101
|
Wan L, Ai JQ, Yang C, Jiang J, Zhang QL, Luo ZH, Huang RJ, Tu T, Pan A, Tu E, Manavis J, Xiao B, Yan XX. Expression of the Excitatory Postsynaptic Scaffolding Protein, Shank3, in Human Brain: Effect of Age and Alzheimer's Disease. Front Aging Neurosci 2021; 13:717263. [PMID: 34504419 PMCID: PMC8421777 DOI: 10.3389/fnagi.2021.717263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Shank3 is a postsynaptic scaffolding protein of excitatory synapses. Mutations or variations of SHANK3 are associated with various psychiatric and neurological disorders. We set to determine its normal expression pattern in the human brain, and its change, if any, with age and Alzheimer’s disease (AD)-type β-amyloid (Aβ) and Tau pathogenesis. In general, Shank3 immunoreactivity (IR) exhibited largely a neuropil pattern with differential laminar/regional distribution across brain regions. In youth and adults, subsets of pyramidal/multipolar neurons in the cerebrum, striatum, and thalamus showed moderate IR, while some large-sized neurons in the brainstem and the granule cells in the cerebellar cortex exhibited light IR. In double immunofluorescence, Shank3 IR occurred at the sublemmal regions in neuronal somata and large dendrites, apposing to synaptophysin-labeled presynaptic terminals. In aged cases, immunolabeled neuronal somata were reduced, with disrupted neuropil labeling seen in the molecular layer of the dentate gyrus in AD cases. In immunoblot, levels of Shank3 protein were positively correlated with that of the postsynaptic density protein 95 (PSD95) among different brain regions. Levels of Shank3, PSD95, and synaptophysin immunoblotted in the prefrontal, precentral, and cerebellar cortical lysates were reduced in the aged and AD relative to youth and adult groups. Taken together, the differential Shank3 expression among brain structures/regions indicates the varied local density of the excitatory synapses. The enriched Shank3 expression in the forebrain subregions appears inconsistent with a role of this protein in the modulation of high cognitive functions. The decline of its expression in aged and AD brains may relate to the degeneration of excitatory synapses.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
102
|
Heinrichs B, Liu B, Zhang J, Meents JE, Le K, Erickson A, Hautvast P, Zhu X, Li N, Liu Y, Spehr M, Habel U, Rothermel M, Namer B, Zhang X, Lampert A, Duan G. The Potential Effect of Na v 1.8 in Autism Spectrum Disorder: Evidence From a Congenital Case With Compound Heterozygous SCN10A Mutations. Front Mol Neurosci 2021; 14:709228. [PMID: 34385907 PMCID: PMC8354588 DOI: 10.3389/fnmol.2021.709228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Apart from the most prominent symptoms in Autism spectrum disorder (ASD), namely deficits in social interaction, communication and repetitive behavior, patients often show abnormal sensory reactivity to environmental stimuli. Especially potentially painful stimuli are reported to be experienced in a different way compared to healthy persons. In our present study, we identified an ASD patient carrying compound heterozygous mutations in the voltage-gated sodium channel (VGSC) Na v 1.8, which is preferentially expressed in sensory neurons. We expressed both mutations, p.I1511M and p.R512∗, in a heterologous expression system and investigated their biophysical properties using patch-clamp recordings. The results of these experiments reveal that the p.R512∗ mutation renders the channel non-functional, while the p.I1511M mutation showed only minor effects on the channel's function. Behavioral experiments in a Na v 1.8 loss-of-function mouse model additionally revealed that Na v 1.8 may play a role in autism-like symptomatology. Our results present Na v 1.8 as a protein potentially involved in ASD pathophysiology and may therefore offer new insights into the genetic basis of this disease.
Collapse
Affiliation(s)
- Björn Heinrichs
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jannis E. Meents
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Kim Le
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Hautvast
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Xiwen Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure-Function Relationships: Decoding the Human Brain at Systemic Levels, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation, Hanover, Germany
| | - Barbara Namer
- Research Group Neurosciences of the Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
103
|
Burdeus-Olavarrieta M, San José-Cáceres A, García-Alcón A, González-Peñas J, Hernández-Jusdado P, Parellada-Redondo M. Characterisation of the clinical phenotype in Phelan-McDermid syndrome. J Neurodev Disord 2021; 13:26. [PMID: 34246244 PMCID: PMC8272382 DOI: 10.1186/s11689-021-09370-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare genetic disorder compromising the 22q13 terminal region and affecting SHANK3, a gene crucial to the neurobehavioural phenotype and strongly linked to autism (ASD) and intellectual disability (ID). The condition is characterised by global developmental delay, ID, speech impairments, hypotonia and autistic behaviours, although its presentation and symptom severity vary widely. In this study, we provide a thorough description of the behavioural profile in PMS and explore differences related to deletion size and language ability. METHODS We used standard clinical assessment instruments to measure altered behaviour, adaptive skills and autistic symptomatology in sixty participants with PMS (30 females, median age 8.5 years, SD=7.1). We recorded background information and other clinical manifestations and explored associations with deletion size. We performed descriptive and inferential analyses for group comparison. RESULTS We found delayed gross and fine motor development, delayed and impaired language (~70% of participants non or minimally verbal), ID of different degrees and adaptive functioning ranging from severe to borderline impairment. Approximately 40% of participants experienced developmental regression, and half of those regained skills. Autistic symptoms were frequent and variable in severity, with a median ADOS-2 CSS score of 6 for every domain. Sensory processing anomalies, hyperactivity, attentional problems and medical comorbidities were commonplace. The degree of language and motor development appeared to be associated with deletion size. CONCLUSIONS This study adds to previous research on the clinical descriptions of PMS and supports results suggesting wide variability of symptom severity and its association with deletion size. It makes the case for suitable psychotherapeutic and pharmacological approaches, for longitudinal studies to strengthen our understanding of possible clinical courses and for more precise genomic analysis.
Collapse
Affiliation(s)
- Mónica Burdeus-Olavarrieta
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain. .,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,School of Psychology, Universidad Autónoma, Madrid, Spain.
| | - Antonia San José-Cáceres
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain.,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alicia García-Alcón
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain.,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain.,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBERSAM, Centro de Investigación Biomédica en Red Salud Mental, Madrid, Spain
| | - Patricia Hernández-Jusdado
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain
| | - Mara Parellada-Redondo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza 43, 28009, Madrid, Spain.,IiSGM, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
104
|
Srikanth S, Jain L, Zepeda-Mendoza C, Cascio L, Jones K, Pauly R, DuPont B, Rogers C, Sarasua S, Phelan K, Morton C, Boccuto L. Position effects of 22q13 rearrangements on candidate genes in Phelan-McDermid syndrome. PLoS One 2021; 16:e0253859. [PMID: 34228749 PMCID: PMC8259982 DOI: 10.1371/journal.pone.0253859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) is a multi-system disorder characterized by significant variability in clinical presentation. The genetic etiology is also variable with differing sizes of deletions in the chromosome 22q13 region and types of genetic abnormalities (e.g., terminal or interstitial deletions, translocations, ring chromosomes, or SHANK3 variants). Position effects have been shown to affect gene expression and function and play a role in the clinical presentation of various genetic conditions. This study employed a topologically associating domain (TAD) analysis approach to investigate position effects of chromosomal rearrangements on selected candidate genes mapped to 22q13 in 81 individuals with PMS. Data collected were correlated with clinical information from these individuals and with expression and metabolic profiles of lymphoblastoid cells from selected cases. The data confirmed TAD predictions for genes encompassed in the deletions and the clinical and molecular data indicated clear differences among individuals with different 22q13 deletion sizes. The results of the study indicate a positive correlation between deletion size and phenotype severity in PMS and provide evidence of the contribution of other genes to the clinical variability in this developmental disorder by reduced gene expression and altered metabolomics.
Collapse
Affiliation(s)
- Sujata Srikanth
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Lavanya Jain
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, United States of America
| | - Cinthya Zepeda-Mendoza
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Lauren Cascio
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Kelly Jones
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Rini Pauly
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Barb DuPont
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Curtis Rogers
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Sara Sarasua
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, United States of America
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, United States of America
| | - Cynthia Morton
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Human Communication, Development and Hearing, School of Biological Sciences, Manchester Academic Health Science Center, Manchester, United Kingdom
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, United States of America
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
105
|
Lutz AK, Pfaender S, Incearap B, Ioannidis V, Ottonelli I, Föhr KJ, Cammerer J, Zoller M, Higelin J, Giona F, Stetter M, Stoecker N, Alami NO, Schön M, Orth M, Liebau S, Barbi G, Grabrucker AM, Delorme R, Fauler M, Mayer B, Jesse S, Roselli F, Ludolph AC, Bourgeron T, Verpelli C, Demestre M, Boeckers TM. Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles. Sci Transl Med 2021; 12:12/547/eaaz3267. [PMID: 32522805 DOI: 10.1126/scitranslmed.aaz3267] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.
