101
|
Koo T, Cho BJ, Kim DH, Park JM, Choi EJ, Kim HH, Lee DJ, Kim IA. MicroRNA-200c increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Oncotarget 2017; 8:65457-65468. [PMID: 29029445 PMCID: PMC5630345 DOI: 10.18632/oncotarget.18924] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNA-200c (miR-200c) recently was found to have tumor-suppressive properties by inhibiting the epithelial-mesenchymal transition (EMT) in several cancers. miR-200c also interacts with various cellular signaling molecules and regulates many important signaling pathways. In this study, we investigated the radiosensitizing effect of miR-200c and its mechanism in a panel of human cancer cell lines. Malignant glioma (U251, T98G), breast cancer (MDA-MB-468), and lung carcinoma (A549) cells were transfected with control pre-microRNA, pre-miR-200c, or anti-miR-200c. Then, RT-PCR, clonogenic assays, immunoblotting, and immunocytochemisty were performed. To predict the potential targets of miR-200c, microRNA databases were used for bioinformatics analysis. Ectopic overexpression of miR-200c downregulated p-EGFR and p-AKT and increased the radiosensitivity of U251, T98G, A549, and MDA-MB-468 cells. In contrast, miR-200c inhibition upregulated p-EGFR and p-AKT, and decreased radiation-induced cell killing. miR-200c led to persistent γH2AX focus formation and downregulated pDNA-PKc expression. Autophagy and apoptosis were major modes of cell death. Bioinformatics analysis predicted that miR-200c may be associated with EGFR, AKT2, MAPK1, VEGFA, and HIF1AN. We also confirmed that miR-200c downregulated the expression of VEGF, HIF-1α, and MMP2 in U251 and A549 cells. In these cells, overexpressing miR-200c inhibited invasion, migration, and vascular tube formation. These phenotypic changes were associated with E-cadherin and EphA2 downregulation and N-cadherin upregulation. miR-200c showed no observable cytotoxic effect on normal human fibroblasts and astrocytes. Taken together, our data suggest that miR-200c is an attractive target for improving the efficacy of radiotherapy via a unique modulation of the complex regulatory network controlling cancer pro-survival signaling and EMT.
Collapse
Affiliation(s)
- Taeryool Koo
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bong Jun Cho
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dan Hyo Kim
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Min Park
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea.,Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Jung Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hans H Kim
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - David J Lee
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea.,Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
102
|
Arita T, Morimoto M, Yamamoto Y, Miyashita H, Kitazawa S, Hirayama T, Sakamoto S, Miyamoto K, Adachi R, Iwatani M, Hara T. Prolyl-tRNA synthetase inhibition promotes cell death in SK-MEL-2 cells through GCN2-ATF4 pathway activation. Biochem Biophys Res Commun 2017; 488:648-654. [DOI: 10.1016/j.bbrc.2017.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
|
103
|
MiR-200c inhibits bladder cancer progression by targeting lactate dehydrogenase A. Oncotarget 2017; 8:67663-67669. [PMID: 28978061 PMCID: PMC5620201 DOI: 10.18632/oncotarget.18801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/02/2017] [Indexed: 01/23/2023] Open
Abstract
Lactate dehydrogenase A (LDHA) is overexpressed in various cancers. We investigated LDHA expression and function in bladder cancer. We demonstrate that LDHA is up-regulated in bladder cancer cells and promotes proliferation, invasion, and glycolysis. Additionally, we found that microRNA (miR)-200c directly targets LDHA in bladder cancer cells. Ectopic expression of miR-200c inhibited LDHA-induced glycolysis, cell proliferation, and invasion. Thus, targeting LDHA through miR-200c is a potential therapeutic strategy in bladder cancer.
Collapse
|
104
|
Liang Z, Wang X, Xu X, Xie B, Ji A, Meng S, Li S, Zhu Y, Wu J, Hu Z, Lin Y, Zheng X, Xie L, Liu B. MicroRNA-608 inhibits proliferation of bladder cancer via AKT/FOXO3a signaling pathway. Mol Cancer 2017; 16:96. [PMID: 28549468 PMCID: PMC5446711 DOI: 10.1186/s12943-017-0664-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/18/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Current evidence indicates that miR-608 is widely down-regulated in various malignant tumors including liver cancer, colon cancer, lung cancer and glioma, and acts as a tumor suppressor by inhibiting cell proliferation, invasion and migration or by promoting apoptosis. The specific biological function of miR-608 in bladder cancer is still unknown. METHODS qRT-PCR and Chromogenic in Situ Hybridization (CISH) was conducted to assess the expression of miR-608 in paired BCa tissues and adjacent non-tumor bladder urothelial tissues. Bisulfite sequencing PCR was used for DNA methylation analysis. CCK-8, colony formation and flow cytometry assays were performed, and a xenograft model was studied. Immunohistochemistry staining was performed with peroxidase and DAB. The target of miR-608 was validated with a dual-luciferase reporter assay, quantitative RT-PCR, and Western blotting. RESULTS miR-608 is frequently down-regulated in human BCa tissues. The methylation status of CpG islands is involved in the regulation of miR-608 expression. Overexpression of miR-608 inhibits the proliferation and tumorigenesis of BCa cells in vitro and in vivo. Additionally, up-regulation of miR-608 in BCa cells induces G1-phase arrest through AKT/FOXO3a signaling. In contrast, down-regulation of miR-608 promotes proliferation and cell cycle progression in BCa cells. Moreover, the expression of FLOT1 was directly inhibited by miR-608, the down-regulation of FLOT1 induced by siFLOT1 could be significantly reversed by miR-608 inhibitor. Similarly, the up-regulation of FLOT1 by FLOT1 overexpression plasmid (pFLOT1) could also reverse the suppressed cell proliferation caused by miR-608. CONCLUSIONS miR-608 is a potential tumor suppressor in BCa, and the restoration of miR-608 might be a promising therapeutic option for BCa.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Xin Xu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Bo Xie
- Department of Urology, TongDe Hospital of Zhejiang Province, Hangzhou, China
| | - Alin Ji
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Shuai Meng
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Shiqi Li
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Yi Zhu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Zhenghui Hu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Yiwei Lin
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Xiangyi Zheng
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Liping Xie
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China.
| | - Ben Liu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, School of Medicine, 79, Qingchun Road, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
105
|
Jiang T, Dong P, Li L, Ma X, Xu P, Zhu H, Wang Y, Yang B, Liu K, Liu J, Xue J, Lv R, Su P, Kong G, Chang Y, Zhao C, Wang L. MicroRNA-200c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells. Oncol Rep 2017; 38:151-158. [PMID: 28534959 DOI: 10.3892/or.2017.5659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
This study was specifically designed to confirm the hypothesis that microRNA-200c (miR-200c) affects the development of cisplatin (DDP) resistance in human gastric cancer cells by targeting zinc finger E-box binding homeobox 2 (ZEB2). A total of 50 gastric cancer tissues and their corresponding normal adjacent tissue samples were collected. Then, the expression levels of miR-200c and ZEB2 in both gastric cancer specimens and cells were detected using the quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical methods. A dual‑luciferase reporter gene assay was conducted to evaluate the effect of miR-200c on the 3'-untranslated region (3'UTR) luciferase activity of ZEB2. SGC7901/DDP cells were transfected with miR-200c mimics and ZEB2 siRNA, respectively. Subsequently, changes in cellular proliferation and apoptosis were detected through the methyl thiazolyl tetrazolium assay and flow cytometric analysis, respectively. We also carried out a western blot analysis assay in order to detect the expression of apoptosis-related genes and ZEB2. miR-200c was significantly downregulated and ZEB2 was significantly upregulated in both gastric cancer tissues and SGC7901/DDP cells when compared with those in normal tissues and SGC7901 cells (P<0.01). The dual luciferase reporter gene assay showed that miR-200c could specifically bind with the 3'UTR of ZEB2 and significantly suppress the luciferase activity by 42% (P<0.01). Upregulation of miR-200c or downregulation of ZEB2 enhanced the sensitivity of SGC7901/DDP cells to DDP. miR‑200c was significantly downregulated in both gastric cancer tissues and cells, while the expression of ZEB2 exhibited the opposite trend. Our study further demonstrated that miR-200c could enhance the sensitivity of SGC7901/DDP cells to DDP through targeted regulation of ZEB2 expression in gastric cancer tissues.
Collapse
Affiliation(s)
- Tao Jiang
- Henan Key Laboratory - Esophageal Cancer Laboratory for Cancer Research, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pengfei Dong
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Long Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Pei Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - He Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Yanqiu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Baotong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Kuangge Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Jinwei Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Runzhe Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Panke Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Guoqiang Kong
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Yongchao Chang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Chonggao Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471013, P.R. China
| | - Lidong Wang
- Henan Key Laboratory - Esophageal Cancer Laboratory for Cancer Research, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
106
|
Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, Howard JD, Markovic A, Bedi A, Ravi R, Perez J, Le QT, Kong CS, Jordan RC, Wang H, Kang H, Quon H, Sidransky D, Chung CH. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clin Cancer Res 2017; 23:5162-5175. [PMID: 28522603 DOI: 10.1158/1078-0432.ccr-16-1686] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/01/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
Purpose: We previously demonstrated an association between decreased SMAD4 expression and cetuximab resistance in head and neck squamous cell carcinoma (HNSCC). The purpose of this study was to further elucidate the clinical relevance of SMAD4 loss in HNSCC.Experimental Design: SMAD4 expression was assessed by IHC in 130 newly diagnosed and 43 patients with recurrent HNSCC. Correlative statistical analysis with clinicopathologic data was also performed. OncoFinder, a bioinformatics tool, was used to analyze molecular signaling in TCGA tumors with low or high SMAD4 mRNA levels. The role of SMAD4 was investigated by shRNA knockdown and gene reconstitution of HPV-negative HNSCC cell lines in vitro and in vivoResults: Our analysis revealed that SMAD4 loss was associated with an aggressive, HPV-negative, cetuximab-resistant phenotype. We found a signature of prosurvival and antiapoptotic pathways that were commonly dysregulated in SMAD4-low cases derived from TCGA-HNSCC dataset and an independent oral cavity squamous cell carcinoma (OSCC) cohort obtained from GEO. We show that SMAD4 depletion in an HNSCC cell line induces cetuximab resistance and results in worse survival in an orthotopic mouse model in vivo We implicate JNK and MAPK activation as mediators of cetuximab resistance and provide the foundation for the concomitant EGFR and JNK/MAPK inhibition as a potential strategy for overcoming cetuximab resistance in HNSCCs with SMAD4 loss.Conclusions: Our study demonstrates that loss of SMAD4 expression is a signature characterizing the cetuximab-resistant phenotype and suggests that SMAD4 expression may be a determinant of sensitivity/resistance to EGFR/MAPK or EGFR/JNK inhibition in HPV-negative HNSCC tumors. Clin Cancer Res; 23(17); 5162-75. ©2017 AACR.
