101
|
Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells. Bioact Mater 2021; 11:32-40. [PMID: 34938910 DOI: 10.1016/j.bioactmat.2021.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs), as important liquid biopsy target, can provide valuable information for cancer progress monitoring and individualized treatment. However, current isolation platforms incapable of balancing capture efficiency, specificity, cell viability, and gentle release have restricted the clinical applications of CTCs. Herein, inspired by the structure and functional merits of natural membrane interfaces, we established an antibody-engineered red blood cell (RBC-Ab) affinity interface on microfluidic chip for high-performance isolation and release of CTCs. The lateral fluidity, pliability, and anti-adhesion property of the RBC microfluidic interface enabled efficient CTCs capture (96.5%), high CTCs viability (96.1%), and high CTCs purity (average 4.2-log depletion of leukocytes). More importantly, selective lysis of RBCs by simply changing the salt concentration was utilized to destroy the affinity interface for efficient and gentle release of CTCs without nucleic acid contamination. Using this chip, CTCs were successfully detected in colon cancer samples with 90% sensitivity and 100% specificity (20 patients and 10 healthy individuals). After the release process, KRAS gene mutations of CTCs were identified from all the 5 cancer samples, which was consistent with the results of tissue biopsy. We expect this RBC interface strategy will inspire further biomimetic interface construction for rare cell analysis.
Collapse
|
102
|
Onoshima D, Baba Y. Cancer diagnosis and analysis devices based on multimolecular crowding. Chem Commun (Camb) 2021; 57:13655-13661. [PMID: 34854439 DOI: 10.1039/d1cc05556a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the multimolecular crowding around cancer cells has opened up the possibility of developing new devices for cancer diagnosis and analysis through the measurement of intercellular communication related to cell proliferation and invasive metastasis associated with cancer malignancy. In particular, cells and extracellular vesicles that flow into the bloodstream contain metabolites and secreted products of the cancer microenvironment. These are positioned as targets for the development of new devices for the understanding and application of multimolecular crowding around cancer cells. Examples include the separation analysis of cancer cells in blood for the next generation of less invasive testing techniques, and mapping analysis using Raman scattering to detect cancer cells without staining. Another example is the evaluation of the relationship between exosomes and cancer traits for the exploration of new anti-cancer drugs, and the commercialization of exosome separation devices for ultra-early cancer diagnosis. The development of nanobiodevice engineering, which applies multimolecular crowding to conventional nanobioscience, is expected to contribute to the diagnosis and analysis of various diseases in the future.
Collapse
Affiliation(s)
- Daisuke Onoshima
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. .,Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
103
|
Fu X, Tao L, Zhang X. A chimeric virus-based probe unambiguously detects live circulating tumor cells with high specificity and sensitivity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:78-86. [PMID: 34631928 PMCID: PMC8476710 DOI: 10.1016/j.omtm.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
The current methods for detecting circulating tumor cells (CTCs) suffer from several drawbacks. We report a novel method that is based on a chimeric virus probe and can detect CTCs with extremely high specificity and sensitivity. Moreover, it exclusively detects live CTCs, and its detection efficacy is not impacted by the variation of epithelial cell adhesion molecule (EpCAM) expression. The chimeric virus probe is composed of a capsid from human papillomavirus that provides the detection with high specificity and an SV40-based genome that can amplify extensively inside CTCs and, hence, endows the detection with high sensitivity. Furthermore, different marker genes can be incorporated into the probe to provide detection with versatility. These unique capabilities will likely improve the validity and utility of this CTC detection in several clinical applications, which is one of the drawbacks suffered by many of the current CTC detection methods.
Collapse
Affiliation(s)
- Xinping Fu
- Department of Biology and Biochemistry and Center for Nuclear Receptor and Cell Signaling, University of Houston, Houston, TX 77204, USA
| | - Lihua Tao
- Department of Biology and Biochemistry and Center for Nuclear Receptor and Cell Signaling, University of Houston, Houston, TX 77204, USA
| | - Xiaoliu Zhang
- Department of Biology and Biochemistry and Center for Nuclear Receptor and Cell Signaling, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
104
|
Lin KC, Ting LL, Chang CL, Lu LS, Lee HL, Hsu FC, Chiou JF, Wang PY, Burnouf T, Ho DCY, Yang KC, Chen CY, Chen CH, Wu CZ, Chen YJ. Ex Vivo Expanded Circulating Tumor Cells for Clinical Anti-Cancer Drug Prediction in Patients with Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13236076. [PMID: 34885184 PMCID: PMC8656523 DOI: 10.3390/cancers13236076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The conventional methods that seek to predict clinical treatment response are based on the number of circulating tumor cells (CTCs) present in liquid biopsies or genetic profiling of extracted CTCs. This paper presents a novel process by which CTCs can be extracted from blood samples taken from head and neck cancer patients and then expanded ex vivo to form organoids that can be tested with a panel of anti-cancer treatments. The resulting drug sensitivity profiles derived from cisplatin treatment of organoids were subsequently found to correlate with clinical treatment response to cisplatin in patients. CTCs extracted from liquid biopsies for ex vivo expansion negates the need for complicated and potentially risky biopsies of tumor material, thereby supporting the application of this procedure for checkups and treatment monitoring. Abstract The advanced-stage head and neck cancer (HNC) patients respond poorly to platinum-based treatments. Thus, a reliable pretreatment method for evaluating platinum treatment response would improve therapeutic efficiency and outcomes. This study describes a novel strategy to predict clinical drug responses in HNC patients by using eSelect, a lab-developed biomimetic cell culture system, which enables us to perform ex vivo expansion and drug sensitivity profiling of circulating tumor cells (CTCs). Forty liquid biopsies were collected from HNC patients, and the CTCs were expanded ex vivo using the eSelect system within four weeks. Immunofluorescence staining confirmed that the CTC-derived organoids were positive for EpCAM and negative for CD45. Two illustrative cases present the potential of this strategy for evaluating treatment response. The statistical analysis confirmed that drug sensitivity in CTC-derived organoids was associated with a clinical response. The multivariant logistic regression model predicted that the treatment accuracy of chemotherapy responses achieved 93.75%, and the area under the curves (AUCs) of prediction models was 0.8841 in the whole dataset and 0.9167 in cisplatin specific dataset. In summary, cisplatin sensitivity profiles of patient-derived CTCs expanded ex vivo correlate with a clinical response to cisplatin treatment, and this can potentially underpin predictive assays to guide HNC treatments.
Collapse
Affiliation(s)
- Kuan-Chou Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (K.-C.L.); (D.C.-Y.H.)
- Department of Oral and Maxillofacial Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Lai-Lei Ting
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; (L.-L.T.); (L.-S.L.); (H.-L.L.); (J.-F.C.)
| | - Chia-Lun Chang
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; (L.-L.T.); (L.-S.L.); (H.-L.L.); (J.-F.C.)
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (T.B.); (K.-C.Y.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; (L.-L.T.); (L.-S.L.); (H.-L.L.); (J.-F.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Fang-Chi Hsu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan;
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; (L.-L.T.); (L.-S.L.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne 3122, Australia;
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (T.B.); (K.-C.Y.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Dennis Chun-Yu Ho
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (K.-C.L.); (D.C.-Y.H.)
- Department of Oral and Maxillofacial Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Kai-Chiang Yang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (T.B.); (K.-C.Y.)
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chang-Yu Chen
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (K.-C.L.); (D.C.-Y.H.)
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Dentistry, Lo-Tung Poh-Ai Hospital, Yilan 265, Taiwan
- Correspondence: (C.-Z.W.); (Y.-J.C.)
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (T.B.); (K.-C.Y.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (C.-Z.W.); (Y.-J.C.)
| |
Collapse
|
105
|
Müller V, Banys-Paluchowski M, Friedl TWP, Fasching PA, Schneeweiss A, Hartkopf A, Wallwiener D, Rack B, Meier-Stiegen F, Huober J, Rübner M, Hoffmann O, Müller L, Janni W, Wimberger P, Jäger B, Pantel K, Riethdorf S, Harbeck N, Fehm T. Prognostic relevance of the HER2 status of circulating tumor cells in metastatic breast cancer patients screened for participation in the DETECT study program. ESMO Open 2021; 6:100299. [PMID: 34839105 PMCID: PMC8637493 DOI: 10.1016/j.esmoop.2021.100299] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have been reported to predict clinical outcome in metastatic breast cancer (MBC). Biology of CTCs may differ from that of the primary tumor and HER2-positive CTCs are found in some patients with HER2-negative tumors. PATIENTS AND METHODS Patients with HER2-negative MBC were screened for participation in DETECT III and IV trials before the initiation of a new line of therapy. Blood samples were analyzed using CELLSEARCH. CTCs were labeled with an anti-HER2 antibody and classified according to staining intensity (negative, weak, moderate, or strong staining). RESULTS Screening blood samples were analyzed in 1933 patients with HER2-negative MBC. As many as 1217 out of the 1933 screened patients (63.0%) had ≥1 CTC per 7.5 ml blood; ≥5 CTCs were detected in 735 patients (38.0%; range 1-35 078 CTCs, median 8 CTCs). HER2 status of CTCs was assessed in 1159 CTC-positive patients; ≥1 CTC with strong HER2 staining was found in 174 (15.0%) patients. The proportion of CTCs with strong HER2 staining among all CTCs of an individual patient ranged between 0.06% and 100% (mean 15.8%). Patients with estrogen receptor (ER)- and progesterone receptor (PR)-positive tumors were more likely to harbor ≥1 CTC with strong HER2 staining. CTC status was significantly associated with overall survival (OS). Detection of ≥1 CTC with strong HER2 staining was associated with shorter OS [9.7 (7.1-12.3) versus 16.5 (14.9-18.1) months in patients with CTCs with negative-to-moderate HER2 staining only, P = 0.013]. In multivariate analysis, age, ER status, PR status, Eastern Cooperative Oncology Group performance status, therapy line, and CTC status independently predicted OS. CONCLUSION CTC detection in patients with HER2-negative disease is a strong prognostic factor. Presence of ≥1 CTC with strong HER2 staining was associated with shorter OS, supporting a biological role of HER2 expression on CTCs.
Collapse
Affiliation(s)
- V Müller
- Department of Gynecology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - M Banys-Paluchowski
- Gynecology and Obstetrics Department, University of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; Medical Faculty, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - T W P Friedl
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - P A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - A Schneeweiss
- Division Gynecologic Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - A Hartkopf
- Department of Gynecology and Obstetrics, University Hospital Tübingen, Tübingen, Germany
| | - D Wallwiener
- Department of Gynecology and Obstetrics, University Hospital Tübingen, Tübingen, Germany
| | - B Rack
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - F Meier-Stiegen
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - J Huober
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - M Rübner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - O Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - L Müller
- OnkologieUnterEms, Leer, Germany
| | - W Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - P Wimberger
- Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus Dresden, TU Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Jäger
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - K Pantel
- Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - S Riethdorf
- Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - N Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, LMU University Hospital, Munich, Germany
| | - T Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
106
|
Jiang M, Jin S, Han J, Li T, Shi J, Zhong Q, Li W, Tang W, Huang Q, Zong H. Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomark Res 2021; 9:85. [PMID: 34798902 PMCID: PMC8605607 DOI: 10.1186/s40364-021-00326-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Histopathological examination (biopsy) is the "gold standard" for the diagnosis of colorectal cancer (CRC). However, biopsy is an invasive method, and due to the temporal and spatial heterogeneity of the tumor, a single biopsy cannot reveal the comprehensive biological characteristics and dynamic changes of the tumor. Therefore, there is a need for new biomarkers to improve CRC diagnosis and to monitor and treat CRC patients. Numerous studies have shown that "liquid biopsy" is a promising minimally invasive method for early CRC detection. A liquid biopsy mainly samples circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA) and extracellular vesicles (EVs). CTCs are malignant cells that are shed from the primary tumors and/or metastases into the peripheral circulation. CTCs carry information on both primary tumors and metastases that can reflect dynamic changes in tumors in a timely manner. As a promising biomarker, CTCs can be used for early disease detection, treatment response and disease progression evaluation, disease mechanism elucidation, and therapeutic target identification for drug development. This review will discuss currently available technologies for plasma CTC isolation and detection, their utility in the management of CRC patients and future research directions.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jinming Han
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Tong Li
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.,Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Qian Zhong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wen Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wenxue Tang
- Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Qinqin Huang
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
107
|
Li BW, Wei K, Liu QQ, Sun XG, Su N, Li WM, Shang MY, Li JM, Liao D, Li J, Lu WP, Deng SL, Huang Q. Enhanced Separation Efficiency and Purity of Circulating Tumor Cells Based on the Combined Effects of Double Sheath Fluids and Inertial Focusing. Front Bioeng Biotechnol 2021; 9:750444. [PMID: 34778227 PMCID: PMC8578950 DOI: 10.3389/fbioe.2021.750444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Circulating tumor cells (CTCs) play a crucial role in solid tumor metastasis, but obtaining high purity and viability CTCs is a challenging task due to their rarity. Although various works using spiral microchannels to isolate CTCs have been reported, the sorting purity of CTCs has not been significantly improved. Herein, we developed a novel double spiral microchannel for efficient separation and enrichment of intact and high-purity CTCs based on the combined effects of two-stage inertial focusing and particle deflection. Particle deflection relies on the second sheath to produce a deflection of the focused sample flow segment at the end of the first-stage microchannel, allowing larger particles to remain focused and entered the second-stage microchannel while smaller particles moved into the first waste channel. The deflection of the focused sample flow segment was visualized. Testing by a binary mixture of 10.4 and 16.5 μm fluorescent microspheres, it showed 16.5 μm with separation efficiency of 98% and purity of 90% under the second sheath flow rate of 700 μl min−1. In biological experiments, the average purity of spiked CTCs was 74% at a high throughput of 1.5 × 108 cells min−1, and the recovery was more than 91%. Compared to the control group, the viability of separated cells was 99%. Finally, we validated the performance of the double spiral microchannel using clinical cancer blood samples. CTCs with a concentration of 2–28 counts ml−1 were separated from all 12 patients’ peripheral blood. Thus, our device could be a robust and label-free liquid biopsy platform in inertial microfluidics for successful application in clinical trials.