Collapse
Affiliation(s)
- Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Stefanie Pfaender
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Berra Incearap
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Ilaria Ottonelli
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Karl J Föhr
- Department of Anesthesiology, Ulm University Hospital, 89081 Ulm, Germany
| | - Judith Cammerer
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Marvin Zoller
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Julia Higelin
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Federica Giona
- CNR Neuroscience Institute, University of Milan, 20129 Milan, Italy.,BIOMETRA University of Milan, 20129 Milan, Italy
| | - Maximilian Stetter
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Nicole Stoecker
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | | | - Stefan Liebau
- Institute of Neuroanatomy and Developmental Biology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Gotthold Barbi
- Institute for Human Genetics, Ulm University Hospital, 89081 Ulm, Germany
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland.,Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, V94T9PX Limerick, Ireland
| | - Richard Delorme
- Child and Adolescent Psychiatry Department, APHP, Robert-Debré Hospital, 750197 Paris, France
| | - Michael Fauler
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany
| | | | | | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Université Paris Diderot, Institut Pasteur, 75015 Paris, France
| | - Chiara Verpelli
- CNR Neuroscience Institute, University of Milan, 20129 Milan, Italy.,BIOMETRA University of Milan, 20129 Milan, Italy
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany. .,DZNE, Ulm Site, 89081 Ulm, Germany
| |
Collapse
|
106
|
May HJ, Jeong J, Revah-Politi A, Cohen JS, Chassevent A, Baptista J, Baugh EH, Bier L, Bottani A, Carminho A Rodrigues MT, Conlon C, Fluss J, Guipponi M, Kim CA, Matsumoto N, Person R, Primiano M, Rankin J, Shinawi M, Smith-Hicks C, Telegrafi A, Toy S, Uchiyama Y, Aggarwal V, Goldstein DB, Roche KW, Anyane-Yeboa K. Truncating variants in the SHANK1 gene are associated with a spectrum of neurodevelopmental disorders. Genet Med 2021; 23:1912-1921. [PMID: 34113010 DOI: 10.1038/s41436-021-01222-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In this study, we aimed to characterize the clinical phenotype of a SHANK1-related disorder and define the functional consequences of SHANK1 truncating variants. METHODS Exome sequencing (ES) was performed for six individuals who presented with neurodevelopmental disorders. Individuals were ascertained with the use of GeneMatcher and Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER). We evaluated potential nonsense-mediated decay (NMD) of two variants by making knock-in cell lines of endogenous truncated SHANK1, and expressed the truncated SHANK1 complementary DNA (cDNA) in HEK293 cells and cultured hippocampal neurons to examine the proteins. RESULTS ES detected de novo truncating variants in SHANK1 in six individuals. Evaluation of NMD resulted in stable transcripts, and the truncated SHANK1 completely lost binding with Homer1, a linker protein that binds to the C-terminus of SHANK1. These variants may disrupt protein-protein networks in dendritic spines. Dispersed localization of the truncated SHANK1 variants within the spine and dendritic shaft was also observed when expressed in neurons, indicating impaired synaptic localization of truncated SHANK1. CONCLUSION This report expands the clinical spectrum of individuals with truncating SHANK1 variants and describes the impact these variants may have on the pathophysiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Halie J May
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Jaehoon Jeong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chassevent
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.,Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Armand Bottani
- Division of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Charles Conlon
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Joel Fluss
- Pediatric Neurology Unit, Pediatrics Subspecialties Service, Geneva Children's Hospital, Geneva, Switzerland
| | - Michel Guipponi
- Division of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Chong Ae Kim
- Genetics Unit, Instituto da Crianca, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Richard Person
- Clinical Genomics Program, GeneDx, Gaithersburg, MD, USA
| | - Michelle Primiano
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Constance Smith-Hicks
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aida Telegrafi
- Clinical Genomics Program, GeneDx, Gaithersburg, MD, USA
| | - Samantha Toy
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Rare Disease Genomics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Katherine W Roche
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kwame Anyane-Yeboa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA. .,Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
107
|
Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation. Mol Psychiatry 2021; 26:1945-1966. [PMID: 32161363 PMCID: PMC7483244 DOI: 10.1038/s41380-020-0708-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 01/11/2023]
Abstract
The SHANK3 gene encodes a postsynaptic scaffold protein in excitatory synapses, and its disruption is implicated in neurodevelopmental disorders such as Phelan-McDermid syndrome, autism spectrum disorder, and schizophrenia. Most studies of SHANK3 in the neocortex and hippocampus have focused on disturbances in pyramidal neurons. However, GABAergic interneurons likewise receive excitatory inputs and presumably would also be a target of constitutive SHANK3 perturbations. In this study, we characterize the prefrontal cortical microcircuit in awake mice using subcellular-resolution two-photon microscopy. We focused on a nonsense R1117X mutation, which leads to truncated SHANK3 and has been linked previously to cortical dysfunction. We find that R1117X mutants have abnormally elevated calcium transients in apical dendritic spines. The synaptic calcium dysregulation is due to a loss of dendritic inhibition via decreased NMDAR currents and reduced firing of dendrite-targeting somatostatin-expressing (SST) GABAergic interneurons. Notably, upregulation of the NMDAR subunit GluN2B in SST interneurons corrects the excessive synaptic calcium signals and ameliorates learning deficits in R1117X mutants. These findings reveal dendrite-targeting interneurons, and more broadly the inhibitory control of dendritic spines, as a key microcircuit mechanism compromised by the SHANK3 dysfunction.
Collapse
|
108
|
Feng S, Huang H, Wang N, Wei Y, Liu Y, Qin D. Sleep Disorders in Children With Autism Spectrum Disorder: Insights From Animal Models, Especially Non-human Primate Model. Front Behav Neurosci 2021; 15:673372. [PMID: 34093147 PMCID: PMC8173056 DOI: 10.3389/fnbeh.2021.673372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with deficient social skills, communication deficits and repetitive behaviors. The prevalence of ASD has increased among children in recent years. Children with ASD experience more sleep problems, and sleep appears to be essential for the survival and integrity of most living organisms, especially for typical synaptic development and brain plasticity. Many methods have been used to assess sleep problems over past decades such as sleep diaries and parent-reported questionnaires, electroencephalography, actigraphy and videosomnography. A substantial number of rodent and non-human primate models of ASD have been generated. Many of these animal models exhibited sleep disorders at an early age. The aim of this review is to examine and discuss sleep disorders in children with ASD. Toward this aim, we evaluated the prevalence, clinical characteristics, phenotypic analyses, and pathophysiological brain mechanisms of ASD. We highlight the current state of animal models for ASD and explore their implications and prospects for investigating sleep disorders associated with ASD.
Collapse
Affiliation(s)
- Shufei Feng
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
| | - Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
| | - Dongdong Qin
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
109
|
Ricciardello A, Tomaiuolo P, Persico AM. Genotype-phenotype correlation in Phelan-McDermid syndrome: A comprehensive review of chromosome 22q13 deleted genes. Am J Med Genet A 2021; 185:2211-2233. [PMID: 33949759 PMCID: PMC8251815 DOI: 10.1002/ajmg.a.62222] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 12/19/2022]
Abstract
Phelan‐McDermid syndrome (PMS, OMIM #606232), also known as chromosome 22q13 deletion syndrome, is a rare genetic disorder characterized by intellectual disability, hypotonia, delayed or absent speech, motor impairment, autism spectrum disorder, behavioral anomalies, and minor aspecific dysmorphic features. Haploinsufficiency of SHANK3, due to intragenic deletions or point mutations, is sufficient to cause many neurobehavioral features of PMS. However, several additional genes located within larger 22q13 deletions can contribute to the great interindividual variability observed in the PMS phenotype. This review summarizes the phenotypic contributions predicted for 213 genes distributed along the largest 22q13.2‐q13.33 terminal deletion detected in our sample of 63 PMS patients by array‐CGH analysis, spanning 9.08 Mb. Genes have been grouped into four categories: (1) genes causing human diseases with an autosomal dominant mechanism, or (2) with an autosomal recessive mechanism; (3) morphogenetically relevant genes, either involved in human diseases with additive co‐dominant, polygenic, and/or multifactorial mechanisms, or implicated in animal models but not yet documented in human pathology; (4) protein coding genes either functionally nonrelevant, with unknown function, or pathogenic through mechanisms other than haploinsufficiency; piRNAs, noncoding RNAs, miRNAs, novel transcripts and pseudogenes. Our aim is to understand genotype–phenotype correlations in PMS patients and to provide clinicians with a conceptual framework to promote evidence‐based genetic work‐ups, clinical assessments, and therapeutic interventions.
Collapse
Affiliation(s)
- Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Pasquale Tomaiuolo
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
110
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
111
|
Schroeder KA, Witts BN, Traub MR. Opportunities for ABA intervention in Phelan-McDermid syndrome. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2021; 68:984-989. [PMID: 36816984 PMCID: PMC9936992 DOI: 10.1080/20473869.2021.1895698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/18/2023]
Abstract
Phelan-McDermid syndrome (PMS), also called 22q13.3 deletion syndrome, is a rare genetic disorder affecting at least 2,000 people worldwide (Phelan-McDermid Syndrome Foundation, 2019, How rare is Phelan-McDermid?). PMS has many distinguishing characteristics and many medical specialties have been recommended to treat the clinical features. While many therapies, including behavioral therapy, have been speculated to be beneficial in treating PMS, there is little known regarding their effectiveness [Costales, J. L. and Kolevzon, A. 2015. Phelan-McDermid syndrome and SHANK3: Implications for treatment. Neurotherapeutics: The Journal of the American Society for Experimental Neurotherapeutics, 12, 620-630.]. Behavior analysis has the capability to help in many areas of treatment for PMS either directly through, for example, behavior treatment to address aggressive behavior, or through collaborating with other specialties treating PMS by combining, for example, behavioral principles in the alleviation of medical issues such as constipation. Currently, there is a role for the behavior analyst to expand our field and identify effective treatments for those with PMS while we wait for a cure. In this paper, we discuss how medical considerations may affect behavior interventions and make recommendations for the behavior analyst working with PMS.