Collapse
Affiliation(s)
- Hiroyuki Ozawa
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ruchira S Ranaweera
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eugene Makarev
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, Maryland
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Health Science Informatics, Johns Hopkins University, Baltimore, Maryland
| | - Jason D Howard
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ana Markovic
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Atul Bedi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajani Ravi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jimena Perez
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Quynh-Thu Le
- Department of Pathology, Stanford University School of Medicine Stanford, California
| | - Christina S Kong
- Department of Pathology, Stanford University School of Medicine Stanford, California
| | - Richard C Jordan
- Departments of Orofacial Sciences and Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Hao Wang
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hyunseok Kang
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine H Chung
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
107
|
Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep 2017; 37:BSR20160572. [PMID: 28122882 PMCID: PMC5484021 DOI: 10.1042/bsr20160572] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
The present study explored the effect of miR-200b on the development of diabetic retinopathy (DR) by targeting vascular endothelial growth factor A (VEGFA) gene. The study populations consisted of 255 DR patients (case group) and 253 healthy people (control group), while the expressions of miR-200b and VEGFA mRNA were detected by quantitative real-time PCR (qRT-PCR). Bioinformatics software and dual-luciferase reporter assay were used to confirm VEGFA as a target gene of miR-200b Also, a total of 70 Wistar male rats were selected and randomly assigned into blank, normal control (NC), miR-200b mimics, miR-200b inhibitors, miR-200b inhibitors + silencing vascular endothelial growth factor A (siVEGFA), and siVEGFA groups (n=10/group) respectively. Streptozotocin (STZ)-induced rat models of DR were successfully established. VEGFA, transforming growth factor-β1 (TGF-β1), hepatocyte growth factor (HGF), and pigment epithelium-derived factor (PEDF) were detected using qRT-PCR and Western blotting. In comparison with the control group, the case group showed lower expression of miR-200b but higher expression of VEGFA mRNA. VEGFA was confirmed as a target gene of miR-200b Rats in the miR-200b mimics and siVEGFA groups exhibited higher expression of PEDF mRNA and protein but lower expressions of VEGFA, TGF-β1, HGF protein, and mRNA than the NC group. There was no remarkable difference in expressions of PEDF, VEGFA, TGF-β1, HGF protein, and mRNA between the miR-200b inhibitors + siVEGFA and NC groups. In conclusion, the present study demonstrated that miR-200b might alleviate DR development by down-regulating its target gene VEGFA.
Collapse
Affiliation(s)
- En-Hui Li
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | - Qin-Zhu Huang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | - Gao-Chun Li
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | - Zhen-Yang Xiang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | - Xin Zhang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| |
Collapse
|
108
|
Chang S, Chen B, Wang X, Wu K, Sun Y. Long non-coding RNA XIST regulates PTEN expression by sponging miR-181a and promotes hepatocellular carcinoma progression. BMC Cancer 2017; 17:248. [PMID: 28388883 PMCID: PMC5383949 DOI: 10.1186/s12885-017-3216-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/22/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor metastasis often occurs in hepatocellular carcinoma (HCC) and influences the patient's prognosis, and microRNAs are reported to play key roles in tumor metastasis. This study was conducted to explore the effect of microRNAs on HCC metastasis. METHODS The levels of miR-181a in HCC tissues, adjacent tissues, metastatic HCC tissues, and non-metastatic HCC tissues at different stages were determined by qRT-PCR. Effect of miR-181a on the proliferation, invasion, and metastasis of HCC cells was estimated by cell counting kits-8 (CCK-8), wound-healing, and Transwell assays. Software analysis and luciferase assays were used to explore the target gene of miR-181a. RESULTS MiR-181a was up-regulated in HCC tissues and its expression level in metastatic HCC tissues was much higher than in non-metastasis samples. PTEN was found to be a target gene of miR-181a. MiR-181a had multiple binding sites with the long non-coding RNA (lncRNA) XIST. The regulation of miR-181a on PTEN was mediated by lncRNA XIST. The proliferation and invasion of cells with siXIST were significantly enhanced compared with those of control cells, while knockdown of miR-181a abolished the enhancing effects. CONCLUSIONS MiR-181a can promote HCC metastasis by targeting PTEN, which is regulated by lncRNA XIST.
Collapse
Affiliation(s)
- Shuzhen Chang
- Division of Liver Disease, Ji'nan Infectious Disease Hospital, No. 22029 Jingshi Road, Ji'nan, Shandong, 250021, China
| | - Binhe Chen
- Healthy Food Laboratory, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong, 250101, China
| | - Xiaoyan Wang
- Division of Liver Disease, Ji'nan Infectious Disease Hospital, No. 22029 Jingshi Road, Ji'nan, Shandong, 250021, China
| | - Keqin Wu
- Division of Liver Disease, Ji'nan Infectious Disease Hospital, No. 22029 Jingshi Road, Ji'nan, Shandong, 250021, China
| | - Yuqiu Sun
- Division of Liver Disease, Ji'nan Infectious Disease Hospital, No. 22029 Jingshi Road, Ji'nan, Shandong, 250021, China.
| |
Collapse
|
109
|
Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. Int J Mol Sci 2017; 18:ijms18030656. [PMID: 28304343 PMCID: PMC5372668 DOI: 10.3390/ijms18030656] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Many approaches to cancer management are often ineffective due to adverse reactions, drug resistance, or inadequate target specificity of single anti-cancer agents. In contrast, a combinatorial approach with the application of two or more anti-cancer agents at their respective effective dosages can achieve a synergistic effect that boosts cytotoxicity to cancer cells. In cancer, aberrant apoptotic pathways allow cells that should be killed to survive with genetic abnormalities, leading to cancer progression. Mutations in apoptotic mechanism arising during the treatment of cancer through cancer progression can consequently lead to chemoresistance. Natural compound mixtures that are believed to have multiple specific targets with minimal acceptable side-effects are now of interest to many researchers due to their cytotoxic and chemosensitizing activities. Synergistic interactions within a drug mixture enhance the search for potential molecular targets in cancer cells. Nonetheless, biased/flawed scientific evidence from natural products can suggest false positive therapeutic benefits during drug screening. In this review, we have taken these factors into consideration when discussing the evidence for these compounds and their synergistic therapeutic benefits in cancer. While there is limited evidence for clinical efficacy for these mixtures, in vitro data suggest that these preparations merit further investigation, both in vitro and in vivo.
Collapse
|
110
|
Wei T, Zhu W, Fang S, Zeng X, Huang J, Yang J, Zhang J, Guo L. miR-495 promotes the chemoresistance of SCLC through the epithelial-mesenchymal transition via Etk/BMX. Am J Cancer Res 2017; 7:628-646. [PMID: 28401017 PMCID: PMC5384991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 06/07/2023] Open
Abstract
miR-495 serves as an oncogenic miRNA or a tumor suppressor in different types of cancer. However, its role in the drug resistance of small cell lung cancer (SCLC) remains unidentified. In this study, we investigated whether miR-495 regulates the chemoresistance of SCLC through the epithelial-mesenchymal transition (EMT) via Epithelial and endothelial tyrosine kinase (Etk/BMX) using two drug-resistant cell lines. Loss- and gain-of-function experiments showed miR-495 regulated cell proliferation, tumor growth and drug resistance. miR-495 suppression or Etk/BMX elevation in SCLC specimens was correlated with poor pathologic stage and survival time. Etk/BMX was one of the directly targeted genes of miR-495. Ectopic expression of Etk/BMX obviously rescued the miR-495 elevation elevation-induced inhibition of drug resistance. Etk/BMX over-expression led to higher levels of EMT mesenchymal factors (Zeb-2, Twist, Vim) and lower levels of the epithelial molecule β-catenin, while suppression of Etk/BMX showed the opposite trend. Knockdown of Zeb-2 and Twist inhibited the chemoresistance of cells. Our study revealed that miR-495 promoted the chemoresistance of SCLC through the epithelial-mesenchymal transition via Etk/BMX. miR-495 re-expression or Etk/BMX depletion is a promising strategy for interfering with chemoresistance in SCLC.
