101
|
Royer L, Ríos E. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol 2009; 587:3101-11. [PMID: 19403601 PMCID: PMC2727020 DOI: 10.1113/jphysiol.2009.171934] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/22/2009] [Indexed: 12/22/2022] Open
Abstract
Since its discovery in 1971, calsequestrin has been recognized as the main Ca(2+) binding protein inside the sarcoplasmic reticulum (SR), the organelle that stores and upon demand mobilizes Ca(2+) for contractile activation of muscle. This article reviews the potential roles of calsequestrin in excitation-contraction coupling of skeletal muscle. It first considers the quantitative demands for a structure that binds Ca(2+) inside the SR in view of the amounts of the ion that must be mobilized to elicit muscle contraction. It briefly discusses existing evidence, largely gathered in cardiac muscle, of two roles for calsequestrin: as Ca(2+) reservoir and as modulator of the activity of Ca(2+) release channels, and then considers the results of an incipient body of work that manipulates the cellular endowment of calsequestrin. The observations include evidence that both the Ca(2+) buffering capacity of calsequestrin in solution and that of the SR in intact cells decay as the free Ca(2+) concentration is lowered. Together with puzzling observations of increase of Ca(2+) inside the SR, in cells or vesicular fractions, upon activation of Ca(2+) release, this is interpreted as evidence that the Ca(2+) buffering in the SR is non-linear, and is optimized for support of Ca(2+) release at the physiological levels of SR Ca(2+) concentration. Such non-linearity of buffering is qualitatively explained by a speculation that puts together ideas first proposed by others. The speculation pictures calsequestrin polymers as 'wires' that both bind Ca(2+) and efficiently deliver it near the release channels. In spite of the kinetic changes, the functional studies reveal that cells devoid of calsequestrin are still capable of releasing large amounts of Ca(2+) into the myoplasm, consistent with the long term viability and apparent good health of mice engineered for calsequestrin ablation. The experiments therefore suggest that other molecules are capable of providing sites for reversible binding of large amounts of Ca(2+) inside the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Leandro Royer
- Department of Molecular Biophysics and Physiology, Rush University School of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
102
|
Assessment of sarcoplasmic reticulum Ca2+ depletion during spontaneous Ca2+ waves in isolated permeabilized rabbit ventricular cardiomyocytes. Biophys J 2009; 96:2744-54. [PMID: 19348757 DOI: 10.1016/j.bpj.2008.12.3944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 11/21/2022] Open
Abstract
In this study, Ca2+ release due to spontaneous Ca2+ waves was measured both from inside the sarcoplasmic reticulum (SR) and from the cytosol of rabbit cardiomyocytes. These measurements utilized Fluo5N-AM for intra-SR Ca2+ from intact cells and Fluo5F in the cytosol of permeabilized cells. Restricted subcellular volumes were resolved with the use of laser-scanning confocal microscopy. Local Ca2+ signals during spontaneous Ca2+ release were compared with those induced by rapid caffeine application. The free cytoplasmic [Ca2+] increase during a Ca2+ wave was 98.1% +/- 0.3% of that observed during caffeine application. Conversion to total Ca2+ release suggested that Ca2+ release from a Ca2+ wave was not significantly different from that released during caffeine application (104% +/- 6%). In contrast, the maximum decrease in intra-SR Fluo-5N fluorescence during a Ca2+ wave was 82.5% +/- 2.6% of that observed during caffeine application. Assuming a maximum free [Ca2+] of 1.1 mM, this translates to a 96.2% +/- 0.8% change in intra-SR free [Ca2+] and a 91.7% +/- 1.6% depletion of the total Ca2+. This equates to a minimum intra-SR free Ca2+ of 46 +/- 7 microM during a Ca2+ wave. Reduction of RyR2 Ca2+ sensitivity by tetracaine (50 microM) reduced the spontaneous Ca2+ release frequency while increasing the Ca2+ wave amplitude. This did not significantly change the total depletion of the SR (94.5% +/- 1.1%). The calculated minimum [Ca2+] during these Ca2+ waves (87 +/- 19 microM) was significantly higher than control (p < 0.05). A computational model incorporating this level of Ca2+ depletion during a Ca2+ wave mimicked the transient and sustained effects of tetracaine on spontaneous Ca2+ release. In conclusion, spontaneous Ca2+ release results in substantial but not complete local Ca2+ depletion of the SR. Furthermore, measurements suggest that Ca2+ release terminates when luminal [Ca2+] reaches approximately 50 microM.
Collapse
|
103
|
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited disease characterized by physical or emotional stress-induced ventricular arrhythmias in the absence of any structural heart disease or QT prolongation. Thus far, mutations in genes encoding the sarcoplasmic reticulum Ca(2+) release channel (RYR2) and the sarcoplasmic reticulum Ca(2+) binding protein cardiac calsequestrin (CASQ2) have been identified in CPVT patients. Here, we review the role of cardiac calsequestrin in health and disease, with a particular focus on how calsequestrin deficiency can cause arrhythmia susceptibility. Clinical implications and a promising new drug therapy for CPVT are discussed.
Collapse
Affiliation(s)
- Nagesh Chopra
- Department of Medicine, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0575, USA
| | | |
Collapse
|
104
|
Abstract
Cardiac calsequestrin (Casq2) and triadin are proteins located in specialized areas of the sarcoplasmic reticulum (SR) where the SR forms junctions with the sarcolemma (junctional SR). Casq2, triadin and junctin form a protein complex that is associated with cardiac ryanodine receptor 2 (RyR2) SR Ca(2+) release channels. This review highlights new insights of the roles of triadin and Casq2 derived from gene-targeted knock-out and knock-in mouse models that have recently become available. Characterization of the mouse models suggests that Casq2's contribution to SR Ca(2+) storage and release during excitation-contraction coupling is largely dispensable. Casq2's primary role appears to be in protecting the heart against premature Ca(2+) release and triggered arrhythmias. Furthermore, both cardiac Casq2 and triadin are important for the structural organization of the SR, which had previously not been recognized. In particular, ablation of triadin causes a 50% reduction in the extent of the junctional SR, which results in impaired excitation-contraction coupling at the level of the myocyte. While catecholamines could normalize contractile function by increasing I(Ca) and SR Ca(2+) content, it comes at the price of an increased risk for spontaneous Ca(2+) releases in triadin knock-out myocytes and catecholamine-induced ventricular arrhythmias in triadin knock-out mice.
Collapse
Affiliation(s)
- Björn C Knollmann
- Depts. of Medicine and Pharmacology, Vanderbilt Univ., Nashville, TN 37232, USA.
| |
Collapse
|
105
|
Blayney LM, Lai FA. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacol Ther 2009; 123:151-77. [PMID: 19345240 PMCID: PMC2704947 DOI: 10.1016/j.pharmthera.2009.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 12/25/2022]
Abstract
The cardiac ryanodine receptor-Ca2+ release channel (RyR2) is an essential sarcoplasmic reticulum (SR) transmembrane protein that plays a central role in excitation–contraction coupling (ECC) in cardiomyocytes. Aberrant spontaneous, diastolic Ca2+ leak from the SR due to dysfunctional RyR2 contributes to the formation of delayed after-depolarisations, which are thought to underlie the fatal arrhythmia that occurs in both heart failure (HF) and in catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is an inherited disorder associated with mutations in either the RyR2 or a SR luminal protein, calsequestrin. RyR2 shows normal function at rest in CPVT but the RyR2 dysfunction is unmasked by physical exercise or emotional stress, suggesting abnormal RyR2 activation as an underlying mechanism. Several potential mechanisms have been advanced to explain the dysfunctional RyR2 observed in HF and CPVT, including enhanced RyR2 phosphorylation status, altered RyR2 regulation at luminal/cytoplasmic sites and perturbed RyR2 intra/inter-molecular interactions. This review considers RyR2 dysfunction in the context of the structural and functional modulation of the channel, and potential therapeutic strategies to stabilise RyR2 function in cardiac pathology.
Collapse
Affiliation(s)
- Lynda M Blayney
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF144XN, UK.
| | | |
Collapse
|
106
|
Yuan Q, Han P, Dong M, Ren X, Zhou X, Chen S, Jones WK, Chu G, Wang HS, Kranias EG. Partial downregulation of junctin enhances cardiac calcium cycling without eliciting ventricular arrhythmias in mice. Am J Physiol Heart Circ Physiol 2009; 296:H1484-90. [PMID: 19286959 DOI: 10.1152/ajpheart.00229.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human failing hearts exhibit significant decreases in junctin expression levels with almost nondetectable levels, which may be associated with premature death, induced by lethal cardiac arrhythmias, based on mouse models. However, the specific contribution of junctin to the delayed afterdepolarizations has been difficult to delineate in the phase of increased Na(+)-Ca(2+) exchanger activity accompanying junctin ablation. Thus we characterized the heterozygous junctin-deficient hearts, which expressed 54% of junctin levels and similar increases in Na(+)-Ca(2+) exchanger activity, as the null model. Cardiac contractile parameters, Ca(2+) transients, and sarcoplasmic reticulum Ca(2+) content were significantly increased in junctin heterozygous hearts, although they did not reach the levels of null hearts. However, Ca(2+) spark properties were not altered in heterozygous cardiomyocytes, compared with wild-types, and there were no aftercontractions elicited by the increased frequency of stimulation in the presence of isoproterenol, unlike the junctin-deficient cells. Furthermore, heterozygous mice did not exhibit an increased susceptibility to arrhythmia upon catecholamine challenge in vivo, and there were no premature deaths up to 1 yr of age. These findings suggest that a partial downregulation of junctin enhances sarcoplasmic reticulum Ca(2+) cycling but does not elicit cardiac arrhythmias even in the context of increased Na(+)-Ca(2+) exchanger activity.