Collapse
Affiliation(s)
- Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kun Wei
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qi-Qi Liu
- Department of Nursing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei-Yun Shang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin-Mi Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Liao
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
108
|
Gribko A, Stiefel J, Liebetanz L, Nagel SM, Künzel J, Wandrey M, Hagemann J, Stauber RH, Freese C, Gül D. IsoMAG-An Automated System for the Immunomagnetic Isolation of Squamous Cell Carcinoma-Derived Circulating Tumor Cells. Diagnostics (Basel) 2021; 11:2040. [PMID: 34829387 PMCID: PMC8623084 DOI: 10.3390/diagnostics11112040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND detailed information about circulating tumor cells (CTCs) as an indicator of therapy response and cancer metastasis is crucial not only for basic research but also for diagnostics and therapeutic approaches. Here, we showcase a newly developed IsoMAG IMS system with an optimized protocol for fully automated immunomagnetic enrichment of CTCs, also revealing rare CTC subpopulations. METHODS using different squamous cell carcinoma cell lines, we developed an isolation protocol exploiting highly efficient EpCAM-targeting magnetic beads for automated CTC enrichment by the IsoMAG IMS system. By FACS analysis, we analyzed white blood contamination usually preventing further downstream analysis of enriched cells. RESULTS 1 µm magnetic beads with tosyl-activated hydrophobic surface properties were found to be optimal for automated CTC enrichment. More than 86.5% and 95% of spiked cancer cells were recovered from both cell culture media or human blood employing our developed protocol. In addition, contamination with white blood cells was minimized to about 1200 cells starting from 7.5 mL blood. Finally, we showed that the system is applicable for HNSCC patient samples and characterized isolated CTCs by immunostaining using a panel of tumor markers. CONCLUSION Herein, we demonstrate that the IsoMAG system allows the detection and isolation of CTCs from HNSCC patient blood for disease monitoring in a fully-automated process with a significant leukocyte count reduction. Future developments seek to integrate the IsoMAG IMS system into an automated microfluidic-based isolation workflow to further facilitate single CTC detection also in clinical routine.
Collapse
Affiliation(s)
- Alena Gribko
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Janis Stiefel
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Lana Liebetanz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Sophie Madeleine Nagel
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Julian Künzel
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Madita Wandrey
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Jan Hagemann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Christian Freese
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Désirée Gül
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| |
Collapse
|
109
|
Barrera-Saldaña HA, Fernández-Garza LE, Barrera-Barrera SA. Liquid biopsy in chronic liver disease. Ann Hepatol 2021; 20:100197. [PMID: 32444248 DOI: 10.1016/j.aohep.2020.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Chronic liver diseases account for a considerable toll of incapacities, suffering, deaths, and resources of the nation's health systems. They can be prevented, treated or even cured when the diagnosis is made on time. Traditional liver biopsy remains the gold standard to diagnose liver diseases, but it has several limitations. Liquid biopsy is emerging as a superior alternative to surgical biopsy given that it surpasses the limitations: it is more convenient, readily and repeatedly accessible, safe, cheap, and provides a more detailed molecular and cellular representation of the individual patient's disease. Progress in understanding the molecular and cellular bases of diseased tissues and organs that normally release cells and cellular components into the bloodstream is catapulting liquid biopsy as a source of biomarkers for diagnosis, prognosis, and prediction of therapeutic response, thus supporting the realization of the promises of precision medicine. The review aims to summarize the evidence of the usefulness of liquid biopsy in liver diseases, including the presence of different biomarkers as circulating epithelial cells, cell-free nucleic acids, specific species of DNA and RNA, and the content of extracellular vesicles.
Collapse
Affiliation(s)
- Hugo A Barrera-Saldaña
- Innbiogem SC at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEDI) of CONACyT Vitaxentrum group, Monterrey, N.L., Mexico; Center for Biotechnological Genomics of National Polytechnical Institute, Reynosa, Tamps., Mexico.
| | - Luis E Fernández-Garza
- Innbiogem SC at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEDI) of CONACyT Vitaxentrum group, Monterrey, N.L., Mexico
| | - Silvia A Barrera-Barrera
- Innbiogem SC at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEDI) of CONACyT Vitaxentrum group, Monterrey, N.L., Mexico; National Institute of Pediatrics, Mexico City, Mexico
| |
Collapse
|
110
|
Huang M, Ma Y, Lv C, Li S, Lu F, Zhang S, Wang DD, Lin PP, Yang Y. Aneuploid Circulating Tumor Cells as a Predictor of Response to Neoadjuvant Chemotherapy in Non-Small Cell Lung Cancer. Int J Gen Med 2021; 14:6609-6620. [PMID: 34703281 PMCID: PMC8523810 DOI: 10.2147/ijgm.s330361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to explore the potential application of circulating tumor cells (CTCs) in predicting the therapeutic effect of neoadjuvant chemotherapy (NAC) in non-small-cell lung cancer (NSCLC). Methods Using integrated subtraction enrichment and immunostaining-fluorescence in situ hybridization, the serial CTCs of patients with NSCLC were detected in 7.5 mL of blood at baseline and after two cycles of cisplatin-based NAC, and all aneuploidies of chromosome 8 were examined in the enriched CTCs. Tumor responses were evaluated radiologically with serial chest computed tomography (CT) using the response evaluation criteria in solid tumors and microscopically using the tumor cell necrosis rate (TCNR) of the resected specimen after NAC. Results After two cycles of cisplatin-based NAC, 89% (8/9) of the patients with radiological partial response to NAC had reduced CTC numbers, while 73% (8/11) of the patients with stable disease exhibited increased CTC numbers (P = 0.0098). On pathological examination, 90% (9/10) of patients with a TCNR lower than 30% had >1 CTC post-NAC, while 80% (4/5) of patients with a TCNR higher than 30% had ≤1 CTC post-NAC (P = 0.017). In aneuploidy analysis, the positive rate (CTC > 0) of triploid CTCs was found to have increased after NAC, in contrast with the tetraploid and multiploid CTCs. Furthermore, tetraploid and multiploid CTCs were found to be significantly downregulated in the patients with partial response to NAC. Conclusion The correlations of aneuploid CTCs with both radiological and pathological responses in patients with NSCLC who received NAC were summarized, and the findings indicate that enumerating and karyotyping aneuploid CTCs can serve as a surrogate marker for disease monitoring in NSCLC.
Collapse
Affiliation(s)
- Miao Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Chao Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Shaolei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Fangliang Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Shanyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | | | | | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|
111
|
High Serum Levels of Wnt Signaling Antagonist Dickkopf-Related Protein 1 Are Associated with Impaired Overall Survival and Recurrence in Esophageal Cancer Patients. Cancers (Basel) 2021; 13:cancers13194980. [PMID: 34638464 PMCID: PMC8507644 DOI: 10.3390/cancers13194980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Dickkopf-related protein 1 (DKK1), an antagonist of the canonical Wnt pathway has been the subject of research for many years. Especially in gastrointestinal cancers, research suggests a pivotal role of DKK1. In order to understand the role of DKK1 in esophageal cancer, we analyzed blood samples of esophageal cancer patients for their DKK1 levels and retrospectively analyzed the clinicopathological data. In our study cohort, we observed a negative prognostic role of high DKK1 serum levels with respect to overall survival in esophageal cancer patients. These data may suggest serum DKK1 as a novel biomarker for improved risk stratification and treatment monitoring in esophageal cancer patients. Abstract Dickkopf-related protein 1 (DKK1), an antagonist of the canonical Wnt pathway, has received tremendous attention over the past years as its dysregulation is said to be critically involved in a wide variety of gastrointestinal cancers. However, the potential clinical implications of DKK1 remain poorly understood. Although multimodal treatment options have been implemented over the past years, esophageal cancer (EC) patients still suffer from poor five-year overall survival rates ranging from 15% to 25%. Especially prognostic factors and biomarkers for risk stratification are lacking to choose the most beneficial treatment out of the emerging landscape of different treatment options. In this study, we analyzed the serum DKK1 (S-DKK1) levels of 91 EC patients prior to surgery in a single center study at the University Medical Center Hamburg-Eppendorf by enzyme-linked immunosorbent assay. High levels of S-DKK1 could be especially observed in patients suffering from esophageal adenocarcinoma which may promote the hypothesis of a crucial role of DKK1 in inflammation. S-DKK1 levels of ≥5800 pg/mL were shown to be associated with unfavorable five-year survival rates and the presence of CTCs. Interestingly, significantly lower S-DKK1 levels were detected in patients after neoadjuvant treatment, implying that S-DKK1 may serve as a useful biomarker for treatment monitoring. Multivariate analysis identified S-DKK1 as an independent prognostic marker with respect to overall survival in EC patients with a hazard ratio of 2.23. In conclusion, our data implicate a negative prognostic role of DKK1 with respect to the clinical outcome in EC patients. Further prospective studies should be conducted to implement S-DKK1 into the clinical routine for risk stratification and treatment monitoring.
Collapse
|
112
|
Lv Z, Wang Q, Yang M. Multivalent Duplexed-Aptamer Networks Regulated a CRISPR-Cas12a System for Circulating Tumor Cell Detection. Anal Chem 2021; 93:12921-12929. [PMID: 34533940 DOI: 10.1021/acs.analchem.1c02228] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although circulating tumor cells (CTCs) have great potential to act as the mini-invasive liquid biopsy cancer biomarker, a rapid and sensitive CTC detection method remains lacking. CRISPR-Cas12a has recently emerged as a promising tool in biosensing applications with the characteristic of fast detection, easy operation, and high sensitivity. Herein, we reported a CRISPR-Cas12a-based CTC detection sensor that is regulated by the multivalent duplexed-aptamer networks (MDANs). MDANs were synthesized on a magnetic bead surface by rolling circle amplification (RCA), which contain multiple duplexed-aptamer units that allow structure switching induced by cell-binding events. The presence of target cells can trigger the release of free "activator DNA" from the MDANs structure to activate the downstream CRISPR-Cas12a for signal amplification. Furthermore, the 3D DNA network formed by RCA products also provided significantly higher sensitivity than the monovalent aptamer. As a proof-of-concept study, we chose the most widely used sgc8 aptamer that specifically recognizes CCRF-CEM cells to validate the proposed approach. The MDANs-Cas12a system could afford a simple and fast CTC detection workflow with a detection limit of 26 cells mL-1. We also demonstrated that the MDANs-Cas12a could directly detect the CTCs in human blood samples, indicating a great potential of the MDANs-Cas12a in clinical CTC-based liquid biopsy.
