the human glioma tissues, and its expression was significantly associated with cancer progression. By using the RNA interference technology, we successfully ablated B7-H6 expression in human glioma cell lines to further study its contribution towards various biological features of this malignancy. Our study identified that the B7-H6 knockdown in U87 and U251 glioma cells significantly suppressed cell proliferation, migration, invasion, and enhanced apoptosis along with induction of cell cycle arrest. It thus suggested that B7-H6 play an important role in the regulation of the biological behavior of these glioma cells. However, the detailed mechanism of B7-H6 mediated regulation of glioma cancer cell transformation and its prognostic value merits further investigation.
Collapse
Affiliation(s)
- Tianwei Jiang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Huasheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiangsheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Dingding Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lei Huang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ye Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chunhua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
125
|
Uppendahl LD, Dahl CM, Miller JS, Felices M, Geller MA. Natural Killer Cell-Based Immunotherapy in Gynecologic Malignancy: A Review. Front Immunol 2018; 8:1825. [PMID: 29354116 PMCID: PMC5760535 DOI: 10.3389/fimmu.2017.01825] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Harnessing the immune system has proven an effective therapy in treating malignancies. Since the discovery of natural killer (NK) cells, strategies aimed to manipulate and augment their effector function against cancer have been the subject of intense research. Recent progress in the immunobiology of NK cells has led to the development of promising therapeutic approaches. In this review, we will focus on the recent advances in NK cell immunobiology and the clinical application of NK cell immunotherapy in ovarian, cervical, and uterine cancer.
Collapse
Affiliation(s)
- Locke D Uppendahl
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Carly M Dahl
- University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
126
|
Li Y, Lai-Han Leung E, Pan H, Yao X, Huang Q, Wu M, Xu T, Wang Y, Cai J, Li R, Liu W, Liu L. Identification of potential genetic causal variants for rheumatoid arthritis by whole-exome sequencing. Oncotarget 2017; 8:111119-111129. [PMID: 29340042 PMCID: PMC5762310 DOI: 10.18632/oncotarget.22630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent chronic autoimmune disease. However, genetic and environmental factors involved in RA pathogenesis are still remained largely unknown. To identify the genetic causal variants underlying pathogenesis and disease progression of RA patients, we undertook the first comprehensive whole-exome sequencing (WES) study in a total of 124 subjects including 58 RA cases and 66 healthy controls in Han Chinese population. We identified 378 novel genes that were enriched with deleterious variants in RA patients using a gene burden test. The further functional effects of associated genetic genes were classified and assessed, including 21 newly identified genes that were involved in the extracellular matrix (ECM)-receptor interaction, protein digestion and absorption, focal adhesion and glycerophospholipid metabolism pathways relevant to RA pathogenesis. Moreover, six pathogenic variants were investigated and structural analysis predicted their potentially functional alteration by homology modeling. Importantly, five novel and rare homozygous variants (NCR3LG1, RAP1GAP, CHCHD5, HIPK2 and DIAPH2) were identified, which may exhibit more functional impact on RA pathogenesis. Notably, 7 genes involved in the olfactory transduction pathway were enriched and associated with RA disease progression. Therefore, we performed an efficient and powerful technique WES in Chinese RA patients and identified novel, rare and common disease causing genes that alter innate immunity pathways and contribute to the risk of RA. Findings in this study may provide potential diagnostic tools and therapeutic strategies for RA patients.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Qingchun Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Min Wu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ting Xu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jun Cai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Runze Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Wei Liu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
127
|
Muntasell A, Cabo M, Servitja S, Tusquets I, Martínez-García M, Rovira A, Rojo F, Albanell J, López-Botet M. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy. Front Immunol 2017; 8:1544. [PMID: 29181007 PMCID: PMC5694168 DOI: 10.3389/fimmu.2017.01544] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023] Open
Abstract
Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i) the configuration of the patient NK cell repertoire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and (iv) evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through combinatorial approaches, including immune checkpoint blocking/stimulatory antibodies, cytokines and toll-like receptor agonists.
Collapse
Affiliation(s)
- Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Sonia Servitja
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Ignasi Tusquets
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - María Martínez-García
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | | | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain.,Univ. Pompeu Fabra, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Univ. Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
128
|
Abstract
B7-H6 is a ligand of NKp30, which is an activating receptor of natural killer (NK) cells. High expression of B7-H6 is found in certain types of tumor cells, such as lymphoma, leukemia and gastric carcinoma. The expression of B7-H6 can be induced by inflammatory stress in healthy cells. The expression of B7-H6 is significantly correlated with distant metastasis status and post-operative prognosis in cancer patients. The effectiveness of B7-H6 modified antitumor immunotherapy strategies had been verified in tumor-bearing mice, which opened a new door to targeted therapy. In this review, we will focus on the recent development on the roles of B7-H6 in tumor immunity, as well as mechanisms involved in the regulation of B7-H6 expression.