Collapse
Affiliation(s)
- Qunying Yuan
- Dept. of Pharmacology and Cell Biophysics, Univ. of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Gusev K, Niggli E. Modulation of the local SR Ca2+ release by intracellular Mg2+ in cardiac myocytes. ACTA ACUST UNITED AC 2009; 132:721-30. [PMID: 19029377 PMCID: PMC2585859 DOI: 10.1085/jgp.200810119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cardiac muscle, Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) defines the amplitude and time course of the Ca2+ transient. The global elevation of the intracellular Ca2+ concentration arises from the spatial and temporal summation of elementary Ca2+ release events, Ca2+ sparks. Ca2+ sparks represent the concerted opening of a group of ryanodine receptors (RYRs), which are under the control of several modulatory proteins and diffusible cytoplasmic factors (e.g., Ca2+, Mg2+, and ATP). Here, we examined by which mechanism the free intracellular Mg2+ ([Mg2+]free) affects various Ca2+ spark parameters in permeabilized mouse ventricular myocytes, such as spark frequency, duration, rise time, and full width, at half magnitude and half maximal duration. Varying the levels of free ATP and Mg2+ in specifically designed solutions allowed us to separate the inhibition of RYRs by Mg2+ from the possible activation by ATP and Mg2+-ATP via the adenine binding site of the channel. Changes in [Mg2+]free generally led to biphasic alterations of the Ca2+ spark frequency. For example, lowering [Mg2+]free resulted in an abrupt increase of spark frequency, which slowly recovered toward the initial level, presumably as a result of SR Ca2+ depletion. Fitting the Ca2+ spark inhibition by [Mg2+]free with a Hill equation revealed a Ki of 0.1 mM. In conclusion, our results support the notion that local Ca2+ release and Ca2+ sparks are modulated by Mg2+ in the intracellular environment. This seems to occur predominantly by hindering Ca2+-dependent activation of the RYRs through competitive Mg2+ occupancy of the high-affinity activation site of the channels. These findings help to characterize CICR in cardiac muscle under normal and pathological conditions, where the levels of Mg2+ and ATP can change.
Collapse
Affiliation(s)
- Konstantin Gusev
- Department of Physiology, University of Bern, 3012 Bern, Switzerland
| | | |
Collapse
|
108
|
Li Y, Díaz ME, Eisner DA, O'Neill S. The effects of membrane potential, SR Ca2+ content and RyR responsiveness on systolic Ca2+ alternans in rat ventricular myocytes. J Physiol 2009; 587:1283-92. [PMID: 19153161 DOI: 10.1113/jphysiol.2008.164368] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous work has shown that small depolarizing pulses produce a beat to beat alternation in the amplitude of the systolic Ca(2+) transient in ventricular myocytes. The aim of the present work was to investigate the role of changes of SR Ca(2+) content and L-type Ca(2+) current in this alternans. As the amplitude of the depolarizing pulse was increased from 10 to 30 mV the magnitude of alternans decreased. Confocal linescan studies showed that this was accompanied by an increase in the number of sites from which Ca(2+) waves propagated. A sudden decrease in the depolarisation amplitude resulted in three classes of behaviour: (1) a gradual decrease in Ca(2+) transient amplitude before alternans developed accompanied by a loss of SR Ca(2+), (2) a gradual increase in Ca(2+) transient amplitude before alternans accompanied by a gain of SR Ca(2+), and (3) immediate development of alternans with no change of SR content. We conclude that alternans develops if the combination of decreased opening of L-type channels and change of SR Ca(2+) content results in spatially fragmented release from the SR as long as there is sufficient Ca(2+) in the SR to sustain wave propagation. Potentiation of the opening of the ryanodine receptor (RyR) by low concentrations of caffeine (100 microm) abolished alternans for a few pulses but the alternans then redeveloped once SR Ca(2+) content fell to the new threshold for wave propagation. Finally we show evidence that inhibiting L-type Ca(2+) current with 200 mum Cd(2+) produces alternans by means of a similar fragmentation of the Ca(2+) release profile and propagation of mini-waves of Ca(2+) release.
Collapse
Affiliation(s)
- Yatong Li
- Unit of Cardiac Physiology, University of Manchester, Core Technology Building, Grafton St., Manchester M13 9NT, UK. stephen.c.o'
| | | | | | | |
Collapse
|
109
|
Katz G, Arad M, Eldar M. Catecholaminergic polymorphic ventricular tachycardia from bedside to bench and beyond. Curr Probl Cardiol 2009; 34:9-43. [PMID: 19068246 DOI: 10.1016/j.cpcardiol.2008.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a primary electrical myocardial disease characterized by exercise- and stress-related ventricular tachycardia manifested as syncope and sudden death. The disease has a heterogeneous genetic basis, with mutations in the cardiac Ryanodine Receptor channel (RyR2) gene accounting for an autosomal-dominant form (CPVT1) in approximately 50% and mutations in the cardiac calsequestrin gene (CASQ2) accounting for an autosomal-recessive form (CPVT2) in up to 2% of CPVT cases. Both RyR2 and calsequestrin are important participants in the cardiac cellular calcium homeostasis. We review the physiology of the cardiac calcium homeostasis, including the cardiac excitation contraction coupling and myocyte calcium cycling. The pathophysiology of cardiac arrhythmias related to myocyte calcium handling and the effects of different modulators are discussed. The putative derangements in myocyte calcium homeostasis responsible for CPVT, as well as the clinical manifestations and therapeutic options available, are described.
Collapse
|
110
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
111
|
Zima AV, Qin J, Fill M, Blatter LA. Tricyclic antidepressant amitriptyline alters sarcoplasmic reticulum calcium handling in ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H2008-16. [PMID: 18790837 DOI: 10.1152/ajpheart.00523.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tricyclic antidepressants such as amitriptyline (AMT) have been reported to have adverse side effects on cardiac performance. AMT effects on Ca handling in ventricular myocytes, however, are not well understood. Therefore, we investigated AMT action on sarcoplasmic reticulum (SR) Ca release in ventricular myocytes, ryanodine receptor (RyR) activity, and Ca uptake by SR microsomes. In permeabilized myocytes, AMT transiently increased free luminal Ca concentration ([Ca]) followed by marked depletion. AMT (10 microM) caused a rapid and a transient increase of Ca spark frequency, followed by a significant suppression of spark activity. The latter was associated with a decrease of Ca spark amplitude and SR Ca load to 87 and 60%, respectively. AMT (10 microM) completely abolished propagation of spontaneous Ca waves. Higher concentrations of AMT (0.1-1 mM) evoked SR Ca release reminiscent of the effect of caffeine (20 mM) and caused almost complete depletion of SR Ca content. Studies on single calsequestrin-free RyR channels revealed that AMT increased the mean open time and open probability (Po) in a dose-dependent fashion (dissociation constant = 4.2 microM). High concentrations of AMT (> 25 microM) evoked frequent long openings with Po reaching very high levels (> 0.70). In studies with cardiac SR microsomes, AMT slowed the rate of ATP-dependent Ca uptake. We conclude that AMT affects SR Ca handling in ventricular myocytes by multiple mechanisms, including direct stimulation of RyRs and inhibition of SR Ca uptake. These effects could contribute to AMT cardiotoxicity.
Collapse
Affiliation(s)
- Aleksey V Zima
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison Ave., Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
112
|
Zima AV, Picht E, Bers DM, Blatter LA. Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res 2008; 103:e105-15. [PMID: 18787194 DOI: 10.1161/circresaha.107.183236] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ca(2+) release from cardiac sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) is regulated by dyadic cleft [Ca(2+)] and intra-SR free [Ca(2+)] ([Ca(2+)](SR)). Robust SR Ca(2+) release termination is important for stable excitation-contraction coupling, and partial [Ca(2+)](SR) depletion may contribute to release termination. Here, we investigated the regulation of SR Ca(2+) release termination of spontaneous local SR Ca(2+) release events (Ca(2+) sparks) by [Ca(2+)](SR), release flux, and intra-SR Ca(2+) diffusion. We simultaneously measured Ca(2+) sparks and Ca(2+) blinks (localized elementary [Ca(2+)](SR) depletions) in permeabilized ventricular cardiomyocytes over a wide range of SR Ca(2+) loads and release fluxes. Sparks terminated via a [Ca(2+)](SR)-dependent mechanism at a fixed [Ca(2+)](SR) depletion threshold independent of the initial [Ca(2+)](SR) and release flux. Ca(2+) blink recovery depended mainly on intra-SR Ca(2+) diffusion rather than SR Ca(2+) uptake. Therefore, the large variation in Ca(2+) blink recovery rates at different release sites occurred because of differences in the degree of release site interconnection within the SR network. When SR release flux was greatly reduced, long-lasting release events occurred from well-connected junctions. These junctions could sustain release because local SR Ca(2+) release and [Ca(2+)](SR) refilling reached a balance, preventing [Ca(2+)](SR) from depleting to the termination threshold. Prolonged release events eventually terminated at a steady [Ca(2+)](SR), indicative of a slower, [Ca(2+)](SR)-independent termination mechanism. These results demonstrate that there is high variability in local SR connectivity but that SR Ca(2+) release terminates at a fixed [Ca(2+)](SR) termination threshold. Thus, reliable SR Ca(2+) release termination depends on tight RyR regulation by [Ca(2+)](SR).