Collapse
Affiliation(s)
- Kate A. Schroeder
- Community Psychology, Counseling, and Family, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Benjamin N. Witts
- Community Psychology, Counseling, and Family, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Michele R. Traub
- Community Psychology, Counseling, and Family, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
112
|
Xie RJ, Li TX, Sun C, Cheng C, Zhao J, Xu H, Liu Y. A case report of Phelan-McDermid syndrome: preliminary results of the treatment with growth hormone therapy. Ital J Pediatr 2021; 47:49. [PMID: 33663540 PMCID: PMC7934562 DOI: 10.1186/s13052-021-01003-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS), also known as 22q13.3 deletion syndrome, is a rare neurodevelopmental syndrome resulting from a deletion of the distal long arm of chromosome 22. CASE PRESENTATION We report a case of a 21 months old Chinese girl presenting with global developmental delay, regression of language skills, unable to understand a few words or walk independently, insomnia, and autism-like behaviors. Copy number variation (CNV) analysis showed a heterozygous loss of SHANK3 gene in the 22q13 region, consistent with a diagnosis of PMS. After treatment with recombinant human growth hormone (rhGH), this patient had an improvement in motor skills and social behaviors. No side effects from rhGH therapy were reported. CONCLUSIONS This is the first report of using rhGH to treat a Chinese girl diagnosed with PMS. We speculate rhGH could be a reasonable alternative choice for PMS treatment with similar clinical outcomes in comparison to insulin-like growth factor-1(IGF-1). However, further clinical trials are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Rui Jin Xie
- Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi, 214122, People's Republic of China
| | - Tian Xiao Li
- Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi, 214122, People's Republic of China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Ce Cheng
- The University of Arizona College of Medicine at South Campus, 2800 E. Ajo Way, Tucson, AZ, 85718, USA
| | - Jinlin Zhao
- Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi, 214122, People's Republic of China
| | - Hua Xu
- Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi, 214122, People's Republic of China
| | - Yueying Liu
- Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Avenue, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
113
|
Alamilla J, Ramiro-Cortés Y, Mejía-López A, Chavez JL, Rivera DO, Felipe V, Aguilar-Roblero R. Altered Light Sensitivity of Circadian Clock in Shank3 +/- Mouse. Front Neurosci 2021; 15:604165. [PMID: 33679297 PMCID: PMC7930753 DOI: 10.3389/fnins.2021.604165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in communication and social interaction, repetitive or stereotypical behaviors, altered sensory perception, and sleep disorders. In general, the causes of ASD remain unknown, but in Phelan-McDermid syndrome, it is known that the disorder is related to the haploinsufficiency of the Shank3 gene. We used an autism model with compromised glutamatergic signaling, the Shank3+/- mouse, to study the circadian rhythm architecture of locomotion behavior and its entrainment to light. We also analyzed the synapse between the retinohypothalamic tract (RHT) and the suprachiasmatic nucleus (SCN), employing tract tracing and immunohistochemical techniques. We found that Shank3+/- mice were not impaired in the SCN circadian clock, as indicated by a lack of differences between groups in the circadian architecture in entrained animals to either long or short photoperiods. Circadian rhythm periodicity (tau) was unaltered between genotypes in constant darkness (DD, dim red light). Similar results were obtained in the re-entrainment to shifts in the light-dark cycle and in the entrainment to a skeleton photoperiod from DD. However, Shank3+/- mice showed larger phase responses to light pulses, both delays and advances, and rhythm disorganization induced by constant bright light. Immunohistochemical analyses indicated no differences in the RHT projection to the SCN or the number of SCN neurons expressing the N-methyl-D-aspartate (NMDA) receptor subunit NR2A, whereas the Shank3+/- animals showed decreased c-Fos induction by brief light pulses at CT14, but increased number of vasoactive intestinal polypeptide (VIP)-positive neurons. These results indicate alterations in light sensitivity in Shank3+/- mice. Further studies are necessary to understand the mechanisms involved in such increased light sensitivity, probably involving VIP neurons.
Collapse
Affiliation(s)
- Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, Consejo Nacional de Ciencia y Tecnología (CONACYT)-Universidad de Colima, Colima, Mexico
| | - Yazmín Ramiro-Cortés
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Adriana Mejía-López
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - José-Luis Chavez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Dulce Olivia Rivera
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Víctor Felipe
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Raúl Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
114
|
Wan L, Liu D, Xiao WB, Zhang BX, Yan XX, Luo ZH, Xiao B. Association of SHANK Family with Neuropsychiatric Disorders: An Update on Genetic and Animal Model Discoveries. Cell Mol Neurobiol 2021; 42:1623-1643. [PMID: 33595806 DOI: 10.1007/s10571-021-01054-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
The Shank family proteins are enriched at the postsynaptic density (PSD) of excitatory glutamatergic synapses. They serve as synaptic scaffolding proteins and appear to play a critical role in the formation, maintenance and functioning of synapse. Increasing evidence from genetic association and animal model studies indicates a connection of SHANK genes defects with the development of neuropsychiatric disorders. In this review, we first update the current understanding of the SHANK family genes and their encoded protein products. We then denote the literature relating their alterations to the risk of neuropsychiatric diseases. We further review evidence from animal models that provided molecular insights into the biological as well as pathogenic roles of Shank proteins in synapses, and the potential relationship to the development of abnormal neurobehavioral phenotypes.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Du Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Taikang Tongji Hospital, Wuhan, 430050, Hubei, China
| | - Wen-Biao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo-Xin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, Hunan, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
115
|
Neklyudova AK, Portnova GV, Rebreikina AB, Voinova VY, Vorsanova SG, Iourov IY, Sysoeva OV. 40-Hz Auditory Steady-State Response (ASSR) as a Biomarker of Genetic Defects in the SHANK3 Gene: A Case Report of 15-Year-Old Girl with a Rare Partial SHANK3 Duplication. Int J Mol Sci 2021; 22:ijms22041898. [PMID: 33673024 PMCID: PMC7917917 DOI: 10.3390/ijms22041898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
SHANK3 encodes a scaffold protein involved in postsynaptic receptor density in glutamatergic synapses, including those in the parvalbumin (PV)+ inhibitory neurons—the key players in the generation of sensory gamma oscillations, such as 40-Hz auditory steady-state response (ASSR). However, 40-Hz ASSR was not studied in relation to SHANK3 functioning. Here, we present a 15-year-old girl (SH01) with previously unreported duplication of the first seven exons of the SHANK3 gene (22q13.33). SH01’s electroencephalogram (EEG) during 40-Hz click trains of 500 ms duration binaurally presented with inter-trial intervals of 500–800 ms were compared with those from typically developing children (n = 32). SH01 was diagnosed with mild mental retardation and learning disabilities (F70.88), dysgraphia, dyslexia, and smaller vocabulary than typically developing (TD) peers. Her clinical phenotype resembled the phenotype of previously described patients with 22q13.33 microduplications (≈30 reported so far). SH01 had mild autistic symptoms but below the threshold for ASD diagnosis and microcephaly. No seizures or MRI abnormalities were reported. While SH01 had relatively preserved auditory event-related potential (ERP) with slightly attenuated P1, her 40-Hz ASSR was totally absent significantly deviating from TD’s ASSR. The absence of 40-Hz ASSR in patients with microduplication, which affected the SHANK3 gene, indicates deficient temporal resolution of the auditory system, which might underlie language problems and represent a neurophysiological biomarker of SHANK3 abnormalities.
Collapse
Affiliation(s)
- Anastasia K. Neklyudova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Galina V. Portnova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Anna B. Rebreikina
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Victoria Yu Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Svetlana G. Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Ivan Y. Iourov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Olga V. Sysoeva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
- Correspondence:
| |
Collapse
|
116
|
Schenkel LC, Aref-Eshghi E, Rooney K, Kerkhof J, Levy MA, McConkey H, Rogers RC, Phelan K, Sarasua SM, Jain L, Pauly R, Boccuto L, DuPont B, Cappuccio G, Brunetti-Pierri N, Schwartz CE, Sadikovic B. DNA methylation epi-signature is associated with two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome. Clin Epigenetics 2021; 13:2. [PMID: 33407854 PMCID: PMC7789817 DOI: 10.1186/s13148-020-00990-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Phelan-McDermid syndrome is characterized by a range of neurodevelopmental phenotypes with incomplete penetrance and variable expressivity. It is caused by a variable size and breakpoint microdeletions in the distal long arm of chromosome 22, referred to as 22q13.3 deletion syndrome, including the SHANK3 gene. Genetic defects in a growing number of neurodevelopmental genes have been shown to cause genome-wide disruptions in epigenomic profiles referred to as epi-signatures in affected individuals. Results In this study we assessed genome-wide DNA methylation profiles in a cohort of 22 individuals with Phelan-McDermid syndrome, including 11 individuals with large (2 to 5.8 Mb) 22q13.3 deletions, 10 with small deletions (< 1 Mb) or intragenic variants in SHANK3 and one mosaic case. We describe a novel genome-wide DNA methylation epi-signature in a subset of individuals with Phelan-McDermid syndrome. Conclusion We identified the critical region including the BRD1 gene as responsible for the Phelan-McDermid syndrome epi-signature. Metabolomic profiles of individuals with the DNA methylation epi-signature showed significantly different metabolomic profiles indicating evidence of two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome.
Collapse
Affiliation(s)
- L C Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A3K7, Canada
| | - E Aref-Eshghi
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - K Rooney
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - J Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - M A Levy
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - H McConkey
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - R C Rogers
- Greenville Office, Greenwood Genetic Center, Greenville, SC, 29605, USA
| | - K Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, 33816, USA
| | | | - L Jain
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.,Clemson University, Clemson, SC, 29634, USA
| | - R Pauly
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - L Boccuto
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.,Clemson University, Clemson, SC, 29634, USA
| | - B DuPont
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - G Cappuccio
- Department of Translational Medicine, University Federico II, 80131, Naples, NA, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, NA, Italy
| | - N Brunetti-Pierri
- Department of Translational Medicine, University Federico II, 80131, Naples, NA, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, NA, Italy
| | - C E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
| | - B Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada. .,Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A3K7, Canada.
| |
Collapse
|
117
|
Folkes OM, Báldi R, Kondev V, Marcus DJ, Hartley ND, Turner BD, Ayers JK, Baechle JJ, Misra MP, Altemus M, Grueter CA, Grueter BA, Patel S. An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability. J Clin Invest 2020; 130:1728-1742. [PMID: 31874107 DOI: 10.1172/jci131752] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Deficits in social interaction (SI) are a core symptom of autism spectrum disorders (ASDs); however, treatments for social deficits are notably lacking. Elucidating brain circuits and neuromodulatory signaling systems that regulate sociability could facilitate a deeper understanding of ASD pathophysiology and reveal novel treatments for ASDs. Here we found that in vivo optogenetic activation of the basolateral amygdala-nucleus accumbens (BLA-NAc) glutamatergic circuit reduced SI and increased social avoidance in mice. Furthermore, we found that 2-arachidonoylglycerol (2-AG) endocannabinoid signaling reduced BLA-NAc glutamatergic activity and that pharmacological 2-AG augmentation via administration of JZL184, a monoacylglycerol lipase inhibitor, blocked SI deficits associated with in vivo BLA-NAc stimulation. Additionally, optogenetic inhibition of the BLA-NAc circuit markedly increased SI in the Shank3B-/- mouse, an ASD model with substantial SI impairment, without affecting SI in WT mice. Finally, we demonstrated that JZL184 delivered systemically or directly to the NAc also normalized SI deficits in Shank3B-/- mice, while ex vivo JZL184 application corrected aberrant NAc excitatory and inhibitory neurotransmission and reduced BLA-NAc-elicited feed-forward inhibition of NAc neurons in Shank3B-/- mice. These data reveal circuit-level and neuromodulatory mechanisms regulating social function relevant to ASDs and suggest 2-AG augmentation could reduce social deficits via modulation of excitatory and inhibitory neurotransmission in the NAc.