Collapse
|
129
|
Gutierrez-Franco J, Hernandez-Gutierrez R, Bueno-Topete MR, Haramati J, Navarro-Hernandez RE, Escarra-Senmarti M, Vega-Magaña N, Del Toro-Arreola A, Pereira-Suarez AL, Del Toro-Arreola S. Characterization of B7H6, an endogenous ligand for the NK cell activating receptor NKp30, reveals the identity of two different soluble isoforms during normal human pregnancy. Immunobiology 2017; 223:57-63. [PMID: 29055565 DOI: 10.1016/j.imbio.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
B7H6, an endogenous ligand expressed on tumor cell surfaces, triggers NKp30-mediated activation of human NK cells. In contrast, the release of soluble B7H6 has been proposed as a novel mechanism by which tumors might evade NK cell-mediated recognition. Since NK cells are critical for the maintenance of early pregnancy, it is not illogical that soluble B7H6 might also be an important factor in directing NK cell activity during normal pregnancy. Thus, this study was focused on the characterization of soluble B7H6 during the development of normal pregnancy. Serum samples were obtained from healthy pregnant women who were experiencing their second pregnancies (n=36). Additionally, 17 of these pregnant participants were longitudinally studied for the presence of B7H6 during their second and third trimesters. Age-matched healthy non-pregnant women served as controls (n=30). The presence of soluble B7H6 was revealed by Western blotting. A further characterization was performed using an immunoproteomic approach based on 2DE-Western blotting combined with MALDI-MS. The results show that sera from all pregnant women were characterized by the presence of two novel isoforms of B7H6, both with lower MW than the reported of 51kDa. These isoforms were either a heavy (∼37kDa) or a light isoform (∼30kDa) and were mutually exclusive. N-glycosylation did not completely explain the different molecular weights exhibited by the two isoforms, as was demonstrated by enzymatic deglycosylation with PNGase F. The confirmation of the identity and molecular mass of each isoform indicates that B7H6, while maintaining the C- and N-termini, is most likely released during pregnancy by a mechanism distinct from proteolytic cleavage. We found that both isoforms, but mainly the heavier B7H6, were released via exosomes; and that the lighter isoform was also released in an exosome-free manner that was not observed in the heavy isoform samples. In conclusion, we find that soluble B7H6 is constitutively expressed during pregnancy and that, moreover, the soluble B7H6 is present in two new isoforms, which are released by exosomal and exosome-free mechanisms.
Collapse
Affiliation(s)
- Jorge Gutierrez-Franco
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Rodolfo Hernandez-Gutierrez
- Laboratorio en Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Guadalajara, Jalisco, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rosa Elena Navarro-Hernandez
- Instituto de Investigación en Reumatología y del Sistema Musculo Esquelético, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Marta Escarra-Senmarti
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Natali Vega-Magaña
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suarez
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
130
|
López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell 2017; 32:135-154. [PMID: 28810142 DOI: 10.1016/j.ccell.2017.06.009] [Citation(s) in RCA: 537] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/21/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
Abstract
The metastatic spread of malignant cells to distant anatomical locations is a prominent cause of cancer-related death. Metastasis is governed by cancer-cell-intrinsic mechanisms that enable neoplastic cells to invade the local microenvironment, reach the circulation, and colonize distant sites, including the so-called epithelial-to-mesenchymal transition. Moreover, metastasis is regulated by microenvironmental and systemic processes, such as immunosurveillance. Here, we outline the cancer-cell-intrinsic and -extrinsic factors that regulate metastasis, discuss the key role of natural killer (NK) cells in the control of metastatic dissemination, and present potential therapeutic approaches to prevent or target metastatic disease by harnessing NK cells.
Collapse
Affiliation(s)
- Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain.