Collapse
Affiliation(s)
- Aleksey V Zima
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
113
|
Lacampagne A, Fauconnier J, Richard S. [Ryanodine receptor and heart disease]. Med Sci (Paris) 2008; 24:399-405. [PMID: 18405639 DOI: 10.1051/medsci/2008244399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Calcium ions (Ca2+) play an essential role in cardiac excitation-contraction coupling. Ca2+ is stored in the sarcoplasmic reticulum (SR) and is release via SR-Ca-release channels (ryanodine receptors, RyR2) to trigger contraction. RyR2 is a homotetramer comprising 4 pore-forming subunits. Each subunit is closely associated to regulatory proteins such as calstabine 2 (FKBP12.6), calmodulin, PKA, CamKII, calsequestrin and form a macromolecular complex that plays a critical role in pathological conditions. As a matter of fact, alterations of the channel activity and/or associated regulatory proteins can cause severe functional alterations resulting in arrhythmias and sudden death. Thus, RyR2 represent a novel therapeutic target and the discovery of a new pharmacological agent able to restore a normal RyR2 channel function represents a major challenge in the cardiac field.
Collapse
|
114
|
Ryanoids and imperatoxin affect the modulation of cardiac ryanodine receptors by dihydropyridine receptor Peptide A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2469-79. [PMID: 18722342 DOI: 10.1016/j.bbamem.2008.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 07/11/2008] [Accepted: 07/28/2008] [Indexed: 11/23/2022]
Abstract
Ca(2+)-entry via L-type Ca(2+) channels (DHPR) is known to trigger ryanodine receptor (RyR)-mediated Ca(2+)-release from sarcoplasmic reticulum (SR). The mechanism that terminates SR Ca(2+) release is still unknown. Previous reports showed evidence of Ca(2+)-entry independent inhibition of Ca(2+) sparks by DHPR in cardiomyocytes. A peptide from the DHPR loop II-III (PepA) was reported to modulate isolated RyRs. We found that PepA induced voltage-dependent "flicker block" and transition to substates of fully-activated cardiac RyRs in planar bilayers. Substates had less voltage-dependence than block and did not represent occupancy of a ryanoid site. However, ryanoids stabilized PepA-induced events while PepA increased RyR2 affinity for ryanodol, which suggests cooperative interactions. Ryanodol stabilized Imperatoxin A (IpTx(A)) binding but when IpTx(A) bound first, it prevented ryanodol binding. Moreover, IpTx(A) and PepA excluded each other from their sites. This suggests that IpTx(A) generates a vestibular gate (either sterically or allosterically) that prevents access to the peptides and ryanodol binding sites. Inactivating gate moieties ("ball peptides") from K(+) and Na(+) channels (ShakerB and KIFMK, respectively) induced well resolved slow block and substates, which were sensitive to ryanoids and IpTx(A) and allowed, by comparison, better understanding of PepA action. The RyR2 appears to interact with PepA or ball peptides through a two-step mechanism, reminiscent of the inactivation of voltage-gated channels, which includes binding to outer (substates) and inner (block) vestibular regions in the channel conduction pathway. Our results open the possibility that "ball peptide-like" moieties in RyR2-interacting proteins could modulate SR Ca(2+) release in cells.
Collapse
|
115
|
Györke S, Carnes C. Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease. Pharmacol Ther 2008; 119:340-54. [PMID: 18675300 DOI: 10.1016/j.pharmthera.2008.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 06/17/2008] [Indexed: 12/15/2022]
Abstract
In the heart, Ca(2+) released from the intracellular Ca(2+) storage site, the sarcoplasmic reticulum (SR), is the principal determinant of cardiac contractility. SR Ca(2+) release is controlled by dedicated molecular machinery, composed of the cardiac ryanodine receptor (RyR2) and a number of accessory proteins, including FKBP12.6, calsequestrin (CASQ2), triadin (TRD) and junctin (JN). Acquired and genetic defects in the components of the release channel complex result in a spectrum of abnormal Ca(2+) release phenotypes ranging from arrhythmogenic spontaneous Ca(2+) releases and Ca(2+) alternans to the uniformly diminished systolic Ca(2+) release characteristic of heart failure. In this article, we will present an overview of the structure and molecular components of the SR and Ca(2+) release machinery and its modulation by different intracellular factors, such as Ca(2+) levels inside the SR as well as phosphorylation and redox modification of RyR2s. We will also discuss the relationships between abnormal SR Ca(2+) release and various cardiac disease phenotypes, including, arrhythmias and heart failure, and consider SR Ca(2+) release as a potential therapeutic target.
Collapse
Affiliation(s)
- Sandor Györke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| | | |
Collapse
|
116
|
Gaburjakova J, Gaburjakova M. Effect of luminal Ca2+ on the stability of coupled gating between ryanodine receptors from the rat heart. Acta Physiol (Oxf) 2008; 193:219-27. [PMID: 18208583 DOI: 10.1111/j.1748-1716.2008.01837.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Two or more RYR2 channels reconstituted into a bilayer lipid membrane (BLM) can open and close either independently (single gating) or simultaneously (coupled gating). The coupled gating phenomenon has been suggested as an attractive candidate for a termination mechanism of Ca2+ release from the sarcoplasmic reticulum, required for periodic contraction and relaxation of cardiac muscle. METHODS Using the method of reconstitution of a channel into the BLM, we investigated the potential effect of luminal Ca2+on the stability of the interaction between coupled RYR2 channels isolated from the rat heart. We introduced a new parameter - the coupling stability - for each detected simultaneous opening and closing and further averaged values for experiments performed under identical conditions. RESULTS We found that the coupling stability during simultaneous opening of RYR2 channels was significantly lower in comparison with the simultaneous closing under the same experimental conditions. Furthermore, high concentration of luminal Ca2+ (53 mmol L(-1)) as well as the absence of luminal Ca2+ noticeably destabilized functional coupling between coupled RYR2 channels during opening, in contrast to lower tested concentrations (8-20 mmol L(-1)). CONCLUSIONS We provide experimental evidence that the strength of interaction between coupled RYR2 channels depends on the functional state of the channels. Furthermore, we show, for the first time, the regulation role of luminal Ca2+ in the inter-RYR2 functional coupling in the rat heart.
Collapse
Affiliation(s)
- J Gaburjakova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | |
Collapse
|
117
|
Moment closure for local control models of calcium-induced calcium release in cardiac myocytes. Biophys J 2008; 95:1689-703. [PMID: 18487291 DOI: 10.1529/biophysj.107.125948] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In prior work, we introduced a probability density approach to modeling local control of Ca2+-induced Ca2+ release in cardiac myocytes, where we derived coupled advection-reaction equations for the time-dependent bivariate probability density of subsarcolemmal subspace and junctional sarcoplasmic reticulum (SR) [Ca2+] conditioned on Ca2+ release unit (CaRU) state. When coupled to ordinary differential equations (ODEs) for the bulk myoplasmic and network SR [Ca2+], a realistic but minimal model of cardiac excitation-contraction coupling was produced that avoids the computationally demanding task of resolving spatial aspects of global Ca2+ signaling, while accurately representing heterogeneous local Ca2+ signals in a population of diadic subspaces and junctional SR depletion domains. Here we introduce a computationally efficient method for simulating such whole cell models when the dynamics of subspace [Ca2+] are much faster than those of junctional SR [Ca2+]. The method begins with the derivation of a system of ODEs describing the time-evolution of the moments of the univariate probability density functions for junctional SR [Ca2+] jointly distributed with CaRU state. This open system of ODEs is then closed using an algebraic relationship that expresses the third moment of junctional SR [Ca2+] in terms of the first and second moments. In simulated voltage-clamp protocols using 12-state CaRUs that respond to the dynamics of both subspace and junctional SR [Ca2+], this moment-closure approach to simulating local control of excitation-contraction coupling produces high-gain Ca2+ release that is graded with changes in membrane potential, a phenomenon not exhibited by common pool models. Benchmark simulations indicate that the moment-closure approach is nearly 10,000-times more computationally efficient than corresponding Monte Carlo simulations while leading to nearly identical results. We conclude by applying the moment-closure approach to study the restitution of Ca2+-induced Ca2+ release during simulated two-pulse voltage-clamp protocols.
Collapse
|
118
|
Abstract
Calcium (Ca) is a universal intracellular second messenger. In muscle, Ca is best known for its role in contractile activation. However, in recent years the critical role of Ca in other myocyte processes has become increasingly clear. This review focuses on Ca signaling in cardiac myocytes as pertaining to electrophysiology (including action potentials and arrhythmias), excitation-contraction coupling, modulation of contractile function, energy supply-demand balance (including mitochondrial function), cell death, and transcription regulation. Importantly, although such diverse Ca-dependent regulations occur simultaneously in a cell, the cell can distinguish distinct signals by local Ca or protein complexes and differential Ca signal integration.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology and Cardiovascular Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
119
|
Modulation of SR Ca release by luminal Ca and calsequestrin in cardiac myocytes: effects of CASQ2 mutations linked to sudden cardiac death. Biophys J 2008; 95:2037-48. [PMID: 18469084 DOI: 10.1529/biophysj.107.128249] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiac calsequestrin (CASQ2) is an intrasarcoplasmic reticulum (SR) low-affinity Ca-binding protein, with mutations that are associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT). To better understand how CASQ2 mutants cause CPVT, we expressed two CPVT-linked CASQ2 mutants, a truncated protein (at G112+5X, CASQ2(DEL)) or CASQ2 containing a point mutation (CASQ2(R33Q)), in canine ventricular myocytes and assessed their effects on Ca handling. We also measured CASQ2-CASQ2 variant interactions using fluorescence resonance transfer in a heterologous expression system, and evaluated CASQ2 interaction with triadin. We found that expression of CASQ2(DEL) or CASQ2(R33Q) altered myocyte Ca signaling through two different mechanisms. Overexpressing CASQ2(DEL) disrupted the CASQ2 polymerization required for high capacity Ca binding, whereas CASQ2(R33Q) compromised the ability of CASQ2 to control ryanodine receptor (RyR2) channel activity. Despite profound differences in SR Ca buffering strengths, local Ca release terminated at the same free luminal [Ca] in control cells, cells overexpressing wild-type CASQ2 and CASQ2(DEL)-expressing myocytes, suggesting that a decline in [Ca](SR) is a signal for RyR2 closure. Importantly, disrupting interactions between the RyR2 channel and CASQ2 by expressing CASQ2(R33Q) markedly lowered the [Ca](SR) threshold for Ca release termination. We conclude that CASQ2 in the SR determines the magnitude and duration of Ca release from each SR terminal by providing both a local source of releasable Ca and by effects on luminal Ca-dependent RyR2 gating. Furthermore, two CPVT-inducing CASQ2 mutations, which cause mechanistically different defects in CASQ2 and RyR2 function, lead to increased diastolic SR Ca release events and exhibit a similar CPVT disease phenotype.