Collapse
Affiliation(s)
- Oakleigh M Folkes
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pharmacology and
| | - Rita Báldi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Veronika Kondev
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David J Marcus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nolan D Hartley
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Brandon D Turner
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jade K Ayers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jordan J Baechle
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya P Misra
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Megan Altemus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carrie A Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pharmacology and.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
118
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
119
|
Brignell A, Gu C, Holm A, Carrigg B, Sheppard DA, Amor DJ, Morgan AT. Speech and language phenotype in Phelan-McDermid (22q13.3) syndrome. Eur J Hum Genet 2020; 29:564-574. [PMID: 33293697 DOI: 10.1038/s41431-020-00761-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
Communication difficulties are a core feature of Phelan-McDermid syndrome (PMS). However, a specific speech and language phenotype has not been delineated, preventing prognostic counselling and development of targeted therapies. We examined speech, language, social and functional communication abilities in 21 individuals with PMS (with SHANK3 involvement), using standardised assessments. Mean age was 9.7 years (SD 4.1) and 57% were female. Deletion size ranged from 41 kb to 8.3 Mb. Nine participants (45%) were non-verbal. Four (19%) had greater verbal ability, speaking in at least 4-5 word sentences, but with speech sound errors. Standard scores for receptive and expressive language were low (typically >3 SD below the mean). Language age equivalency was 13-16 months on average (range 2-53 months). There was a significant association between deletion size and the ability to use phrases. Participants with smaller deletion sizes were more likely to be able to use phrases (odds ratio: 0.36, 95% CI: 0.14-0.95, p = 0.040). Adaptive behaviour (life skills) was low in all areas (>2 SD below mean). Scores in communication were markedly lower than for daily living (p = 0.008) and socialisation (p < 0.001). A common linguistic profile was characterised by severe impairment across receptive, expressive and social language domains. Yet data indicated greater communicative intent than appeared to be capitalised by current therapies. Early implementation of augmentative (e.g. computer-assisted) modes of communication, alongside promotion of oral language, is essential to harness this intent, accelerate language development and reduce frustration. Future trials should examine the added benefit of targeted speech motor interventions in those with greater verbal capacity.
Collapse
Affiliation(s)
- Amanda Brignell
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Conway Gu
- University of Melbourne, Melbourne, Australia
| | | | | | - Daisy A Sheppard
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Angela T Morgan
- Murdoch Children's Research Institute, Melbourne, Australia. .,University of Melbourne, Melbourne, Australia.
| |
Collapse
|
120
|
Fóthi Á, Soorya L, Lőrincz A. The Autism Palette: Combinations of Impairments Explain the Heterogeneity in ASD. Front Psychiatry 2020; 11:503462. [PMID: 33343403 PMCID: PMC7738611 DOI: 10.3389/fpsyt.2020.503462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric condition traditionally defined by core symptoms in social behavior, speech/communication, repetitive behavior, and restricted interests. Beyond the core symptoms, autism has strong association with other disorders such as intellectual disability (ID), epilepsy, schizophrenia among many others. This paper outlines a theory of ASD with capacity to connect heterogeneous "core" symptoms, medical and psychiatric comorbidities as well as other etiological theories of autism in a unifying cognitive framework rooted in neuroscience and genetics. Cognition is embedded into an ever-developing structure modified by experiences, including the outcomes of environment influencing behaviors. The key constraint of cognition is that the brain can handle only 7±2 relevant variables at a time, whereas sensory variables, i.e., the number of sensory neurons is orders of magnitude larger. As a result, (a) the extraction, (b) the encoding, and (c) the capability for the efficient cognitive manipulation of the relevant variables, and (d) the compensatory mechanisms that counteract computational delays of the distributed components are critical. We outline our theoretical model to describe a Cartesian Factor (CF) forming, autoencoder-like cognitive mechanism which breaks combinatorial explosion and is accelerated by internal reinforcing machineries and discuss the neural processes that support CF formation. Impairments in any of these aspects may disrupt learning, cognitive manipulation, decisions on interactions, and execution of decisions. We suggest that social interactions are the most susceptible to combinations of diverse small impairments and can be spoiled in many ways that pile up. Comorbidity is experienced, if any of the many potential impairments is relatively strong. We consider component spoiling impairments as the basic colors of autism, whereas the combinations of individual impairments make the palette of autism. We put forth arguments on the possibility of dissociating the different main elements of the impairments that can appear together. For example, impairments of generalization (domain general learning) and impairments of dealing with many variable problems, such as social situations may appear independently and may mutually enhance their impacts. We also consider mechanisms that may lead to protection.
Collapse
Affiliation(s)
- Ábel Fóthi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
| | - Latha Soorya
- Department of Psychiatry and Behavioral Sciences, Rush Medical College, Chicago, IL, United States
| | - András Lőrincz
- Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
121
|
Wong KHY, Ma W, Wei CY, Yeh EC, Lin WJ, Wang EHF, Su JP, Hsieh FJ, Kao HJ, Chen HH, Chow SK, Young E, Chu C, Poon A, Yang CF, Lin DS, Hu YF, Wu JY, Lee NC, Hwu WL, Boffelli D, Martin D, Xiao M, Kwok PY. Towards a reference genome that captures global genetic diversity. Nat Commun 2020; 11:5482. [PMID: 33127893 PMCID: PMC7599213 DOI: 10.1038/s41467-020-19311-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 02/05/2023] Open
Abstract
The current human reference genome is predominantly derived from a single individual and it does not adequately reflect human genetic diversity. Here, we analyze 338 high-quality human assemblies of genetically divergent human populations to identify missing sequences in the human reference genome with breakpoint resolution. We identify 127,727 recurrent non-reference unique insertions spanning 18,048,877 bp, some of which disrupt exons and known regulatory elements. To improve genome annotations, we linearly integrate these sequences into the chromosomal assemblies and construct a Human Diversity Reference. Leveraging this reference, an average of 402,573 previously unmapped reads can be recovered for a given genome sequenced to ~40X coverage. Transcriptomic diversity among these non-reference sequences can also be directly assessed. We successfully map tens of thousands of previously discarded RNA-Seq reads to this reference and identify transcription evidence in 4781 gene loci, underlining the importance of these non-reference sequences in functional genomics. Our extensive datasets are important advances toward a comprehensive reference representation of global human genetic diversity. The human reference genome does not fully reflect human genetic diversity. Here, the authors analyse 338 human genome assemblies from diverse populations to identify missing sequences, define non-reference unique insertions and construct a Human Diversity Reference.
Collapse
Affiliation(s)
- Karen H Y Wong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Walfred Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Chun-Yu Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Erh-Chan Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wan-Jia Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Elin H F Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Ping Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Jen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Jung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Huei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Stephen K Chow
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Eleanor Young
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Catherine Chu
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Annie Poon
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Chi-Fan Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yu-Feng Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ni-Chung Lee
- Departments of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Departments of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - David Martin
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, 19104, USA.,Institute of Molecular Medicine and Infectious Disease in the School of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA. .,Department of Dermatology, University of California, San Francisco, San Francisco, CA, 94115, USA.
| |
Collapse
|
122
|
Li S, Xi KW, Liu T, Zhang Y, Zhang M, Zeng LD, Li J. Fraternal twins with Phelan-McDermid syndrome not involving the SHANK3 gene: case report and literature review. BMC Med Genomics 2020; 13:146. [PMID: 33023580 PMCID: PMC7539423 DOI: 10.1186/s12920-020-00802-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/23/2020] [Indexed: 12/01/2022] Open
Abstract
Background Phelan-McDermid syndrome (PMS, OMIM#606232), or 22q13 deletion syndrome, is a rare genetic disorder caused by deletion of the distal long arm of chromosome 22 with a variety of clinical features that display considerably heterogeneous degrees of severity. The SHANK3 gene is understood to be the critical gene for the neurological features of this syndrome. Case presentation We describe one pair of boy-girl twins with a 22q13 deletion not involving the SHANK3 gene. Interestingly, the clinical and molecular findings of the two patients were identical, likely resulting from germline mosaicism in a parent. The boy-girl twins showed intellectual disability, speech absence, facial dysmorphism, cyanosis, large fleshy hands and feet, dysplastic fingernails and abnormal behaviors, and third-generation sequencing showed an identical de novo interstitial deletion of 6.0 Mb in the 22q13.31-q13.33 region. Conclusions Our case suggests that prenatal diagnosis is essential for normal parents with affected children due to the theoretical possibility of parental germline mosaicism. Our results also indicated that other genes located in the 22q13 region may have a role in explaining symptoms in individuals with PMS. In particular, we propose that four candidate genes, CELSR1, ATXN10, FBLN1 and WNT7B, may also be involved in the etiology of the clinical features of PMS. However, more studies of smaller interstitial deletions with 22q13 are needed to corroborate our hypothesis and better define the genotype-phenotype correlation. Our findings contribute to a more comprehensive understanding of PMS.
Collapse
Affiliation(s)
- Shan Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ke-Wang Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ting Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ying Zhang
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou, China
| | - Meng Zhang
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Li-Dong Zeng
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
123
|
An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function. Mol Psychiatry 2020; 25:2534-2555. [PMID: 30610205 PMCID: PMC6609509 DOI: 10.1038/s41380-018-0324-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Genome sequencing has revealed an increasing number of genetic variations that are associated with neuropsychiatric disorders. Frequently, studies limit their focus to likely gene-disrupting mutations because they are relatively easy to interpret. Missense variants, instead, have often been undervalued. However, some missense variants can be informative for developing a more profound understanding of disease pathogenesis and ultimately targeted therapies. Here we present an example of this by studying a missense variant in a well-known autism spectrum disorder (ASD) causing gene SHANK3. We analyzed Shank3's in vivo phosphorylation profile and identified S685 as one phosphorylation site where one ASD-linked variant has been reported. Detailed analysis of this variant revealed a novel function of Shank3 in recruiting Abelson interactor 1 (ABI1) and the WAVE complex to the post-synaptic density (PSD), which is critical for synapse and dendritic spine development. This function was found to be independent of Shank3's other functions such as binding to GKAP and Homer. Introduction of this human ASD mutation into mice resulted in a small subset of phenotypes seen previously in constitutive Shank3 knockout mice, including increased allogrooming, increased social dominance, and reduced pup USV. Together, these findings demonstrate the modularity of Shank3 function in vivo. This modularity further indicates that there is more than one independent pathogenic pathway downstream of Shank3 and correcting a single downstream pathway is unlikely to be sufficient for clear clinical improvement. In addition, this study illustrates the value of deep biological analysis of select missense mutations in elucidating the pathogenesis of neuropsychiatric phenotypes.
