101
|
Ito K, Hirooka Y, Sunagawa K. Acquisition of brain Na sensitivity contributes to salt-induced sympathoexcitation and cardiac dysfunction in mice with pressure overload. Circ Res 2009; 104:1004-11. [PMID: 19299647 DOI: 10.1161/circresaha.108.188995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In animal models of salt-sensitive hypertension, high salt augments sympathetic outflow via central mechanisms. It is not known, however, whether pressure overload affects salt sensitivity, thereby modifying central sympathetic outflow and cardiac function. We induced left ventricular hypertrophy with aortic banding in mice. Four weeks after aortic banding (AB-4), the left ventricle wall thickness was increased without changing the percentage fractional shortening. AB-4 mice were then fed either a high-salt (8%) diet or regular-salt diet for additional 4 weeks. Cardiac dysfunction, wall thickness, and 24-hour urinary catecholamine excretion were increased with high-salt diet compared with regular-salt diet. We then examined brain Na sensitivity. Intracerebroventricular infusion of high-Na (0.2 mol/L) artificial cerebrospinal fluid into AB-4 mice and mice Sham-4 increased urinary catecholamine excretion, arterial pressure, and heart rate more in AB-4 mice than in Sham-4 mice. Intracerebroventricular infusion of an epithelial Na channel blocker (benzamil) into mice with high-salt diet significantly decreased urinary catecholamine excretion and improved cardiac function. Infusion of either an angiotensin II type 1 receptor blocker or a Rho-kinase inhibitor also attenuated the salt-induced sympathetic hyperactivation and cardiac dysfunction in mice with high-salt diet. The levels of angiotensin II type 1 receptor and phosphorylated moesin, a substrate of Rho-kinase, were significantly greater in AB-4 mice than in Sham-4 mice. These results suggest that mice with pressure overload acquire brain Na sensitivity because of the activation of epithelial Na channel via Rho-kinase and angiotensin II, and this mechanism contributes to salt-induced sympathetic hyperactivation, further pressure overload, and cardiac dysfunction.
Collapse
Affiliation(s)
- Koji Ito
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | |
Collapse
|
102
|
He KL, Burkhoff D, Leng WX, Liang ZR, Fan L, Wang J, Maurer MS. Comparison of ventricular structure and function in Chinese patients with heart failure and ejection fractions >55% versus 40% to 55% versus <40%. Am J Cardiol 2009; 103:845-51. [PMID: 19268743 DOI: 10.1016/j.amjcard.2008.11.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 01/20/2023]
Abstract
Subjects with heart failure (HF) and a preserved ejection fraction (EF) are heterogenous and the EF used to define this syndrome varies considerably among studies. We sought to determine if physiologic differences exist between subjects with a normal EF (>55%) or mildly decreased EF (40% to 55%). 357 consecutive Chinese patients who were healthy (n = 93) or had HF (n = 264) underwent comprehensive echocardiography, Doppler analysis, and measurement of neurohormones. Subjects with HF were stratified by EF into those with normal EF (>55%, n = 128), mildly decreased EF (40% to 55%, n = 38), or moderate to severely decreased EF (<40%, n = 100). Employing noninvasive pressure-volume analysis, estimated end-systolic and end-diastolic pressure-volume relations were calculated. Subjects with HF and an EF 40% to 55% more often had a previous myocardial infarction and diabetes than those with HF and an EF >55%. Physiologically, the cohort with a mildly decreased EF had eccentrically enlarged ventricles with evidence of remodeling (rightward shifted end-diastolic pressure-volume relation) and decreased chamber contractility (downward shifted end-systolic pressure-volume relation) most comparable to subjects with overt systolic HF. In conclusion, in subjects with HF and a preserved EF, there are distinct physiologic differences between those with a normal (>55%) and a mildly decreased (40% to 55%) EF.