Collapse
|
120
|
Iyer V, Armoundas AA. Unraveling the mechanisms of catecholaminergic polymorphic ventricular tachycardia. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; Suppl:6761-4. [PMID: 17959506 DOI: 10.1109/iembs.2006.260941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a heritable arrhythmia unmasked by exertion or stress, characterized by triggered activity and sudden cardiac death in affected patients. In this study we used a mathematical model to simulate two mutations linked toCPVT, in cardiac calsequestrin (CSQN2) and the ryanodine receptor (RyR2). The aim of the present study is to characterize the mutations responsible for CPVT and establish the mechanistic basis for spontaneous Ca2+ release events that lead to delayed afterdepolarizations (DADs) and triggered arrhythmias. Simulated calcium transients in the mutant CSQN2 model recapitulated the smaller amplitude and time to peak, as well as accelerated recovery from inactivation seen in experiments. When simulated CSQN2-mutant myocytes were paced in current-clamp mode, DADs were observed, suggesting that accelerated recovery of RyR2 induced by impaired luminal Ca2(+) sensing can lead to the triggered activity observed in the mutant CSQN2. Simulations of mutant RyR2 suggest that the hyperactive, "leaky" receptors characteristic of reduced FKBP12.6 function may be centrally involved in triggering DADs. These results provide plausible mechanisms by which defects in RyR2 gating may lead to the cellular triggers of CPVT, with implications for the development of targeted therapies.
Collapse
Affiliation(s)
- Vivek Iyer
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02139, USA.
| | | |
Collapse
|
121
|
Abstract
The sarcoplasmic reticulum (SR) in ventricular myocytes contains releasable Ca(2+) for activating cellular contraction. Recent measurements of intra-SR (luminal) Ca(2+) suggest a high diffusive Ca(2+)-mobility constant (D(CaSR)). This could help spatially to unify SR Ca(2+)-content ([Ca(2+)](SRT)) and standardize Ca(2+)-release throughout the cell. But measurements of localized depletions of luminal Ca(2+) (Ca(2+)-blinks), associated with local Ca(2+)-release (Ca(2+)-sparks), suggest D(CaSR) may actually be low. Here we describe a novel method for measuring D(CaSR). Using a cytoplasmic Ca(2+)-fluorophore, we estimate regional [Ca(2+)](SRT) from localized, caffeine-induced SR Ca(2+)-release. Caffeine microperfusion of one end of a guinea pig or rat myocyte diffusively empties the whole SR at a rate indicating D(CaSR) is 8-9 microm(2)/s, up to tenfold lower than previous estimates. Ignoring background SR Ca(2+)-leakage in our measurement protocol produces an artifactually high D(CaSR) (>40 microm(2)/s), which may also explain the previous high values. Diffusion-reaction modeling suggests that a low D(CaSR) would be sufficient to support local SR Ca(2+)-signaling within sarcomeres during excitation-contraction coupling. Low D(CaSR) also implies that [Ca(2+)](SRT) may readily become spatially nonuniform, particularly under pathological conditions of spatially nonuniform Ca(2+)-release. Local control of luminal Ca(2+), imposed by low D(CaSR), may complement the well-established local control of SR Ca(2+)-release by Ca(2+)-channel/ryanodine receptor couplons.
Collapse
|
122
|
Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG, Volpe P, Fill M. Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. ACTA ACUST UNITED AC 2008; 131:325-34. [PMID: 18347081 PMCID: PMC2279168 DOI: 10.1085/jgp.200709907] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that is CSQ2 independent and does not distinguish between luminal Ca2+ and Mg2+. This mechanism modulates the maximal efficacy of cytosolic Ca2+ activation. The second luminal Ca2+ regulatory mechanism is CSQ2 dependent and distinguishes between luminal Ca2+ and Mg2+. It does not depend on CSQ2 oligomerization or CSQ2 monomer Ca2+ binding affinity. The key Ca2+-sensitive step in this mechanism may be the Ca2+-dependent CSQ2 interaction with triadin. The CSQ2-dependent mechanism alters the cytosolic Ca2+ sensitivity of the channel. The R33Q CSQ2 mutant can participate in luminal RyR2 Ca2+ regulation but less effectively than wild-type (WT) CSQ2. CSQ2-L167H does not participate in luminal RyR2 Ca2+ regulation. The disparate actions of these two catecholaminergic polymorphic ventricular tachycardia (CPVT)–linked mutants implies that either alteration or elimination of CSQ2-dependent luminal RyR2 regulation can generate the CPVT phenotype. We propose that the RyR2-resident, CSQ2-independent luminal Ca2+ mechanism may assure that all channels respond robustly to large (>5 μM) local cytosolic Ca2+ stimuli, whereas the CSQ2-dependent mechanism may help close RyR2 channels after luminal Ca2+ falls below ∼0.5 mM.
Collapse
Affiliation(s)
- Jia Qin
- Department of Molecular Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Ríos E, Zhou J, Brum G, Launikonis BS, Stern MD. Calcium-dependent inactivation terminates calcium release in skeletal muscle of amphibians. ACTA ACUST UNITED AC 2008; 131:335-48. [PMID: 18347079 PMCID: PMC2279174 DOI: 10.1085/jgp.200709870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In skeletal muscle of amphibians, the cell-wide cytosolic release of calcium that enables contraction in response to an action potential appears to be built of Ca2+ sparks. The mechanism that rapidly terminates this release was investigated by studying the termination of Ca2+ release underlying sparks. In groups of thousands of sparks occurring spontaneously in membrane-permeabilized frog muscle cells a complex relationship was found between amplitude a and rise time T, which in sparks corresponds to the active time of the underlying Ca2+ release. This relationship included a range of T where a paradoxically decreased with increasing T. Three different methods were used to estimate Ca2+ release flux in groups of sparks of different T. Using every method, it was found that T and flux were inversely correlated, roughly inversely proportional. A simple model in which release sources were inactivated by cytosolic Ca2+ was able to explain the relationship. The predictive value of the model, evaluated by analyzing the variance of spark amplitude, was found to be high when allowance was made for the out-of-focus error contribution to the total variance. This contribution was estimated using a theory of confocal scanning (Ríos, E., N. Shirokova, W.G. Kirsch, G. Pizarro, M.D. Stern, H. Cheng, and A. González. Biophys. J. 2001. 80:169–183), which was confirmed in the present work by simulated line scanning of simulated sparks. Considering these results and other available evidence it is concluded that Ca2+-dependent inactivation, or CDI, provides the crucial mechanism for termination of sparks and cell-wide Ca2+ release in amphibians. Given the similarities in kinetics of release termination observed in cell-averaged records of amphibian and mammalian muscle, and in spite of differences in activation mechanisms, CDI is likely to play a central role in mammals as well. Trivially, an inverse proportionality between release flux and duration, in sparks or in global release of skeletal muscle, maintains constancy of the amount of released Ca2+.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
124
|
Laurita KR, Rosenbaum DS. Cellular mechanisms of arrhythmogenic cardiac alternans. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:332-47. [PMID: 18395246 DOI: 10.1016/j.pbiomolbio.2008.02.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Despite the strong association between mechanical dysfunction of the heart and sudden death due to arrhythmias, the causal relationship is not well understood. Cardiac alternans has been linked to arrhythmogenesis and can be mediated by intracellular calcium handling. Given the integral role intracellular calcium plays in contractile function, calcium-mediated alternans may represent an important mechanistic link between mechanical dysfunction and electrical instability. This relationship, however, is not well understood due to complex feedback between membrane currents, intracellular calcium, and contraction. This manuscript describes the cellular mechanisms of cardiac alternans. Through several pathways, calcium transient alternans is coupled to repolarization alternans that can form a substrate for reentrant excitation. Abnormal intracellular calcium cycling, either impaired release or impaired reuptake of sarcoplasmic reticulum calcium, is a cellular mechanism of calcium transient alternans. Thus, cardiac alternans is an important mechanistic link between mechanical dysfunction and sudden cardiac death.