Collapse
Affiliation(s)
- Zhengxian Lv
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering and State Key Lab of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering and State Key Lab of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
113
|
Liquid Biopsy Biomarkers for Immunotherapy in Non-Small Cell Lung Carcinoma: Lessons Learned and the Road Ahead. J Pers Med 2021; 11:jpm11100971. [PMID: 34683113 PMCID: PMC8540302 DOI: 10.3390/jpm11100971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Over the recent years, advances in the development of anti-cancer treatments, particularly the implementation of ICIs (immune checkpoint inhibitors), have resulted in increased survival rates in NSCLC (non-small cell lung cancer) patients. However, a significant proportion of patients does not seem respond to immunotherapy, and some individuals even develop secondary resistance to treatment. Therefore, it is imperative to correctly identify the patients that will benefit from ICI therapy in order to tailor therapeutic options in an individualised setting, ultimately benefitting both the patient and the health system. Many different biomarkers have been explored to correctly stratify patients and predict response to immunotherapy, but liquid biopsy approaches have recently arisen as an interesting opportunity to predict and monitor treatment response due to their logistic accessibility. This review summarises the current data and efforts in the field of ICI response biomarkers in NSCLC patients and highlights advantages and limitations as we discuss the road to clinical implementation.
Collapse
|
114
|
Wang J, Yu X, Peng H, Lu Y, Li S, Shi Q, Liu J, Dong H, Katanaev V, Jia L. Embedding similarities between embryos and circulating tumor cells: fundamentals of abortifacients used for cancer metastasis chemoprevention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:300. [PMID: 34556175 PMCID: PMC8461875 DOI: 10.1186/s13046-021-02104-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/15/2021] [Indexed: 12/01/2022]
Abstract
Background The global epidemiological studies reported lower cancer risk after long-term use of contraceptives. Our systematic studies demonstrated that abortifacients are effective in preventing cancer metastases induced by circulating tumor cells (CTCs). However, the molecular and cellular mechanisms by which abortifacients prevent CTC-based cancer metastases are almost unknown. The present studies were designed to interdisciplinarily explore similarities and differences between embryo implantation and cancer cell adhesion/invasion. Methods Biomarker expressions on the seeding embryo JEG-3 and cancer MCF-7 cells, as well as embedding uterine endometrial RL95-2 and vascular endothelial HUVECs cells were examined and compared before and after treatments with 17β-estradiol plus progesterone and abortifacients. Effects of oral metapristone and mifepristone on embryo implantation in normal female mice and adhesion/invasion of circulating tumor cells (CTCs) in BALB/C female mice were examined. Results Both embryo JEG-3 and cancer MCF-7 cells expressed high sLex, CD47, CAMs, while both endometrial RL95-2 and endothelial HUVECs exhibited high integrins and ICAM-1. Near physiological concentrations of 17β-estradiol plus progesterone promoted migration and invasion of JEG-3 and MCF-7 cells via upregulating integrins and MMPs. Whereas, mifepristone and metapristone significantly inhibited migration and invasion of JEG-3 and MCF-7 cells, and inhibited JEG-3 and MCF-7 adhesion to matrigel, RL95-2 cells and HUVECs, respectively. The inhibitions were realized by downregulating sLex, MMPs in JEG-3 and MCF-7 cells, and downregulating integrins in RL95-2 cells and HUVECs, respectively. Mifepristone and metapristone significantly inhibited both embryo implantation and cancer cell metastasis in mice. Conclusions The similarities between the two systems provide fundamentals for abortifacients to intervene CTC adhesion/invasion to the distant metastatic organs. The present studies offer the rationale to repurpose abortifacients for safe and effective cancer metastasis chemoprevention.
Collapse
Affiliation(s)
- Jie Wang
- College of Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xiaobo Yu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 350108, Fuzhou, P.R. China
| | - Huayi Peng
- Fujian Provincial Key Laboratory of Inspection and Quarantine Technology Research/ Technology Center of Fuzhou Customs, 350108, Fuzhou, China
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Shuhui Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 350108, Fuzhou, P.R. China
| | - Qing Shi
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 350108, Fuzhou, P.R. China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 350108, Fuzhou, P.R. China
| | - Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 350108, Fuzhou, China
| | - Vladimir Katanaev
- College of Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China.,Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China.
| |
Collapse
|
115
|
Liu Y, Zhao W, Cheng R, Hodgson J, Egan M, Pope CNC, Nikolinakos PG, Mao L. Simultaneous biochemical and functional phenotyping of single circulating tumor cells using ultrahigh throughput and recovery microfluidic devices. LAB ON A CHIP 2021; 21:3583-3597. [PMID: 34346469 DOI: 10.1039/d1lc00454a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Profiling circulating tumour cells (CTCs) in cancer patients' blood samples is critical to understand the complex and dynamic nature of metastasis. This task is challenged by the fact that CTCs are not only extremely rare in circulation but also highly heterogeneous in their molecular programs and cellular functions. Here we report a combinational approach for the simultaneous biochemical and functional phenotyping of patient-derived CTCs, using an integrated inertial ferrohydrodynamic cell separation (i2FCS) method and a single-cell microfluidic migration assay. This combinatorial approach offers unique capability to profile CTCs on the basis of their surface expression and migratory characteristics. We achieve this using the i2FCS method that successfully processes whole blood samples in a tumor cell marker and size agnostic manner. The i2FCS method enables an ultrahigh blood sample processing throughput of up to 2 × 105 cells s-1 with a blood sample flow rate of 60 mL h-1. Its short processing time (10 minutes for a 10 mL sample), together with a close-to-complete CTC recovery (99.70% recovery rate) and a low WBC contamination (4.07-log depletion rate by removing 99.992% of leukocytes), results in adequate and functional CTCs for subsequent studies in the single-cell migration device. For the first time, we employ this new approach to query CTCs with single-cell resolution in accordance with their expression of phenotypic surface markers and migration properties, revealing the dynamic phenotypes and the existence of a high-motility subpopulation of CTCs in blood samples from metastatic lung cancer patients. This method could be adopted to study the biological and clinical value of invasive CTC phenotypes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, The University of Georgia, Athens, Georgia, USA
| | - Wujun Zhao
- FCS Technology, LLC, Athens, GA, 30606, USA
| | - Rui Cheng
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA.
| | - Jamie Hodgson
- University Cancer & Blood Center, LLC, Athens, GA, 30607, USA
| | - Mary Egan
- University Cancer & Blood Center, LLC, Athens, GA, 30607, USA
| | | | | | - Leidong Mao
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
116
|
Liu J, Lian J, Chen Y, Zhao X, Du C, Xu Y, Hu H, Rao H, Hong X. Circulating Tumor Cells (CTCs): A Unique Model of Cancer Metastases and Non-invasive Biomarkers of Therapeutic Response. Front Genet 2021; 12:734595. [PMID: 34512735 PMCID: PMC8424190 DOI: 10.3389/fgene.2021.734595] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Late-stage cancer metastasis remains incurable in the clinic and is the major cause death in patients. Circulating tumor cells (CTCs) are thought to be metastatic precursors shed from the primary tumor or metastatic deposits and circulate in the blood. The molecular network regulating CTC survival, extravasation, and colonization in distant metastatic sites is poorly defined, largely due to challenges in isolating rare CTCs. Recent advances in CTC isolation and ex vivo culture techniques facilitates single-cell omics and the development of related animal models to study CTC-mediated metastatic progression. With these powerful tools, CTCs can potentially be used as non-invasive biomarkers predicting therapeutic response. These studies may open a new avenue for CTC-specific drug discoveries. In this short review, we aim to summarize recent progress in the characterization of CTCs and their clinical relevance in various cancers, setting the stage for realizing personalized therapies against metastases.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jingru Lian
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yafei Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - ChangZheng Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Xu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
117
|
Mäurer M, Pachmann K, Wendt T, Schott D, Wittig A. Prospective Monitoring of Circulating Epithelial Tumor Cells (CETC) Reveals Changes in Gene Expression during Adjuvant Radiotherapy of Breast Cancer Patients. ACTA ACUST UNITED AC 2021; 28:3507-3524. [PMID: 34590615 PMCID: PMC8482075 DOI: 10.3390/curroncol28050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
Circulating epithelial tumor cells (CETC) are considered to be responsible for the formation of metastases. Therefore, their importance as prognostic and/or predictive markers in breast cancer is being intensively investigated. Here, the reliability of single cell expression analyses in isolated and collected CETC from whole blood samples of patients with early-stage breast cancer before and after radiotherapy (RT) using the maintrac® method was investigated. Single-cell expression analyses were performed with qRT-PCR on a panel of selected genes: GAPDH, EpCAM, NANOG, Bcl-2, TLR 4, COX-2, PIK3CA, Her-2/neu, Vimentin, c-Met, Ki-67. In all patients, viable CETC were detected prior to and at the end of radiotherapy. In 7 of the 9 (77.8%) subjects examined, the CETC number at the end of the radiotherapy series was higher than before. The majority of genes analyzed showed increased expression after completion of radiotherapy compared to baseline. Procedures and methods used in this pilot study proved to be feasible. The method is suitable for further investigation of the underlying molecular biological mechanisms occurring in cells surviving radiotherapy and possibly the development of radiation resistance.
Collapse
Affiliation(s)
- Matthias Mäurer
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
- Correspondence:
| | - Katharina Pachmann
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (K.P.); (D.S.)
| | - Thomas Wendt
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
| | - Dorothea Schott
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (K.P.); (D.S.)
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
| |
Collapse
|
118
|
Lopes C, Piairo P, Chícharo A, Abalde-Cela S, Pires LR, Corredeira P, Alves P, Muinelo-Romay L, Costa L, Diéguez L. HER2 Expression in Circulating Tumour Cells Isolated from Metastatic Breast Cancer Patients Using a Size-Based Microfluidic Device. Cancers (Basel) 2021; 13:4446. [PMID: 34503260 PMCID: PMC8431641 DOI: 10.3390/cancers13174446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
HER2 is a prognostic and predictive biomarker in breast cancer, normally assessed in tumour biopsy and used to guide treatment choices. Circulating tumour cells (CTCs) escape the primary tumour and enter the bloodstream, exhibiting great metastatic potential and representing a real-time snapshot of the tumour burden. Liquid biopsy offers the unique opportunity for low invasive sampling in cancer patients and holds the potential to provide valuable information for the clinical management of cancer patients. This study assesses the performance of the RUBYchip™, a microfluidic system for CTC capture based on cell size and deformability, and compares it with the only FDA-approved technology for CTC enumeration, CellSearch®. After optimising device performance, 30 whole blood samples from metastatic breast cancer patients were processed with both technologies. The expression of HER2 was assessed in isolated CTCs and compared to tissue biopsy. Results show that the RUBYchipTM was able to isolate CTCs with higher efficiency than CellSearch®, up to 10 times more, averaging all samples. An accurate evaluation of different CTC subpopulations, including HER2+ CTCs, was provided. Liquid biopsy through the use of the RUBYchipTM in the clinic can overcome the limitations of histological testing and evaluate HER2 status in patients in real-time, helping to tailor treatment during disease evolution.
Collapse
Affiliation(s)
- Cláudia Lopes
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Liliana R. Pires
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal;
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| |
Collapse
|
119
|
Real-Time Detection of Tumor Cells during Capture on a Filter Element Significantly Enhancing Detection Rate. BIOSENSORS-BASEL 2021; 11:bios11090312. [PMID: 34562902 PMCID: PMC8472380 DOI: 10.3390/bios11090312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) that enter the bloodstream play an important role in the formation of metastases. The prognostic significance of CTCs as biomarkers obtained from liquid biopsies is intensively investigated and requires accurate methods for quantification. The purpose of this study was the capture of CTCs on an optically accessible surface for real-time quantification. A filtration device was fabricated from a transparent material so that capturing of cells could be observed microscopically. Blood samples were spiked with stained tumor cells and the sample was filtrated using a porous structure with pore sizes of 7.4 µm. The possible removal of lysed erythrocytes and the retention of CTCs were assessed. The filtration process was observed in real-time using fluorescence microscopy, whereby arriving cells were counted in order to determine the number of CTCs present in the blood. Through optimization of the microfluidic channel design, the cell retention rate could be increased by 13% (from 76% ± 7% to 89% ± 5%). Providing the possibility for real-time detection significantly improved quantification efficiency even for the smallest cells evaluated. While end-point evaluation resulted in a detection rate of 63% ± 3% of the spiked cells, real-time evaluation led to an increase of 21% to 84% ± 4%. The established protocol provides an advantageous and efficient method for integration of fully automated sample preparation and CTC quantification into a lab-on-a-chip system.