| | - Segundo Gonzalez
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| |
Collapse
|
131
|
Wang J, Jin X, Liu J, Zhao K, Xu H, Wen J, Jiang L, Zeng X, Li J, Chen Q. The prognostic value of B7-H6 protein expression in human oral squamous cell carcinoma. J Oral Pathol Med 2017; 46:766-772. [PMID: 28437013 DOI: 10.1111/jop.12586] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Jiongke Wang
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; College of Stomatology; Chongqing Medical University; Chongqing China
| | - Jiajia Liu
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Kui Zhao
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Hao Xu
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Jing Wen
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Jing Li
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
132
|
Clinical significance of novel costimulatory molecule B7-H6 in human breast cancer. Oncol Lett 2017; 14:2405-2409. [PMID: 28789456 DOI: 10.3892/ol.2017.6417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
B7 homolog 6 (B7-H6), a member of the B7 family, is as a cell-surface ligand for natural cytotoxicity triggering receptor 3, which is expressed on natural killer cells. It has previously been reported that B7-H6 is undetectable in normal human tissues but is expressed on tumor cells. However, there are few studies focusing on the clinical significance of B7-H6 expression in human carcinoma, with the exception of three studies on ovarian, lung and gastric cancer. The present study investigated the expression of B7-H6 protein in pathologic tissue samples from 305 patients with breast cancer using immunohistochemistry. A high B7-H6 expression level was identified in tissues from 32.13% of patients with breast cancer. These patients were revealed to also exhibit a high expression level of human epidermal growth factor receptor 2, a shorter survival time and a higher rate of lymph node metastasis. Furthermore, the expression level of B7-H6 was not associated with patient age, breast cancer subtype, tumor size, tumor location or estrogen receptor expression. The results of the present study revealed that higher B7-H6 expression level in breast cancer tissues was positively associated with tumor progression. This indicates that B7-H6 is associated with the progression and immunoevasion of human breast cancer; however, the molecular mechanisms underlying this potential effect require further investigation.
Collapse
|
133
|
Frazao A, Colombo M, Fourmentraux-Neves E, Messaoudene M, Rusakiewicz S, Zitvogel L, Vivier E, Vély F, Faure F, Dréno B, Benlalam H, Bouquet F, Savina A, Pasmant E, Toubert A, Avril MF, Caignard A. Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on BRAFV600E Melanoma Lines with Vemurafenib. Cancer Immunol Res 2017; 5:582-593. [PMID: 28576831 DOI: 10.1158/2326-6066.cir-16-0380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
Abstract
Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF-mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | - Marina Colombo
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | | | | | | | | | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| | | | - Brigitte Dréno
- UMR 892-CRCNA, Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | - Houssem Benlalam
- UMR 892-CRCNA, Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | | | | | - Eric Pasmant
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Toubert
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | | | - Anne Caignard
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France.
| |
Collapse
|
134
|
Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Front Immunol 2017; 8:533. [PMID: 28572802 PMCID: PMC5435757 DOI: 10.3389/fimmu.2017.00533] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Aline Lindner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
135
|
Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V, Ullrich E. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Front Immunol 2017; 8:458. [PMID: 28491060 PMCID: PMC5405078 DOI: 10.3389/fimmu.2017.00458] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant diseases. Moreover, we critically discuss the technical and regulatory aspects and challenges underlying NK cell based therapeutic approaches in the clinics.
Collapse
Affiliation(s)
- Markus Granzin
- Clinical Research, Miltenyi Biotec Inc., Gaithersburg, MD, USA
| | - Juliane Wagner
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany.,Division of Immunbiochemistry, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Volker Huppert
- R&D Reagents, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| |
Collapse
|
136
|
Pazina T, Shemesh A, Brusilovsky M, Porgador A, Campbell KS. Regulation of the Functions of Natural Cytotoxicity Receptors by Interactions with Diverse Ligands and Alterations in Splice Variant Expression. Front Immunol 2017; 8:369. [PMID: 28424697 PMCID: PMC5371597 DOI: 10.3389/fimmu.2017.00369] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
The natural cytotoxicity receptor (NCR) family is constituted by NKp46, NKp44, and NKp30 in humans, which are expressed mainly on natural killer (NK) cells and are encoded by the ncr1, ncr2, and ncr3 genes, respectively. NCRs have classically been defined as activating receptors that trigger cytotoxicity and cytokine responses by NK cells upon engaging with ligands on tumor cells. Several new findings, however, have challenged this model and identified alternative mechanisms regulating the function of NCRs. Recent reports indicate that ligand matters, since the interaction of NKp44 with distinct ligands on target cells can either activate or inhibit NK cells. Also, the NCRs have been found to interact with distinct specificities to various heparan sulfate glycosaminoglycans, which are complex polysaccharides found in extracellular matrix or on cell surface heparan sulfate proteoglycans (HSPGs). The NCRs can engage with HSPGs in trans as a co-ligand on the target cells or in cis on the NK cell surface to regulate receptor–ligand interactions and NK cell activation. A number of splice variants of ncr2 and ncr3 have also been identified, and a predominant expression of certain variants results in inhibitory signaling through NKp44 and NKp30. Several recent studies have found that the selective expression of some of these inhibitory splice variants can significantly influence outcome in the contexts of cancer, infection, and pregnancy. These findings establish that NCR functions are more diverse than originally thought, and better understanding of their splice variant expression profiles and ligand interactions are needed to establish their functional regulation in the context of human health.