Collapse
Affiliation(s)
- Kenneth R Laurita
- The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
125
|
Partial inhibition of sarcoplasmic reticulum ca release evokes long-lasting ca release events in ventricular myocytes: role of luminal ca in termination of ca release. Biophys J 2007; 94:1867-79. [PMID: 18024505 DOI: 10.1529/biophysj.107.114694] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cardiac myocytes, local sarcoplasmic reticulum (SR) Ca depletion during Ca sparks is believed to play an important role in the termination of SR Ca release. We tested whether decreasing the rate of SR Ca depletion by partially inhibiting SR Ca release channels (ryanodine receptors) delays Ca spark termination. In permeabilized cat ventricular myocytes, 0.7 mM tetracaine caused almost complete Ca spark inhibition followed by a recovery significantly below control level. The recovery was associated with increased SR Ca load and increased Ca spark duration. Additionally, SR Ca release events lasting several hundred milliseconds occurred consistently. These events had a significantly lower initial Ca release flux followed by a stable plateau, indicating delayed release termination and maintained SR Ca load. Increasing SR Ca load (without inhibiting SR Ca release rate) or decreasing SR Ca release rate (without increasing SR Ca load) both induced only a small increase in spark duration. These results show that the combination of decreased release flux and increased SR Ca load has synergistic effects and exerts major changes on the termination of Ca release events. Long-lasting Ca release events may originate from highly interconnected release junctions where Ca diffusion from neighboring sites partially compensates Ca depletion, thereby delaying SR Ca-dependent termination. Eventually, these events terminate by luminal Ca-independent mechanisms, such as inactivation, adaptation, or stochastic attrition.
Collapse
|
126
|
Laurita KR, Rosenbaum DS. Mechanisms and potential therapeutic targets for ventricular arrhythmias associated with impaired cardiac calcium cycling. J Mol Cell Cardiol 2007; 44:31-43. [PMID: 18061204 DOI: 10.1016/j.yjmcc.2007.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
The close relationship between life-threatening ventricular arrhythmias and contractile dysfunction in the heart implicates intracellular calcium cycling as an important underlying mechanism of arrhythmogenesis. Despite this close association, however, the mechanisms of arrhythmogenesis attributable to impaired calcium cycling are not fully appreciated or understood. In this report we review some of the current thinking regarding arrhythmia mechanisms associated with either abnormal impulse initiation (i.e. arrhythmia triggers) or impulse propagation (i.e. arrhythmia substrates). In all cases, the mechanisms are primarily related to dysfunction of calcium regulatory proteins associated with the sarcomere. These findings highlight the broad scope of arrhythmias associated with abnormal calcium cycling, and provide a basis for a causal relationship between cardiac electrical instability and contractile dysfunction. Moreover, calcium cycling proteins may provide much needed targets for novel antiarrhythmic therapies.
Collapse
Affiliation(s)
- Kenneth R Laurita
- The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | |
Collapse
|
127
|
Györke S, Hagen BM, Terentyev D, Lederer WJ. Chain-reaction Ca(2+) signaling in the heart. J Clin Invest 2007; 117:1758-62. [PMID: 17607353 PMCID: PMC1904329 DOI: 10.1172/jci32496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in Ca(2+) -handling proteins in the heart have been linked to exercise-induced sudden cardiac death. The best characterized of these have been mutations in the cardiac Ca(2+) release channel known as the ryanodine receptor type 2 (RyR2). RyR2 mutations cause "leaky" channels, resulting in diastolic Ca(2+) leak from the sarcoplasmic reticulum (SR) that can trigger fatal cardiac arrhythmias during stress. In this issue of the JCI, Song et al. show that mutations in the SR Ca(2+)-binding protein calsequestrin 2 (CASQ2) in mice result not only in reduced CASQ2 expression but also in a surprising, compensatory elevation in expression of both the Ca(2+)-binding protein calreticulin and RyR2, culminating in premature Ca(2+) release from cardiac myocytes and stress-induced arrhythmia (see the related article beginning on page 1814). In the context of these findings and other recent reports studying CASQ2 mutations, we discuss how CASQ2 influences the properties of Ca(2+)-dependent regulation of RyR2 and how this contributes to cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Sandor Györke
- Department of Physiology and Cell Biology and OSU Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
128
|
Belevych A, Kubalova Z, Terentyev D, Hamlin RL, Carnes CA, Györke S. Enhanced ryanodine receptor-mediated calcium leak determines reduced sarcoplasmic reticulum calcium content in chronic canine heart failure. Biophys J 2007; 93:4083-92. [PMID: 17827226 PMCID: PMC2084235 DOI: 10.1529/biophysj.107.114546] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated the role of elevated sarcoplasmic reticulum (SR) Ca(2+) leak through ryanodine receptors (RyR2s) in heart failure (HF)-related abnormalities of intracellular Ca(2+) handling, using a canine model of chronic HF. The cytosolic Ca(2+) transients were reduced in amplitude and slowed in duration in HF myocytes compared with control, changes paralleled by a dramatic reduction in the total SR Ca(2+) content. Direct measurements of [Ca(2+)](SR) in both intact and permeabilized cardiac myocytes demonstrated that SR luminal [Ca(2+)] is markedly lowered in HF, suggesting that alterations in Ca(2+) transport rather than fractional SR volume reduction accounts for the diminished Ca(2+) release capacity of SR in HF. SR Ca(2+) ATPase (SERCA2)-mediated SR Ca(2+) uptake rate was not significantly altered, and Na(+)/Ca(2+) exchange activity was accelerated in HF myocytes. At the same time, SR Ca(2+) leak, measured directly as a loss of [Ca(2+)](SR) after inhibition of SERCA2 by thapsigargin, was markedly enhanced in HF myocytes. Moreover, the reduced [Ca(2+)](SR) in HF myocytes could be nearly completely restored by the RyR2 channel blocker ruthenium red. The effects of HF on cytosolic and SR luminal Ca(2+) signals could be reasonably well mimicked by the RyR2 channel agonist caffeine. Taken together, these results suggest that RyR2-mediated SR Ca(2+) leak is a major factor in the abnormal intracellular Ca(2+) handling that critically contributes to the reduced SR Ca(2+) content of failing cardiomyocytes.
Collapse
Affiliation(s)
- Andriy Belevych
- Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
129
|
Thul R, Smith GD, Coombes S. A bidomain threshold model of propagating calcium waves. J Math Biol 2007; 56:435-63. [PMID: 17786446 DOI: 10.1007/s00285-007-0123-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/26/2007] [Indexed: 11/30/2022]
Abstract
We present a bidomain fire-diffuse-fire model that facilitates mathematical analysis of propagating waves of elevated intracellular calcium (Ca(2+)) in living cells. Modeling Ca(2+) release as a threshold process allows the explicit construction of traveling wave solutions to probe the dependence of Ca(2+) wave speed on physiologically important parameters such as the threshold for Ca(2+) release from the endoplasmic reticulum (ER) to the cytosol, the rate of Ca(2+) resequestration from the cytosol to the ER, and the total [Ca(2+)] (cytosolic plus ER). Interestingly, linear stability analysis of the bidomain fire-diffuse-fire model predicts the onset of dynamic wave instabilities leading to the emergence of Ca(2+) waves that propagate in a back-and-forth manner. Numerical simulations are used to confirm the presence of these so-called 'tango waves' and the dependence of Ca(2+) wave speed on the total [Ca(2+)].
Collapse
Affiliation(s)
- R Thul
- Department of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | | |
Collapse
|
130
|
Guo T, Ai X, Shannon TR, Pogwizd SM, Bers DM. Intra-sarcoplasmic reticulum free [Ca2+] and buffering in arrhythmogenic failing rabbit heart. Circ Res 2007; 101:802-10. [PMID: 17704210 DOI: 10.1161/circresaha.107.152140] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smaller Ca2+ transients and systolic dysfunction in heart failure (HF) can be largely explained by reduced total sarcoplasmic reticulum (SR) Ca2+ content ([Ca]SRT). However, it is unknown whether low [Ca]SRT is manifest as reduced: (1) intra-SR free [Ca2+] ([Ca2+]SR), (2) intra-SR Ca2+ buffering, or (3) SR volume (as percentage of cell volume). Here we assess these possibilities in a well-characterized rabbit model of nonischemic HF. In HF versus control myocytes, diastolic [Ca2+]SR is similar at 0.1-Hz stimulation, but the increase in both [Ca2+]SR and [Ca]SRT as frequency increases to 1 Hz is blunted in HF. Direct measurement of intra-SR Ca2+ buffering (by simultaneous [Ca2+]SR and [Ca]SRT measurement) showed no change in HF. Diastolic [Ca]SRT changes paralleled [Ca2+]SR, suggesting that SR volume is not appreciably altered in HF. Thus, reduced [Ca]SRT in HF is associated with comparably reduced [Ca2+]SR. Fractional [Ca2+]SR depletion increased progressively with stimulation frequency in control but was blunted in HF (consistent with the blunted force-frequency relationship in HF). By studying a range of [Ca2+]SR, analysis showed that for a given [Ca]SR, fractional SR Ca2+ release was actually higher in HF. For both control and HF myocytes, SR Ca2+ release terminated when [Ca2+]SR dropped to 0.3 to 0.5 mmol/L during systole, consistent with a role for declining [Ca2+]SR in the dynamic shutoff of SR Ca2+ release. We conclude that low total SR Ca2+ content in HF, and reduced SR Ca2+ release, is attributable to reduced [Ca2+]SR, not to alterations in SR volume or Ca2+ buffering capacity.