Collapse
|
120
|
Kadara H, Tran LM, Liu B, Vachani A, Li S, Sinjab A, Zhou XJ, Dubinett SM, Krysan K. Early Diagnosis and Screening for Lung Cancer. Cold Spring Harb Perspect Med 2021; 11:a037994. [PMID: 34001525 PMCID: PMC8415293 DOI: 10.1101/cshperspect.a037994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer interception refers to actively blocking the cancer development process by preventing progression of premalignancy to invasive disease. The rate-limiting steps for effective lung cancer interception are the incomplete understanding of the earliest molecular events associated with lung carcinogenesis, the lack of preclinical models of pulmonary premalignancy, and the challenge of developing highly sensitive and specific methods for early detection. Recent advances in cancer interception are facilitated by developments in next-generation sequencing, computational methodologies, as well as the renewed emphasis in precision medicine and immuno-oncology. This review summarizes the current state of knowledge in the areas of molecular abnormalities in lung cancer continuum, preclinical human models of lung cancer pathogenesis, and the advances in early lung cancer diagnostics.
Collapse
Affiliation(s)
- Humam Kadara
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Linh M Tran
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Anil Vachani
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania and Philadelphia VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xianghong J Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, California 90024, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| |
Collapse
|
121
|
The scope of liquid biopsy in the clinical management of oral cancer. Int J Oral Maxillofac Surg 2021; 51:591-601. [PMID: 34462176 DOI: 10.1016/j.ijom.2021.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/18/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent forms of head and neck cancer, and it remains a leading cause of death in developing countries. Failure to detect the disease at an early stage is the main reason for the lack of improvement in the overall survival rate over the decades. Even though tissue biopsy is considered as the gold standard for diagnosis and molecular workup, it is an invasive, expensive and time-consuming procedure. Besides, it may not indicate the genetic status of the entire tumour owing to the heterogeneity of the cancer. In this context, liquid biopsy could be quite useful as it provides a more representative picture of the circulating tumour cells, circulating tumour DNA, circulating RNA, and tumour-derived exosomes obtained from all types of body fluids. This technique provides real-time assessment of variations in the molecular profile of the whole tumour and enables the serial monitoring of the disease status. The method has many advantages, such as easy accessibility, reliability, reproducibility and the possibility for early detection of the disease. However, the concept is still in its infancy, and the research on its application in various tumours including OSCC is rapidly progressing.
Collapse
|
122
|
Bridging the Gaps between Circulating Tumor Cells and DNA Methylation in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13164209. [PMID: 34439363 PMCID: PMC8391503 DOI: 10.3390/cancers13164209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is the second most common male malignancy, with a highly variable clinical presentation and outcome. Therefore, diagnosis, prognostication, and management remain a challenge, as available clinical, imaging, and pathological parameters provide limited risk assessment. Thus, many biomarkers are under study to fill this critical gap, some of them based on epigenetic aberrations that might be detected in liquid biopsies. Herein, we provide a critical review of published data on the usefulness of DNA methylation and circulating tumor cells in diagnosis and treatment decisions in cases of prostate cancer, underlining key aspects and discussing the importance of these advances to the improvement of the management of prostate cancer patients. Using minimally invasive blood tests, the detection of highly specific biomarkers might be crucial for making therapeutic decisions, determining response to specific treatments, and allowing early diagnosis.
Collapse
|
123
|
Childs A, Steele CD, Vesely C, Rizzo FM, Ensell L, Lowe H, Dhami P, Vaikkinen H, Luong TV, Conde L, Herrero J, Caplin M, Toumpanakis C, Thirlwell C, Hartley JA, Pillay N, Meyer T. Whole-genome sequencing of single circulating tumor cells from neuroendocrine neoplasms. Endocr Relat Cancer 2021; 28:631-644. [PMID: 34280125 PMCID: PMC8428071 DOI: 10.1530/erc-21-0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
Single-cell profiling of circulating tumor cells (CTCs) as part of a minimally invasive liquid biopsy presents an opportunity to characterize and monitor tumor heterogeneity and evolution in individual patients. In this study, we aimed to compare single-cell copy number variation (CNV) data with tissue and define the degree of intra- and inter-patient genomic heterogeneity. We performed next-generation sequencing (NGS) whole-genome CNV analysis of 125 single CTCs derived from seven patients with neuroendocrine neoplasms (NEN) alongside matched white blood cells (WBC), formalin-fixed paraffin-embedded (FFPE), and fresh frozen (FF) samples. CTC CNV profiling demonstrated recurrent chromosomal alterations in previously reported NEN copy number hotspots, including the prognostically relevant loss of chromosome 18. Unsupervised hierarchical clustering revealed CTCs with distinct clonal lineages as well as significant intra- and inter-patient genomic heterogeneity, including subclonal alterations not detectable by bulk analysis and previously unreported in NEN. Notably, we also demonstrated the presence of genomically distinct CTCs according to the enrichment strategy utilized (EpCAM-dependent vs size-based). This work has significant implications for the identification of therapeutic targets, tracking of evolutionary change, and the implementation of CTC-biomarkers in cancer.
Collapse
Affiliation(s)
- Alexa Childs
- UCL Cancer Institute, University College London, London, UK
| | | | - Clare Vesely
- UCL Cancer Institute, University College London, London, UK
| | | | - Leah Ensell
- UCL Cancer Institute, University College London, London, UK
| | - Helen Lowe
- UCL Cancer Institute, University College London, London, UK
| | - Pawan Dhami
- UCL Cancer Institute, University College London, London, UK
| | - Heli Vaikkinen
- UCL Cancer Institute, University College London, London, UK
| | - Tu Vinh Luong
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Lucia Conde
- UCL Cancer Institute, University College London, London, UK
| | - Javier Herrero
- UCL Cancer Institute, University College London, London, UK
| | - Martyn Caplin
- Department of Gastroenterology, Royal Free London NHS Foundation Trust, London, UK
| | - Christos Toumpanakis
- Department of Gastroenterology, Royal Free London NHS Foundation Trust, London, UK
| | - Christina Thirlwell
- UCL Cancer Institute, University College London, London, UK
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - John A Hartley
- UCL Cancer Institute, University College London, London, UK
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK
| | - Tim Meyer
- UCL Cancer Institute, University College London, London, UK
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
- Correspondence should be addressed to T Meyer:
| |
Collapse
|
124
|
Morphological features of breast cancer circulating tumor cells in blood after physical and biological type of isolation. Radiol Oncol 2021; 55:292-304. [PMID: 34384011 PMCID: PMC8366726 DOI: 10.2478/raon-2021-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have become an important biomarker in breast cancer. Different isolation tech-niques based on their biological or physical features were established. Currently, the most widely used methods for visualization after their separation are based on immunofluorescent staining, which does not provide the information on the morphology. MATERIALS AND METHODS The aim of this study was to evaluate how two different separation techniques affect cell morphology and to analyse cell morphology with techniques used in routine cytopathological laboratory. A direct side-by-side comparison of physical (Parsortix®) and biological (MACS®) separation technique was performed. RESULTS In the preclinical setting, both isolation techniques retained the viability and antigenic characteristics of MCF7 breast cancer cells. Some signs of degeneration such as cell swelling, cytoplasmic blebs, villous projections and vacuolization were observed. In metastatic breast cancer patient cohort, morphological features of isolated CTCs were dependent on the separation technique. After physical separation, CTCs with preserved cell morphology were detected. After biological separation the majority of the isolated CTCs were so degenerated that their identity was difficult to confirm. CONCLUSIONS Taken together, physical separation is a suitable technique for detection of CTCs with preserved cell morphology for the use in a routine cytopathological laboratory.
Collapse
|
125
|
Chantzara E, Xenidis N, Kallergi G, Georgoulias V, Kotsakis A. Circulating tumor cells as prognostic biomarkers in breast cancer: current status and future prospects. Expert Rev Mol Diagn 2021; 21:1037-1048. [PMID: 34328384 DOI: 10.1080/14737159.2021.1962710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction : Despite advances in diagnostic and therapeutic techniques breast cancer is still associated with significant morbidity and mortality. CTCs play a crucial role in the metastatic process, which is the main cause of death in BC patients.Areas covered : This review discusses the prognostic and predictive value of CTCs and their prospective in management of BC patients.Expert opinion : The analysis of CTCs through improved technologies offers a new insight into the metastatic cascade. Assessment of the number and molecular profile of CTCs holds great promises for disease monitoring and therapeutic decisions. However, more research is needed until they can be used in therapeutic decisions in clinical practice.
Collapse
Affiliation(s)
- Evagelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece
| | - Nikolaos Xenidis
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Alexandroupolis, Thrace, Greece
| | - Galatea Kallergi
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), Athens, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece
| |
Collapse
|
126
|
Ortiz-Otero N, Marshall JR, Glenn A, Matloubieh J, Joseph J, Sahasrabudhe DM, Messing EM, King MR. TRAIL-coated leukocytes to kill circulating tumor cells in the flowing blood from prostate cancer patients. BMC Cancer 2021; 21:898. [PMID: 34362331 PMCID: PMC8343922 DOI: 10.1186/s12885-021-08589-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Radical surgery is the first line treatment for localized prostate cancer (PC), however, several studies have demonstrated that surgical procedures induce tumor cell mobilization from the primary tumor into the bloodstream. Methods The number and temporal fluctuations of circulating tumor cells (CTC), cancer associated fibroblasts (CAF) and CTC cluster present in each blood sample was determined. Results The results show that both CTC and CTC cluster levels significantly increased immediately following primary tumor resection, but returned to baseline within 2 weeks post-surgery. In contrast, the CAF level decreased over time. In patients who experienced PC recurrence within months after resection, CTC, CAF, and cluster levels all increased over time. Based on this observation, we tested the efficacy of an experimental TNF-related apoptosis-inducing ligand (TRAIL)-based liposomal therapy ex-vivo to induce apoptosis in CTC in blood. The TRAIL-based therapy killed approximately 75% of single CTCs and CTC in cluster form. Conclusion Collectively, these data indicate that CTC cluster and CAF levels can be used as a predictive biomarker for cancer recurrence. Moreover, for the first time, we demonstrate the efficacy of our TRAIL-based liposomal therapy to target and kill prostate CTC in primary patient blood samples, suggesting a potential new adjuvant therapy to use in combination with surgery. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08589-8.
Collapse
Affiliation(s)
- Nerymar Ortiz-Otero
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Jocelyn R Marshall
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Antonio Glenn
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37202, USA
| | - Jubin Matloubieh
- The University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jean Joseph
- The University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Edward M Messing
- The University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37202, USA.
| |
Collapse
|
127
|
He X, Ma Y, Xie H, Rao G, Yang Z, Zhang J, Feng Z. Biomimetic Nanostructure Platform for Cancer Diagnosis Based on Tumor Biomarkers. Front Bioeng Biotechnol 2021; 9:687664. [PMID: 34336803 PMCID: PMC8320534 DOI: 10.3389/fbioe.2021.687664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and its clinical use have attracted considerable attention since early cancer diagnosis can significantly decrease mortality. Cancer biomarkers include a wide range of biomolecules, such as nucleic acids, proteins, metabolites, sugars, and cytogenetic substances present in human biofluids. Except for free-circulating biomarkers, tumor-extracellular vesicles (tEVs) and circulating tumor cells (CTCs) can serve as biomarkers for the diagnosis and prognosis of various cancers. Considering the potential of tumor biomarkers in clinical settings, several bioinspired detection systems based on nanotechnologies are in the spotlight for detection. However, tremendous challenges remain in detection because of massive contamination, unstable signal-to-noise ratios due to heterogeneity, nonspecific bindings, or a lack of efficient amplification. To date, many approaches are under development to improve the sensitivity and specificity of tumor biomarker isolation and detection. Particularly, the exploration of natural materials in biological frames has encouraged researchers to develop new bioinspired and biomimetic nanostructures, which can mimic the natural processes to facilitate biomarker capture and detection in clinical settings. These platforms have substantial influence in biomedical applications, owing to their capture ability, significant contrast increase, high sensitivity, and specificity. In this review, we first describe the potential of tumor biomarkers in a liquid biopsy and then provide an overview of the progress of biomimetic nanostructure platforms to isolate and detect tumor biomarkers, including in vitro and in vivo studies. Capture efficiency, scale, amplification, sensitivity, and specificity are the criteria that will be further discussed for evaluating the capability of platforms. Bioinspired and biomimetic systems appear to have a bright future to settle obstacles encountered in tumor biomarker detection, thus enhancing effective cancer diagnosis.