Collapse
|
103
|
Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res Cardiol 2009; 104:499-509. [PMID: 19255799 DOI: 10.1007/s00395-009-0014-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 01/04/2023]
Abstract
BACKGROUND Diastolic heart failure is a rising problem with a high incidence and similar mortality and morbidity compared to patients with systolic heart failure. Nevertheless, the underlying pathophysiology is still debated. AIM We investigated the effect of pharmacological enhancement of endothelial nitric oxide synthase (eNOS) on experimental diastolic heart failure (DHF). METHODS DHF was induced in 60 DAHL salt-sensitive rats by salt diet in 8-week-old animals. 30 were treated with the eNOS enhancer AVE3085 (DHFeNOS) and 30 with placebo (DHF). Rats with normal salt intake served as controls. RESULTS AND CONCLUSION Diastolic dysfunction with increased diastolic stiffness constant and increased left ventricular (LV) pressure was analyzed by invasive pressure-volume loop measurements in the DHF group compared to controls. Cardiac hypertrophy as indicated by LV mass measurements by echocardiography, and increased cardiac collagen content as measured by immunohistochemistry were associated with an increased activation state of calcineurin, AKT, ERK(1/2), but not JNK and p38 kinases. Titin isoforms were not altered in this model of DHF. Treatment with AVE3085 significantly increased eNOS mRNA and protein levels in the cardiac tissue and decreases NAD(P)H oxidase subunits p22phox and gp91phox. Diastolic dysfunction was attenuated and cardiac hypertrophy and fibrosis were improved in comparison with untreated DHF animals. This was associated with a normalized activation state of calcineurin, AKT and ERK(1/2). Therefore, we suggest that targeting the NO system might yield a future therapeutic aim for the treatment of DHF.
Collapse
|
104
|
Distinct genomic replacements from Lewis correct diastolic dysfunction, attenuate hypertension, and reduce left ventricular hypertrophy in Dahl salt-sensitive rats. J Hypertens 2008; 26:1935-43. [PMID: 18806617 DOI: 10.1097/hjh.0b013e32830a9a5e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertension and diastolic heart failure are two common cardiovascular diseases that inflict heavy morbidity and mortality, yet relatively little is understood about their pathophysiology. The identification of quantitative trait loci for blood pressure is important in unveiling the causes of polygenic hypertension. Although Dahl salt-sensitive strain is also an excellent model for the study of diastolic heart failure, virtually nothing is known about the quantitative trait loci determining diastolic heart failure. Diastolic dysfunction often represents the onset of diastolic heart failure. METHODS We first characterized the cardiac phenotype of Dahl salt-sensitive strain and normotensive Lewis control rats by echocardiography to ascertain diastolic function. We then analyzed corresponding features of four newly developed and two existing congenic strains, each of which carries a specific chromosome substitution of Dahl salt-sensitive strain by its Lewis homologue and each lowering blood pressure. RESULTS Dahl salt-sensitive strain displayed diastolic dysfunction that was rectified in two of six congenic strains, designated as positive congenic strains, which represent the first rodent models exhibiting functional normalization of diastolic dysfunction caused by naturally occurring genetic variants. The two positive congenic strains also showed a reduction in left ventricular mass. In contrast, four of six congenic strains did not change diastolic function despite their blood pressure-lowering effects. CONCLUSION Genes present in the replaced chromosome segments of the two positive congenic strains are not commonly known to affect blood pressure, diastolic function or left ventricular mass. Consequently, novel prognostic, diagnostic and therapeutic strategies for hypertensive diastolic heart failure likely emerge from this work.
Collapse
|
105
|
Sharma N, Okere IC, Barrows BR, Lei B, Duda MK, Yuan CL, Previs SF, Sharov VG, Azimzadeh AM, Ernsberger P, Hoit BD, Sabbah H, Stanley WC. High-sugar diets increase cardiac dysfunction and mortality in hypertension compared to low-carbohydrate or high-starch diets. J Hypertens 2008; 26:1402-10. [PMID: 18551017 DOI: 10.1097/hjh.0b013e3283007dda] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Sugar consumption affects insulin release and, in hypertension, may stimulate cardiac signaling mechanisms that accelerate left ventricular hypertrophy and the development of heart failure. We investigated the effects of high-fructose or sucrose diets on ventricular function and mortality in hypertensive Dahl salt-sensitive rats. METHODS Rats were fed chows that were either high starch (70% starch, 10% fat by energy), high fat (20% carbohydrates, 60% fat), high fructose (61% fructose, 9% starch, 10% fat), or high sucrose (61% sucrose, 9% starch, 