Collapse
Affiliation(s)
- Tao Guo
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
131
|
Gergs U, Berndt T, Buskase J, Jones LR, Kirchhefer U, Müller FU, Schlüter KD, Schmitz W, Neumann J. On the role of junctin in cardiac Ca2+ handling, contractility, and heart failure. Am J Physiol Heart Circ Physiol 2007; 293:H728-34. [PMID: 17400717 DOI: 10.1152/ajpheart.01187.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Junctin is a transmembrane protein located at the cardiac junctional sarcoplasmic reticulum (SR) and forms a quaternary complex with the Ca2+ release channel, triadin and calsequestrin. Impaired protein interactions within this complex may alter the Ca2+ sensitivity of the Ca2+ release channel and may lead to cardiac dysfunction, including hypertrophy, depressed contractility, and abnormal Ca2+ transients. To study the expression of junctin and, for comparison, triadin, in heart failure, we measured the levels of these proteins in SR from normal and failing human hearts. Junctin was below our level of detection in SR membranes from failing human hearts, and triadin was downregulated by 22%. To better understand the role of junctin in the regulation of Ca2+ homeostasis and contraction of cardiac myocytes, we used an adenoviral approach to overexpress junctin in isolated rat cardiac myocytes. A recombinant adenovirus encoding the green fluorescent protein served as a control. Infection of myocytes with the junctin-expressing virus resulted in an increased RNA and protein expression of junctin. Ca2+ transients showed a decreased maximum Ca2+ amplitude, and contractility of myocytes was depressed. Our results demonstrate that an increased expression of junctin is associated with an impaired Ca2+ homeostasis. Downregulation of junctin in human heart failure may thus be a compensatory mechanism.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Strasse 4, 06112 Halle/Saale, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Curtis TM, Tumelty J, Stewart MT, Arora AR, Lai FA, McGahon MK, Scholfield CN, McGeown JG. Modification of smooth muscle Ca2+-sparks by tetracaine: evidence for sequential RyR activation. Cell Calcium 2007; 43:142-54. [PMID: 17574671 DOI: 10.1016/j.ceca.2007.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 03/19/2007] [Accepted: 04/29/2007] [Indexed: 11/26/2022]
Abstract
Spontaneous Ca(2+)-sparks were imaged using confocal line scans of fluo-4 loaded myocytes in retinal arterioles. Tetracaine produced concentration-dependent decreases in spark frequency, and modified the spatiotemporal characteristics of residual sparks. Tetracaine (10 microM) reduced the rate of rise but prolonged the average rise time so that average spark amplitude was unaltered. The mean half-time of spark decay was also unaffected, suggesting that spark termination, although delayed, remained well synchronized. Sparks spread transversely across the myocytes in these vessels, and the speed of spread within individual sparks was slowed by approximately 60% in 10 microM tetracaine, as expected if the spark was propagated across the cell but the average P(o) for RyRs was reduced. Staining of isolated vessels with BODIPY-ryanodine and di-4-ANEPPS showed that RyRs were located both peripherally, adjacent to the plasma membrane, and in transverse extensions of the SR from one side of the cell to the other. Immuno-labelling of retinal flat mounts demonstrated the presence RyR(2) in arteriole smooth muscle but not RyR(1). We conclude that Ca(2+)-sparks in smooth muscle can result from sequential activation of RyRs distributed over an area of several microm(2), rather than from tightly clustered channels as in striated muscle.
Collapse
Affiliation(s)
- Tim M Curtis
- Centre for Vision Science, School of Biomedical Science, Queen's University of Belfast, Institute of Clinical Science, Royal Victoria Hospital, Belfast, UK
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
Ryanodine receptors (RyRs)/Ca2+ release channels, on the endoplasmic and sarcoplasmic reticulum of most cell types, are required for intracellular Ca2+ release involved in diverse cellular functions, including muscle contraction and neurotransmitter release. The large cytoplasmic domain of the RyR serves as a scaffold for proteins that bind to and modulate the channel's function and that comprise a macromolecular signaling complex. These proteins include calstabins [FK506-binding proteins (FKBPs)], calmodulin (CaM), phosphodiesterase, kinases, phosphatases, and their cognate targeting proteins. This review focuses on recent progress in the understanding of RyR regulation and disease mechanisms that are associated with channel dysfunction.
Collapse
Affiliation(s)
- Ran Zalk
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
134
|
Livshitz LM, Rudy Y. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am J Physiol Heart Circ Physiol 2007; 292:H2854-66. [PMID: 17277017 PMCID: PMC2274911 DOI: 10.1152/ajpheart.01347.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca(2+) transient (CaT). Because of experimental difficulty in independently controlling the Ca(2+) and electrical subsystems, mathematical modeling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1) CaT alternans results from refractoriness of the sarcoplasmic reticulum Ca(2+) release system; alternation of the L-type calcium current has a negligible effect; 2) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger and underlies AP duration (APD) alternans; 3) increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; and 4) increase of the rapid delayed rectifier current (I(Kr)) also suppresses APD alternans but without suppressing CaT alternans. Thus CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans) while I(Kr) enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and I(Kr) enhancement as a possible antiarrhythmic intervention.
Collapse
Affiliation(s)
- Leonid M Livshitz
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, Missouri 63130-4899, USA
| | | |
Collapse
|
135
|
Parthimos D, Haddock RE, Hill CE, Griffith TM. Dynamics of a three-variable nonlinear model of vasomotion: comparison of theory and experiment. Biophys J 2007; 93:1534-56. [PMID: 17483163 PMCID: PMC1948040 DOI: 10.1529/biophysj.107.106278] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of pharmacological interventions that modulate Ca(2+) homeodynamics and membrane potential in rat isolated cerebral vessels during vasomotion (i.e., rhythmic fluctuations in arterial diameter) were simulated by a third-order system of nonlinear differential equations. Independent control variables employed in the model were [Ca(2+)] in the cytosol, [Ca(2+)] in intracellular stores, and smooth muscle membrane potential. Interactions between ryanodine- and inositol 1,4,5-trisphosphate-sensitive intracellular Ca(2+) stores and transmembrane ion fluxes via K(+) channels, Cl(-) channels, and voltage-operated Ca(2+) channels were studied by comparing simulations of oscillatory behavior with experimental measurements of membrane potential, intracellular free [Ca(2+)] and vessel diameter during a range of pharmacological interventions. The main conclusion of the study is that a general model of vasomotion that predicts experimental data can be constructed by a low-order system that incorporates nonlinear interactions between dynamical control variables.
Collapse
Affiliation(s)
- D Parthimos
- Wales Heart Research Institute, Department of Diagnostic Radiology, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|
136
|
Wilson LD, Wan X, Rosenbaum DS. Cellular alternans: a mechanism linking calcium cycling proteins to cardiac arrhythmogenesis. Ann N Y Acad Sci 2007; 1080:216-34. [PMID: 17132786 DOI: 10.1196/annals.1380.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Essentially all previous research on alternans has been restricted to normal myocardium, whereas sudden cardiac death (SCD) occurs most commonly in patients with ventricular dysfunction (i.e., heart failure), which is associated with marked disruption of proteins responsible for normal calcium cycling in myocytes. Several lines of evidence from studies in normal hearts suggest a link between impaired calcium cycling which characterizes ventricular mechanical dysfunction and impaired calcium cycling that is responsible for alternans. In normal myocardium, cells which exhibit the slowest calcium cycling, and not the slowest repolarization, are most susceptible to alternans. Decreased expression of key calcium cycling proteins is observed in alternans-prone cells. Sarcoplasmic reticulum ATPase (SERCA2a) expression is decreased, suggesting a mechanism for the slower sarcoplasmic reticulum (SR) calcium reuptake observed in alternans-prone cells. In addition, diminished ryanodine receptor (RyR) function leading to abnormal calcium release from the SR is also linked to cellular alternans. Although impaired contractile function clearly predisposes to SCD, the mechanisms linking mechanical to electrophysiological dysfunction in the heart are unclear. We propose that cellular calcium alternans may be an important mechanism linking mechanical dysfunction to cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Lance D Wilson
- MetroHealth Campus, Case Western Reserve University, 2500 MetroHealth Drive, Hamann 330, Cleveland, OH 44109-1998, USA
| | | | | |
Collapse
|
137
|
Picht E, Zima AV, Blatter LA, Bers DM. SparkMaster: automated calcium spark analysis with ImageJ. Am J Physiol Cell Physiol 2007; 293:C1073-81. [PMID: 17376815 DOI: 10.1152/ajpcell.00586.2006] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca sparks are elementary Ca-release events from intracellular Ca stores that are observed in virtually all types of muscle. Typically, Ca sparks are measured in the line-scan mode with confocal laser-scanning microscopes, yielding two-dimensional images (distance vs. time). The manual analysis of these images is time consuming and prone to errors as well as investigator bias. Therefore, we developed SparkMaster, an automated analysis program that allows rapid and reliable spark analysis. The underlying analysis algorithm is adapted from the threshold-based standard method of spark analysis developed by Cheng et al. (Biophys J 76: 606-617, 1999) and is implemented here in the freely available image-processing software ImageJ. SparkMaster offers a graphical user interface through which all analysis parameters and output options are selected. The analysis includes general image parameters (number of detected sparks, spark frequency) and individual spark parameters (amplitude, full width at half-maximum amplitude, full duration at half-maximum amplitude, full width, full duration, time to peak, maximum steepness of spark upstroke, time constant of spark decay). We validated the algorithm using images with synthetic sparks embedded into backgrounds with different signal-to-noise ratios to determine an analysis criteria at which a high sensitivity is combined with a low frequency of false-positive detections. Finally, we applied SparkMaster to analyze experimental data of sparks measured in intact and permeabilized ventricular cardiomyocytes, permeabilized mammalian skeletal muscle, and intact smooth muscle cells. We found that SparkMaster provides a reliable, easy to use, and fast way of analyzing Ca sparks in a wide variety of experimental conditions.