Collapse
Affiliation(s)
- Xiping He
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Gaofeng Rao
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhong Feng
- Department of Neurology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| |
Collapse
|
128
|
Bai X, Song B, Chen Z, Zhang W, Chen D, Dai Y, Liang S, Zhang D, Zhao Z, Feng L. Postoperative evaluation of tumours based on label-free acoustic separation of circulating tumour cells by microstreaming. LAB ON A CHIP 2021; 21:2721-2729. [PMID: 34165474 DOI: 10.1039/d1lc00165e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metastatic tumour recurrence caused by circulating tumour cells (CTCs) after surgery is responsible for more than 90% of tumour-related deaths. A postoperative evaluation system based on the long-term dynamic detection of CTCs helps in guiding the postoperative treatment of tumours in real time and preventing metastases and recurrence of tumours after treatment. In this study, a simple, rapid, and low-cost postoperative evaluation system was established based on the number of CTCs captured by a label-free acoustic separation device from whole blood samples of mice, of which breast tumours were surgically removed, and tumour metastasis was successfully predicted. First, an acoustofluidic device with a custom-designed bottom microcavity array was fabricated to induce highly localised acoustic microstreaming by applying acoustic vibration. Second, experiments of capturing 'defined' cells (artificially mixed individual 4T1 cancer cells into normal blood) based on optimal acoustic streaming were performed. The separation device exhibited a high capture efficiency (>96%). Further applications of capturing the 'true' CTCs derived from postoperative mice were successfully developed to predict tumour prognosis based on the number of captured CTCs. Finally, the prediction was verified through long-term observation of mice with excised tumours. The acoustofluidic device can efficiently capture CTCs and precisely predict tumour metastasis in a low-cost and non-invasive manner. This will help clinicians monitor patients that underwent surgical resection of tumours over a long period of time and facilitate optimal treatment strategies in a timely manner.
Collapse
Affiliation(s)
- Xue Bai
- School of Mechanical Engineering & Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, China.
| | - Bin Song
- School of Mechanical Engineering & Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, China.
| | - Ziteng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Wei Zhang
- School of Mechanical Engineering & Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, China.
| | - Dixiao Chen
- School of Mechanical Engineering & Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, China.
| | - Yuguo Dai
- School of Mechanical Engineering & Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, China.
| | - Shuzhang Liang
- School of Mechanical Engineering & Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, China.
| | - Deyuan Zhang
- School of Mechanical Engineering & Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Zhijun Zhao
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan 750001, China and Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
129
|
Curtin J, Choi SW, Thomson PJ, Lam AKY. Characterization and clinicopathological significance of circulating tumour cells in patients with oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2021; 51:289-299. [PMID: 34154876 DOI: 10.1016/j.ijom.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Circulating tumour cells (CTCs) are cancer cells released by cancer into the peripheral circulation. Haematogenous tumour spread is a hallmark of metastatic malignancy and a key factor in cancer recurrence and prognosis. CTCs have diagnostic and prognostic significance for a number of adenocarcinomas and melanoma. A review of the published peer-reviewed literature was performed to determine the clinical relevance of CTCs as a biomarker in the management of oral squamous cell carcinoma (OSCC). Fourteen studies met the eligibility criteria. With regard to patients with OSCC, this review found the following: (1) CTCs have been detected using multiple techniques; (2) the presence of CTCs does not appear to be related to tumour differentiation or size; (3) CTCs may be detected without lymph node involvement; (4) the detection of CTCs may be prognostic for both disease-free survival and overall survival; (5) quantification of CTCs may reflect the efficacy of therapy; (6) CTCs may be of value for ongoing patient monitoring. Preliminary evidence suggests that CTCs have diagnostic and prognostic potential as a biomarker for oral cancer management and warrant further investigation to determine their appropriate place in the management of OSCC patients.
Collapse
Affiliation(s)
- J Curtin
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| | - S-W Choi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong
| | - P J Thomson
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong
| | - A K-Y Lam
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
130
|
Mazard T, Cayrefourcq L, Perriard F, Senellart H, Linot B, de la Fouchardière C, Terrebonne E, François E, Obled S, Guimbaud R, Mineur L, Fonck M, Daurès JP, Ychou M, Assenat E, Alix-Panabières C. Clinical Relevance of Viable Circulating Tumor Cells in Patients with Metastatic Colorectal Cancer: The COLOSPOT Prospective Study. Cancers (Basel) 2021; 13:cancers13122966. [PMID: 34199250 PMCID: PMC8231886 DOI: 10.3390/cancers13122966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The analysis of circulating tumor cells (CTCs) as a “real-time liquid biopsy” in epithelial tumors for personalized medicine has received tremendous attention over the past years, with important clinical implications. In metastatic colorectal cancer (mCRC), the CellSearch® system has already demonstrated its prognostic value and interest in monitoring treatment response, but the number of recovered CTCs remains low. In this article, we evaluate the early prognostic and predictive value of viable CTCs in patients with mCRC treated with FOLFIRI–bevacizumab with an alternative approach, the functional EPISPOT assay. This study shows that viable CTCs can be detected in patients with mCRC before and during FOLFIRI–bevacizumab treatment and that CTC detection at D28 and the D0–D28 CTC kinetics evaluated with the EPISPOT assay are associated with response to treatment. Abstract Background: Circulating tumor cells (CTCs) allow the real-time monitoring of tumor course and treatment response. This prospective multicenter study evaluates and compares the early predictive value of CTC enumeration with EPISPOT, a functional assay that detects only viable CTCs, and with the CellSearch® system in patients with metastatic colorectal cancer (mCRC). Methods: Treatment-naive patients with mCRC and measurable disease (RECIST criteria 1.1) received FOLFIRI–bevacizumab until progression or unacceptable toxicity. CTCs in peripheral blood were enumerated at D0, D14, D28, D42, and D56 (EPISPOT assay) and at D0 and D28 (CellSearch® system). Progression-free survival (PFS) and overall survival (OS) were assessed with the Kaplan–Meier method and log-rank test. Results: With the EPISPOT assay, at least 1 viable CTC was detected in 21% (D0), 15% (D14), 12% (D28), 10% (D42), and 12% (D56) of 155 patients. PFS and OS were shorter in patients who remained positive, with viable CTCs between D0 and D28 compared with the other patients (PFS = 7.36 vs. 9.43 months, p = 0.0161 and OS = 25.99 vs. 13.83 months, p = 0.0178). The prognostic and predictive values of ≥3 CTCs (CellSearch® system) were confirmed. Conclusions: CTC detection at D28 and the D0–D28 CTC dynamics evaluated with the EPISPOT assay were associated with outcomes and may predict response to treatment.
Collapse
Affiliation(s)
- Thibault Mazard
- IRCM, Inserm, University of Montpellier, ICM, 34000 Montpellier, France;
- Department of Medical Oncology, University Medical Center of Montpellier, St. Eloi Hospital, 34295 Montpellier, France;
- Correspondence: (T.M.); (C.A.-P.); Tel.: +33-4-67-61-30-29 (T.M.); +33-4-11-75-99-31 (C.A.-P.); Fax: +33-4-67-61-23-47 (T.M.); +33-4-67-33-52-81 (C.A.-P.)
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, University of Montpellier, 34093 Montpellier, France;
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, 34000 Montpellier, France
| | - Françoise Perriard
- Biostatistiques, Nouvelles Technologies, AESIO Santé, 34394 Montpellier, France; (F.P.); (J.-P.D.)
| | - Hélène Senellart
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest, 44800 Saint Herblain, France;
| | - Benjamin Linot
- Department of Oncology, Institut de Cancérologie de l’Ouest, 49100 Nantes-Angers, France;
| | | | - Eric Terrebonne
- Department of Gastroenterology, CHU Haut-Lévêque, 33600 Pessac, France;
| | | | - Stéphane Obled
- Department of Gastroenterology, University of Montpellier-Nîmes, Carémeau Hospital, 30900 Nîmes, France;
| | - Rosine Guimbaud
- Department of Oncology, Toulouse-Rangueil University Hospital, 31059 Toulouse, France;
| | - Laurent Mineur
- Oncology, Radiotherapy, Sainte-Catherine Institut, 84918 Avignon, France;
| | - Marianne Fonck
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France;
| | - Jean-Pierre Daurès
- Biostatistiques, Nouvelles Technologies, AESIO Santé, 34394 Montpellier, France; (F.P.); (J.-P.D.)
| | - Marc Ychou
- IRCM, Inserm, University of Montpellier, ICM, 34000 Montpellier, France;
| | - Eric Assenat
- Department of Medical Oncology, University Medical Center of Montpellier, St. Eloi Hospital, 34295 Montpellier, France;
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, University of Montpellier, 34093 Montpellier, France;
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, 34000 Montpellier, France
- Correspondence: (T.M.); (C.A.-P.); Tel.: +33-4-67-61-30-29 (T.M.); +33-4-11-75-99-31 (C.A.-P.); Fax: +33-4-67-61-23-47 (T.M.); +33-4-67-33-52-81 (C.A.-P.)
| |
Collapse
|
131
|
Abdalla TSA, Meiners J, Riethdorf S, König A, Melling N, Gorges T, Karstens KF, Izbicki JR, Pantel K, Reeh M. Prognostic value of preoperative circulating tumor cells counts in patients with UICC stage I-IV colorectal cancer. PLoS One 2021; 16:e0252897. [PMID: 34111181 PMCID: PMC8191913 DOI: 10.1371/journal.pone.0252897] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. There is an urgent need to identify prognostic markers for patients undergoing curative resection of CRC. The detection of circulating tumor cells in peripheral blood is a promising approach to identify high-risk patients with disseminated disease in colorectal cancer. This study aims to evaluate the prognostic relevance of preoperative CTCs using the Cellsearch® system (CS) in patients, who underwent resection with curative intent of different stages (UICC I-IV) of colorectal cancer. Out of 91 Patients who underwent colorectal resection, 68 patients were included in this study. CTC analysis was performed in patients with CRC UICC stages I-IV immediately before surgery. Data were correlated with clinicopathological parameters and patient outcomes. One or more CTCs/7.5 mL were detected in 45.6% (31/68) of patients. CTCs were detected in all stages of the Union of International Cancer Control (UICC), in stage I (1/4, 25%), in stage II (4/12, 33.3%), in stage III (5/19, 26.3%) and in stage IV (21/33, 63.6%). The detection of ≥ 1 CTCs/ 7.5ml correlated to the presence of distant overt metastases (p = 0.014) as well as with shorter progression-free (p = 0.008) and overall survival (p = 0.008). Multivariate analyses showed that the detection of ≥ 1 CTCs/ 7.5ml is an independent prognostic indicator for overall survival (HR, 3.14; 95% CI, 1.18-8.32; p = 0.021). The detection of CTCs is an independent and strong prognostic factor in CRC, which might improve the identification of high-risk patients in future clinical trials.