Collapse
|
124
|
Wilkinson B, Coba MP. Molecular architecture of postsynaptic Interactomes. Cell Signal 2020; 76:109782. [PMID: 32941943 DOI: 10.1016/j.cellsig.2020.109782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/02/2023]
Abstract
The postsynaptic density (PSD) plays an essential role in the organization of the synaptic signaling machinery. It contains a set of core scaffolding proteins that provide the backbone to PSD protein-protein interaction networks (PINs). These core scaffolding proteins can be seen as three principal layers classified by protein family, with DLG proteins being at the top, SHANKs along the bottom, and DLGAPs connecting the two layers. Early studies utilizing yeast two hybrid enabled the identification of direct protein-protein interactions (PPIs) within the multiple layers of scaffolding proteins. More recently, mass-spectrometry has allowed the characterization of whole interactomes within the PSD. This expansion of knowledge has further solidified the centrality of core scaffolding family members within synaptic PINs and provided context for their role in neuronal development and synaptic function. Here, we discuss the scaffolding machinery of the PSD, their essential functions in the organization of synaptic PINs, along with their relationship to neuronal processes found to be impaired in complex brain disorders.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
125
|
Nees SN, Chung WK. Genetic Basis of Human Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036749. [PMID: 31818857 DOI: 10.1101/cshperspect.a036749] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital heart disease (CHD) is the most common major congenital anomaly with an incidence of ∼1% of live births and is a significant cause of birth defect-related mortality. The genetic mechanisms underlying the development of CHD are complex and remain incompletely understood. Known genetic causes include all classes of genetic variation including chromosomal aneuploidies, copy number variants, and rare and common single-nucleotide variants, which can be either de novo or inherited. Among patients with CHD, ∼8%-12% have a chromosomal abnormality or aneuploidy, between 3% and 25% have a copy number variation, and 3%-5% have a single-gene defect in an established CHD gene with higher likelihood of identifying a genetic cause in patients with nonisolated CHD. These genetic variants disrupt or alter genes that play an important role in normal cardiac development and in some cases have pleiotropic effects on other organs. This work reviews some of the most common genetic causes of CHD as well as what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
| | - Wendy K Chung
- Department of Pediatrics.,Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
126
|
Gürkan H, Atli Eİ, Atli E, Bozatli L, Altay MA, Yalçintepe S, Özen Y, Eker D, Akurut Ç, Demır S, Görker I. Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders. Noro Psikiyatr Ars 2020; 57:177-191. [PMID: 32952419 PMCID: PMC7481981 DOI: 10.29399/npa.24890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Aneuploids, copy number variations (CNVs), and single nucleotide variants in specific genes are the main genetic causes of developmental delay (DD) and intellectual disability disorder (IDD). These genetic changes can be detected using chromosome analysis, chromosomal microarray (CMA), and next-generation DNA sequencing techniques. Therefore; In this study, we aimed to investigate the importance of CMA in determining the genomic etiology of unexplained DD and IDD in 123 patients. METHOD For 123 patients, chromosome analysis, DNA fragment analysis and microarray were performed. Conventional G-band karyotype analysis from peripheral blood was performed as part of the initial screening tests. FMR1 gene CGG repeat number and methylation analysis were carried out to exclude fragile X syndrome. RESULTS CMA analysis was performed in 123 unexplained IDD/DD patients with normal karyotypes and fragile X screening, which were evaluated by conventional cytogenetics. Forty-four CNVs were detected in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients were reported. In 6 patients, one or more pathogenic CNVs were determined. Therefore, the diagnostic efficiency of CMA was found to be 31.7% (39/123). CONCLUSION Today, genetic analysis is still not part of the routine in the evaluation of IDD patients who present to psychiatry clinics. A genetic diagnosis from CMA can eliminate genetic question marks and thus alter the clinical management of patients. Approximately one-third of the positive CMA findings are clinically intervenable. However, the emergence of CNVs as important risk factors for multiple disorders increases the need for individuals with comorbid neurodevelopmental conditions to be the priority where the CMA test is recommended.
Collapse
Affiliation(s)
- Hakan Gürkan
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Emine İkbal Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Engin Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Leyla Bozatli
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey
| | - Mengühan Araz Altay
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey
| | - Sinem Yalçintepe
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Yasemin Özen
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Damla Eker
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Çisem Akurut
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Selma Demır
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Işık Görker
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey
| |
Collapse
|
127
|
SULT4A1 Modulates Synaptic Development and Function by Promoting the Formation of PSD-95/NMDAR Complex. J Neurosci 2020; 40:7013-7026. [PMID: 32801157 DOI: 10.1523/jneurosci.2194-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
Sulfotransferase 4A1 (SULT4A1) is a cytosolic sulfotransferase that is highly conserved across species and extensively expressed in the brain. However, the biological function of SULT4A1 is unclear. SULT4A1 has been implicated in several neuropsychiatric disorders, such as Phelan-McDermid syndrome and schizophrenia. Here, we investigate the role of SULT4A1 within neuron development and function. Our data demonstrate that SULT4A1 modulates neuronal branching complexity and dendritic spines formation. Moreover, we show that SULT4A1, by negatively regulating the catalytic activity of Pin1 toward PSD-95, facilitates NMDAR synaptic expression and function. Finally, we demonstrate that the pharmacological inhibition of Pin1 reverses the pathologic phenotypes of neurons knocked down by SULT4A1 by specifically restoring dendritic spine density and rescuing NMDAR-mediated synaptic transmission. Together, these findings identify SULT4A1 as a novel player in neuron development and function by modulating dendritic morphology and synaptic activity.SIGNIFICANCE STATEMENT Sulfotransferase 4A1 (SULT4A1) is a brain-specific sulfotransferase highly expressed in neurons. Different evidence has suggested that SULT4A1 has an important role in neuronal function and that SULT4A1 altered expression might represent a contributing factor in multiple neurodevelopmental disorders. However, the function of SULT4A1 in the mammalian brain is still unclear. Here, we demonstrate that SULT4A1 is highly expressed at postsynaptic sites where it sequesters Pin1, preventing its negative action on synaptic transmission. This study reveals a novel role of SULT4A1 in the modulation of NMDA receptor activity and strongly contributes to explaining the neuronal dysfunction observed in patients carrying deletions of SULTA41 gene.
Collapse
|
128
|
Amal H, Barak B, Bhat V, Gong G, Joughin BA, Wang X, Wishnok JS, Feng G, Tannenbaum SR. Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Mol Psychiatry 2020; 25:1835-1848. [PMID: 29988084 PMCID: PMC6614015 DOI: 10.1038/s41380-018-0113-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022]
Abstract
Mutation in the SHANK3 human gene leads to different neuropsychiatric diseases including Autism Spectrum Disorder (ASD), intellectual disabilities and Phelan-McDermid syndrome. Shank3 disruption in mice leads to dysfunction of synaptic transmission, behavior, and development. Protein S-nitrosylation, the nitric oxide (NO•)-mediated posttranslational modification (PTM) of cysteine thiols (SNO), modulates the activity of proteins that regulate key signaling pathways. We tested the hypothesis that Shank3 mutation would generate downstream effects on PTM of critical proteins that lead to modification of synaptic functions. SNO-proteins in two ASD-related brain regions, cortex and striatum of young and adult InsG3680(+/+) mice (a human mutation-based Shank3 mouse model), were identified by an innovative mass spectrometric method, SNOTRAP. We found changes of the SNO-proteome in the mutant compared to WT in both ages. Pathway analysis showed enrichment of processes affected in ASD. SNO-Calcineurin in mutant led to a significant increase of phosphorylated Synapsin1 and CREB, which affect synaptic vesicle mobilization and gene transcription, respectively. A significant increase of 3-nitrotyrosine was found in the cortical regions of the adult mutant, signaling both oxidative and nitrosative stress. Neuronal NO• Synthase (nNOS) was examined for levels and localization in neurons and no significant difference was found in WT vs. mutant. S-nitrosoglutathione concentrations were higher in mutant mice compared to WT. This is the first study on NO•-related molecular changes and SNO-signaling in the brain of an ASD mouse model that allows the characterization and identification of key proteins, cellular pathways, and neurobiological mechanisms that might be affected in ASD.
Collapse
Affiliation(s)
- Haitham Amal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Boaz Barak
- McGovern Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | | | - Guanyu Gong
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A. Joughin
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA,Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xin Wang
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - John S. Wishnok
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA,Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
| |
Collapse
|
129
|
Anaesthesia and orphan disease: Phelan-McDermid syndrome. Eur J Anaesthesiol 2020; 37:730-731. [PMID: 32692085 DOI: 10.1097/eja.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
130
|
Ito S, Yokoyama U, Nakakoji T, Cooley MA, Sasaki T, Hatano S, Kato Y, Saito J, Nicho N, Iwasaki S, Umemura M, Fujita T, Masuda M, Asou T, Ishikawa Y. Fibulin-1 Integrates Subendothelial Extracellular Matrices and Contributes to Anatomical Closure of the Ductus Arteriosus. Arterioscler Thromb Vasc Biol 2020; 40:2212-2226. [PMID: 32640908 PMCID: PMC7447190 DOI: 10.1161/atvbaha.120.314729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The ductus arteriosus (DA) is a fetal artery connecting the aorta and pulmonary arteries. Progressive matrix remodeling, that is, intimal thickening (IT), occurs in the subendothelial region of DA to bring anatomic DA closure. IT is comprised of multiple ECMs (extracellular matrices) and migrated smooth muscle cells (SMCs). Because glycoprotein fibulin-1 binds to multiple ECMs and regulates morphogenesis during development, we investigated the role of fibulin-1 in DA closure. Approach and Results: Fibulin-1-deficient (Fbln1-/-) mice exhibited patent DA with hypoplastic IT. An unbiased transcriptome analysis revealed that EP4 (prostaglandin E receptor 4) stimulation markedly increased fibulin-1 in DA-SMCs via phospholipase C-NFκB (nuclear factor κB) signaling pathways. Fluorescence-activated cell sorting (FACS) analysis demonstrated that fibulin-1 binding protein versican was derived from DA-endothelial cells (ECs). We examined the effect of fibulin-1 on directional migration toward ECs in association with versican by using cocultured DA-SMCs and ECs. EP4 stimulation promoted directional DA-SMC migration toward ECs, which was attenuated by either silencing fibulin-1 or versican. Immunofluorescence demonstrated that fibulin-1 and versican V0/V1 were coexpressed at the IT of wild-type DA, whereas 30% of versican-deleted mice lacking a hyaluronan binding site displayed patent DA. Fibulin-1 expression was attenuated in the EP4-deficient mouse (Ptger4-/-) DA, which exhibits patent DA with hypoplastic IT, and fibulin-1 protein administration restored IT formation. In human DA, fibulin-1 and versican were abundantly expressed in SMCs and ECs, respectively. CONCLUSIONS Fibulin-1 contributes to DA closure by forming an environment favoring directional SMC migration toward the subendothelial region, at least, in part, in combination with EC-derived versican and its binding partner hyaluronan.