10% fat). Hypertension was induced by adding 6% salt to the chow (n = 8-11/group). RESULTS After 8 weeks of treatment, systolic blood pressure and left ventricular mass were similarly increased in all rats that were fed high-salt diets. Hypertension caused a switch in mRNA myosin heavy chain isoform from alpha to beta, and this effect was greater in the high-salt sucrose and fructose groups than in starch and fat groups. The cardiac mRNA for atrial natriuretic factor was also increased in all high-salt groups compared to respective controls, with the increase being significantly greater in the hypertensive sucrose fed group. Mortality was greater in the sucrose group (44%) compared to all the other hypertensive groups (12-18%), as was cardiomyocyte apoptosis. Left ventricular ejection fraction was lower in the high-salt sucrose group, which was due to an increase in end-systolic volume, and not increased end-diastolic volume. CONCLUSION Diets high in sugar accelerated cardiac systolic dysfunction and mortality in hypertension compared to either a low-carbohydrate/high-fat or high-starch diet.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Kriegel AJ, Greene AS. Substitution of Brown Norway chromosome 16 preserves cardiac function with aging in a salt-sensitive Dahl consomic rat. Physiol Genomics 2008; 36:35-42. [PMID: 18940898 DOI: 10.1152/physiolgenomics.00054.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Determination of the genetic factors that control the progression of left ventricular hypertrophy (LVH) to heart failure has been difficult despite extensive study in animal models. Here we have characterized a consomic rat model of LVH resulting from the introgression of chromosome 16 from the normotensive Brown Norway (BN) rat onto the genetic background of the Dahl salt-sensitive (SS/Mcwi) rat by marker assisted breeding. The SS-16BN/Mcwi consomic rats are normotensive but display LVH equivalent to the hypertensive SS/Mcwi rats at early ages. In this study we tracked the development of LVH by echocardiography and analyzed changes in cardiac function and morphology with aging in the SS-16BN/Mcwi, SS/Mcwi, and BN to determine if the consomic SS-16BN/Mcwi was a model of hypertrophic cardiomyopathy (HCM). Aging SS-16BN/Mcwi rats showed no evidence of heart failure or impaired cardiac function upon extensive analysis of left ventricle function by echocardiography and pressure-volume relationships, while their parental SS/Mcwi experienced deterioration in function between 18 and 36 wk of age. In addition aging SS-16BN/Mcwi did not exhibit tissue remodeling common to pathological hypertrophy and HCM such as increased fibrosis and reduced capillary density in the myocardium. In fact, SS-16BN/Mcwi were better protected from developing LV fibrosis with age than either the hypertensive SS/Mcwi or normotensive BN parental strains. This suggests that a gene or genes on chromosome 16 may be involved with both blood pressure regulation and preservation of cardiac function with aging.
Collapse
Affiliation(s)
- A J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
107
|
Lin J, Davis HB, Dai Q, Chou YM, Craig T, Hinojosa-Laborde C, Lindsey ML. Effects of early and late chronic pressure overload on extracellular matrix remodeling. Hypertens Res 2008; 31:1225-31. [PMID: 18716372 DOI: 10.1291/hypres.31.1225] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The left ventricle (LV) remodels with age and in response to pressure overload. While aging and pressure overload are superimposed in the clinical context, the structural and functional consequences of the individual processes are not well-understood. Accordingly, the objective of this study was to compare the effects of both early and late chronic hypertension on extracellular matrix (ECM) remodeling. The following groups of Dahl rats were studied: 1) young salt-resistant (control, n=6); 2) young salt-sensitive (early phase of chronic hypertension, n=6); 3) middle-aged salt-resistant (aging, n=5); and 4) middle-aged salt-sensitive (late phase of chronic hypertension, n=6). We measured LV mass (LVM) and body weight (BW) and immunoblotted a panel of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and ECM proteins. Total collagen increased, several MMPs decreased, and TIMP-1 increased in the early phase of hypertension, consistent with fibrosis. Active MMP-8 decreased from 8,010+/-81 U in young salt-resistant to 5,260+/-313 U in young salt-sensitive (p<0.05) rats. During the late phase, chronic hypertension decreased total collagen levels and increased MMP-8 and MMP-14 (all p<0.05). Based on good-fit modeling analysis, MMP-14 (45 kDa) correlated positively with changes in LVM/BW during the early phase. In conclusion, this is the first study to evaluate MMP levels during both early and late chronic phases of hypertension. Our results highlight that ECM remodeling in response to pressure overload is a dynamic process involving excessive ECM accumulation and degradation.