Collapse
Affiliation(s)
- Thaer S. A. Abdalla
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Jan Meiners
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Cancer Center Hamburg, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandra König
- Department of General Surgery, Hospital Wilhelmshaven, Wilhelmshaven, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Gorges
- Department of Tumor Biology, University Cancer Center Hamburg, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl-F. Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Cancer Center Hamburg, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
132
|
Laprovitera N, Salamon I, Gelsomino F, Porcellini E, Riefolo M, Garonzi M, Tononi P, Valente S, Sabbioni S, Fontana F, Manaresi N, D’Errico A, Pantaleo MA, Ardizzoni A, Ferracin M. Genetic Characterization of Cancer of Unknown Primary Using Liquid Biopsy Approaches. Front Cell Dev Biol 2021; 9:666156. [PMID: 34178989 PMCID: PMC8222689 DOI: 10.3389/fcell.2021.666156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cancers of unknown primary (CUPs) comprise a heterogeneous group of rare metastatic tumors whose primary site cannot be identified after extensive clinical-pathological investigations. CUP patients are generally treated with empirical chemotherapy and have dismal prognosis. As recently reported, CUP genome presents potentially druggable alterations for which targeted therapies could be proposed. The paucity of tumor tissue, as well as the difficult DNA testing and the lack of dedicated panels for target gene sequencing are further relevant limitations. Here, we propose that circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) could be used to identify actionable mutations in CUP patients. Blood was longitudinally collected from two CUP patients. CTCs were isolated with CELLSEARCH® and DEPArrayTM NxT and Parsortix systems, immunophenotypically characterized and used for single-cell genomic characterization with Ampli1TM kits. Circulating cell-free DNA (ccfDNA), purified from plasma at different time points, was tested for tumor mutations with a CUP-dedicated, 92-gene custom panel using SureSelect Target Enrichment technology. In parallel, FFPE tumor tissue was analyzed with three different assays: FoundationOne CDx assay, DEPArray LibPrep and OncoSeek Panel, and the SureSelect custom panel. These approaches identified the same mutations, when the gene was covered by the panel, with the exception of an insertion in APC gene. which was detected by OncoSeek and SureSelect panels but not FoundationOne. FGFR2 and CCNE1 gene amplifications were detected in single CTCs, tumor tissue, and ccfDNAs in one patient. A somatic variant in ARID1A gene (p.R1276∗) was detected in the tumor tissue and ccfDNAs. The alterations were validated by Droplet Digital PCR in all ccfDNA samples collected during tumor evolution. CTCs from a second patient presented a pattern of recurrent amplifications in ASPM and SEPT9 genes and loss of FANCC. The 92-gene custom panel identified 16 non-synonymous somatic alterations in ccfDNA, including a deletion (I1485Rfs∗19) and a somatic mutation (p. A1487V) in ARID1A gene and a point mutation in FGFR2 gene (p.G384R). Our results support the feasibility of non-invasive liquid biopsy testing in CUP cases, either using ctDNA or CTCs, to identify CUP genetic alterations with broad NGS panels covering the most frequently mutated genes.
Collapse
Affiliation(s)
- Noemi Laprovitera
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Irene Salamon
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Italy
| | - Francesco Gelsomino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Pathology Unit, Sant’Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Paola Tononi
- Menarini Silicon Biosystems S.p.A, Bologna, Italy
| | - Sabrina Valente
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Silvia Sabbioni
- Center for Applied Biomedical Research (CRBA), University of Bologna, Italy
| | | | | | - Antonia D’Errico
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Pathology Unit, Sant’Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria A. Pantaleo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
133
|
Inertial-Assisted Immunomagnetic Bioplatform towards Efficient Enrichment of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11060183. [PMID: 34198939 PMCID: PMC8228665 DOI: 10.3390/bios11060183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Serving as an effective biomarker in liquid biopsy, circulating tumor cells (CTCs) can provide an accessible source for cancer biology study. For the in-depth evaluation of CTCs in cancer analysis, their efficient enrichment is essential, owing to their low abundance in peripheral blood. In this paper, self-assembled immunomagnetic beads were developed to isolate CTCs from the ordered bundles of cells under the assistance of the spiral inertial effect. Parametric numerical simulations were performed to explore the velocity distribution in the cross section. Based on this chip, rare CTCs could be recovered under the throughput of 500 μL/min, making this device a valuable supplement in cancer analysis, diagnostics, and therapeutics.
Collapse
|
134
|
Biomimetic recognition strategy for efficient capture and release of circulating tumor cells. Mikrochim Acta 2021; 188:220. [PMID: 34076759 DOI: 10.1007/s00604-021-04856-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Efficient capture and release of circulating tumor cells play an important role in cancer diagnosis, but the limited affinity of monovalent adhesion molecules in existing capture technologies leads to low capture efficiency, and the captured cells are difficult to be separated. Inspired by the phenomenon that the long tentacles of jellyfish contain multiple adhesion domains and can effectively capture moving food, we have constructed a biomimetic recognition strategy to capture and release tumor cells. In details, gold-coated magnetic nanomaterials (Au@Fe3O4 NPs) were first prepared and characterized by scanning electron microscopy, UV-vis absorption spectra, and Zeta potential. Then, the DNA primers modified on Au@Fe3O4 nanoparticles can be extended to form many radialized DNA products by rolling circle amplification. These long DNA products resemble jellyfish tentacles and contain multivalent aptamers that can be extended into three dimensions to increase the accessibility of target cells, resulting in efficient, simple, rapid, and specific cells capture. The capture efficiencies are no less than 92% in PBS buffer and 77% in blood. Subsequently, DNase I was selected to degrade biomimetic tentacles to release the captured tumor cells with high viability. This release strategy can not only improve cell viability, but also reduce a tedious release process and unnecessary costs. We believe that the proposed method can be expanded for the capture and release of various tumor cells and will inspire the development of circulating tumor cells analysis. A biomimetic recognition strategy for capture and release of circulating tumor cells has been developed. This method modified specific P1 DNA primers on Au@Fe3O4 NPs to form many radialized DNA products by rolling circle amplification. These products can efficiently capture CTCs since it contains multiple aptamers with a multivalent binding capacity. This make it a promising tool to capture and release of other tumor cells, and will inspire the development of CTC analysis.
Collapse
|
135
|
Fukuyama S, Kumamoto S, Nagano S, Hitotsuya S, Yasuda K, Kitamura Y, Iwatsuki M, Baba H, Ihara T, Nakanishi Y, Nakashima Y. Detection of cancer cells in whole blood using a dynamic deformable microfilter and a nucleic acid aptamer. Talanta 2021; 228:122239. [DOI: 10.1016/j.talanta.2021.122239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/22/2023]
|
136
|
Parsons HA, Macrae ER, Guo H, Li T, Barry WT, Tayob N, Wulf GM, Isakoff SJ, Krop IE. Phase II Single-Arm Study to Assess Trastuzumab and Vinorelbine in Advanced Breast Cancer Patients With HER2-Negative Tumors and HER2-Positive Circulating Tumor Cells. JCO Precis Oncol 2021; 5:896-903. [PMID: 34994617 PMCID: PMC9848583 DOI: 10.1200/po.20.00461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-directed treatments improve outcomes for patients with HER2-positive metastatic breast cancer (MBC). Current identification of patients with HER2-positive disease relies on tumor tissue testing, which can be inaccurate because of tumor heterogeneity or tumor evolution. Circulating tumor cells (CTCs) are often present in patients with cancer. We hypothesized that HER2 assessment of CTCs in patients with HER2-negative breast cancer could identify a subset of patients with HER2-positive CTCs who could benefit from HER2-directed treatments. METHODS This was a single-arm, two-stage, phase II trial. Patients with HER2-negative progressive MBC with HER2-positive CTC (defined as HER2/CEP17 ratio ≥ 2.0 by fluorescence in situ hybridization), ≥ 1 prior chemotherapy regimen for MBC, and no prior vinorelbine received trastuzumab in combination with vinorelbine on days 1, 8, and 15 of a 21-day cycle. The primary end point was objective response rate. RESULTS From January 2013 to June 2014, we prospectively screened CTCs from patients with HER2-negative MBC. CTCs were detected in 201 of 311 patients (65%). The median number of CTCs was 10 (interquartile range, 3-57). Sixty-nine of 311 patients (22%) had HER2+ CTCs, with a median of three HER2+ CTCs (range 1-21). Twenty patients with HER2+ CTCs were treated on study. At data cutoff (January 13, 2017), no patients remained on study therapy. The objective response rate was 5% (95% CI, 0.1 to 24.9), with one of 20 patients experiencing a partial response. The clinical benefit rate was 20.0% (1 partial response and 3 stable diseases > 24 weeks, 95% CI, 5.7% to 43.7%). The median progression-free survival was 2.7 months. CONCLUSION CTC analysis of patients with HER2-negative MBC identifies a subset with HER2-amplified CTCs. However, clinical activity of an HER2-directed regimen in this population was low. The functional significance of HER2-positive CTCs remains uncertain.
Collapse
Affiliation(s)
- Heather A. Parsons
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - Erin R. Macrae
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - Hao Guo
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - Tianyu Li
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - William T. Barry
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - Nabihah Tayob
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | | | | | - Ian E. Krop
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC,Ian E. Krop, MD, PhD, Dana-Farber Cancer Institute, 450 Brookline
Ave, Boston, MA 02215; e-mail:
| |
Collapse
|
137
|
Chu HY, Yang CY, Yeh PH, Hsu CJ, Chang LW, Chan WJ, Lin CP, Lyu YY, Wu WC, Lee CW, Wu JK, Jiang JK, Tseng FG. Highly Correlated Recurrence Prognosis in Patients with Metastatic Colorectal Cancer by Synergistic Consideration of Circulating Tumor Cells/Microemboli and Tumor Markers CEA/CA19-9. Cells 2021; 10:1149. [PMID: 34068719 PMCID: PMC8151024 DOI: 10.3390/cells10051149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Circulation tumor cells (CTCs) play an important role in metastasis and highly correlate with cancer progression; thus, CTCs could be considered as a powerful diagnosis tool. Our previous studies showed that the number of CTCs could be utilized for recurrence prediction in colorectal cancer (CRC); however, the odds ratio was still lower than five. To improve prognosis in CRC patients, we analyzed CTC clusters/microemboli, CTC numbers, and carcinoembryonic antigen (CEA)/carbohydrate antigen 19-9 (CA19-9) levels using a self-assembled cell array (SACA) chip system for recurrence prediction. In CRC patients, the presence of CTC clusters/microemboli may have higher correlation in metastasis when compared to the high number of CTCs. Additionally, when both the number of CTCs and serum CEA levels are high, very high odds ratios of 24.4 and 17.1 are observed in patients at all stages and stage III of CRC, respectively. The high number of CTCs and CTC clusters/microemboli simultaneously suggests the high chance of relapse (odds ratio 8.4). Overall, the characteristic of CTC clusters/microemboli, CEA level, and CTC number have a clinical potential to enhance CRC prognosis.
Collapse
Affiliation(s)
- Hsueh-Yao Chu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Yung Yang
- Department Education Research, Taipei City Hospital, Taipei 10341, Taiwan;
- Center for General Education, National United University, Miaoli 36003, Taiwan
- General Education Center, University of Taipei, Taipei 110014, Taiwan
| | - Ping-Hao Yeh
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Chun-Jieh Hsu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Lu-Wei Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Wei-Jen Chan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Chien-Ping Lin
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (Y.-Y.L.)
| | - You-You Lyu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (Y.-Y.L.)
| | - Wei-Cheng Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Wei Lee
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Jen-Kuei Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
- Biomedical Science and Engineering Center, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Jeng-Kai Jiang
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taiwan School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan
| |
Collapse
|
138
|
Liu Y, Zhao W, Cheng R, Harris BN, Murrow JR, Hodgson J, Egan M, Bankey A, Nikolinakos PG, Laver T, Meichner K, Mao L. Fundamentals of integrated ferrohydrodynamic cell separation in circulating tumor cell isolation. LAB ON A CHIP 2021; 21:1706-1723. [PMID: 33720269 PMCID: PMC8102387 DOI: 10.1039/d1lc00119a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Methods to separate circulating tumor cells (CTCs) from blood samples were intensively researched in order to understand the metastatic process and develop corresponding clinical assays. However current methods faced challenges that stemmed from CTCs' heterogeneity in their biological markers and physical morphologies. To this end, we developed integrated ferrohydrodynamic cell separation (iFCS), a scheme that separated CTCs independent of their surface antigen expression and physical characteristics. iFCS integrated both diamagnetophoresis of CTCs and magnetophoresis of blood cells together via a magnetic liquid medium, ferrofluid, whose magnetization could be tuned by adjusting its magnetic volume concentration. In this paper, we presented the fundamental theory of iFCS and its specific application in CTC separation. Governing equations of iFCS were developed to guide its optimization process. Three critical parameters that affected iFCS's cell separation performance were determined and validated theoretically and experimentally. These parameters included the sample flow rate, the volumetric concentration of magnetic materials in the ferrofluid, and the gradient of the magnetic flux density. We determined these optimized parameters in an iFCS device that led to a high recovery CTC separation in both spiked and clinical samples.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | - Wujun Zhao
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | - Rui Cheng
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| | - Bryana N Harris
- Department of Chemical Engineering, Auburn University, Auburn, AL 36830, USA
| | - Jonathan R Murrow
- Department of Medicine, Augusta University - The University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Jamie Hodgson
- University Cancer & Blood Center, LLC, Athens, GA 30607, USA
| | - Mary Egan
- University Cancer & Blood Center, LLC, Athens, GA 30607, USA
| | | | | | - Travis Laver
- Small Animal Medicine and Surgery, Veterinary Teaching Hospital, The University of Georgia, Athens, GA 30602, USA
| | - Kristina Meichner
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Leidong Mao
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
139
|
Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021; 13:cancers13092189. [PMID: 34063272 PMCID: PMC8124844 DOI: 10.3390/cancers13092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present review is aimed to discuss the relevance of assaying for the presence and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite results being mostly preliminary. The possibility to identify CTCs holds a great promise for both applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint the mechanism of the metastatic process through the characterization of tumor mesenchymal cells. Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis, identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and patient stratification. Abstract Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-documented relevance for applications of liquid biopsy in precision medicine. In the present review, the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal tumors are presented, and results provide a promising basis for clinical application of CTC detection in sarcoma.