Collapse
Affiliation(s)
- Tatiana Pazina
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA.,Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Avishai Shemesh
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kerry S Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
137
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
138
|
Muntasell A, Ochoa MC, Cordeiro L, Berraondo P, López-Díaz de Cerio A, Cabo M, López-Botet M, Melero I. Targeting NK-cell checkpoints for cancer immunotherapy. Curr Opin Immunol 2017; 45:73-81. [PMID: 28236750 DOI: 10.1016/j.coi.2017.01.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes specialized in early defense against virus-infected and transformed cells. NK-cell function is regulated by activating and inhibitory surface receptors recognizing their ligands on transformed cells. Modulation of NK numbers and/or function by a variety of agents such as cytokines and monoclonal antibodies may result in enhanced anti-tumor activity. Recombinant cytokines (i.e., IL-15 and IL-2), antibodies blocking inhibitory receptors (i.e., KIR, NKG2A and TIGIT) and agonists delivering signals via CD137, NKG2D and CD16 stand out as the most suitable opportunities. These agents can be used to potentiate NKcell- mediated antibody-dependent cellular cytotoxicity (ADCC) against antibody-coated tumor cells, offering potential for multiple combinatorial immunotherapy strategies against cancer.
Collapse
Affiliation(s)
- Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Maria C Ochoa
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain
| | - Luna Cordeiro
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain
| | - Pedro Berraondo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Ignacio Melero
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain; Departamento de Inmunologia e Inmunoterapia, Clinica Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
139
|
Marcussen M, Bødker JS, Christensen HS, Johansen P, Nielsen S, Christiansen I, Bergmann OJ, Bøgsted M, Dybkær K, Vyberg M, Johnsen HE. Molecular Characteristics of High-Dose Melphalan Associated Oral Mucositis in Patients with Multiple Myeloma: A Gene Expression Study on Human Mucosa. PLoS One 2017; 12:e0169286. [PMID: 28052121 PMCID: PMC5215401 DOI: 10.1371/journal.pone.0169286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022] Open
Abstract
Background Toxicity of the oral and gastrointestinal mucosa induced by high-dose melphalan is a clinical challenge with no documented prophylactic interventions or predictive tests. The aim of this study was to describe molecular changes in human oral mucosa and to identify biomarkers correlated with the grade of clinical mucositis. Methods and Findings Ten patients with multiple myeloma (MM) were included. For each patient, we acquired three buccal biopsies, one before, one at 2 days, and one at 20 days after high-dose melphalan administration. We also acquired buccal biopsies from 10 healthy individuals that served as controls. We analyzed the biopsies for global gene expression and performed an immunohistochemical analysis to determine HLA-DRB5 expression. We evaluated associations between clinical mucositis and gene expression profiles. Compared to gene expression levels before and 20 days after therapy, at two days after melphalan treatment, we found gene regulation in the p53 and TNF pathways (MDM2, INPPD5, TIGAR), which favored anti-apoptotic defense, and upregulation of immunoregulatory genes (TREM2, LAMP3) in mucosal dendritic cells. This upregulation was independent of clinical mucositis. HLA-DRB1 and HLA-DRB5 (surface receptors on dendritic cells) were expressed at low levels in all patients with MM, in the subgroup of patients with ulcerative mucositis (UM), and in controls; in contrast, the subgroup with low-grade mucositis (NM) displayed 5–6 fold increases in HLA-DRB1 and HLA-DRB5 expression in the first two biopsies, independent of melphalan treatment. Moreover, different splice variants of HLA-DRB1 were expressed in the UM and NM subgroups. Conclusions Our results revealed that, among patients with MM, immunoregulatory genes and genes involved in defense against apoptosis were affected immediately after melphalan administration, independent of the presence of clinical mucositis. Furthermore, our results suggested that the expression levels of HLA-DRB1 and HLA-DRB5 may serve as potential predictive biomarkers for mucositis severity.