Collapse
Affiliation(s)
- Satoko Ito
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan.,Department of Physiology, Tokyo Medical University, Japan (S.I., U.Y., Y.K., J.S.)
| | - Utako Yokoyama
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan.,Department of Physiology, Tokyo Medical University, Japan (S.I., U.Y., Y.K., J.S.)
| | - Taichi Nakakoji
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, GA (M.A.C.)
| | - Takako Sasaki
- Department of Biochemistry II, Oita University, Japan (T.S.)
| | - Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Japan (S.H.)
| | - Yuko Kato
- Department of Physiology, Tokyo Medical University, Japan (S.I., U.Y., Y.K., J.S.)
| | - Junichi Saito
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan.,Department of Physiology, Tokyo Medical University, Japan (S.I., U.Y., Y.K., J.S.)
| | - Naoki Nicho
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| | - Shiho Iwasaki
- Department of Pediatrics (S.I.), Yokohama City University, Japan
| | - Masanari Umemura
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| | - Takayuki Fujita
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| | - Munetaka Masuda
- Department of Surgery (M.M.), Yokohama City University, Japan
| | - Toshihide Asou
- Department of Cardiovascular Surgery, Kanagawa Children's Medical Center, Yokohama, Japan (T.A.)
| | - Yoshihiro Ishikawa
- From the Cardiovascular Research Institute (S.I., U.Y., T.N., J.S., N.N., M.U., T.F., Y.I.), Yokohama City University, Japan
| |
Collapse
|
131
|
Feng C, Zhao J, Ji F, Su L, Chen Y, Jiao J. TCF20 dysfunction leads to cortical neurogenesis defects and autistic-like behaviors in mice. EMBO Rep 2020; 21:e49239. [PMID: 32510763 DOI: 10.15252/embr.201949239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, de novo mutations of transcription factor 20 (TCF20) were found in patients with autism by large-scale exome sequencing. However, how TCF20 modulates brain development and whether its dysfunction causes ASD remain unclear. Here, we show that TCF20 deficits impair neurogenesis in mouse. TCF20 deletion significantly reduces the number of neurons, which leads to abnormal brain functions. Furthermore, transcriptome analysis and ChIP-qPCR reveal that the DNA demethylation factor TDG is a downstream target gene of TCF20. As a nonspecific DNA demethylation factor, TDG potentially affects many genes. Combined TDG ChIP-seq and GO analysis of TCF20 RNA-Seq identifies T-cell factor 4 (TCF-4) as a common target. TDG controls the DNA methylation level in the promoter area of TCF-4, affecting TCF-4 expression and modulating neural differentiation. Overexpression of TDG or TCF-4 rescues the deficient neurogenesis of TCF20 knockdown brains. Together, our data reveal that TCF20 is essential for neurogenesis and we suggest that defects in neurogenesis caused by TCF20 loss are associated with ASD.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish College at University of Chinese Academy of Sciences, Beijing, China
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
132
|
Li X, Shi G, Li Y, Zhang X, Xiang Y, Wang T, Li Y, Chen H, Fu Q, Zhang H, Wang B. 15q11.2 deletion is enriched in patients with total anomalous pulmonary venous connection. J Med Genet 2020; 58:jmedgenet-2019-106608. [PMID: 32376791 DOI: 10.1136/jmedgenet-2019-106608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION CNV is a vital pathogenic factor of congenital heart disease (CHD). However, few CNVs have been reported for total anomalous pulmonary venous connection (TAPVC), which is a rare form of CHD. Using case-control study, we identified 15q11.2 deletion associated with TAPVC. We then used a TAPVC trio as model to reveal possible molecular basis of 15q11.2 microdeletion. METHODS CNVplex and Chromosomal Microarray were used to identify and validate CNVs in samples from 231 TAPVC cases and 200 healthy controls from Shanghai Children's Medical Center. In vitro cardiomyocyte differentiation of induced pluripotent stem cells from peripheral blood mononuclear cells for a TAPVC trio with paternal inherited 15q11.2 deletion was performed to characterise the effect of the deletion on cardiomyocyte differentiation and gene expression. RESULTS The 15q11.2 microdeletion was significantly enriched in patients with TAPVC compared with healthy control (13/231 in patients vs 0/200 in controls, p=5.872×10-2, Bonferroni adjusted) using Fisher's exact test. Induced pluripotent stem cells from the proband could not differentiate into normal cardiomyocyte. Transcriptomic analysis identified a number of differentially expressed genes in the 15q11.2 deletion carriers of the family. TAPVC disease-causing genes such as PITX2, NKX2-5 and ANKRD1 showed significantly higher expression in the proband compared with her healthy mother. Knockdown of TUBGCP5 could lead to abnormal cardiomyocyte differentiation. CONCLUSION We discovered that the 15q11.2 deletion is significantly associated with TAPVC. Gene expression profile that might arise from 15q11.2 deletion for a TAPVC family was characterised using cell experiments.
Collapse
Affiliation(s)
- Xiaoliang Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Xiang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Teng Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanxin Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Department of Obestetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
133
|
Bassell J, Srivastava S, Prohl AK, Scherrer B, Kapur K, Filip-Dhima R, Berry-Kravis E, Soorya L, Thurm A, Powell CM, Bernstein JA, Buxbaum JD, Kolevzon A, Warfield SK, Sahin M. Diffusion Tensor Imaging Abnormalities in the Uncinate Fasciculus and Inferior Longitudinal Fasciculus in Phelan-McDermid Syndrome. Pediatr Neurol 2020; 106:24-31. [PMID: 32107139 PMCID: PMC7190002 DOI: 10.1016/j.pediatrneurol.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND This cohort study utilized diffusion tensor imaging tractography to compare the uncinate fasciculus and inferior longitudinal fasciculus in children with Phelan-McDermid syndrome with age-matched controls and investigated trends between autism spectrum diagnosis and the integrity of the uncinate fasciculus and inferior longitudinal fasciculus white matter tracts. METHODS This research was conducted under a longitudinal study that aims to map the genotype, phenotype, and natural history of Phelan-McDermid syndrome and identify biomarkers using neuroimaging (ClinicalTrial NCT02461420). Patients were aged three to 21 years and underwent longitudinal neuropsychologic assessment over 24 months. MRI processing and analyses were completed using previously validated image analysis software distributed as the Computational Radiology Kit (http://crl.med.harvard.edu/). Whole-brain connectivity was generated for each subject using a stochastic streamline tractography algorithm, and automatically defined regions of interest were used to map the uncinate fasciculus and inferior longitudinal fasciculus. RESULTS There were 10 participants (50% male; mean age 11.17 years) with Phelan-McDermid syndrome (n = 8 with autism). Age-matched controls, enrolled in a separate longitudinal study (NIH R01 NS079788), underwent the same neuroimaging protocol. There was a statistically significant decrease in the uncinate fasciculus fractional anisotropy measure and a statistically significant increase in uncinate fasciculus mean diffusivity measure, in the patient group versus controls in both right and left tracts (P ≤ 0.024). CONCLUSION Because the uncinate fasciculus plays a critical role in social and emotional interaction, this tract may underlie some deficits seen in the Phelan-McDermid syndrome population. These findings need to be replicated in a larger cohort.
Collapse
Affiliation(s)
- Julia Bassell
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna K. Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rajna Filip-Dhima
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois,Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, Illinois
| | - Audrey Thurm
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama,Civitan International Research Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Jonathan A. Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, New York,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York,Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, New York,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Simon K. Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | | |
Collapse
|
134
|
Orefice LL. Peripheral Somatosensory Neuron Dysfunction: Emerging Roles in Autism Spectrum Disorders. Neuroscience 2020; 445:120-129. [PMID: 32035119 DOI: 10.1016/j.neuroscience.2020.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/26/2022]
Abstract
Alterations in somatosensory (touch and pain) behaviors are highly prevalent among people with autism spectrum disorders (ASDs). However, the neural mechanisms underlying abnormal touch and pain-related behaviors in ASDs and how altered somatosensory reactivity might contribute to ASD pathogenesis has not been well studied. Here, we provide a brief review of somatosensory alterations observed in people with ASDs and recent evidence from animal models that implicates peripheral neurons as a locus of dysfunction for somatosensory abnormalities in ASDs. Lastly, we describe current efforts to understand how altered peripheral sensory neuron dysfunction may impact brain development and complex behaviors in ASD models, and whether targeting peripheral somatosensory neurons to improve their function might also improve related ASD phenotypes.
Collapse
Affiliation(s)
- Lauren L Orefice
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
135
|
Fernández M, Sierra-Arregui T, Peñagarikano O. The Cerebellum and Autism: More than Motor Control. Behav Neurosci 2019. [DOI: 10.5772/intechopen.85897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
136
|
High-resolution chromosomal microarray analysis for copy-number variations in high-functioning autism reveals large aberration typical for intellectual disability. J Neural Transm (Vienna) 2019; 127:81-94. [PMID: 31838600 DOI: 10.1007/s00702-019-02114-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Copy-number variants (CNVs), in particular rare, small and large ones (< 1% frequency) and those encompassing brain-related genes, have been shown to be associated with neurodevelopmental disorders like autism spectrum disorders (ASDs), attention deficit hyperactivity disorder (ADHD), and intellectual disability (ID). However, the vast majority of CNV findings lack specificity with respect to autistic or developmental-delay phenotypes. Therefore, the aim of the study was to investigate the size and frequency of CNVs in high-functioning ASD (HFA) without ID compared with a random population sample and with published findings in ASD and ID. To investigate the role of CNVs for the "core symptoms" of high-functioning autism, we included in the present exploratory study only patients with HFA without ID. The aim was to test whether HFA have similar large rare (> 1 Mb) CNVs as reported in ASD and ID. We performed high-resolution chromosomal microarray analysis in 108 children and adolescents with HFA without ID. There was no significant difference in the overall number of rare CNVs compared to 124 random population samples. However, patients with HFA carried significantly more frequently CNVs containing brain-related genes. Surprisingly, six HFA patients carried very large CNVs known to be typically present in ID. Our findings provide new evidence that not only small, but also large CNVs affecting several key genes contribute to the genetic etiology/risk of HFA without affecting their intellectual ability.