Collapse
|
140
|
Patelli G, Vaghi C, Tosi F, Mauri G, Amatu A, Massihnia D, Ghezzi S, Bonazzina E, Bencardino K, Cerea G, Siena S, Sartore-Bianchi A. Liquid Biopsy for Prognosis and Treatment in Metastatic Colorectal Cancer: Circulating Tumor Cells vs Circulating Tumor DNA. Target Oncol 2021; 16:309-324. [PMID: 33738696 PMCID: PMC8105246 DOI: 10.1007/s11523-021-00795-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Liquid biopsy recently gained widespread attention as a noninvasive alternative/complementary technique to tissue biopsy in patients with cancer. As technological advances have improved both feasibility and turnaround time, liquid biopsy has expanded tumor molecular analysis with acknowledgement of both spatial and temporal heterogeneity, overcoming many limitations of traditional tissue biopsy. Because of its diagnostic, prognostic, and predictive value, liquid biopsy has been extensively studied also in metastatic colorectal cancer. Indeed, as personalized medicine establishes its role in cancer treatment, genetic biomarkers unveiling the emergence of early resistance are needed. Among the wide variety of tumor analytes amenable to collection, circulating DNA and circulating tumor cells are the most adopted approaches, and both carry clinical relevance in colorectal cancer. However, few studies focused on comparing feasibility between these two approaches. In this review, we discuss the potential implications of liquid biopsy in metastatic colorectal cancer, assessing the advantages and drawbacks of circulating DNA and circulating tumor cells, and highlighting the most relevant trials for clinical practice.
Collapse
Affiliation(s)
- Giorgio Patelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Caterina Vaghi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gianluca Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Daniela Massihnia
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Silvia Ghezzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Katia Bencardino
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy.
| |
Collapse
|
141
|
Zhang P, Draz MS, Xiong A, Yan W, Han H, Chen W. Immunoengineered magnetic-quantum dot nanobead system for the isolation and detection of circulating tumor cells. J Nanobiotechnology 2021; 19:116. [PMID: 33892737 PMCID: PMC8063296 DOI: 10.1186/s12951-021-00860-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Highly efficient capture and detection of circulating tumor cells (CTCs) remain elusive mainly because of their extremely low concentration in patients’ peripheral blood. Methods We present an approach for the simultaneous capturing, isolation, and detection of CTCs using an immuno-fluorescent magnetic nanobead system (iFMNS) coated with a monoclonal anti-EpCAM antibody. Results The developed antibody nanobead system allows magnetic isolation and fluorescent-based quantification of CTCs. The expression of EpCAM on the surface of captured CTCs could be directly visualized without additional immune-fluorescent labeling. Our approach is shown to result in a 70–95% capture efficiency of CTCs, and 95% of the captured cells remain viable. Using our approach, the isolated cells could be directly used for culture, reverse transcription-polymerase chain reaction (RT-PCR), and immunocytochemistry (ICC) identification. We applied iFMNS for testing CTCs in peripheral blood samples from a lung cancer patient. Conclusions It is suggested that our iFMNS approach would be a promising tool for CTCs enrichment and detection in one step. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00860-1.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.,Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wannian Yan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China. .,Ailex Technology Group Co., Ltd., Shanghai, 201108, China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China. .,Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
142
|
Hu CL, Zhang YJ, Zhang XF, Fei X, Zhang H, Li CG, Sun B. 3D Culture of Circulating Tumor Cells for Evaluating Early Recurrence and Metastasis in Patients with Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:2673-2688. [PMID: 33888992 PMCID: PMC8057830 DOI: 10.2147/ott.s298427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Circulating tumor cells (CTCs) are considered to be a key factor involved in tumor metastasis. However, the isolation and culture of CTCs in vitro remains challenging, and their clinical application for predicting prognosis and survival is still limited. The development of accurate evaluating system for CTCs will benefit for clinical assessment of HCC. Methods Density gradient centrifugation and magnetic separation based on CD45 antibody were used to isolate CTCs. 3D culture was used to maintain and amplify CTCs and HCC cells. Cellular immunofluorescence was used to identify CTCs and spheroids. The cutoff value of CTC spheroid was calculated using X-tile software. The relationship between clinicopathological variables and CTC spheroids in HCC patients is analyzed. In vivo models were used to evaluate tumor growth and metastasis of CTC spheroids. Results Patient-derived CTCs/HCC cells were isolated and expanded to form spheroids using 3D culture. CTC spheroids could be used to predict short-term recurrence of CTCs compared with conventional CTC enumeration. Different cell lines exhibited different formation rates and grew to different sizes. Identification of CTC spheroids revealed that EpCAM and β-catenin were expressed in spheroids derived from HCC cells and in the HCC/CTCs. EpCAM-positive HCC cells exhibited improved spheroid formation in 3D culture and were more tumorigenic and likely to metastasize to the lung in vivo. Abnormal activation of the Wnt/β-catenin signaling pathway was observed in EpCAM positive cells. Conclusion CTC spheroids could predict prognosis of HCC more precisely compared with conventional CTC enumeration. EpCAM may participate in the formation and survival of CTC spheroids which dependent on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong-Li Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Yan-Jun Zhang
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, People's Republic of China
| | - Xiao-Feng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Chun-Guang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| |
Collapse
|
143
|
Foy V, Lindsay CR, Carmel A, Fernandez-Gutierrez F, Krebs MG, Priest L, Carter M, Groen HJM, Hiltermann TJN, de Luca A, Farace F, Besse B, Terstappen L, Rossi E, Morabito A, Perrone F, Renehan A, Faivre-Finn C, Normanno N, Dive C, Blackhall F, Michiels S. EPAC-lung: European pooled analysis of the prognostic value of circulating tumour cells in small cell lung cancer. Transl Lung Cancer Res 2021; 10:1653-1665. [PMID: 34012782 PMCID: PMC8107738 DOI: 10.21037/tlcr-20-1061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Circulating tumour cell (CTC) number is an independent prognostic factor in patients with small cell lung cancer (SCLC) but there is no consensus on the CTC threshold for prognostic significance. We undertook a pooled analysis of individual patient data to clinically validate CTC enumeration and threshold for prognostication. METHODS Four European cancer centres, experienced in CellSearch CTC enumeration for SCLC provided pseudo anonymised data for patients who had undergone pre-treatment CTC count. Data was collated, and Cox regression models, stratified by centre, explored the relationship between CTC count and survival. The added value of incorporating CTCs into clinico-pathological models was investigated using likelihood ratio tests. RESULTS A total of 367 patient records were evaluated. A one-unit increase in log-transformed CTC counts corresponded to an estimated hazard ratio (HR) of 1.24 (95% CI: 1.19-1.29, P<0.0001) for progression free survival (PFS) and 1.23 (95% CI: 1.18-1.28, P<0.0001) for overall survival (OS). CTC count of ≥15 or ≥50 was significantly associated with an increased risk of progression (CTC ≥15: HR 3.20, 95% CI: 2.50-4.09, P<0.001; CTC ≥50: HR 2.56, 95% CI: 2.01-3.25, P<0.001) and an increased risk of death (CTC ≥15: HR 2.90, 95% CI: 2.28-3.70, P<0.001; CTC ≥50: HR 2.47, 95% CI: 1.95-3.13, P<0.001). There was no significant inter-centre heterogeneity observed. Addition of CTC count to clinico-pathological models as a continuous log-transformed variable, offers further prognostic value (both likelihood ratio P<0.001 for OS and PFS). CONCLUSIONS Higher pre-treatment CTC counts are a negative independent prognostic factor in SCLC when considered as a continuous variable or dichotomised counts of ≥15 or ≥50. Incorporating CTC counts, as a continuous variable, improves clinic-pathological prognostic models.
Collapse
Affiliation(s)
- Victoria Foy
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Colin R Lindsay
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Alexandra Carmel
- Service de Biostatistique et d'Épidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U1018 OncoStat, CESP, Université Paris-Sud, Université Paris-Saclay, labeled by Ligue Contre le Cancer, France
| | - Fabiola Fernandez-Gutierrez
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Matthew G Krebs
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Lynsey Priest
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Mathew Carter
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Antonella de Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francoise Farace
- INSERM, U981 "Predictive Biomarkers and New Therapeutics in Oncology", F-94805, Villejuif, France
- Gustave Roussy, Université Paris-Saclay. "Rare Circulating Cells" Translational Platform, CNRS UMS3655 - INSERM US23, AMMICA, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France; Paris-Sud University, Orsay, France
| | - Leon Terstappen
- Department of Medical Cell BioPhysics, University of Twente, Enschede, The Netherlands
| | - Elisabetta Rossi
- Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Andrew Renehan
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
| | - Corinne Faivre-Finn
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Stefan Michiels
- Service de Biostatistique et d'Épidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U1018 OncoStat, CESP, Université Paris-Sud, Université Paris-Saclay, labeled by Ligue Contre le Cancer, France
| |
Collapse
|
144
|
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021; 32:466-477. [PMID: 33548389 PMCID: PMC8268076 DOI: 10.1016/j.annonc.2021.01.074] [Citation(s) in RCA: 442] [Impact Index Per Article: 147.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy in cancer has gained momentum in clinical research and is experiencing a boom for a variety of applications. There are significant efforts to utilize liquid biopsies in cancer for early detection and treatment stratification, as well as residual disease and recurrence monitoring. Although most efforts have used circulating tumor cells and circulating tumor DNA for this purpose, exosomes and other extracellular vesicles have emerged as a platform with potentially broader and complementary applications. Exosomes/extracellular vesicles are small vesicles released by cells, including cancer cells, into the surrounding biofluids. These exosomes contain tumor-derived materials such as DNA, RNA, protein, lipid, sugar structures, and metabolites. In addition, exosomes carry molecules on their surface that provides clues regarding their origin, making it possible to sort vesicle types and enrich signatures from tissue-specific origins. Exosomes are part of the intercellular communication system and cancer cells frequently use them as biological messengers to benefit their growth. Since exosomes are part of the disease process, they have become of tremendous interest in biomarker research. Exosomes are remarkably stable in biofluids, such as plasma and urine, and can be isolated for clinical evaluation even in the early stages of the disease. Exosome-based biomarkers have quickly become adopted in the clinical arena and the first exosome RNA-based prostate cancer test has already helped >50 000 patients in their decision process and is now included in the National Comprehensive Cancer Network guidelines for early prostate cancer detection. This review will discuss the advantages and challenges of exosome-based liquid biopsies for tumor biomarkers and clinical implementation in the context of circulating tumor DNA and circulating tumor cells.