Collapse
Affiliation(s)
- Mette Marcussen
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, Aalborg, Denmark
- Department of Haematology, Aalborg University Hospital, Hobrovej 18–22, Aalborg, Denmark
- * E-mail:
| | - Julie Støve Bødker
- Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, Aalborg, Denmark
- Department of Haematology, Aalborg University Hospital, Hobrovej 18–22, Aalborg, Denmark
| | - Heidi Søgaard Christensen
- Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, Aalborg, Denmark
- Department of Haematology, Aalborg University Hospital, Hobrovej 18–22, Aalborg, Denmark
| | - Preben Johansen
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, Denmark
| | - Søren Nielsen
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, Denmark
| | - Ilse Christiansen
- Department of Haematology, Aalborg University Hospital, Hobrovej 18–22, Aalborg, Denmark
| | - Olav Jonas Bergmann
- School of Dentistry, Faculty of Health Science, Aarhus University; Vennelyst Boulevard 9, Aarhus, Denmark
| | - Martin Bøgsted
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, Aalborg, Denmark
- Department of Haematology, Aalborg University Hospital, Hobrovej 18–22, Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, Aalborg, Denmark
- Department of Haematology, Aalborg University Hospital, Hobrovej 18–22, Aalborg, Denmark
| | - Mogens Vyberg
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, Aalborg, Denmark
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, Denmark
| | - Hans Erik Johnsen
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, Aalborg, Denmark
- Department of Haematology, Aalborg University Hospital, Hobrovej 18–22, Aalborg, Denmark
| |
Collapse
|
140
|
Santegoets SJAM, Welters MJP, van der Burg SH. Monitoring of the Immune Dysfunction in Cancer Patients. Vaccines (Basel) 2016; 4:vaccines4030029. [PMID: 27598210 PMCID: PMC5041023 DOI: 10.3390/vaccines4030029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy shows promising clinical results in patients with different types of cancer, but its full potential is not reached due to immune dysfunction as a result of several suppressive mechanisms that play a role in cancer development and progression. Monitoring of immune dysfunction is a prerequisite for the development of strategies aiming to alleviate cancer-induced immune suppression. At this point, the level at which immune dysfunction occurs has to be established, the underlying mechanism(s) need to be known, as well as the techniques to assess this. While it is relatively easy to measure general signs of immune suppression, it turns out that accurate monitoring of the frequency and function of immune-suppressive cells is still difficult. A lack of truly specific markers, the phenotypic complexity among suppressive cells of the same lineage, but potentially with different functions and functional assays that may not cover every mechanistic aspect of immune suppression are among the reasons complicating proper assessments. Technical innovations in flow and mass cytometry will allow for more complete sets of markers to precisely determine phenotype and associated function. There is, however, a clear need for functional assays that recapitulate more of the mechanisms employed to suppress the immune system.
Collapse
Affiliation(s)
- Saskia J A M Santegoets
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
141
|
Peipp M, Derer S, Lohse S, Staudinger M, Klausz K, Valerius T, Gramatzki M, Kellner C. HER2-specific immunoligands engaging NKp30 or NKp80 trigger NK-cell-mediated lysis of tumor cells and enhance antibody-dependent cell-mediated cytotoxicity. Oncotarget 2016; 6:32075-88. [PMID: 26392331 PMCID: PMC4741660 DOI: 10.18632/oncotarget.5135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 09/04/2015] [Indexed: 12/19/2022] Open
Abstract
NK cells detect tumors through activating surface receptors, which bind self-antigens that are frequently expressed upon malignant transformation. To increase the recognition of tumor cells, the extracellular domains of ligands of the activating NK cell receptors NKp30, NKp80 and DNAM-1 (i.e. B7-H6, AICL and PVR, respectively) were fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2), which is displayed by various solid tumors. The resulting immunoligands, designated B7-H6:HER2-scFv, AICL:HER2-scFv, and PVR:HER2-scFv, respectively, bound HER2 and the addressed NK cell receptor. However, whereas B7-H6:HER2-scFv and AICL:HER2-scFv triggered NK cells to kill HER2-positive breast cancer cells at nanomolar concentrations, PVR:HER2-scFv was not efficacious. Moreover, NK cell cytotoxicity was enhanced synergistically when B7-H6:HER2-scFv or AICL:HER2-scFv were applied in combination with another HER2-specific immunoligand engaging the stimulatory receptor NKG2D. In contrast, no improvements were achieved by combining B7-H6:HER2-scFv with AICL:HER2-scFv. Additionally, B7-H6:HER2-scFv and AICL:HER2-scFv enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by the therapeutic antibodies trastuzumab and cetuximab synergistically, with B7-H6:HER2-scFv exhibiting a higher efficacy. In summary, antibody-derived proteins engaging NKp30 or NKp80 may represent attractive biologics to further enhance anti-tumor NK cell responses and may provide an innovative approach to sensitize tumor cells for antibody-based immunotherapy.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
142
|
Textor S, Bossler F, Henrich KO, Gartlgruber M, Pollmann J, Fiegler N, Arnold A, Westermann F, Waldburger N, Breuhahn K, Golfier S, Witzens-Harig M, Cerwenka A. The proto-oncogene Myc drives expression of the NK cell-activating NKp30 ligand B7-H6 in tumor cells. Oncoimmunology 2016; 5:e1116674. [PMID: 27622013 DOI: 10.1080/2162402x.2015.1116674] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/01/2015] [Accepted: 11/01/2015] [Indexed: 01/22/2023] Open
Abstract
Natural Killer (NK) cells are innate effector cells that are able to recognize and eliminate tumor cells through engagement of their surface receptors. NKp30 is a potent activating NK cell receptor that elicits efficient NK cell-mediated target cell killing. Recently, B7-H6 was identified as tumor cell surface expressed ligand for NKp30. Enhanced B7-H6 mRNA levels are frequently detected in tumor compared to healthy tissues. To gain insight in the regulation of expression of B7-H6 in tumors, we investigated transcriptional mechanisms driving B7-H6 expression by promoter analyses. Using luciferase reporter assays and chromatin immunoprecipitation we mapped a functional binding site for Myc, a proto-oncogene overexpressed in certain tumors, in the B7-H6 promoter. Pharmacological inhibition or siRNA/shRNA-mediated knock-down of c-Myc or N-Myc significantly decreased B7-H6 expression on a variety of tumor cells including melanoma, pancreatic carcinoma and neuroblastoma cell lines. In tumor cell lines from different origin and primary tumor tissues of hepatocellular carcinoma (HCC), lymphoma and neuroblastoma, mRNA levels of c-Myc positively correlated with B7-H6 expression. Most importantly, upon inhibition or knock-down of c-Myc in tumor cells impaired NKp30-mediated degranulation of NK cells was observed. Thus, our data imply that Myc driven tumors could be targets for cancer immunotherapy exploiting the NKp30/B7-H6 axis.