Collapse
Affiliation(s)
- Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Shun Fang
- Department of Pathology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Xiangpin Zeng
- Department of Gynaecology, Baoan Maternal and Child Health HospitalShenzhen, China
| | - Jie Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Jie Yang
- Department of Pathology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
111
|
Zhang M, Lee AV, Rosen JM. The Cellular Origin and Evolution of Breast Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a027128. [PMID: 28062556 DOI: 10.1101/cshperspect.a027128] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we will discuss how the cell of origin may modulate breast cancer intratumoral heterogeneity (ITH) as well as the role of ITH in the evolution of cancer. The clonal evolution and the cancer stem cell (CSC) models, as well as a model that integrates clonal evolution with a CSC hierarchy, have all been proposed to explain the development of ITH. The extent of ITH correlates with clinical outcome and reflects the cellular complexity and dynamics within a tumor. A unique subtype of breast cancer, the claudin-low subtype that is highly resistant to chemotherapy and most closely resembles mammary epithelial stem cells, will be discussed. Furthermore, we will review how the interactions among various tumor cells, some with distinct mutations, may impact breast cancer treatment. Finally, novel technologies that may help advance our understanding of ITH and lead to improvements in the design of new treatments also will be discussed.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
112
|
Mahdavinezhad A, Yadegarazari R, Mousavi-Bahar SH, Poorolajal J, Jafari M, Amirzargar MA, Effatpanah H, Saidijam M. Evaluation of zinc finger E-box binding homeobox 1 and transforming growth factor-beta2 expression in bladder cancer tissue in comparison with healthy adjacent tissue. Investig Clin Urol 2017; 58:140-145. [PMID: 28261684 PMCID: PMC5330373 DOI: 10.4111/icu.2017.58.2.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023] Open
Abstract
Purpose The fifth most common cancer is allocated to bladder cancer (BC) worldwide. Understanding the molecular mechanisms of BC invasion and metastasis to identify target therapeutic strategies will improve disease survival. So the aim of this study was to measure expression rate of zinc finger E-box binding homeobox 1 (ZEB1) and transforming growth factor-beta2 (TGF-β2) mRNA in tissue samples of patients with BC and its healthy adjacent tissue samples and their association with muscle invasion, size and grade of the tumor. Materials and Methods Tissue samples were collected from 35 newly diagnosed untreated patients with BC from 2013 to 2014. Total RNA was extracted from about 50-mg tissue samples using TRIzol reagent. TAKARA SYBR Premix EX Tag II was applied to determine the rate of mRNA expression by real-time polymerase chain reaction (PCR). To obtain final validation, PCR product of ZEB1 and TGF-β2 were sequenced. STATA 11 software was used to analyze the data. Results The expression level of ZEB1 in tumor samples was significantly more than of in healthy adjacent tissue samples. Up-regulation of TGF-β2 showed a strong association with muscle invasion (p=0.017). There was also demonstrated a relationship between over expression of ZEB1 with the tumor size (p=0.050). Conclusions It looks ZEB1 and TGF-β2 had a role in BC patients. In this study ZEB1 expression was higher in BC tissues than that of in healthy control tissues. There was demonstrated a markedly association between overexpression of TGF-β2 and muscle invasion. Therefore, they are supposed to be candidate as potential biomarkers for early detection and progression of BC.
Collapse
Affiliation(s)
- Ali Mahdavinezhad
- Research Center for Molecular Medicine, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Yadegarazari
- Department of Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Habibollah Mousavi-Bahar
- Department of Urology, Urology and Nephrology Research Center, Shaheed Beheshti Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jalal Poorolajal
- Modeling of Non communicable Diseases Research Center, Department of Epidemiology & Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Jafari
- Department of Pathology, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Ali Amirzargar
- Department of Urology, Urology and Nephrology Research Center, Shaheed Beheshti Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hosein Effatpanah
- Department of Public Health, Asadabad Faculty of Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
113
|
Huang C, Zeng X, Jiang G, Liao X, Liu C, Li J, Jin H, Zhu J, Sun H, Wu XR, Huang C. XIAP BIR domain suppresses miR-200a expression and subsequently promotes EGFR protein translation and anchorage-independent growth of bladder cancer cell. J Hematol Oncol 2017; 10:6. [PMID: 28057023 PMCID: PMC5217641 DOI: 10.1186/s13045-016-0376-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The X-linked inhibitor of apoptosis protein (XIAP) is a well-known potent apoptosis suppressor and also participates in cancer cell biological behaviors, therefore attracting great attentions as a potential antineoplastic therapeutic target for past years. Anti-IAP therapy is reported to be closely related to epidermal growth factor receptor (EGFR) expression level. However, whether and how XIAP modulates EGFR expression remains largely unknown. METHODS Human XIAP was knockdown with short-hairpin RNA in two different bladder cancer cell lines, T24T and UMUC3. Two XIAP mutants, XIAP ∆BIR (deletion of N-terminal three BIR domains) and XIAP ∆RING (deletion of C-terminal RING domain and keeping the function of BIR domains), were generated to determine which domain is involved in regulating EGFR. RESULTS We found here that lacking of XIAP expression resulted in a remarkable suppression of EGFR expression, consequently leading to the deficiency of anchorage-independent cell growth. Further study demonstrated that BIR domain of XIAP was crucial for regulating the EGFR translation by suppressing the transcription and expression of miR-200a. Mechanistic studies indicated that BIR domain activated the protein phosphatase 2 (PP2A) activity by decreasing the phosphorylation of PP2A at Tyr307 in its catalytic subunit, PP2A-C. Such activated PP2A prevented the deviant phosphorylation and activation of MAPK kinases/MAPKs, their downstream effector c-Jun, and in turn inhibiting transcription of c-Jun-regulated the miR-200a. CONCLUSIONS Our study uncovered a novel function of BIR domain of XIAP in regulating the EGFR translation, providing significant insight into the understanding of the XIAP overexpression in the cancer development and progression, further offering a new theoretical support for using XIAP BIR domain and EGFR as targets for cancer therapy.
Collapse
Affiliation(s)
- Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xin Liao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Claire Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325035
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325035
| | - Hong Sun
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016, USA
- VA Medical Center in Manhattan, New York, NY, 10010, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA.
| |
Collapse
|
114
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
115
|
Mitash N, Tiwari S, Agnihotri S, Mandhani A. Bladder cancer: Micro RNAs as biomolecules for prognostication and surveillance. Indian J Urol 2017; 33:127-133. [PMID: 28469300 PMCID: PMC5396400 DOI: 10.4103/0970-1591.203412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Bladder cancer (BC) has varied clinical behavior in terms of recurrence and progression. Current pathological characteristics are insufficient to prognosticate the outcome of a given treatment. Cellular metabolic regulatory molecules, such as micro RNA (miRNA), could be a potential biomarker to prognosticate the treatment outcomes. Materials and Methods: PubMed and Google Scholar databases were searched for publications from 1990 to 2016, related to miRNA biogenesis, its function, and role in the pathogenesis of bladder as well as other cancers. Articles were searched using MeSH terms micrornas, micrornas AND neoplasm, and micrornas AND urinary bladder neoplasm. Out of the 108 publications reviewed 75 references were selected based on the clinical relevance. Articles were reviewed to assess the role of miRNA in various cancers and those in BC as a diagnostic or therapeutic tool. Results: More than 35 miRNAs were found to be associated with different pathways of cellular dedifferentiation, proliferation, and progression of BC as well as other cancers. A normal looking mucosa may show molecular changes preceding phenotypic changes in the form of varied expression of miR-129, miR-200a, and miR-205. miR-214, miR-99a, and miR-125b have been shown to be potential urinary biomarkers of BC. miRNAs could act as a repressor for protein molecule functioning or activator of different pathways to be used as a therapeutic target too. Conclusions: Despite certain limitations, such as instability, rapid plasma clearance, and targeting antagonist proteins of cellular metabolic pathways, miRNAs have potential to be studied as a biomarker or a therapeutic target for BC.
Collapse
Affiliation(s)
- Nilay Mitash
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shalini Agnihotri
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anil Mandhani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
116
|
miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2. Oncotarget 2016; 7:10297-321. [PMID: 26863629 PMCID: PMC4891121 DOI: 10.18632/oncotarget.7185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNA array analysis revealed that miR-217 expression was decreased in anti-cancer drug-resistant Malme3MR cancer cells. CAGE, a cancer/testis antigen, was predicted as a target of miR-217. Luciferase activity and ChIP assays revealed a negative feedback relationship between CAGE and miR-217. miR-217 and CAGE oppositely regulated the response to anti-cancer drugs such as taxol, gefitinib and trastuzumab, an inhibitor of HER2. miR-217 negatively regulated the tumorigenic, metastatic, angiogenic, migration and invasion potential of cancer cells. The xenograft of Malme3MR cells showed an increased expression of pEGFRY845. CAGE and miR-217 inhibitor regulated the expression of pEGFRY845. CAGE showed interactions with EGFR and HER2 and regulated the in vivo sensitivity to trastuzumab. The down-regulation of EGFR or HER2 enhanced the sensitivity to anti-cancer drugs. CAGE showed direct regulation of HER2 and was necessary for the interaction between EGFR and HER2 in Malme3MR cells. miR-217 inhibitor induced interactions of CAGE with EGFR and HER2 in Malme3M cells. The inhibition of EGFR by CAGE-binding GTGKT peptide enhanced the sensitivity to gefitinib and trastuzumab and prevented interactions of EGFR with CAGE and HER2. Our results show that miR-217-CAGE feedback loop serves as a target for overcoming resistance to various anti-cancer drugs, including EGFR and HER2 inhibitors.