Collapse
|
137
|
Jesse S, Müller HP, Schoen M, Asoglu H, Bockmann J, Huppertz HJ, Rasche V, Ludolph AC, Boeckers TM, Kassubek J. Severe white matter damage in SHANK3 deficiency: a human and translational study. Ann Clin Transl Neurol 2019; 7:46-58. [PMID: 31788990 PMCID: PMC6952316 DOI: 10.1002/acn3.50959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Heterozygous SHANK3 mutations or partial deletions of the long arm of chromosome 22, also known as Phelan–McDermid syndrome, result in a syndromic form of the autism spectrum as well as in global developmental delay, intellectual disability, and several neuropsychiatric comorbidities. The exact pathophysiological mechanisms underlying the disease are still far from being deciphered but studies of SHANK3 models have contributed to the understanding of how the loss of the synaptic protein SHANK3 affects neuronal function. Methods and results Diffusion tensor imaging‐based and automatic volumetric brain mapping were performed in 12 SHANK3‐deficient participants (mean age 19 ± 15 years) versus 14 age‐ and gender‐matched controls (mean age 29 ± 5 years). Using whole brain–based spatial statistics, we observed a highly significant pattern of white matter alterations in participants with SHANK3 mutations with focus on the long association fiber tracts, particularly the uncinate tract and the inferior fronto‐occipital fasciculus. In contrast, only subtle gray matter volumetric abnormalities were detectable. In a back‐translational approach, we observed similar white matter alterations in heterozygous isoform–specific Shank3 knockout (KO) mice. Here, in the baseline data sets, the comparison of Shank3 heterozygous KO vs wildtype showed significant fractional anisotropy reduction of the long fiber tract systems in the KO model. The multiparametric Magnetic Resonance Imaging (MRI) analysis by DTI and volumetry demonstrated a pathology pattern with severe white matter alterations and only subtle gray matter changes in the animal model. Interpretation In summary, these translational data provide strong evidence that the SHANK3‐deficiency–associated pathomechanism presents predominantly with a white matter disease. Further studies should concentrate on the role of SHANK3 during early axonal pathfinding/wiring and in myelin formation.
Collapse
Affiliation(s)
- Sarah Jesse
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Michael Schoen
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Harun Asoglu
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Volker Rasche
- Core Facility Small Animal MRI, Ulm University, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany.,DZNE Site, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,DZNE Site, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
138
|
Inan C, Sayin NC, Gurkan H, Atli E, Gursoy Erzincan S, Uzun I, Sutcu H, Dogan S, Ikbal Atli E, Varol F. Schizencephaly accompanied by occipital encephalocele and deletion of chromosome 22q13.32: a case report. Fetal Pediatr Pathol 2019; 38:496-502. [PMID: 31130048 DOI: 10.1080/15513815.2019.1604921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Schizencephaly is a neuronal migration anomaly characterized by presence of a cleft between ependymal layer of the ventricle and pia mater of the cerebral cortex. It may be associated with additional cerebral abnormalities, including polymicrogyria, pachygyria, gray matter heterotopy, ventriculomegaly and corpus callosum agenesis. Case Report: We present a female fetus with schizencephaly accompanied by occipital encephalocele, polymicrogyria, agenesis of the corpus callosum, dysmorphic facies and cardiac muscular ventricular septal defect. Array comparative genomic hybridization (array-cGH) analysis revealed a deletion of chromosome 22q13.32 including FAM19A5 gene that is a member of TAFA family. Conclusions: Schizencephaly may be accompanied by unexpected structural and genetic anomalies as in our case with occipital encephalocele, dysmorphic facies, cardiac ventricular septal defect and chromosome 22q13.32 deletion.
Collapse
Affiliation(s)
- Cihan Inan
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - N Cenk Sayin
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selen Gursoy Erzincan
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Isil Uzun
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Havva Sutcu
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sumeyra Dogan
- Department of Radiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Fusun Varol
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
139
|
Droogmans G, Swillen A, Van Buggenhout G. Deep Phenotyping of Development, Communication and Behaviour in Phelan-McDermid Syndrome. Mol Syndromol 2019; 10:294-305. [PMID: 32021603 DOI: 10.1159/000503840] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Phelan-McDermid syndrome (PMS; also referred to as 22q13.3 deletion syndrome) is a congenital condition due to a microdeletion in the SHANK3 gene. Cognitive and communicative deficits as well as behaviour in the autism spectrum are often noticed in affected individuals. The aim of the present study was to obtain a detailed phenotype of the development, communication, and behaviour of 15 individuals with PMS by using both quantitative (questionnaires) and qualitative methods (interviews and observations). In addition, data from the patients' medical records were included. In a subgroup of participants (n = 5), data from a previous study were incorporated to enable a comparison over 2 points in time (longitudinal course). Results indicate a severe to profound level of intellectual disability in all participants, impaired adaptive behaviour, a low level of speech and language, a high incidence of features of autism spectrum disorder (ASD), and a high sensory threshold. Younger individuals (age <18 years) exhibited more challenging behaviour and features of ASD. In older individuals with PMS, a regression across many developmental and adaptive domains was frequently reported and observed. We did not find a relation between the deletion size and the severity of the phenotype. Implications of the findings and recommendations for clinical practice and future research are discussed.
Collapse
Affiliation(s)
- Gilles Droogmans
- Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ann Swillen
- Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium.,Centre for Human Genetics, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - Griet Van Buggenhout
- Department of Human Genetics, University of Leuven (KU Leuven), Leuven, Belgium.,Centre for Human Genetics, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| |
Collapse
|
140
|
Yoo T, Cho H, Park H, Lee J, Kim E. Shank3 Exons 14-16 Deletion in Glutamatergic Neurons Leads to Social and Repetitive Behavioral Deficits Associated With Increased Cortical Layer 2/3 Neuronal Excitability. Front Cell Neurosci 2019; 13:458. [PMID: 31649512 PMCID: PMC6795689 DOI: 10.3389/fncel.2019.00458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022] Open
Abstract
Shank3, an abundant excitatory postsynaptic scaffolding protein, has been associated with multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). However, how cell type-specific Shank3 deletion affects disease-related neuronal and brain functions remains largely unclear. Here, we investigated the impacts of Shank3 deletion in glutamatergic neurons on synaptic and behavioral phenotypes in mice and compared results with those previously obtained from mice with global Shank3 mutation and GABAergic neuron-specific Shank3 mutation. Neuronal excitability was abnormally increased in layer 2/3 pyramidal neurons in the medial prefrontal cortex (mPFC) in mice with a glutamatergic Shank3 deletion, similar to results obtained in mice with a global Shank3 deletion. In addition, excitatory synaptic transmission was abnormally increased in layer 2/3 neurons in mice with a global, but not a glutamatergic, Shank3 deletion, suggesting that Shank3 in glutamatergic neurons are important for the increased neuronal excitability, but not for the increased excitatory synaptic transmission. Neither excitatory nor inhibitory synaptic transmission was altered in the dorsal striatum of Shank3-deficient glutamatergic neurons, a finding that contrasts with the decreased excitatory synaptic transmission in global and Shank3-deficient GABAergic neurons. Behaviorally, glutamatergic Shank3-deficient mice displayed abnormally increased direct social interaction and repetitive self-grooming, similar to global and GABAergic Shank3-deficient mice. These results suggest that glutamatergic and GABAergic Shank3 deletions lead to distinct synaptic and neuronal changes in cortical layer 2/3 and dorsal striatal neurons, but cause similar social and repetitive behavioral abnormalities likely through distinct mechanisms.
Collapse
Affiliation(s)
- Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heejin Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
141
|
Verhoeven WMA, Egger JIM, de Leeuw N. A longitudinal perspective on the pharmacotherapy of 24 adult patients with Phelan McDermid syndrome. Eur J Med Genet 2019; 63:103751. [PMID: 31465867 DOI: 10.1016/j.ejmg.2019.103751] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/12/2019] [Accepted: 08/24/2019] [Indexed: 02/03/2023]
Abstract
Over the past years, 24 patients with Phelan-McDermid syndrome were carefully investigated with respect to history, somatic and neurologic antecedents, treatment history, behavioural issues, and psychiatric symptoms including possible catatonic features and regression phenomena. Patients were originally referred for specialized diagnosis and treatment advice because of recurrent challenging behaviours along with instable mood. In all, standardized neuropsychiatric examination was performed including assessment of intellectual and adaptive functioning as well as communication and behaviour concerns. Psychiatric diagnoses were actualized in interdisciplinary consultation meetings according to ICD-10 guidelines. The course of disease was periodically monitored with respect to treatment efficacy and psychopathology over a period varying from one to five years. In 18 patients, a deletion encompassing part of or the entire SHANK3 gene was found. All comprised two or more genes in addition to SHANK3. In six patients, a pathogenic variant in this gene was detected. The psychopathological profile of all patients (nine were published before) was characterized by symptoms from the autism and schizoaffective spectrum while in five, periodic catatonic symptoms were also established. In their third decade, four patients with the deletion subtype developed a regression-like gradual decline of functioning. Based on actual psychiatric classification, in 18 patients, a diagnosis of atypical bipolar disorder was established of which symptoms typically started from late adolescence onward. In most patients, treatment with mood stabilizing agents in combination with individually designed contextual measures, and if indicated with the addition of an atypical antipsychotic, resulted in gradual stabilization of mood and behaviour.