Collapse
Affiliation(s)
- Sonja Textor
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Felicitas Bossler
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | | | | | - Julia Pollmann
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Nathalie Fiegler
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Annette Arnold
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | | | - Nina Waldburger
- Institute of Pathology, University Hospital Heidelberg , Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg , Heidelberg, Germany
| | - Sven Golfier
- Bayer HealthCare Pharmaceuticals , Berlin, Germany
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| |
Collapse
|
143
|
Xu Z, Shen J, Wang MH, Yi T, Yu Y, Zhu Y, Chen B, Chen J, Li L, Li M, Zuo J, Jiang H, Zhou D, Luan J, Xiao Z. Comprehensive molecular profiling of the B7 family of immune-regulatory ligands in breast cancer. Oncoimmunology 2016; 5:e1207841. [PMID: 27622076 DOI: 10.1080/2162402x.2016.1207841] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022] Open
Abstract
The B7 gene family has crucial roles in the regulation of adaptive cellular immunity. In cancer, deregulation of co-inhibitory B7 molecules is associated with reduced antitumor immunity and cancer immune evasion. FDA approval of cancer immunotherapy antibodies against cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death-1 (PD-1)-both ligands of the B7 family-demonstrate the impact of these checkpoint regulators in cancer. Using data from cBioPortal, we performed comprehensive molecular profiling of the 10 currently known B7 family proteins in 105 different cancers. B7 family members were amplified in breast cancer: with B7 mRNA levels upregulated in a cohort of 1,098 patients with all types of breast cancer and in 82 patients with triple-negative breast cancer. Promoter methylation analysis indicated an epigenetic basis for deregulation of certain B7 family genes in breast cancer. Moreover, patients with B7-H6 genomic alterations had significantly worse overall survival, and certain clinical attributes were associated with B7-H6 expression, which indicates that B7-H6 may be a potential target for breast cancer immunotherapy. Finally, using network analysis (based on data from cBioportal), we identified BTLA, MARCH8, PLSCR1 and SMAD3 as potentially involved in T cell signaling under regulation of B7 family proteins.
Collapse
Affiliation(s)
- Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College , Wuhu, Anhui Province, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University , Luzhou, Sichuan, P.R. China
| | - Maggie Haitian Wang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong , Hong Kong, P.R. China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University , Hong Kong, P.R. China
| | - Yangyang Yu
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center , Shenzhen, Guangdong, P.R. China
| | - Yinxin Zhu
- Department of Gastroenterology, the Third Affiliated Hospital of Soochow University , Changzhou, P.R. China
| | - Bo Chen
- Experiment Center for Medical Science Research, Kunming Medical University , Kunming, Yunnan, P.R. China
| | - Jianping Chen
- Department of Breast and Thyroid Surgery, Yijishan Affiliated Hospital of Wannan Medical College , Wuhu, Anhui Province, P.R. China
| | - Longfei Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University , Luzhou, Sichuan, P.R. China
| | - Minxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University , Luzhou, Sichuan, P.R. China
| | - Jian Zuo
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College , Wuhu, Anhui Province, P.R. China
| | - Hui Jiang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College , Wuhu, Anhui Province, P.R. China
| | - Dexi Zhou
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College , Wuhu, Anhui Province, P.R. China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College , Wuhu, Anhui Province, P.R. China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University , Luzhou, Sichuan, P.R. China
| |
Collapse
|
144
|
Exercise-Dependent Regulation of NK Cells in Cancer Protection. Trends Mol Med 2016; 22:565-577. [PMID: 27262760 DOI: 10.1016/j.molmed.2016.05.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors.