Collapse
Affiliation(s)
- W Yu
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - J Hurley
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - D Roberts
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | | | - D Enderle
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - M Noerholm
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - X O Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Neuroscience Program, Harvard Medical School, Boston, USA
| | - J K Skog
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA.
| |
Collapse
|
145
|
Development and validation for prognostic nomogram of epithelial ovarian cancer recurrence based on circulating tumor cells and epithelial-mesenchymal transition. Sci Rep 2021; 11:6540. [PMID: 33753862 PMCID: PMC7985206 DOI: 10.1038/s41598-021-86122-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
We aimed to determine the prognosis value of circulating tumor cells (CTCs) undergoing epithelial–mesenchymal transition in epithelial ovarian cancer (EOC) recurrence. We used CanPatrol CTC-enrichment technique to detect CTCs from blood samples and classify subpopulations into epithelial, mesenchymal, and hybrids. To construct nomogram, prognostic factors were selected by Cox regression analysis. Risk stratification was performed through Kaplan–Meier analysis among the training group (n = 114) and validation group (n = 38). By regression screening, both CTC counts (HR 1.187; 95% CI 1.098–1.752; p = 0.012) and M-CTC (HR 1.098; 95% CI 1.047–1.320; p = 0.009) were demonstrated as independent factors for recurrence. Other variables including pathological grade, FIGO stage, lymph node metastasis, ascites, and CA-125 were also selected (p < 0.005) to construct nomogram. The C-index of internal and external validation for nomogram was 0.913 and 0.874. We found significant predictive values for the nomogram with/without CTCs (AUC 0.8705 and 0.8097). Taking CTC counts and M-CTC into separation, the values were 0.8075 and 0.8262. Finally, survival curves of risk stratification based on CTC counts (p = 0.0241), M-CTC (p = 0.0107), and the nomogram (p = 0.0021) were drawn with significant differences. In conclusion, CTCs could serve as a novel factor for EOC prognosis. Nomogram model constructed by CTCs and other clinical parameters could predict EOC recurrence and perform risk stratification for clinical decision-making. Trial registration Chinese Clinical Trial Registry, ChiCTR-DDD-16009601, October 25, 2016.
Collapse
|
146
|
Kostas JC, Greguš M, Schejbal J, Ray S, Ivanov AR. Simple and Efficient Microsolid-Phase Extraction Tip-Based Sample Preparation Workflow to Enable Sensitive Proteomic Profiling of Limited Samples (200 to 10,000 Cells). J Proteome Res 2021; 20:1676-1688. [PMID: 33625864 PMCID: PMC7954648 DOI: 10.1021/acs.jproteome.0c00890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In-depth LC-MS-based proteomic profiling of limited biological and clinical samples, such as rare cells or tissue sections from laser capture microdissection or microneedle biopsies, has been problematic due, in large, to the inefficiency of sample preparation and attendant sample losses. To address this issue, we developed on-microsolid-phase extraction tip (OmSET)-based sample preparation for limited biological samples. OmSET is simple, efficient, reproducible, and scalable and is a widely accessible method for processing ∼200 to 10,000 cells. The developed method benefits from minimal sample processing volumes (1-3 μL) and conducting all sample processing steps on-membrane within a single microreactor. We first assessed the feasibility of using micro-SPE tips for nanogram-level amounts of tryptic peptides, minimized the number of required sample handling steps, and reduced the hands-on time. We then evaluated the capability of OmSET for quantitative analysis of low numbers of human monocytes. Reliable and reproducible label-free quantitation results were obtained with excellent correlations between protein abundances and the amounts of starting material (R2 = 0.93) and pairwise correlations between sample processing replicates (R2 = 0.95) along with the identification of approximately 300, 1800, and 2000 protein groups from injected ∼10, 100, and 500 cell equivalents, resulting from processing approximately 200, 2000, and 10,000 cells, respectively.
Collapse
Affiliation(s)
- James C Kostas
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Michal Greguš
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jan Schejbal
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
147
|
Huang C, Lin X, He J, Liu N. Enrichment and detection method for the prognostic value of circulating tumor cells in ovarian cancer: A meta-analysis. Gynecol Oncol 2021; 161:613-620. [PMID: 33674144 DOI: 10.1016/j.ygyno.2021.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Recent studies have revealed that circulating tumor cells (CTCs) might predict bad prognosis, but the results were conflicting. Sampling time, treatment, enrichment method and detection method also varied. We aimed to evaluate whether patients with CTCs in peripheral blood have bad survival outcomes with consideration of the above four aspects. METHODS Relevant studies were searched on Pubmed, Embase and the Cochrane Library. Studies of CTCs involving survival data available were identified for a systematic review and meta-analysis. HRs and 95% CIs for PFS and OS were extracted directly or from the Kaplan-Meier survival curves by the Engauge Digitizer v4.1. Subgroup analyses were performed to evaluate the effect of sampling time, treatment, enrichment method and detection method. RESULTS Two clinical trials and thirteen retrospective studies with a total of 1285 patients were included. CTCs significantly correlated with OS (HR = 1.77, 95%CI:1.42-2.21, p < 0.00001 and PFS (HR = 1.53, 95%CI:1.26-1.86, p < 0.0001). Subgroup analyses showed that CTCs were significant associated with OS in the "Pre-therapy" subgroup (HR = 1.79, 95%CI:1.43-2.24, p < 0.00001), the "Surgery" group (HR = 1.82, 95%CI:1.42-2.33, p < 0.00001), and the "RT-PCR"subgroup (HR = 2.29, 95%CI:1.53-3.42, p < 0.0001). While for enrichment method, CTCs significantly correlated with OS in the"Physical method" subgroup (HR = 1.94, 95%CI:1.21-3.09, p = 0.006) and the "Immunological method" subgroup (HR = 1.84, 95%CI:1.37-2.48, p < 0.0001). CONCLUSIONS The presence of CTCs prior to the treatment indicated worse OS and PFS and CTCs might be predictive biomarker for ovarian cancer patients . CTCs detected using RT-PCR seem to be associated with poorer OS and PFS in patients with ovarian cancer.
Collapse
Affiliation(s)
- Chengying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Lin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinmei He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
148
|
Rushton AJ, Nteliopoulos G, Shaw JA, Coombes RC. A Review of Circulating Tumour Cell Enrichment Technologies. Cancers (Basel) 2021; 13:cancers13050970. [PMID: 33652649 PMCID: PMC7956528 DOI: 10.3390/cancers13050970] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Circulating tumour cells (CTCs) are cancer cells shed into the bloodstream from tumours and their analysis can provide important insights into cancer detection and monitoring, with the potential to direct personalised therapies for the patient. These CTCs are rare in the blood, which makes their detection and enrichment challenging and to date, only one technology (the CellSearch) has gained FDA approval for determining the prognosis of patients with advanced breast, prostate and colorectal cancers. Here, we review the wide range of enrichment technologies available to isolate CTCs from other blood components and highlight the important characteristics that new technologies should possess for routine clinical use. Abstract Circulating tumour cells (CTCs) are the precursor cells for the formation of metastatic disease. With a simple blood draw, liquid biopsies enable the non-invasive sampling of CTCs from the blood, which have the potential to provide important insights into cancer detection and monitoring. Since gaining FDA approval in 2004, the CellSearch system has been used to determine the prognosis of patients with metastatic breast, prostate and colorectal cancers. This utilises the cell surface marker Epithelial Cell Adhesion Molecule (EpCAM), to enrich CTCs, and many other technologies have adopted this approach. More recently, the role of mesenchymal-like CTCs in metastasis formation has come to light. It has been suggested that these cells are more aggressive metastatic precursors than their epithelial counterparts; however, mesenchymal CTCs remain undetected by EpCAM-based enrichment methods. This has prompted the development of a variety of ‘label free’ enrichment technologies, which exploit the unique physical properties of CTCs (such as size and deformability) compared to other blood components. Here, we review a wide range of both immunocapture and label free CTC enrichment technologies, summarising the most significant advantages and disadvantages of each. We also highlight the important characteristics that technologies should possess for routine clinical use, since future developments could have important clinical implications, with the potential to direct personalised therapies for patients with cancer.
Collapse
Affiliation(s)
- Amelia J. Rushton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
- Correspondence:
| | - Georgios Nteliopoulos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| | - Jacqueline A. Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK;
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| |
Collapse
|
149
|
Yamada S, Kobashi T, Tagaya M. Control of the hydration layer states on phosphorus-containing mesoporous silica films and their reactivity evaluation with biological fluids. J Mater Chem B 2021; 9:1896-1907. [PMID: 33533361 DOI: 10.1039/d0tb02456b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transparent phosphorus-containing MPS (PMPS) films were synthesized by the introduction and reaction of phosphoric acid into the silica framework during the sol-gel reaction. We then investigated the hydration layer structures formed on the PMPS films and achieved the selective adsorption of fibronectin (Fn). In particular, the surface analyses indicated that the P atom was distributed at the outermost surfaces of the PMPS films. The PMPS films exhibited a high transparency (e.g., averaged transmittance value in the visible light region: 79%), and the haze value (0.14%) decreased with the increasing P/Si molar concentration. Solid-state 29Si-NMR and Fourier transform infrared spectroscopy (FT-IR) spectra indicated the formation of Si-O-P bonds, suggesting that the condensation reaction between the Si-O- and P-O- groups effectively occurs in the silica framework. The larger amount of P-O- and P[double bond, length as m-dash]O groups at the Si-O-P bonding site on the films affects the water molecular adsorption states (i.e., formation of the hydration layer), which was supported by the Brunauer-Emmett-Teller (BET) surface areas of N2 and water vapor, leading to enhancement of the hydrogen bondability of the PMPS films with the increased formation of Si-O-P bonds. The deconvolution results of the FT-IR spectra demonstrated that the ratio of free water to bonding water increased significantly with an increase in the formation of Si-O-P bonding, and the resulting O-H stretching vibration in the hydration layer became more asymmetric. It is suggested that the water molecules are irregularly hydrogen-bonded with the different functional groups of Si-O-, P-O- and P[double bond, length as m-dash]O. In the immersion experiment of the PMPS films in phosphate buffer, the resultant P/Si molar concentration of the PMPS film decreased upon increasing the immersion time and the mesostructures were preserved. The amount of Fn adsorption significantly increased as the O-H stretching vibration of the water molecules became more asymmetric, whereas the adsorption of fibrinogen was completely suppressed by the films. Therefore, we found that the addition of phosphoric acid in the MPS film synthesis significantly affects the hydration layer structures on the film surfaces to provide the possibility of selective protein adsorption.
Collapse
Affiliation(s)
- Shota Yamada
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan. and Japan Society for the Promotion of Science, 5-3-1 Koji-machi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Takaki Kobashi
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.
| | - Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
150
|
Prospective Comparison of the Prognostic Relevance of Circulating Tumor Cells in Blood and Disseminated Tumor Cells in Bone Marrow of a Single Patient's Cohort With Esophageal Cancer. Ann Surg 2021; 273:299-305. [PMID: 31188197 DOI: 10.1097/sla.0000000000003406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Aim of this prospective study was to evaluate the prognostic significance of disseminated tumor cells (DTCs) and circulating tumor cells (CTCs) in 1 cohort of patients with esophageal cancer (EC). BACKGROUND Hematogenous tumor cell dissemination is a key event in tumor progression, and clinical significance of DTCs and CTCs are controversially discussed in the literature. However, evaluation of both biomarker in 1 patient's cohort has not been described before. METHODS In this prospective, single-center study, 76 patients with preoperatively nonmetastatic staged EC were included. The CellSearch system was used to enumerate CTCs. Bone marrow was aspirated from the iliac crest and cells were enriched by Ficoll density gradient centrifugation. DTCs were immunostained with the pan-keratin antibody A45-B/B3. RESULTS Fifteen of 76 patients (19.7%) harbored CTCs, whereas in 13 of 76 patients (17.1%), DTCs could be detected. In only 3 patients (3.9%), CTCs and DTCs were detected simultaneously, whereas concordant results (DTC/CTC negative and DTC/CTC positive) were found in 54 patients (71.1%). Surprisingly, only patients with CTCs showed significant shorter overall and relapse-free survival (P = 0.038 and P = 0.004, respectively). Multivariate analyses revealed that only the CTC status was an independent predictor of overall and relapse-free survival (P = 0.007 and P < 0.001, respectively). CONCLUSIONS This is the first study analyzing CTC and DTC status in 1 cohort of nonmetastatic patients with EC. In this early disease stage, only the CTC status was an independent, prognostic marker suitable and easy to use for clinical staging of patients with EC.
Collapse
|