Collapse
|
117
|
Homami A, Ghazi F. MicroRNAs as biomarkers associated with bladder cancer. Med J Islam Repub Iran 2016; 30:475. [PMID: 28491850 PMCID: PMC5419229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/05/2016] [Indexed: 11/01/2022] Open
Abstract
Bladder cancer is the fifth most common cancer with significant morbidity and mortality. Recently, numerous studies demonstrated that microRNAs are emerging as diagnostic biomarkers for bladder cancer. Specific miRNA profiles have been identified for several samples from patients with bladder cancer. MicroRNAs are noncoding RNA molecules of approximately 23 nucleotides that play important roles in multiple steps during the progression of bladder cancer. Here, we review the expression profiles of miRNAs and their biological functions, regulation, and clinical implications in bladder cancer. Either downregulation or upregulation of miRNAs occurs in bladder cancer through epigenetic changes or defects of the biogenesis apparatus. Deregulation of miRNAs is involved in cell cycle arrest, apoptosis, proliferation, metastasis, drug resistance, and other functions in bladder cancer. A number of miRNAs, have been associated with tumor type, stage, or patient survival, and miRNAs might be developed as diagnostic or prognostic markers. A better understanding of the roles of miRNAs in bladder cancer will shed light on the molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Amene Homami
- MSc Student, Department of Medical Genetics and Molecular Biology, Iran University of Medical Sciences, Tehran, Iran.
| | - Farideh Ghazi
- PhD, Associate Professor, Department of Medical Genetics and Molecular Biology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
118
|
Yu G, Jia Z, Dou Z. miR-24-3p regulates bladder cancer cell proliferation, migration, invasion and autophagy by targeting DEDD. Oncol Rep 2016; 37:1123-1131. [PMID: 28000900 DOI: 10.3892/or.2016.5326] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
microRNAs (miRNAs), a class of small non-coding RNA molecules, can regulate gene expression by interacting with the 3'-untranslated regions (3'UTR) of target genes and influence various biological processes. We investigated the potential role of miR-24-3p in the development of bladder cancer by regulating DEDD, a member of the death effector domain-containing protein family. First, we found that miR-24-3p was highly expressed and that DEDD was expressed at a low level in bladder cancer tissues compared with that in adjacent bladder tissues by qRT-PCR (P<0.0001). Second, we found that miR-24-3p promoted the proliferation ability of bladder cancer cells using the MTT assay and colony forming assay; and showed that miR-24-3p accelerated the migration and invasion of bladder cancer cells using migration and invasion assays (P<0.05). Moreover, miR-24-3p inhibited apoptosis of bladder cancer cells, as shown by flow cytometry (P<0.05). Western blot results demonstrated that miR-24-3p participated in autophagy of bladder cancer cells by DEDD. In addition, the tumor formation assay showed that miR-24-3p promoted the growth of bladder tumor in vivo. Furthermore, the luciferase reporter gene assay indicated that miR-24-3p suppressed DEDD gene transcription. Therefore, our study indicated that miR-24-3p promoted bladder cancer progression by inhibiting DEDD.
Collapse
Affiliation(s)
- Guoqiang Yu
- Department of Urological Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhaohui Jia
- Department of Urological Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhongling Dou
- Department of Urological Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
119
|
Hirai M, Kitahara H, Kobayashi Y, Kato K, Bou-Gharios G, Nakamura H, Kawashiri S. Regulation of PD-L1 expression in a high-grade invasive human oral squamous cell carcinoma microenvironment. Int J Oncol 2016; 50:41-48. [PMID: 27922697 PMCID: PMC5182007 DOI: 10.3892/ijo.2016.3785] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022] Open
Abstract
Blockade of the programmed-death 1 receptor (PD-1)/programmed-death ligand (PD-L1) pathway efficiently reduces tumour growth and improves survival. Durable tumour regression with blockade of the PD-1/PD-L1 checkpoint has been demonstrated in recent clinical studies. Oral squamous cell carcinoma (OSCC) is highly immunosuppressive, and PD-L1 expression has been proposed as a potential mechanism responsible for this phenotype. Despite the fact that anti-PD-1 treatment can produce durable responses, such therapy appears to benefit only a subset of patients. Thus, it is important to understand the mechanisms underlying regulation of PD-L1 expression in the OSCC microenvironment. In this study, we showed that PD-L1 expression in high-grade invasive OSCC cell lines was lower than that in a low-grade invasive OSCC line and found a close correlation between PD-L1 expression and the epithelial-mesenchymal transition (EMT). PD-L1 expression was upregulated in macrophages and dendritic cells (DCs) in high-grade invasive human OSCC tissues or co-cultured with mesenchymal-phenotype OSCC cells in vitro. TLR4-inhibitory peptide successfully suppressed PD-L1 upregulation on macrophages and DCs co-cultured with mesenchymal-phenotype OSCC cells, suggesting that some EMT-induced tumour antigen is critical for PD-L1 induction on tumour-associated macrophages and DCs. Further studies are necessary to explore the impact of EMT on the tumour immune microenvironment and to identify potential biomarkers for selecting patients who might preferentially benefit from PD-1/PD-L1 blockade or immunotherapies more broadly.
Collapse
Affiliation(s)
- Mariko Hirai
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Ishikawa 920-8640, Japan
| | - Hiroko Kitahara
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Ishikawa 920-8640, Japan
| | - Yutaka Kobayashi
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Ishikawa 920-8640, Japan
| | - Koroku Kato
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Ishikawa 920-8640, Japan
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Ishikawa 920-8640, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Ishikawa 920-8640, Japan
| |
Collapse
|
120
|
Wu K, Zhao Z, Xiao Y, Peng J, Chen J, He Y. Roles of mitochondrial transcription factor A and microRNA‑590‑3p in the development of colon cancer. Mol Med Rep 2016; 14:5475-5480. [PMID: 27878255 PMCID: PMC5355708 DOI: 10.3892/mmr.2016.5955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/07/2016] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) participates in the process of mitochondrial DNA replication and transcription. microRNAs (miRNAs) serve an important role in the regulation of gene expression. However, the roles of TFAM and certain miRNAs and their associations in the development of numerous cancer types remain unclear. The current study demonstrated that the expression of TFAM was significantly upregulated in colon cancer compared with the normal tissue, while the expression of miRNA-590-3p (miR-590-3p) was predicted with a high score using miRWalk software, and the luciferase assay demonstrated that TFAM was the direct target of miRNA-590-3p. miR-590-3p exhibited high expression levels in both colon cancer tissue and the SW480 cell line. Furthermore, downregulated expression of miR-590-3p significantly inhibited the growth of SW480 cells, which was consistent with results indicating downregulated expression of TFAM in SW480 cells from a previous study. In summary, the results of the current study concluded that miR-590-3p, via direct targeting of TFAM, may serve an important role in the tumorigenesis of colon cancer, and may be a promising target for colon cancer therapeutics.
Collapse
Affiliation(s)
- Kaiming Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenxian Zhao
- Department of Pancreato‑Biliary Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Yinglian Xiao
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Jianhui Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Yulong He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
121
|
Shan W, Zhang X, Li M, Deng F, Zhang J. Over expression of miR-200c suppresses invasion and restores methotrexate sensitivity in lung cancer A549 cells. Gene 2016; 593:265-71. [DOI: 10.1016/j.gene.2016.07.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/16/2016] [Accepted: 07/15/2016] [Indexed: 01/12/2023]
|
122
|
Kitahara H, Hirai M, Kato K, Bou-Gharios G, Nakamura H, Kawashiri S. Eribulin sensitizes oral squamous cell carcinoma cells to cetuximab via induction of mesenchymal-to-epithelial transition. Oncol Rep 2016; 36:3139-3144. [PMID: 27779690 PMCID: PMC5112623 DOI: 10.3892/or.2016.5189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/17/2016] [Indexed: 11/08/2022] Open
Abstract
Inhibition of epidermal growth factor receptor (EGFR) signalling has emerged as a new treatment strategy for oral squamous cell carcinoma (OSCC). Previously, we found that loss of EGFR expression in OSCC was associated with epithelial-mesenchymal transition (EMT), and may have functional implications with regard to resistance to cetuximab, a monoclonal anti-EGFR antibody. Eribulin (a microtubule inhibitor) reportedly renders breast cancer less aggressive, and less likely to metastasise, by triggering mesenchymal-to-epithelial (MET) transition. In the present study we evaluated whether eribulin-induced MET was associated with re-sensitization of resistant OSCC cell lines to cetuximab. In vitro antiproliferative activities were determined in three human OSCC lines (OSC-20, OSC-19 and HOC313) treated with eribulin. These three human OSCC represented different EMT/MET states. Interestingly, HOC313 cells (mesenchymal phenotype) were highly sensitive to eribulin in comparison with other cell lines, and significantly enhanced the anti-proliferative effect of cetuximab in response to the drug. Eribulin also underwent a MET-associated gene switch that resulted in morphological changes and high EGFR expression in HOC313 cells, and abrogated a TGF-β-induced EMT gene expression signature. Eribulin-dependent sensitization of OSCC to cetuximab is likely due to induction of MET. Combination therapies based on eribulin and cetuximab have potential as a novel treatment regimen in OSCC.
Collapse
Affiliation(s)
- Hiroko Kitahara
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Mariko Hirai
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Koroku Kato
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
123
|
Aldo-keto reductase 1C1 induced by interleukin-1β mediates the invasive potential and drug resistance of metastatic bladder cancer cells. Sci Rep 2016; 6:34625. [PMID: 27698389 PMCID: PMC5048132 DOI: 10.1038/srep34625] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022] Open
Abstract
In treating bladder cancer, determining the molecular mechanisms of tumor invasion, metastasis, and drug resistance are urgent to improving long-term patient survival. One of the metabolic enzymes, aldo-keto reductase 1C1 (AKR1C1), plays an essential role in cancer invasion/metastasis and chemoresistance. In orthotopic xenograft models of a human bladder cancer cell line, UM-UC-3, metastatic sublines were established from tumors in the liver, lung, and bone. These cells possessed elevated levels of EMT-associated markers, such as Snail, Slug, or CD44, and exhibited enhanced invasion. By microarray analysis, AKR1C1 was found to be up-regulated in metastatic lesions, which was verified in metastatic human bladder cancer specimens. Decreased invasion caused by AKR1C1 knockdown suggests a novel role of AKR1C1 in cancer invasion, which is probably due to the regulation of Rac1, Src, or Akt. An inflammatory cytokine, interleukin-1β, was found to increase AKR1C1 in bladder cancer cell lines. One particular non-steroidal anti-inflammatory drug, flufenamic acid, antagonized AKR1C1 and decreased the cisplatin-resistance and invasion potential of metastatic sublines. These data uncover the crucial role of AKR1C1 in regulating both metastasis and drug resistance; as a result, AKR1C1 should be a potent molecular target in invasive bladder cancer treatment.