Collapse
Affiliation(s)
- Eckard Picht
- Dept. of Physiology, Loyola Univ. Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
138
|
Jacobsen JCB, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein-Rathlou NH. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells. Am J Physiol Heart Circ Physiol 2007; 293:H215-28. [PMID: 17369468 DOI: 10.1152/ajpheart.00726.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro, alpha-adrenoreceptor stimulation of rat mesenteric small arteries often leads to a rhythmic change in wall tension, i.e., vasomotion. Within the individual smooth muscle cells of the vascular wall, vasomotion is often preceded by a period of asynchronous calcium waves. Abruptly, these low-frequency waves may transform into high-frequency whole cell calcium oscillations. Simultaneously, multiple cells synchronize, leading to rhythmic generation of tension. We present a mathematical model of vascular smooth muscle cells that aims at characterizing this sudden transition. Simulations show calcium waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium channels on the cell surface, stimulating a synchronized release of SR calcium and inducing the shift from waves to whole cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion.
Collapse
Affiliation(s)
- Jens Christian Brings Jacobsen
- Biomedical Institute, Division of Renal and Vascular Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
139
|
Dirksen WP, Lacombe VA, Chi M, Kalyanasundaram A, Viatchenko-Karpinski S, Terentyev D, Zhou Z, Vedamoorthyrao S, Li N, Chiamvimonvat N, Carnes CA, Franzini-Armstrong C, Györke S, Periasamy M. A mutation in calsequestrin, CASQ2D307H, impairs Sarcoplasmic Reticulum Ca2+ handling and causes complex ventricular arrhythmias in mice. Cardiovasc Res 2007; 75:69-78. [PMID: 17449018 PMCID: PMC2717009 DOI: 10.1016/j.cardiores.2007.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/19/2007] [Accepted: 03/02/2007] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE A naturally-occurring mutation in cardiac calsequestrin (CASQ2) at amino acid 307 was discovered in a highly inbred family and hypothesized to cause Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The goal of this study was to establish a causal link between CASQ2(D307H) and the CPVT phenotype using an in vivo model. METHODS AND RESULTS Cardiac-specific expression of the CASQ2(D307H) transgene was achieved using the alpha-MHC promoter. Multiple transgenic (TG) mouse lines expressing CASQ2(D307H) from 2- to 6-fold possess structurally normal hearts without any sign of hypertrophy. The hearts displayed normal ventricular function. Myocytes isolated from TG mice had diminished I(Ca)-induced Ca2+ transient amplitude and duration, as well as increased Ca2+ spark frequency. These myocytes, when exposed to isoproterenol and caffeine, displayed disturbances in their rhythmic Ca2+ oscillations and membrane potential, and delayed afterdepolarizations. ECG monitoring revealed that TG mice challenged with isoproterenol and caffeine developed complex ventricular arrhythmias, including non-sustained polymorphic ventricular tachycardia. CONCLUSIONS The findings of the present study demonstrate that expression of mutant CASQ2(D307H) in the mouse heart results in abnormal myocyte Ca2+ handling and predisposes to complex ventricular arrhythmias similar to the CPVT phenotype observed in human patients.
Collapse
MESH Headings
- Animals
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Signaling
- Calsequestrin/genetics
- Cardiotonic Agents/pharmacology
- Death, Sudden, Cardiac/etiology
- Electrocardiography
- Isoproterenol/pharmacology
- Mice
- Mice, Transgenic
- Microscopy, Confocal
- Models, Animal
- Mutation, Missense
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Sarcoplasmic Reticulum/metabolism
- Tachycardia, Ventricular/genetics
- Tachycardia, Ventricular/metabolism
- Tachycardia, Ventricular/pathology
Collapse
Affiliation(s)
- Wessel P. Dirksen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | | | - Mei Chi
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | | | - Serge Viatchenko-Karpinski
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Zhixiang Zhou
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Srikanth Vedamoorthyrao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Ning Li
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | | | | | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Sandor Györke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- Corresponding Author: Dept. of Physiology and Cell Biology, 304 Hamilton Hall, 1645 Neil Ave, The Ohio State University College of Medicine, Columbus, OH 43210. Tel.: 614-292-2310; Fax: 614-292-4888;
| |
Collapse
|
140
|
Jung C, Zima AV, Szentesi P, Jona I, Blatter LA, Niggli E. Ca2+ release from the sarcoplasmic reticulum activated by the low affinity Ca2+ chelator TPEN in ventricular myocytes. Cell Calcium 2007; 41:187-94. [PMID: 16920191 DOI: 10.1016/j.ceca.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 06/29/2006] [Indexed: 11/27/2022]
Abstract
The Ca2+ content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca2+ release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca2+ within the SR with the membrane-permeant low affinity Ca2+ chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca2+ content and SR Ca2+ depletion can influence Ca2+ release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca2+ release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca2+ releases increased in frequency and developed into cell-wide Ca2+ waves. SR Ca2+ load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40microTPEN did not significantly inhibit the SR-Ca2+-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca2+ chelator in intracellular Ca2+ stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca2+ leak from the SR leading to its Ca2+ depletion. Lowering of SR Ca2+ content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.
Collapse
Affiliation(s)
- C Jung
- Department of Physiology, University of Bern, Buehlplatz 5, 3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
141
|
Williams GSB, Huertas MA, Sobie EA, Jafri MS, Smith GD. A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes. Biophys J 2007; 92:2311-28. [PMID: 17237200 PMCID: PMC1864826 DOI: 10.1529/biophysj.106.099861] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a probability density approach to modeling localized Ca2+ influx via L-type Ca2+ channels and Ca2+-induced Ca2+ release mediated by clusters of ryanodine receptors during excitation-contraction coupling in cardiac myocytes. Coupled advection-reaction equations are derived relating the time-dependent probability density of subsarcolemmal subspace and junctional sarcoplasmic reticulum [Ca2+] conditioned on "Ca2+ release unit" state. When these equations are solved numerically using a high-resolution finite difference scheme and the resulting probability densities are coupled to ordinary differential equations for the bulk myoplasmic and sarcoplasmic reticulum [Ca2+], a realistic but minimal model of cardiac excitation-contraction coupling is produced. Modeling Ca2+ release unit activity using this probability density approach avoids the computationally demanding task of resolving spatial aspects of global Ca2+ signaling, while accurately representing heterogeneous local Ca2+ signals in a population of diadic subspaces and junctional sarcoplasmic reticulum depletion domains. The probability density approach is validated for a physiologically realistic number of Ca2+ release units and benchmarked for computational efficiency by comparison to traditional Monte Carlo simulations. In simulated voltage-clamp protocols, both the probability density and Monte Carlo approaches to modeling local control of excitation-contraction coupling produce high-gain Ca2+ release that is graded with changes in membrane potential, a phenomenon not exhibited by so-called "common pool" models. However, a probability density calculation can be significantly faster than the corresponding Monte Carlo simulation, especially when cellular parameters are such that diadic subspace [Ca2+] is in quasistatic equilibrium with junctional sarcoplasmic reticulum [Ca2+] and, consequently, univariate rather than multivariate probability densities may be employed.
Collapse
Affiliation(s)
- George S B Williams
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187, USA
| | | | | | | | | |
Collapse
|
142
|
Iyer V, Hajjar RJ, Armoundas AA. Mechanisms of abnormal calcium homeostasis in mutations responsible for catecholaminergic polymorphic ventricular tachycardia. Circ Res 2007; 100:e22-31. [PMID: 17234962 DOI: 10.1161/01.res.0000258468.31815.42] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia is a heritable arrhythmia unmasked by exertion or stress and is characterized by triggered activity and sudden cardiac death. In this study, we simulated mutations in 2 genes linked to catecholaminergic polymorphic ventricular tachycardia, the first located in calsequestrin (CSQN2) and the second in the ryanodine receptor (RyR2). The aim of the study was to investigate the mechanistic basis for spontaneous Ca2+ release events that lead to delayed afterdepolarizations in affected patients. Sarcoplasmic reticulum (SR) luminal Ca2+ sensing was incorporated into a model of the human ventricular myocyte, and CSQN2 mutations were modeled by simulating disrupted RyR2 luminal Ca2+ sensing. In voltage-clamp mode, the mutant CSQN2 model recapitulated the smaller calcium transients, smaller time to peak calcium transient, and accelerated recovery from inactivation seen in experiments. In current clamp mode, in the presence of beta stimulation, we observed delayed afterdepolarizations, suggesting that accelerated recovery of RyR2 induced by impaired luminal Ca2+ sensing underlies the triggered activity observed in mutant CSQN2-expressing myocytes. In current-clamp mode, in a model of mutant RyR2 that is characterized by reduced FKBP12.6 binding to the RyR2 on beta stimulation, the impaired coupled gating characteristic of these mutations was modeled by reducing cooperativity of RyR2 activation. In current-clamp mode, the mutant RyR2 model exhibited increased diastolic RyR2 open probability that resulted in formation of delayed afterdepolarizations. In conclusion, these minimal order models of mutant CSQN2 and RyR2 provide plausible mechanisms by which defects in RyR2 gating may lead to the cellular triggers for arrhythmia, with implications for the development of targeted therapy.