Collapse
Affiliation(s)
- Jing Lin
- Department of Medicine, Division of Cardiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
Diastolic heart failure (DHF) is a major cardiovascular disorder with poor prognosis; however, its molecular mechanism still remains to be fully elucidated. We have previously demonstrated the important roles of Rho-kinase pathway in the molecular mechanisms of cardiovascular fibrosis/hypertrophy and oxidative stress, but not examined in the development of heart failure. Therefore, we examined in this study whether Rho-kinase pathway is also involved in the pathogenesis of DHF in Dahl salt-sensitive rats, an established animal model of DHF. They were maintained with or without fasudil, a Rho-kinase inhibitor (30 or 100 mg/kg/day, PO) for 10 weeks. Untreated DHF group exhibited overt heart failure associated with diastolic dysfunction but with preserved systolic function, characterized by increased myocardial stiffness, cardiomyocyte hypertrophy, and enhanced cardiac fibrosis and superoxide production. Fasudil treatment significantly ameliorated those DHF-related myocardial changes. Western blot analysis showed that cardiac Rho-kinase activity was significantly increased in the untreated DHF group and was dose-dependently inhibited by fasudil. Importantly, there was a significant correlation between the extent of myocardial stiffness and that of cardiac Rho-kinase activity. These results indicate that Rho-kinase pathway plays an important role in the pathogenesis of DHF and thus could be an important therapeutic target for the disorder.
Collapse
|
109
|
Major Events in Uremic Patients: Insight from Parameters Derived by Flow Propagation Velocity. J Am Soc Echocardiogr 2008; 21:741-6. [DOI: 10.1016/j.echo.2007.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Indexed: 11/24/2022]
|
110
|
Abstract
PURPOSE OF REVIEW A substantial proportion of patients with heart failure have preserved ejection fraction. Though patients with preserved ejection fraction experience a substantial burden of morbidity and mortality, the understanding of heart failure pathophysiology in this group remains incomplete and evidence-based therapeutic options are limited. RECENT FINDINGS The prevalence of heart failure in patients with preserved ejection fraction is increasing and prognosis in this population remains poor despite modern medical therapy. Though diastolic dysfunction is typically present, increasing evidence suggests that extracardiac factors such as renal dysfunction and enhanced central aortic stiffness may play an important role in the development and progression of heart failure symptoms. Results of the first randomized, controlled clinical trials in this population suggest a possible therapeutic role for renin-angiotensin system blockade in reducing heart failure-associated morbidity, but there is still no evidence-supported strategy for reducing mortality in this population. SUMMARY Though the epidemiology and impact of heart failure with preserved ejection fraction are increasingly clear, consensus regarding pathophysiology and the optimal therapeutic approach is still lacking. Pending completion of additional therapeutic trials in this population, treatment remains largely empiric and focused on optimizing myocardial performance in diastole by control of blood pressure, restoration or maintenance of sinus rhythm, and relief of volume overload.
Collapse
|
111
|
Shapiro BP, Lam CSP, Patel JB, Mohammed SF, Kruger M, Meyer DM, Linke WA, Redfield MM. Acute and Chronic Ventricular-Arterial Coupling in Systole and Diastole. Hypertension 2007; 50:503-11. [PMID: 17620524 DOI: 10.1161/hypertensionaha.107.090092] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aging and hypertension lead to arterial remodeling and tandem increases in arterial (Ea) and ventricular (LV) systolic stiffness (ventricular-arterial [VA] coupling). Age and hypertension also predispose to heart failure with normal ejection fraction (HFnlEF), where symptoms during hypertensive urgencies or exercise are common. We hypothesized that: (1) chronic VA coupling also occurs in diastole, (2) acute changes in Ea are coupled with shifts in the diastolic and systolic pressure-volume relationships (PVR), and (3) diastolic VA coupling reflects changes in LV diastolic stiffness rather than external forces or relaxation. Old chronically hypertensive (OHT, n=8) and young normal (YNL, n=7) dogs underwent assessment of PVR (caval occlusion) and of aortic pressure, dimension, and flow, at baseline and during changes in afterload and preload. Concomitant changes in the slope/position of PVR were accounted for by calculating systolic (ESV
200
) and diastolic (EDV
20
) volumes at common pressures (capacitance). OHT displayed marked vascular remodeling. Indices reflecting the pulsatile component of Ea (aortic stiffness and systemic arterial compliance) were more impaired in OHT at any distending pressure. In both groups, acute increases in Ea were associated with decreases in ESV
200
and EDV
20
. However, at any load, OHT had lower ESV
200
and EDV
20
, associated with LV remodeling and myocardial endothelin activation. Acute changes in EDV
20
were not mediated by changes in relaxation or external forces. These observations provide insight into the mechanisms whereby arterial remodeling and acute and chronic VA coupling in both systole and diastole may predispose to and interact with increases in load to cause HFnlEF.