Collapse
|
124
|
Kobayashi T. Understanding the biology of urothelial cancer metastasis. Asian J Urol 2016; 3:211-222. [PMID: 29264189 PMCID: PMC5730871 DOI: 10.1016/j.ajur.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Management of unresectable urothelial cancer (UC) has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT) and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.
Collapse
|
125
|
Martínez-Fernández M, Dueñas M, Feber A, Segovia C, García-Escudero R, Rubio C, López-Calderón FF, Díaz-García C, Villacampa F, Duarte J, Gómez-Rodriguez MJ, Castellano D, Rodriguez-Peralto JL, de la Rosa F, Beck S, Paramio JM. A Polycomb-mir200 loop regulates clinical outcome in bladder cancer. Oncotarget 2016; 6:42258-75. [PMID: 26517683 PMCID: PMC4747223 DOI: 10.18632/oncotarget.5546] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) is a highly prevalent disease, ranking fifth in the most common cancers worldwide. Various miRNAs have recently emerged as potential prognostic biomarkers in cancer. The miR-200 family, which repressed the epithelial-to-mesenchymal transition (EMT), is repressed in multiple advanced cancers. However, its expression and function in BC is still poorly understood. Here we show that miR-200 family displays increased expression, probably due to the activation of specific oncogenic signaling pathways, and reduced promoter methylation, in BC compared to normal bladder samples. Furthermore, we show that the expression of these miRNAs is decreased in high grade and stage tumors, and the down-regulation is associated with patient's poor clinical outcome. Our data indicate that the miR-200 family plays distinct roles in Non-Muscle (NMIBC) and Muscle-Invasive BC (MIBC). In MIBC, miR-200 expression post transcriptionally regulates EMT-promoting transcription factors ZEB1 and ZEB2, whereas suppresses BMI1 expression in NMIBC. Interestingly, we show that increased EZH2 and/or BMI1 expression repress the expression of miR-200 family members. Collectively, these findings support a model of BC progression through a coordinated action between the Polycomb Repression Complex (PRC) members repressing the miR-200 expression, which ultimately favors invasive BC development. Since pharmacological inhibition of EZH2 in BC cell lines lead to increased miR-200 expression, our findings may support new therapeutic strategies for BC clinical management.
Collapse
Affiliation(s)
- Mónica Martínez-Fernández
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Marta Dueñas
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Andrew Feber
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Cristina Segovia
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Carolina Rubio
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Fernando F López-Calderón
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | | | - Felipe Villacampa
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - José Duarte
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - María J Gómez-Rodriguez
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Daniel Castellano
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - José L Rodriguez-Peralto
- Anatomic Pathology Service, Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Federico de la Rosa
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| |
Collapse
|
126
|
Stope MB, Koensgen D, Weimer J, Paditz M, Burchardt M, Bauerschlag D, Mustea A. The future therapy of endometrial cancer: microRNA's functionality, capability, and putative clinical application. Arch Gynecol Obstet 2016; 294:889-895. [PMID: 27637583 DOI: 10.1007/s00404-016-4194-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE Endometrial cancer (EC) therapy is characterized by the heterogeneity of EC subtypes resulting in unclear clinical behavior as well as in unsatisfactory treatment options. The available biomarkers, such as cellular tumor antigen p53 (TP53), phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase (PTEN), and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) genes alone might not be sufficient, and thus, new predictive and prognostic biomarkers are urgently required. The biomolecule class of microRNA represents a group of endogenously expressed regulatory factors primarily involved in control of pivotal cancer-related mechanisms including cell cycle, proliferation, apoptosis, and metastasis. Here, we review the current state of science regarding microRNA functionality in EC progression.
Collapse
Affiliation(s)
- Matthias B Stope
- Cancer Laboratory, Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - Dominique Koensgen
- Department of Gynaecology and Obstetrics, University Medicine Greifswald, Greifswald, Germany
| | - Jörg Weimer
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Madeleine Paditz
- Department of Gynaecology and Obstetrics, University Medicine Greifswald, Greifswald, Germany
| | - Martin Burchardt
- Cancer Laboratory, Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Mustea
- Department of Gynaecology and Obstetrics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
127
|
[Modern networks : Topics in the working group "Bladder cancer research" of the GeSRU Academics]. Urologe A 2016; 56:202-207. [PMID: 27604705 DOI: 10.1007/s00120-016-0217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In January 2015, the research group "bladder cancer research" was founded as part of the GeSRU Academics research initiative. A general challenge to work successfully in a novel network structure is to identify common scientific topics and technical expertise in the group. Thus, one of the first tasks was to learn about current research projects from members within the group in order to address a project that suits the group's expertise. The following review summarizes three different directions that are key projects in Urologic Departments at German Universities that will be the basis to start fruitful collaborations.
Collapse
|
128
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
129
|
Song C, Liu LZ, Pei XQ, Liu X, Yang L, Ye F, Xie X, Chen J, Tang H, Xie X. miR-200c inhibits breast cancer proliferation by targeting KRAS. Oncotarget 2016; 6:34968-78. [PMID: 26392416 PMCID: PMC4741502 DOI: 10.18632/oncotarget.5198] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/27/2015] [Indexed: 11/25/2022] Open
Abstract
The microRNA, miR-200c, is involved in the tumorigenesis and progression of a variety of cancers. The purpose of this study was to investigate the expression, mechanism and prognostic roles of miR-200c in breast cancer. We found that miR-200c was downregulated in both breast cancer tissue and cell lines using quantitative real-time PCR (qRT-PCR). In situ hybridization (ISH) and microarrays showed that low miR-200c expression was associated with poor patient overall survival (OS) and disease free survival (DFS). We used luciferase reporter plasmids to find that miR-200c inhibited the AKT and ERK pathways by directly targeting KRAS. Repression of KRAS by miR-200c suppressed the proliferation and survival of breast cancer cells in vitro and in vivo. miR-200c also had an anti-tumor effect by negatively regulating KRAS in a xenograft mouse model. Our findings provide clues regarding the role of miR-200c as a tumor suppressor in breast cancer through the inhibition of KRAS translation both in vitro and in vivo. miR-200c could be a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Cailu Song
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Long-Zhong Liu
- Department of Ultrasond, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiao-Qing Pei
- Department of Ultrasond, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Lu Yang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Feng Ye
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
130
|
He DX, Zhang GY, Gu XT, Mao AQ, Lu CX, Jin J, Liu DQ, Ma X. Genome-wide profiling of long non-coding RNA expression patterns in anthracycline-resistant breast cancer cells. Int J Oncol 2016; 49:1695-1703. [PMID: 27633960 DOI: 10.3892/ijo.2016.3665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/29/2016] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in cancer progression. In the present study, we analyzed the lncRNA profiles in adriamycin-resistant and -sensitive breast cancer cells and found a group of dysregulated lncRNAs in the adriamycin-resistant cells. Expression of the dysregulated lncRNAs was correlated with dysregulated mRNAs, and these were enriched in GO and KEGG pathways associated with cancer progression and chemoresistance development. Among these lncRNA-mRNA interactions, some lncRNAs may cis‑regulate neighboring protein-coding genes and be involved in chemoresistance. We then validated that the lncRNA NONHSAT028712 regulated nearby CDK2 and interfered with the cell cycle and chemoresistance. Furthermore, we identified another group of lncRNAs that trans-regulated genes by interacting with different transcription factors. For example, NONHSAT057282 and NONHSAG023333 modulated chemoresistance and most likely interacted with the transcription factors ELF1 and E2F1, respectively. In conclusion, in the present study, we report for the first time the lncRNA expression patterns in adriamycin-resistant breast cancer cells, and provide a group of novel lncRNA targets that mediate chemoresistance development in both cis- and trans-action modes.
Collapse
Affiliation(s)
- Dong-Xu He
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Guang-Yuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xiao-Ting Gu
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Ai-Qin Mao
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chun-Xiao Lu
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - De-Quan Liu
- Department of Breast Surgery, The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Xin Ma
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
131
|
Li Q, Bao W, Fan Q, Shi WJ, Li ZN, Xu Y, Wu D. Epidermal growth factor receptor kinase substrate 8 promotes the metastasis of cervical cancer via the epithelial-mesenchymal transition. Mol Med Rep 2016; 14:3220-8. [PMID: 27573546 PMCID: PMC5042790 DOI: 10.3892/mmr.2016.5638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) has been identified as a novel substrate for epidermal growth factor receptor (EGFR) kinase and is involved in EGFR-mediated signaling pathways correlated with tumorigenesis, proliferation and metastasis in various cancer types. However, the precise role of Eps8 in cervical cancer metastasis remains to be elucidated. Immunohistochemistry revealed that Eps8 was significantly increased in cervical cancer specimens compared with squamous intraepithelial lesion and normal cervical tissues. Additionally, it was revealed that Eps8 expression not only correlated with cervical cancer progression, but also exhibited a close correlation with the epithelial-mesenchymal transition (EMT) markers, E-cadherin and vimentin. Furthermore, the present study focused predominantly on the EMT-associated role of Eps8 in the EMT, migration and invasion of cervical cancer cells. Eps8-short hairpin (sh) RNA was transfected into HeLa and SiHa cells to deplete its expression, and reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to confirm Eps8-knockdown and to investigate the influence of Eps8 on EMT markers. The present findings have revealed that Eps8 silencing led to the upregulation of the epithelial marker E-cadherin, while expression of the mesenchymal marker vimentin and the transcription factor snail was decreased at both mRNA and protein expression levels. Transwell cell migration and Matrigel invasion assays showed that downregulation of Eps8 significantly inhibited cell migration and invasion of HeLa and SiHa cells. Taken together, these results suggested that Eps8 promotes cervical cancer metastasis by orchestrating the EMT.