Collapse
|
145
|
NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy? J Immunol Res 2016; 2016:4684268. [PMID: 27294158 PMCID: PMC4880686 DOI: 10.1155/2016/4684268] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/10/2016] [Indexed: 12/31/2022] Open
Abstract
Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue.
Collapse
|
146
|
Werneburg S, Buettner FFR, Erben L, Mathews M, Neumann H, Mühlenhoff M, Hildebrandt H. Polysialylation and lipopolysaccharide-induced shedding of E-selectin ligand-1 and neuropilin-2 by microglia and THP-1 macrophages. Glia 2016; 64:1314-30. [DOI: 10.1002/glia.23004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sebastian Werneburg
- Institute for Cellular Chemistry, Hannover Medical School; Carl-Neuberg-Straße 1 30625 Hannover Germany
- Center for Systems Neuroscience (ZSN); Hannover, Bünteweg 2 30559 Hannover Germany
| | - Falk F. R. Buettner
- Institute for Cellular Chemistry, Hannover Medical School; Carl-Neuberg-Straße 1 30625 Hannover Germany
| | - Larissa Erben
- Institute for Cellular Chemistry, Hannover Medical School; Carl-Neuberg-Straße 1 30625 Hannover Germany
| | - Mona Mathews
- Institute of Reconstructive Neurobiology, University of Bonn; Sigmund-Freud-Straße 25 53127 Bonn Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn; Sigmund-Freud-Straße 25 53127 Bonn Germany
| | - Martina Mühlenhoff
- Institute for Cellular Chemistry, Hannover Medical School; Carl-Neuberg-Straße 1 30625 Hannover Germany
| | - Herbert Hildebrandt
- Institute for Cellular Chemistry, Hannover Medical School; Carl-Neuberg-Straße 1 30625 Hannover Germany
- Center for Systems Neuroscience (ZSN); Hannover, Bünteweg 2 30559 Hannover Germany
| |
Collapse
|
147
|
Rusakiewicz S, Perier A, Semeraro M, Pitt JM, Pogge von Strandmann E, Reiners KS, Aspeslagh S, Pipéroglou C, Vély F, Ivagnes A, Jegou S, Halama N, Chaigneau L, Validire P, Christidis C, Perniceni T, Landi B, Berger A, Isambert N, Domont J, Bonvalot S, Terrier P, Adam J, Coindre JM, Emile JF, Poirier-Colame V, Chaba K, Rocha B, Caignard A, Toubert A, Enot D, Koch J, Marabelle A, Lambert M, Caillat-Zucman S, Leyvraz S, Auclair C, Vivier E, Eggermont A, Borg C, Blay JY, Le Cesne A, Mir O, Zitvogel L. NKp30 isoforms and NKp30 ligands are predictive biomarkers of response to imatinib mesylate in metastatic GIST patients. Oncoimmunology 2016; 6:e1137418. [PMID: 28197361 DOI: 10.1080/2162402x.2015.1137418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Despite effective targeted therapy acting on KIT and PDGFRA tyrosine kinases, gastrointestinal stromal tumors (GIST) escape treatment by acquiring mutations conveying resistance to imatinib mesylate (IM). Following the identification of NKp30-based immunosurveillance of GIST and the off-target effects of IM on NK cell functions, we investigated the predictive value of NKp30 isoforms and NKp30 soluble ligands in blood for the clinical response to IM. The relative expression and the proportions of NKp30 isoforms markedly impacted both event-free and overall survival, in two independent cohorts of metastatic GIST. Phenotypes based on disbalanced NKp30B/NKp30C ratio (ΔBClow) and low expression levels of NKp30A were identified in one third of patients with dismal prognosis across molecular subtypes. This ΔBClow blood phenotype was associated with a pro-inflammatory and immunosuppressive tumor microenvironment. In addition, detectable levels of the NKp30 ligand sB7-H6 predicted a worse prognosis in metastatic GIST. Soluble BAG6, an alternate ligand for NKp30 was associated with low NKp30 transcription and had additional predictive value in GIST patients with high NKp30 expression. Such GIST microenvironments could be rescued by therapy based on rIFN-α and anti-TRAIL mAb which reinstated innate immunity.