Collapse
Affiliation(s)
- Brian P Shapiro
- Division of Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Sangaralingham SJ, Tse MY, Pang SC. Estrogen delays the progression of salt-induced cardiac hypertrophy by influencing the renin-angiotensin system in heterozygous proANP gene-disrupted mice. Mol Cell Biochem 2007; 306:221-30. [PMID: 17713841 DOI: 10.1007/s11010-007-9573-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 08/10/2007] [Indexed: 11/24/2022]
Abstract
Left ventricular hypertrophy is considered an independent risk factor for cardiac morbidity and mortality, and many studies have shown that women have a lower incidence of left ventricular hypertrophy even after correcting for numerous risk factors. This cardio-protective effect seen in women has been attributed to estrogen, which likely modulates specific growth-promoting systems such as the renin-angiotensin system, and in turn may lead to the prevention of left ventricular hypertrophy. Furthermore, the underlying mechanisms responsible are poorly understood. The aim of the present study was to examine the effect of estrogen in relation to its impact on the development of left ventricular hypertrophy through its interaction with the renin-angiotensin system by using the proANP heterozygous (ANP +/-) mouse as a model of salt-sensitive cardiac hypertrophy. Male, female ANP +/- mice and also ovariectomized female ANP +/- mice treated with oil or estrogen, were fed either a normal or high-salt diet. All four groups exhibited a general suppression of the renin-angiotensin system under the high salt challenge. However, after the 5-week treatment period, marked left ventricular hypertrophy was noted only in the male and oil-injected ovariectomized female ANP +/- mice treated with high salt. Collectively, we provide direct evidence that the differences in cardiac hypertrophy between genders in ANP +/- mice is attributed to estrogen. Furthermore, estrogen may play a key role in slowing down the progression of salt-induced left ventricular hypertrophy in ANP +/- mice, in part, independent of the classical systemic renin-angiotensin system and possibly through other pathways.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Department of Anatomy and Cell Biology, Queen's University, Room 850, Stuart St., Botterell Hall, Kingston, ON, Canada K7L 3N6
| | | | | |
Collapse
|
113
|
Louhelainen M, Vahtola E, Kaheinen P, Leskinen H, Merasto S, Kytö V, Finckenberg P, Colucci WS, Levijoki J, Pollesello P, Haikala H, Mervaala EMA. Effects of levosimendan on cardiac remodeling and cardiomyocyte apoptosis in hypertensive Dahl/Rapp rats. Br J Pharmacol 2007; 150:851-61. [PMID: 17325658 PMCID: PMC2013885 DOI: 10.1038/sj.bjp.0707157] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Progression of heart failure in hypertensive Dahl rats is associated with cardiac remodeling and increased cardiomyocyte apoptosis. This study was conducted to study whether treatment with a novel inotropic vasodilator compound, levosimendan, could prevent hypertension-induced cardiac remodeling and cardiomyocyte apoptosis. EXPERIMENTAL APPROACH 6-week-old salt-sensitive Dahl/Rapp rats received levosimendan (0.3 mg kg(-1) and 3 mg kg(-1) via drinking fluid) and high salt diet (NaCl 7%) for 7 weeks, Dahl/Rapp rats on low-salt diet served as controls. Blood pressure, cardiac functions by echocardiography, cardiomyocyte apoptosis by TUNEL technique, tissue morphology, myocardial expression of calcium cycling proteins, and markers of neurohumoral activation were determined. KEY RESULTS Untreated Dahl/Rapp rats on high salt diet developed severe hypertension, cardiac hypertrophy and moderate systolic dysfunction. 38% of Dahl/Rapp rats (9/24) survived the 7-week-follow-up period. Cardiomyocyte apoptosis was increased by 6-fold during high salt diet. Levosimendan improved survival (survival rates in low- and high-dose levosimendan groups 12/12 and 9/12, p<0.001 and p=0.05, respectively), increased cardiac function, and ameliorated cardiac hypertrophy. Levosimendan dose-dependently prevented cardiomyocyte apoptosis. Levosimendan normalized salt-induced increased expression of natriuretic peptide, and decreased urinary noradrenaline excretion. Levosimendan also corrected salt-induced decreases in myocardial SERCA2a protein expression and myocardial SERCA2a/NCX-ratio. CONCLUSIONS AND IMPLICATIONS Improved survival by the novel inotropic vasodilator levosimendan in hypertensive Dahl/Rapp rats is mediated, at least in part, by amelioration of hypertension-induced cardiac remodeling and cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- M Louhelainen