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Wei Bao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Qiong Fan
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Wen-Jing Shi
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Zhu-Nan Li
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ying Xu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Dan Wu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| |
Collapse
|
132
|
Enokida H, Yoshino H, Matsushita R, Nakagawa M. The role of microRNAs in bladder cancer. Investig Clin Urol 2016; 57 Suppl 1:S60-76. [PMID: 27326409 PMCID: PMC4910767 DOI: 10.4111/icu.2016.57.s1.s60] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/17/2016] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the fifth most common cancer worldwide and is associated with significant morbidity and mortality. The prognosis of muscle invasive BC is poor, and recurrence is common after radical surgery or chemotherapy. Therefore, new diagnostic methods and treatment modalities are critical. MicroRNAs (miRNAs), a class of small noncoding RNAs, regulate the expression of protein-coding genes by repressing translation or cleaving RNA transcripts in a sequence-specific manner. miRNAs have important roles in the regulation of genes involved in cancer development, progression, and metastasis. The availability of genomewide miRNA expression profiles by deep sequencing technology has facilitated rapid and precise identification of aberrant miRNA expression in BC. Indeed, several miRNAs that are either upregulated or downregulated have been shown to have associations with significant cancer pathways. Furthermore, many miRNAs, including those that can be detected in urine and blood, have been studied as potential noninvasive tumor markers for diagnostic and prognostic purposes. Here, we searched PubMed for publications describing the role of miRNAs in BC by using the keywords "bladder cancer" and "microRNA" on March 1, 2016. We found 374 papers and selected articles written in English in which the level of scientific detail and reporting were sufficient and in which novel findings were demonstrated. In this review, we summarize these studies from the point of view of miRNA-related molecular networks (specific miRNAs and their targets) and miRNAs as tumor markers in BC. We also discuss future directions of miRNA studies in the context of therapeutic modalities.
Collapse
Affiliation(s)
- Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
133
|
Luo Y, Zhu YT, Ma LL, Pang SY, Wei LJ, Lei CY, He CW, Tan WL. Characteristics of bladder transitional cell carcinoma with E-cadherin and N-cadherin double-negative expression. Oncol Lett 2016; 12:530-536. [PMID: 27347176 PMCID: PMC4907319 DOI: 10.3892/ol.2016.4671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/13/2016] [Indexed: 01/06/2023] Open
Abstract
The aim of the present study was to examine the characteristics of bladder transitional cell carcinoma with E-cadherin and N-cadherin double-negative expression. An immunofluorescence assay was used to detect E-cadherin and N-cadherin expression in infiltrative bladder cancer tissues, and immunofluorescence and western blot analysis were used to detect E-cadherin and N-cadherin expression in human urinary bladder grade II carcinoma 5637, transitional cell carcinoma UMUC-3 and invasive bladder carcinoma EJ cells. Cell proliferation, migration, invasion and plate colony formation assays were used to detect the proliferative, migratory and invasive abilities and the efficiency of plate colony formation of 5637, UMUC3 and EJ cells. A tumor xenograft formation assay was used to evaluate the tumorigenic abilities of 5637, UMUC-3 and EJ cells in vivo. E-cadherin and N-cadherin double-negative expression was identified in various pathological grades of infiltrative bladder cancers. E-cadherin positive and N-cadherin negative expression was exhibited by 5637 cells. By contrast, E-cadherin negative and N-cadherin positive expression was exhibited by EJ cells, and E-cadherin and N-cadherin double-negative expression was exhibited by UMUC-3 cells. The ability of cells to proliferate, migrate, invade, and the efficiency of plate colony formation and tumorigenic abilities of the cells were significantly different among 5637, UMUC-3 and EJ cells. These cell characteristics were significantly increased in UMUC-3 cells compared with 5637 cells; however, the characteristics were significantly decreased compared with EJ cells. The biological characteristics of bladder cancer cells with E-cadherin and N-cadherin double-negative expression was between bladder cancer cells that exhibited a E-cadherin positive and N-cadherin negative expression, and bladder cancer cells that exhibited E-cadherin negative and N-cadherin positive expression. The present study deduces that the status of E-cadherin and N-cadherin double-negative expression may participate in the process of epithelial-mesenchymal transition in the pathogenesis of bladder urothelial carcinoma.
Collapse
Affiliation(s)
- Yang Luo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong-Tong Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li-Li Ma
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shi-Yu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li-Jie Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Cheng-Yong Lei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Cheng-Wu He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wan-Long Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
134
|
Chang I, Mitsui Y, Fukuhara S, Gill A, Wong DK, Yamamura S, Shahryari V, Tabatabai ZL, Dahiya R, Shin DM, Tanaka Y. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget 2016; 6:7774-87. [PMID: 25860934 PMCID: PMC4480715 DOI: 10.18632/oncotarget.3484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
Despite high protein expression and enzymatic activity of cytochrome P450 1B1 (CYP1B1) in renal cell cancer (RCC), its functional significance has not been elucidated. Here we explored the functional role and regulatory mechanism of CYP1B1 in RCC. Reduction of CYP1B1 levels fail to prevent in vitro tumorigenicity such as proliferation, apoptosis, and cell cycle progression of RCC cells. Moreover, the expression levels are not associated with tumor type, stage, Fuhrman grade and 5-year survival probability after surgery. Instead, alteration of CYP1B1 expression regulates the chemosensitivity of RCC cells to docetaxel suggesting its critical contribution to the chemoresistance. Additionally, miR-200c, which is significantly down-regulated in RCC regulates CYP1B1 expression and activity. An inverse association was also observed between the expression levels of miR-200c and CYP1B1 protein in RCC tissues. Finally, alteration of miR-200c levels affects the chemosensitivity of RCC cells. Restoration of docetaxel resistance by exogenous expression of CYP1B1 in miR-200c-over-expressing cells indicates that CYP1B1 is a functional target of miR-200c. These results suggest that CYP1B1 up-regulation mediated by low miR-200c is one of the mechanisms underlying resistance of RCC cells to docetaxel. Therefore, expression of CYP1B1 and miR-200c in RCC may be useful as a prediction for docetaxel response.
Collapse
Affiliation(s)
- Inik Chang
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yozo Mitsui
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| | - Shinichiro Fukuhara
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| | - Ankurpreet Gill
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Darryn K Wong
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Soichiro Yamamura
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| | - Varahram Shahryari
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Z Laura Tabatabai
- Department of Pathology, Veterans Affairs Medical Center and University of California, San Francisco, California, United States of America
| | - Rajvir Dahiya
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yuichiro Tanaka
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| |
Collapse
|
135
|
Chu CH, Chou W, Wang F, Yeh CN, Chen TC, Yeh TS. Expression profile of microRNA-200 family in cholangiocarcinoma arising from choledochal cyst. J Gastroenterol Hepatol 2016; 31:1052-9. [PMID: 26479153 DOI: 10.1111/jgh.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/17/2015] [Accepted: 10/13/2015] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The risk of cholangiocarcinoma (cCC) arising from choledochal cyst (CC-CC) is imminent, if the latter not treated appropriately in time. Epithelial-to-mesenchymal transition (EMT) is considered a critical step for various solid cancers, which is regulated by the microRNA-200 (miR-200) family. The aim of this study was to assess the role of miR-200 family in the pathogenesis of CC-CC. METHODS Sixteen patients with CC-CC were enrolled and 254 patients with conventional cCC served as clinicopathologic controls. Fifty-four cCC were selected to compare the miR-200 family expression and immunohistochemical characteristics. Gain-and loss-of-function studies of miR-200 family were conducted using the cCC cell lines. RESULTS CC-CC were younger (P < 0.01), more female- predominated (P < 0.01), and rarely associated with lithiasis (P < 0.01) compared with those of cCC. miR-200 family was down-regulated in CC-CC, while miR-200 family was paradoxically up-regulated in cCC (P < 0.01). CC-CC exhibited overt overexpression of mesenchymal markers including ZEB1, Twist, Snail, and vimentin as well an aberrant E-cadherin expression in comparison with cCC. In vitro migration assay showed that cCC cells bearing lower miR-200 s levels exhibited stronger migration ability. Invasive ability of cCC cells was increased after miR-200 s knockdown, accompanied by up-regulation of mesenchymal markers. CONCLUSIONS CC-CC was characterized by distinct demographics, precipitating factors, and down-regulation of miR-200 family, compared with those of cCC. The pathogenesis of CC-CC might partly link to the silencing of miR-200 family, acting via ZEB1-directed EMT activation.
Collapse
Affiliation(s)
- Chia-Hui Chu
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University Medical College, LinKou, Taiwan
| | - Wenchi Chou
- Department of Medical Oncology, Chang Gung Memorial Hospital, Chang Gung University Medical College, LinKou, Taiwan.,Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Frank Wang
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University Medical College, LinKou, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University Medical College, LinKou, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University Medical College, LinKou, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University Medical College, LinKou, Taiwan.,Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
136
|
Abstract
PURPOSE OF REVIEW Recently completed cancer genomics projects identified intrinsic subtypes in muscle-invasive bladder cancers. Here we will describe the studies that led to their discovery and review their biological and clinical properties. RECENT FINDINGS Whole genome mRNA expression profiling and unsupervised hierarchical cluster analyses identified intrinsic basal and luminal subtypes in muscle-invasive bladder cancers that are similar to the ones found in breast cancer. Tumors within each subtype have distinct responses to conventional cisplatin-based combination chemotherapy, and they contain gene expression signatures and DNA alterations that may render them vulnerable to clinically available targeted therapies. SUMMARY Like their breast cancer counterparts, basal bladder cancers are characterized by poor clinical outcomes in the absence of effective systemic therapy, but a large fraction of them do respond to neoadjuvant chemotherapy, suggesting that the tumors should be managed aggressively. On the contrary, tumors that belong to the 'p53-like' subtype tend to be chemoresistant, so patients with these tumors should probably be managed differently. It seems likely that prospective identification of tumor intrinsic subtype membership could complement the use of DNA-based biomarkers to identify the groups of patients who will benefit the most from chemotherapy and targeted agents.