Collapse
Affiliation(s)
- Willem M A Verhoeven
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands; Erasmus University Medical Centre, Department of Psychiatry, Rotterdam, the Netherlands; Centre for Consultation and Expertise, Utrecht, the Netherlands.
| | - Jos I M Egger
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Stevig Specialized and Forensic Care for people with Intellectual Disabilities, Oostrum, the Netherlands
| | - Nicole de Leeuw
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
142
|
Orefice LL, Mosko JR, Morency DT, Wells MF, Tasnim A, Mozeika SM, Ye M, Chirila AM, Emanuel AJ, Rankin G, Fame RM, Lehtinen MK, Feng G, Ginty DD. Targeting Peripheral Somatosensory Neurons to Improve Tactile-Related Phenotypes in ASD Models. Cell 2019; 178:867-886.e24. [PMID: 31398341 PMCID: PMC6704376 DOI: 10.1016/j.cell.2019.07.024] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/23/2022]
Abstract
Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.
Collapse
Affiliation(s)
- Lauren L Orefice
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jacqueline R Mosko
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Danielle T Morency
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael F Wells
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Shawn M Mozeika
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Mengchen Ye
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
143
|
Abstract
OBJECTIVE The aim of the study was to evaluate gastrointestinal symptoms and continence in the context of Phelan-McDermid Syndrome (PMS). METHODS A prospective evaluation of children with PMS (n = 17) at the National Institutes of Health. RESULTS Parent-reported history of symptoms were common: constipation (65%), reflux (59%), choking/gagging (41%), and more than half received gastrointestinal specialty care. No aspiration was noted in 11/11 participants who completed modified barium swallows. Four participants met criteria for functional constipation, 2 of whom had abnormal colonic transit studies. Stool incontinence was highly prevalent (13/17) with nonretentive features present in 12/17. Participants who were continent had significantly smaller genetic deletions (P = 0.01) and higher nonverbal mental age (P = 0.03) compared with incontinent participants. CONCLUSIONS Incontinence is common in PMS and associated with intellectual functioning and gene deletion size. Management strategies may differ based on the presence of nonretentive fecal incontinence, functional constipation, and degree of intellectual disability for children with PMS.
Collapse
|
144
|
Samogy-Costa CI, Varella-Branco E, Monfardini F, Ferraz H, Fock RA, Barbosa RHA, Pessoa ALS, Perez ABA, Lourenço N, Vibranovski M, Krepischi A, Rosenberg C, Passos-Bueno MR. A Brazilian cohort of individuals with Phelan-McDermid syndrome: genotype-phenotype correlation and identification of an atypical case. J Neurodev Disord 2019; 11:13. [PMID: 31319798 PMCID: PMC6637483 DOI: 10.1186/s11689-019-9273-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Background Phelan-McDermid syndrome (PMS) is a rare genetic disorder characterized by global developmental delay, intellectual disability (ID), autism spectrum disorder (ASD), and mild dysmorphisms associated with several comorbidities caused by SHANK3 loss-of-function mutations. Although SHANK3 haploinsufficiency has been associated with the major neurological symptoms of PMS, it cannot explain the clinical variability seen among individuals. Our goals were to characterize a Brazilian cohort of PMS individuals, explore the genotype-phenotype correlation underlying this syndrome, and describe an atypical individual with mild phenotype. Methodology A total of 34 PMS individuals were clinically and genetically evaluated. Data were obtained by a questionnaire answered by parents, and dysmorphic features were assessed via photographic evaluation. We analyzed 22q13.3 deletions and other potentially pathogenic copy number variants (CNVs) and also performed genotype-phenotype correlation analysis to determine whether comorbidities, speech status, and ASD correlate to deletion size. Finally, a Brazilian cohort of 829 ASD individuals and another independent cohort of 2297 ID individuals was used to determine the frequency of PMS in these disorders. Results Our data showed that 21% (6/29) of the PMS individuals presented an additional rare CNV, which may contribute to clinical variability in PMS. Increased pain tolerance (80%), hypotonia (85%), and sparse eyebrows (80%) were prominent clinical features. An atypical case diagnosed with PMS at 18 years old and IQ within the normal range is here described. Among Brazilian ASD or ID individuals referred to CNV analyses, the frequency of 22q13.3 deletion was 0.6% (5/829) and 0.61% (15/2297), respectively. Finally, renal abnormalities, lymphedema, and language impairment were found to be positively associated with deletion sizes, and the minimum deletion to cause these abnormalities is here suggested. Conclusions This is the first work describing a cohort of Brazilian individuals with PMS. Our results confirm the impact of 22q13 deletions on ASD and several comorbidities, such as hypotonia. The estimation of a minimal deletion size for developing lymphedema and renal problem can assist prediction of prognosis in PMS individuals, particularly those diagnosed in early infancy. We also identified one atypical individual carrying SHANK3 deletion, suggesting that resilience to such mutations occurs. This case expands the clinical spectrum of variability in PMS and opens perspectives to identify protective mechanisms that can minimize the severity of this condition. Electronic supplementary material The online version of this article (10.1186/s11689-019-9273-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia Ismania Samogy-Costa
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Elisa Varella-Branco
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Frederico Monfardini
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Helen Ferraz
- Programa de Engenharia Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Ambrósio Fock
- Centro de Genética Médica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - André Luiz Santos Pessoa
- Ambulatório de Neurogenética, Hospital Albert Sabin, São Paulo, Brazil.,Faculdade de Medicina, Universidade Estadual do Ceará, UECE, Fortaleza, Brazil
| | | | - Naila Lourenço
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Vibranovski
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Krepischi
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco (CEGH-CEL), Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
145
|
Lyons-Warren AM, Cheung SW, Holder JL. Clinical Reasoning: A common cause for Phelan-McDermid syndrome and neurofibromatosis type 2: One ring to bind them. Neurology 2019; 89:e205-e209. [PMID: 29061681 DOI: 10.1212/wnl.0000000000004573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
146
|
Sriretnakumar V, Zai CC, Wasim S, Barsanti-Innes B, Kennedy JL, So J. Copy number variant syndromes are frequent in schizophrenia: Progressing towards a CNV-schizophrenia model. Schizophr Res 2019; 209:171-178. [PMID: 31080157 DOI: 10.1016/j.schres.2019.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
The genetic underpinnings of schizophrenia (SCZ) remain unclear. SCZ genetic studies thus far have only identified numerous single nucleotide polymorphisms with small effect sizes and a handful of copy number variants (CNVs). This study investigates the prevalence of well-characterized CNV syndromes and candidate CNVs within a cohort of 348 SCZ patients, and explores correlations to their phenotypic findings. There was an enrichment of syndromic CNVs in the cohort, as well as brain-related and immune pathway genes within the detected CNVs. SCZ patients with brain-related CNVs had increased CNV burden, neurodevelopmental features, and types of hallucinations. Based on these results, we propose a CNV-SCZ model wherein specific phenotypic profiles should be prioritized for CNV screening within the SCZ patient population.
Collapse
Affiliation(s)
- Venuja Sriretnakumar
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada
| | - Syed Wasim
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network & Mount Sinai Hospital, 60 Murray Street, Toronto M5T 3L9, Canada
| | - Brianna Barsanti-Innes
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada
| | - James L Kennedy
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada
| | - Joyce So
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada; The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network & Mount Sinai Hospital, 60 Murray Street, Toronto M5T 3L9, Canada.
| |
Collapse
|
147
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
148
|
Abstract
The factors that trigger human puberty are among the central mysteries of reproductive biology. Several approaches, including mutational analysis of candidate genes, large-scale genome-wide association studies, whole exome sequencing, and whole genome sequencing have been performed in attempts to identify novel genetic factors that modulate the human hypothalamic-pituitary-gonadal axis to result in premature sexual development. Genetic abnormalities involving excitatory and inhibitory pathways regulating gonadotropin-releasing hormone secretion, represented by the kisspeptin (KISS1 and KISS1R) and makorin ring finger 3 (MKRN3) systems, respectively, have been associated with sporadic and familial cases of central precocious puberty (CPP). More recently, paternally inherited genetic defects of DLK1 were identified in four families with nonsyndromic CPP and a metabolic phenotype. DLK1 encodes a transmembrane protein that is important for adipose tissue homeostasis and neurogenesis and is located in the imprinted chromosome 14q32 region associated with Temple syndrome. In this review, we highlight the clinical and genetic features of patients with CPP caused by DLK1 mutations and explore the involvement of Notch signaling and DLK1 in the control of pubertal onset.
Collapse
Affiliation(s)
- Delanie B. Macedo
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
149
|
Tu Z, Zhao H, Li B, Yan S, Wang L, Tang Y, Li Z, Bai D, Li C, Lin Y, Li Y, Liu J, Xu H, Guo X, Jiang YH, Zhang YQ, Li XJ. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Hum Mol Genet 2019; 28:561-571. [PMID: 30329048 DOI: 10.1093/hmg/ddy367] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Monogenic mutations in the SHANK3 gene, which encodes a postsynaptic scaffold protein, play a causative role in autism spectrum disorder (ASD). Although a number of mouse models with Shank3 mutations have been valuable for investigating the pathogenesis of ASD, species-dependent differences in behaviors and brain structures post considerable challenges to use small animals to model ASD and to translate experimental therapeutics to the clinic. We have used clustered regularly interspersed short palindromic repeat/CRISPR-associated nuclease 9 to generate a cynomolgus monkey model by disrupting SHANK3 at exons 6 and 12. Analysis of the live mutant monkey revealed the core behavioral abnormalities of ASD, including impaired social interaction and repetitive behaviors, and reduced brain network activities detected by positron-emission computed tomography (PET). Importantly, these abnormal behaviors and brain activities were alleviated by the antidepressant fluoxetine treatment. Our findings provide the first demonstration that the genetically modified non-human primate can be used for translational research of therapeutics for ASD.
Collapse
Affiliation(s)
- Zhuchi Tu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Hui Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou China
| | - Yongjin Tang
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou China
| | - Zhujun Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Caijuan Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yingqi Lin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou, China
| | | | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou China
| | - Xiangyu Guo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yong-Hui Jiang
- Department of Pediatrics and Department of Neurobiology, Duke University, Durham, NC, USA
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jiang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
150
|
Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, Hayden DS, Fisher JW, Jiang M, Menegas W, Aida T, Yan T, Zou Y, Xu D, Parmar S, Hyman JB, Fanucci-Kiss A, Meisner O, Wang D, Huang Y, Li Y, Bai Y, Ji W, Lai X, Li W, Huang L, Lu Z, Wang L, Anteraper SA, Sur M, Zhou H, Xiang AP, Desimone R, Feng G, Yang S. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 2019; 570:326-331. [DOI: 10.1038/s41586-019-1278-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
|