- Institute of Biomedicine, Pharmacology, University of Helsinki Helsinki, Finland
| | - E Vahtola
- Institute of Biomedicine, Pharmacology, University of Helsinki Helsinki, Finland
| | | | - H Leskinen
- Department of Pharmacology and Toxicology, University of Oulu Oulu, Finland
| | - S Merasto
- Institute of Biomedicine, Pharmacology, University of Helsinki Helsinki, Finland
| | - V Kytö
- Department of Anatomy, University of Turku Turku, Finland
| | | | - W S Colucci
- Boston University School of Medicine Boston, MA, USA
| | | | | | | | - E M A Mervaala
- Institute of Biomedicine, Pharmacology, University of Helsinki Helsinki, Finland
- Department of Pharmacology and Toxicology, University of Kuopio Kuopio, Finland
- Author for correspondence:
| |
Collapse
|
114
|
Rodent models of heart failure. J Pharmacol Toxicol Methods 2007; 56:1-10. [PMID: 17391988 DOI: 10.1016/j.vascn.2007.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/31/2007] [Indexed: 11/28/2022]
Abstract
Heart failure, a complex disorder with heterogeneous aetiologies remains one of the most threatening diseases known. It is a clinical syndrome attributable to a multitude of factors that begins with the compensatory response known as hypertrophy, followed by a decompensated state that finally results in heart failure. Given the lack of a unified theory of heart failure, future research efforts are required to unify and synthesize our current understanding of the multiple mechanisms that control remodelling in heart under various stress conditions. During the past few decades, use of animal models has provided new insights into the complex pathogenesis of this syndrome. Rodents have contributed significantly in the understanding of the pathogenesis and progression of heart failure. With the advent of the transgenic era, rodent models have revolutionized preclinical research associated with heart failure. These models combined with physiological measurements of cardiac hemodynamics, are expected to yield more valuable information regarding the molecular mechanisms of heart failure and aid in the discovery of novel therapeutic targets. However, all animal models used have advantages and limitations, and the issues determining transfer from preclinical to clinical require critical evaluation. The present review focuses upon rodent models of heart failure.
Collapse
|
115
|
Maurer MS, Kronzon I, Burkhoff D. Ventricular Pump Function in Heart Failure with Normal Ejection Fraction: Insights from Pressure-Volume Measurements. Prog Cardiovasc Dis 2006; 49:182-95. [PMID: 17084178 DOI: 10.1016/j.pcad.2006.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The syndrome of heart failure in the setting of normal ejection fraction (HFNEF) is manifest in a clinically heterogeneous group of patients with multiple and varied comorbid conditions. In this report, we review available data derived from pressure-volume (PV) analyses in patients with and in animal models of HFNEF. Pressure-volume analysis of ventricular function is challenging in the clinical setting but provides unique insights into the systolic, diastolic, and overall pumping characteristics of the heart. Results of such analyses have thus far been limited to small cohorts of patients but suggest that different cohorts of patients with HFNEF having PV relations that imply different pathophysiologic mechanisms exist. This emphasizes the need to take a view of this syndrome, which extends beyond diastolic dysfunction, particularly when it comes to proposing and investigating therapeutic targets. We therefore propose that progress can be made in advancing therapeutics for HFNEF if it is appreciated that different underlying pathophysiologic mechanisms may be important in different cohorts and if attention expands beyond diastolic dysfunction as the sole target. Similar to the success that was achieved in advancing therapeutics for systolic heart failure when attention shifted away from the heart to the neurohormonal and renal axes, our interpretation of data in human beings and in animal models suggests that addressing similar targets (perhaps not in exactly the same manner) may prove to be fruitful, at least for some patients with HFNEF as well.
Collapse
Affiliation(s)
- Mathew S Maurer
- Division of Geriatric Medicine and Aging, Department of Medicine, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
116
|
|
117
|
|