Collapse
|
137
|
miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 2016; 94:629-44. [PMID: 27094812 DOI: 10.1007/s00109-016-1420-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 20-22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.
Collapse
|
138
|
MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl) 2016; 94:1129-1141. [DOI: 10.1007/s00109-016-1417-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 03/13/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
|
139
|
Preliminary Analysis of the Expression of Selected Proangiogenic and Antioxidant Genes and MicroRNAs in Patients with Non-Muscle-Invasive Bladder Cancer. J Clin Med 2016; 5:jcm5030029. [PMID: 26927195 PMCID: PMC4810100 DOI: 10.3390/jcm5030029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme contributing to the development and progression of different cancer types. HO-1 plays a role in pathological angiogenesis in bladder cancer and contributes to the resistance of this cancer to therapy. It also regulates the expression of microRNAs in rhabdomyosarcoma and non-small cell lung cancer. The expression of HO-1 may be regulated by hypoxia inducible factors (HIFs) and Nrf2 transcription factor. The expression of HO-1 has not so far been examined in relation to Nrf2, HIF-1α, and potential mediators of angiogenesis in human bladder cancer. We measured the concentration of proinflammatory and proangiogenic cytokines and the expression of cytoprotective and proangiogenic mRNAs and miRNAs in healthy subjects and patients with bladder cancer. HO-1 expression was upregulated together with HIF-1α, HIF-2α, and Nrf2 in bladder cancer in comparison to healthy tissue. VEGF was elevated both at mRNA and protein level in the tumor and in sera, respectively. Additionally, IL-6 and IL-8 were increased in sera of patients affected with urothelial bladder cancer. Moreover, miR-155 was downregulated whereas miR-200c was elevated in cancer biopsies in comparison to healthy tissue. The results indicate that the increased expression of HO-1 in bladder cancer is paralleled by changes in the expression of other potentially interacting genes, like Nrf2, HIF-1α, HIF-2α, IL-6, IL-8, and VEGF. Further studies are necessary to also elucidate the potential links with miR-155 and miR-200c.
Collapse
|
140
|
Cheng YX, Chen GT, Chen C, Zhang QF, Pan F, Hu M, Li BS. MicroRNA-200b inhibits epithelial-mesenchymal transition and migration of cervical cancer cells by directly targeting RhoE. Mol Med Rep 2016; 13:3139-46. [PMID: 26935796 DOI: 10.3892/mmr.2016.4933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 01/04/2016] [Indexed: 11/05/2022] Open
Abstract
Previous studies have identified microRNA-200b (miR-200b) as a powerful regulator of epithelial-mesenchymal transition (EMT) via the control of gene expression. EMT is a critical event that is associated with the initiation of malignant tumor metastasis. A lack of E-cadherin expression and overexpression of vimentin are hallmarks of EMT. It is well‑known that RhoE, which is associated with regulation of the actin cytoskeleton and migration via alterations in cell motility, regulates the expression of E-cadherin, matrix metalloproteinase-9 (MMP-9) and vimentin. However, it remains to be elucidated whether miR‑200b may alter the molecular behavior of RhoE. The present study aimed to determine whether miR‑200b was able to regulate the EMT of cervical cancer, in order to control metastasis. In addition, the correlation between miR‑200b and RhoE, E‑cadherin and vimentin expression was investigated. Notably, miR‑200b was shown to inhibit the function of RhoE and suppress the EMT of cervical cancer. Furthermore, HeLa cells were transfected with miR‑200b mimics or inhibitors, and the protein expression levels of E‑cadherin, MMP‑9, vimentin and RhoE were subsequently detected. A Transwell assay was also conducted, in order to observe the metastatic ability of the HeLa cells. In addition, a luciferase reporter assay was performed using luciferase reporter vectors containing the full length 3'‑untranslated region (UTR) of RhoE; miR‑200b was able to significantly suppress relative luciferase activity by targeting the 3'‑UTR of RhoE. These results suggested that miR‑200b may markedly inhibit metastatic potential by regulating cell EMT and inhibiting RhoE; therefore, miR-200b may be considered an effective target for the treatment of patients with highly metastatic cervical cancer.
Collapse
Affiliation(s)
- Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gan-Tao Chen
- Department of Oncology, Third People's Hospital of Xiantao, Xiantao, Hubei 433000, P.R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Fan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Pan
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
141
|
miR-8 modulates cytoskeletal regulators to influence cell survival and epithelial organization in Drosophila wings. Dev Biol 2016; 412:83-98. [PMID: 26902111 DOI: 10.1016/j.ydbio.2016.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 02/05/2023]
Abstract
The miR-200 microRNA family plays important tumor suppressive roles. The sole Drosophila miR-200 ortholog, miR-8 plays conserved roles in Wingless, Notch and Insulin signaling - pathways linked to tumorigenesis, yet homozygous null animals are viable and often appear morphologically normal. We observed that wing tissues mosaic for miR-8 levels by genetic loss or gain of function exhibited patterns of cell death consistent with a role for miR-8 in modulating cell survival in vivo. Here we show that miR-8 levels impact several actin cytoskeletal regulators that can affect cell survival and epithelial organization. We show that loss of miR-8 can confer resistance to apoptosis independent of an epithelial to mesenchymal transition while the persistence of cells expressing high levels of miR-8 in the wing epithelium leads to increased JNK signaling, aberrant expression of extracellular matrix remodeling proteins and disruption of proper wing epithelial organization. Altogether our results suggest that very low as well as very high levels of miR-8 can contribute to hallmarks associated with cancer, suggesting approaches to increase miR-200 microRNAs in cancer treatment should be moderate.
Collapse
|
142
|
The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep 2016; 6:20574. [PMID: 26837847 PMCID: PMC4738343 DOI: 10.1038/srep20574] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023] Open
Abstract
Bladder cancer causes an estimated 150,000 deaths per year worldwide. Although 15% of the recurrent bladder cancer becomes an invasive type, currently used targeted therapy for malignant bladder cancer is still not efficient. We focused on the miR-130 family (miR-130b, miR-301a, and miR-301b) that was significantly upregulated in bladder cancer specimens than that of the normal urothelial specimens. We analyzed the functional significance of miR-130 family using a 5637 bladder cancer cell line and revealed that miR-130 family of inhibitors suppressed cell migration and invasion by downregulating focal adhesion kinase (FAK) and Akt phosphorylation. Mechanistic analyses indicate that the miR-130 family directly targets phosphatase and tensin homolog deleted from chromosome 10 (PTEN), resulting in the upregulation of FAK and Akt phosphorylation. In clinical bladder cancer specimens, downregulation of PTEN was found to be closely correlated with miR-130 family expression levels. Overall, the miR-130 family has a crucial role in malignant progression of bladder cancer and thus the miR-130 family could be a promising therapeutic target for invasive bladder cancer.
Collapse
|
143
|
Ma LJ, Wu WJ, Wang YH, Wu TF, Liang PI, Chang IW, He HL, Li CF. SPOCK1 Overexpression Confers a Poor Prognosis in Urothelial Carcinoma. J Cancer 2016; 7:467-76. [PMID: 26918061 PMCID: PMC4749368 DOI: 10.7150/jca.13625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Purpose:The majority deaths of cancer patients are related to metastasis, thus genes associated with cell motility interest us. SPOCK1 was elected by data mining and serial evaluation. In addition, SPOCK1 has been reported to be highly expressed in different human cancers and been related to adverse outcomes. Therefore, we validate its prognostic significance in urothelial carcinoma (UC). Materials and Methods:Real-time RT-PCR assay was used to detect SPOCK1 transcript level in 27 urinary tract urothelial carcinoma (UTUC) and 27 urinary bladder urothelial carcinoma (UBUC) samples. Immunohistochemistry evaluated by H-score determined SPOCK1 expressions in 340 UTUCs and 295 UBUCs. The transcript and protein expression were correlated with clinicopathological features. Further evaluations of the prognostic significance of SPOCK1 for disease-specific survival (DSS) and metastasis-free survival (MeFS) were analyzed. Results:The expressions of SPOCK1 in UC were higher than those in normal urothelium by immunohistochemistry. The statistical analysis of clinicopathologic characteristics and immunohistochemistry showed that the higher expression of SPOCK1 was correlated to pT status (P<0.001), lymph node metastasis (UTUC, P=0.006; UBUC, P=0.033), higher histological grade (UTUC, P<0.001; UBUC, P<0.001), vascular invasion (UTUC, P<0.001; UBUC, P<0.001), perineurial invasion (UTUC, P<0.001; UBUC, P=0.001) and frequent mitosis (UTUC, P<0.001; UBUC, P=0.001). The prognosis of SPOCK1 of UC showed high SPOCK1 expression had significantly worse DSS and MeFS. Conclusions:The investigation demonstrated that the higher expression of SPOCK1 correlates with a poor prognosis in UC.