Collapse
Affiliation(s)
- Sylvie Rusakiewicz
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Aurélie Perier
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | - Michaela Semeraro
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Department of Pediatric Oncology, GRCC, Villejuif, France
| | - Jonathan M Pitt
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | | | - Katrin S Reiners
- Department of Internal Medicine I, University Hospital of Cologne , Cologne, Germany
| | - Sandrine Aspeslagh
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Drug Development Department (DITEP), GRCC, Villejuif, France
| | - Christelle Pipéroglou
- Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille , Marseille, France
| | - Frédéric Vély
- Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France; INSERM, U1104, Centre d'Immunologie de Marseille-Luminy, Marseille, France; CNRS, UMR7280, Marseille, France
| | - Alexandre Ivagnes
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | - Sarah Jegou
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | - Niels Halama
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany; National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Loic Chaigneau
- Department of Medical Oncology, Centre Hospitalier Universitaire Jean Minjoz , Besançon, France
| | - Pierre Validire
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France; Department of Medical Oncology, Sarcoma, Institut Mutualiste Montsouris, Paris, France
| | - Christos Christidis
- Department of Medical Oncology, Sarcoma, Institut Mutualiste Montsouris, Paris, France; Department of Surgery, Institut Mutualiste Montsouris, University of Paris Descartes 5, Paris, France
| | - Thierry Perniceni
- Department of Medical Oncology, Sarcoma, Institut Mutualiste Montsouris , Paris, France
| | - Bruno Landi
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, University of Paris Descartes 5 , Paris, France
| | - Anne Berger
- Department of Surgery, Georges Pompidou European Hospital, University of Paris Descartes , Paris, France
| | - Nicolas Isambert
- Department of Medical Oncology, Centre Georges-François Leclerc , Dijon, France
| | - Julien Domont
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France
| | - Sylvie Bonvalot
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France; Department of Surgery, GRCC, Villejuif, France
| | - Philippe Terrier
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France; Department of Pathology, GRCC, Villejuif, France; Center of Biological Resources, GRCC, Villejuif, France
| | - Julien Adam
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Pathology, GRCC, Villejuif, France; Center of Biological Resources, GRCC, Villejuif, France
| | | | | | - Vichnou Poirier-Colame
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | - Kariman Chaba
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Benedita Rocha
- INSERM, U1020, Paris, France; Faculté de Médecine René Descartes, Paris, France
| | - Anne Caignard
- INSERM, U1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Groupe Hospitalier Saint Louis-Lariboisière - F. Vidal, Paris, France
| | - Antoine Toubert
- INSERM, U1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Groupe Hospitalier Saint Louis-Lariboisière - F. Vidal, Paris, France
| | - David Enot
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Metabolomics and Cell Biology platforms, GRCC, Villejuif, France
| | - Joachim Koch
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre , Mainz, Germany
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Drug Development Department (DITEP), GRCC, Villejuif, France
| | - Marion Lambert
- INSERM, U1149, Equipe "Immunité innée chez l'enfant", Hôpital Robert Debré , Paris, France
| | - Sophie Caillat-Zucman
- INSERM, U1149, Equipe "Immunité innée chez l'enfant", Hôpital Robert Debré , Paris, France
| | - Serge Leyvraz
- Department of Oncology, University Hospital , Lausanne, Switzerland
| | - Christian Auclair
- Applied Biology and Pharmacology Laboratory, Ecole Normale Supèrieur of Cachan , Cachan, France
| | - Eric Vivier
- INSERM, U1104, Centre d'Immunologie de Marseille-Luminy, Marseille, France; CNRS, UMR7280, Marseille, France; Aix Marseille Université, UM2, Marseille, France
| | | | | | - Jean-Yves Blay
- Department of Medicine, Centre Léon Bérard & Université Claude Bernard Lyon I, DGOS-INCA SIRIC , Lyon, France
| | - Axel Le Cesne
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France
| | - Olivier Mir
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France; University of Paris Sud XI, Villejuif, France
| |
Collapse
|
148
|
van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 2016; 16:219-33. [PMID: 26965076 DOI: 10.1038/nrc.2016.16] [Citation(s) in RCA: 524] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.
Collapse
Affiliation(s)
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- ISA Pharmaceuticals, J. H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| |
Collapse
|
149
|
Dulphy N, Chrétien AS, Khaznadar Z, Fauriat C, Nanbakhsh A, Caignard A, Chouaib S, Olive D, Toubert A. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells. Front Immunol 2016; 7:94. [PMID: 27014273 PMCID: PMC4783386 DOI: 10.3389/fimmu.2016.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells.
Collapse
Affiliation(s)
- Nicolas Dulphy
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne-Sophie Chrétien
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | - Zena Khaznadar
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Fauriat
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | | | - Anne Caignard
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | - Antoine Toubert
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
150
|
WU FEIFEI, WANG JING, KE XIAOYAN. Knockdown of B7-H6 inhibits tumor progression and enhances chemosensitivity in B-cell non-Hodgkin lymphoma. Int J Oncol 2016; 48:1561-70. [DOI: 10.3892/ijo.2016.3393] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 11/05/2022] Open
|