Collapse
Affiliation(s)
- Li-Jung Ma
- 1. Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Wen-Jen Wu
- 2. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan;; 3. Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan;; 4. Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan;; 5. Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan;; 6. Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hui Wang
- 7. Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Feng Wu
- 8. Departments of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Peir-In Liang
- 9. Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Wei Chang
- 10. Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hong-Lin He
- 10. Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- 1. Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan;; 8. Departments of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan;; 11. National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan;; 12. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan;; 13. Institute of Clinical Medicine, Kaohsiung Medical University & Department of Internal Medicine and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
144
|
Sapre N, Macintyre G, Clarkson M, Naeem H, Cmero M, Kowalczyk A, Anderson PD, Costello AJ, Corcoran NM, Hovens CM. A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance. Br J Cancer 2016; 114:454-62. [PMID: 26812572 PMCID: PMC4815774 DOI: 10.1038/bjc.2015.472] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/28/2015] [Accepted: 12/03/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The objective of this study was to determine whether microRNA (miRNA) profiling of urine could identify the presence of urothelial carcinoma of the bladder (UCB) and to compare its performance characteristics to that of cystoscopy. METHODS In the discovery cohort we screened 81 patients, which included 21 benign controls, 30 non-recurrers and 30 patients with active cancer (recurrers), using a panel of 12 miRNAs. Data analysis was performed using a machine learning approach of a Support Vector Machine classifier with a Student's t-test feature selection procedure. This was trained using a three-fold cross validation approach and performance was measured using the area under the receiver operator characteristic curve (AUC). The miRNA signature was validated in an independent cohort of a further 50 patients. RESULTS The best predictor to distinguish patients with UCB from non-recurrers was achieved using a combination of six miRNAs (AUC=0.85). This validated in an independent cohort (AUC=0.74) and detected UCB with a high sensitivity (88%) and sufficient specificity (48%) with all significant cancers identified. The performance of the classifier was best in detecting clinically significant disease such as presence of T1 Stage disease (AUC=0.92) and high-volume disease (AUC=0.81). Cystoscopy rates in the validation cohort would have been reduced by 30%. CONCLUSIONS Urinary profiling using this panel of miRNAs shows promise for detection of tumour recurrence in the surveillance of UCB. Such a panel may be useful in reducing the morbidity and costs associated with cystoscopic surveillance, and now merits prospective evaluation.
Collapse
Affiliation(s)
- Nikhil Sapre
- Department of Surgery, Division of Urology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Geoff Macintyre
- NICTA Victoria Research Laboratory, Department of Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.,Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Clarkson
- Department of Surgery, Division of Urology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Haroon Naeem
- NICTA Victoria Research Laboratory, Department of Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.,Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Marek Cmero
- NICTA Victoria Research Laboratory, Department of Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam Kowalczyk
- NICTA Victoria Research Laboratory, Department of Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.,Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D Anderson
- Department of Surgery, Division of Urology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Anthony J Costello
- Department of Surgery, Division of Urology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Niall M Corcoran
- Department of Surgery, Division of Urology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Christopher M Hovens
- Department of Surgery, Division of Urology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
145
|
The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 2016; 6:6472-98. [PMID: 25762624 PMCID: PMC4466628 DOI: 10.18632/oncotarget.3052] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a large family of small non-coding RNAs that negatively regulate protein-coding gene expression post-transcriptionally via base pairing between the 5′ seed region of a miRNA and the 3′ untranslated region (3′UTR) of a messenger RNA (mRNA). Recent evidence has supported the critical role that miRNAs play in many diseases including cancer. The miR-200 family consisting of 5 members (miR-200a, -200b, -200c, -141, -429) is an emerging miRNA family that has been shown to play crucial roles in cancer initiation and metastasis, and potentially be important for the diagnosis and treatment of cancer. While miR-200s were found to be critically involved in the metastatic colonization to the lungs in mouse mammary xenograft tumor models, a large number of studies demonstrated their strong suppressive effects on cell transformation, cancer cell proliferation, migration, invasion, tumor growth and metastasis. This review aims to discuss research findings about the role of the miR-200 family in cancer initiation, each step of cancer metastatic cascade, cancer diagnosis and treatment. A comprehensive summary of currently validated miR-200 targets is also presented. It is concluded that miR-200 family may serve as novel targets for the therapy of multiple types of cancer.
Collapse
|
146
|
The miR-491-3p/mTORC2/FOXO1 regulatory loop modulates chemo-sensitivity in human tongue cancer. Oncotarget 2016; 6:6931-43. [PMID: 25749387 PMCID: PMC4466660 DOI: 10.18632/oncotarget.3165] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/18/2015] [Indexed: 12/14/2022] Open
Abstract
We found that levels of miR-491-3p were decreased in multidrug-resistant tongue cancer (TC) cells. Induction of miR-491-3p expression sensitized TC cells to chemotherapy. In agreement, functional inhibition of miR-491-3p enhanced resistance of TC cells to chemotherapy. We found that miR-491-3p directly targeted mTORC2 component Rictor and inhibited mTORC2 activity, which was increased in resistant TC cells with high p-Akt(Ser473), p-SGK1(Ser422) and p-FOXO1(Thr24) levels. Inhibition of mTORC2 activity via either Rictor knockdown or mTOR inhibitor in turn sensitized TC cells to chemotherapy. In agreement, overexpression of Rictor increased the mTORC2 activity and induced resistance of TC cells to chemotherapy. As a feedback loop, mTORC2 downregulated miR-491-3p expression by inactivating FOXO1, which otherwise would transcriptionally induce miR-491-3p expression. Levels of miR-491-3 and Rictor or mTORC2 activity negatively correlated in TC tissues. Finally, low levels of miR-491-3p and highly expressed Rictor were associated with poor prognosis in tongue cancer patients. These data provide a rationale for targeted intervention on miR-491-3p/mTORC2 axis to enhance the efficacy of chemotherapy against tongue cancer.
Collapse
|
147
|
Jia L, Yang A. Noncoding RNAs in Therapeutic Resistance of Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:265-95. [DOI: 10.1007/978-981-10-1498-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
148
|
KIMURA IYO, KITAHARA HIROKO, OOI KAZUHIRO, KATO KOROKU, NOGUCHI NATUYO, YOSHIZAWA KUNIO, NAKAMURA HIROYUKI, KAWASHIRI SHUICHI. Loss of epidermal growth factor receptor expression in oral squamous cell carcinoma is associated with invasiveness and epithelial-mesenchymal transition. Oncol Lett 2016; 11:201-207. [PMID: 26870189 PMCID: PMC4727181 DOI: 10.3892/ol.2015.3833] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 09/17/2015] [Indexed: 02/03/2023] Open
Abstract
Inhibition of epidermal growth factor receptor (EGFR) signaling has emerged as a novel therapeutic strategy for the treatment of oral squamous cell carcinoma (OSCC). The EGFR-directed inhibitor cetuximab is currently the only approved targeted therapy for the treatment of OSCC. EGFR status may affect the patient response to cetuximab treatment. In the present study, via analysis of the immunomarker for EGFR, it was revealed that 58.3% of the total cases investigated stained positively for EGFR expression, and furthermore, that invasiveness was inversely correlated with EGFR expression. Expression levels of EGFR were quantified, and the correlation between EGFR expression and cetuximab sensitivity was investigated using three varying grades of invasive human OSCC line. EGFR expression in high-grade invasive cells was significantly downregulated compared with that of low-grade invasive cells. There was no significant antiproliferative effect in the high-grade invasive cells treated with various concentrations of cetuximab. The EMT-associated genes, N-cadherin, vimentin and Snail, were upregulated in the high-grade invasive cells. The low-grade invasive cells exhibited characteristics of typical epithelial cells, including the expression of E-cadherin and absence of the expression of N-cadherin, vimentin and Snail. Transforming growth factor-β induced low-grade invasive cells to undergo an epithelial-mesenchymal transition (EMT)-associated gene switch, which resulted in low levels of EGFR expression. The results of the present study suggested that loss of EGFR expression in OSCC was associated with EMT, and may have functional implications with regard to tumor invasiveness and the resistance to cetuximab treatment.
Collapse
Affiliation(s)
- IYO KIMURA
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - HIROKO KITAHARA
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - KAZUHIRO OOI
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - KOROKU KATO
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - NATUYO NOGUCHI
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - KUNIO YOSHIZAWA
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - HIROYUKI NAKAMURA
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - SHUICHI KAWASHIRI
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
149
|
Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives. Int J Mol Sci 2015; 17:ijms17010043. [PMID: 26729098 PMCID: PMC4730288 DOI: 10.3390/ijms17010043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/24/2015] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer (BC), the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients with metastatic BC can achieve a remission with systemic chemotherapy; however, the disease relapses in most cases. Evidence suggests that MIBC comprises a small population of cancer stem cells (CSCs), which may be resistant to these treatments and may be able to form new tumors in the bladder or other organs. Therefore, the unambiguous identification of bladder CSCs and the development of targeted therapies are urgently needed. Nevertheless, it remains unclear where bladder CSCs originate and how they are generated. We review recent studies on bladder CSCs, specifically focusing on their proposed origin and the possible therapeutic options based on the CSC theory.
Collapse
|
150
|
Song T, Zhang X, Yang G, Song Y, Cai W. Decrement of miR-199a-5p contributes to the tumorigenesis of bladder urothelial carcinoma by regulating MLK3/NF-κB pathway. Am J Transl Res 2015; 7:2786-2794. [PMID: 26885275 PMCID: PMC4731675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Aberrant miRNA expression is implicated in tumorigenesis. However, the role of miRNAs in bladder urothelial carcinoma still remains largely unknown. In this study, miR-199a-5p was validated to be significantly down-regulated in bladder urothelial carcinoma. In addition, restoring expression of miR-199a-5p inhibited the tumorigenesis of bladder urothelial carcinoma in vitro and in vivo by inducing the apoptosis and suppressing the proliferation of bladder cancerous cells. Further investigation reported that MLK3 was a direct target of miR-199a-5p. Moreover, the expression level of miR-199a-5p was conversely correlated with MLK3 in bladder cancerous cells. In addition, reintroduction of MLK3 was identified to promote the proliferation and inhibit the apoptotic rate of cells, which have been altered by miR-199a-5p through activating the NF-κB pathway. All together, decrement of miR-199a-5p contributes to the tumorigenesis of bladder cancer by directly regulating MLK3/NF-κB pathway and miR-199a-5p might be developed as a therapeutic target for treatment of the bladder urothelial carcinoma.
Collapse
Affiliation(s)
- Tao Song
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| | - Xu Zhang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| | - Guoqiang Yang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| | - Yong Song
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| | - Wei Cai
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital Beijing 100853, China
| |
Collapse
|