Collapse
Affiliation(s)
- Vivek Iyer
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
143
|
|
144
|
Collis LP, Meyers MB, Zhang J, Phoon CKL, Sobie EA, Coetzee WA, Fishman GI. Expression of a sorcin missense mutation in the heart modulates excitation‐contraction coupling. FASEB J 2006; 21:475-87. [PMID: 17130302 DOI: 10.1096/fj.06-6292com] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sorcin is a Ca2+ binding protein implicated in the regulation of intracellular Ca2+ cycling and cardiac excitation-contraction coupling. Structural and human genetic studies suggest that a naturally occurring sequence variant encoding L112-sorcin disrupts an E-F hand Ca2+ binding domain and may be responsible for a heritable form of hypertension and hypertrophic heart disease. We generated transgenic mice overexpressing L112-sorcin in the heart and characterized the effects on Ca2+ regulation and cardiac function both in vivo and in dissociated cardiomyocytes. Hearts of sorcin(F112L) transgenic mice were mildly dilated but ventricular function was preserved and systemic blood pressure was normal. Sorcin(F112L) myocytes were smaller than control cells and displayed complex alterations in Ca2+ regulation and contractility, including a slowed inactivation of L-type Ca2+ current, enhanced Ca2+ spark width, duration, and frequency, and increased Na+-Ca2+ exchange activity. In contrast, mice with cardiac-specific overexpression of wild-type sorcin displayed directionally opposite effects on L-type Ca2+ channel function and Ca2+ spark behavior. These data further define the role of sorcin in cardiac excitation-contraction coupling and highlight its negative regulation of SR calcium release. Our results also suggest that additional factors may be responsible for the development of cardiac hypertrophy and hypertension in humans expressing the L112-sorcin sequence variant.
Collapse
Affiliation(s)
- Leon P Collis
- Division of Pediatric Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
SOBIE ERICA, SONG LONGSHENG, LEDERER W. Restitution of Ca(2+) release and vulnerability to arrhythmias. J Cardiovasc Electrophysiol 2006; 17 Suppl 1:S64-S70. [PMID: 16686684 PMCID: PMC1540408 DOI: 10.1111/j.1540-8167.2006.00385.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New information has recently been obtained along two essentially parallel lines of research: investigations into the fundamental mechanisms of Ca(2+)-induced Ca(2+) release (CICR) in heart cells, and analyses of the factors that control the development of unstable rhythms such as repolarization alternans. These lines of research are starting to converge such that we can begin to understand unstable and potentially arrhythmogenic cardiac dynamics in terms of the underlying mechanisms governing not only membrane depolarization and repolarization but also the complex bidirectional interactions between electrical and Ca(2+) signaling in heart cells. In this brief review, we discuss the progress that has recently been made in understanding the factors that control the beat-to-beat regulation of cardiac Ca(2+) release and attempt to place these results within a larger context. In particular, we discuss factors that may contribute to unstable Ca(2+) release and speculate about how instability in CICR may contribute to the development of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- ERIC A. SOBIE
- From the Division of Pediatric Cardiology, New York University School of Medicine, New York, New York, and
| | - LONG-SHENG SONG
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland, USA
| | - W.J. LEDERER
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland, USA
- Address for correspondence: W.J. Lederer, Ph.D., Medical Biotechnology Center, 725 W. Lombard Street, Baltimore, MD 21201, USA. Fax: (410) 510-1545; E-mail:
| |
Collapse
|
146
|
McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC. Ca2+ microdomains in smooth muscle. Cell Calcium 2006; 40:461-93. [PMID: 17069885 DOI: 10.1016/j.ceca.2006.08.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 02/03/2023]
Abstract
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.
Collapse
Affiliation(s)
- John G McCarron
- Department of Physiology and Pharmacology, University of Strathclyde, SIPBS, Glasgow, UK.
| | | | | | | | | |
Collapse
|
147
|
Valent I, Zahradníková A, Pavelková J, Zahradník I. Spatial and temporal Ca2+, Mg2+, and ATP2- dynamics in cardiac dyads during calcium release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:155-66. [PMID: 17034755 DOI: 10.1016/j.bbamem.2006.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/10/2006] [Accepted: 08/17/2006] [Indexed: 11/16/2022]
Abstract
We have constructed a three-dimensional reaction-diffusion model of the mammalian cardiac calcium release unit. We analyzed effects of diffusion coefficients, single channel current amplitude, density of RyR channels, and reaction kinetics of ATP(2-) with Ca(2+) and Mg(2+) ions on spatiotemporal concentration profiles of Ca(2+), Mg(2+), and ATP(2-) in the dyadic cleft during Ca(2+) release. The model revealed that Ca(2+) concentration gradients persist near RyRs in the steady state. Even with low number of open RyRs, peak [Ca(2+)] in the dyadic space reached values similar to estimates of luminal [Ca(2+)] in approximately 1 ms, suggesting that during calcium release the Ca(2+) gradient moves from the cisternal membrane towards the boundary of the dyadic space with the cytosol. The released Ca(2+) bound to ATP(2-), and thus substantially decreased ATP(2-) concentration in the dyadic space. The released Ca(2+) could also replace Mg(2+) in its complex with ATP(2-) during first milliseconds of release if dissociation of MgATP was fast. The results suggest that concentration changes of Ca(2+), Mg(2+), and ATP(2-) might be large and fast enough to reduce dyadic RyR activity. Thus, under physiological conditions, termination of calcium release may be facilitated by the synergic effect of the construction and chemistry of mammalian cardiac dyads.
Collapse
Affiliation(s)
- Ivan Valent
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
148
|
Picht E, DeSantiago J, Blatter LA, Bers DM. Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res 2006; 99:740-8. [PMID: 16946134 DOI: 10.1161/01.res.0000244002.88813.91] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac alternans are thought to be a precursor to life-threatening arrhythmias. Previous studies suggested that alterations in sarcoplasmic reticulum (SR) Ca2+ content are either causative or not associated with myocyte Ca2+ alternans. However, those studies used indirect measures of SR Ca2+. Here we used direct continuous measurement of intra-SR free [Ca2+] ([Ca2+]SR) (using Fluo5N) during frequency-dependent Ca2+ alternans in rabbit ventricular myocytes. We tested the hypothesis that alternating [Ca2+]SR is required for Ca2+ alternans. Amplitudes of [Ca2+]SR depletions alternated in phase with cytosolic Ca2+ transients and contractions. Some cells showed clear alternation in diastolic [Ca2+]SR during alternans, with higher [Ca2+]SR before the larger SR Ca2+ releases. However, the extent of SR Ca2+ release during the small beats was smaller than expected for the modest decrease in [Ca2+]SR. In other cells, clear Ca2+ alternans was observed without alternations in diastolic [Ca2+]SR. Additionally, alternating cells were observed, in which diastolic [Ca2+]SR fluctuations occurred interspersed by depletions in which the amplitude was unrelated to the preceding diastolic [Ca2+]SR. In all forms of alternans, the SR Ca2+ release rate was higher during large depletions than during small depletions. Although [Ca2+]SR exerts major influence on SR Ca2+ release, alternations in [Ca2+](SR) are not required for Ca2+ alternans to occur. Rather, it seems likely that some other factor, such as ryanodine receptor availability after a prior beat (eg, recovery from inactivation), is of greater importance in initiating frequency-induced Ca2+ alternans. However, once such a weak SR Ca2+ release occurs, it can result in increased [Ca2+]SR and further enhance SR Ca2+ release at the next beat. In this way, diastolic [Ca2+]SR alternans can enhance frequency-induced Ca2+ alternans, even if they initiate by other means.
Collapse
Affiliation(s)
- Eckard Picht
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 S First Ave, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
149
|
Ríos E, Launikonis BS, Royer L, Brum G, Zhou J. The elusive role of store depletion in the control of intracellular calcium release. J Muscle Res Cell Motil 2006; 27:337-50. [PMID: 16933025 DOI: 10.1007/s10974-006-9082-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
The contractile cycle of striated muscles, skeletal and cardiac, is controlled by a cytosolic [Ca2+] transient that requires rapid movements of the ion through channels in the sarcoplasmic reticulum (SR). A functional signature of these channels is their closure after a stereotyped time lapse of Ca2+ release. In cardiac muscle there is abundant evidence that termination of release is mediated by depletion of the Ca2+ store, even if the linkage mechanism remains unknown. By contrast, in skeletal muscle the mechanisms of release termination are not understood. This article reviews measurements of store depletion, the experimental evidence for dependence of Ca2+ release on the [Ca2+] level inside the SR, as well as tests of the molecular nature of putative intra-store Ca2+ sensors. Because Ca2+ sparks exhibit the basic release termination mechanism, much attention is dedicated to the studies of store depletion caused by sparks and its relationship with termination of sparks. The review notes the striking differences in volume, content and buffering power of the stores in cardiac vs. skeletal muscle, differences that explain why functional depletion is much greater for cardiac than skeletal muscle stores. Because in skeletal muscle store depletion is minimal and reduction in store [Ca2+] does not appear to greatly inhibit Ca2+ release, it is concluded that decrease in free SR [Ca2+] does not mediate physiological termination of Ca2+ release in this type of muscle. In spite of the apparent absence of store depletion and its putative channel closing effect, termination of Ca2+ sparks is faster and more robust in skeletal than cardiac muscle. A gating role of a hypothetical "proximate store" constituted by polymers of calsequestrin and associated proteins is invoked in an attempt to preserve a role for store depletion and unify mechanisms in both types of striated muscle.
Collapse
Affiliation(s)
- E Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University School of Medicine, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
150
|
Liu N, Colombi B, Memmi M, Zissimopoulos S, Rizzi N, Negri S, Imbriani M, Napolitano C, Lai FA, Priori SG. Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model. Circ Res 2006; 99:292-8. [PMID: 16825580 DOI: 10.1161/01.res.0000235869.50747.e1] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by life threatening arrhythmias and mutations in the gene encoding the ryanodine receptor (RyR2). Disagreement exists on whether (1) RyR2 mutations induce abnormal calcium transients in the absence of adrenergic stimulation; (2) decreased affinity of mutant RyR2 for FKBP12.6 causes CPVT; (3) K201 prevent arrhythmias by normalizing the FKBP12.6-RyR2 binding. We studied ventricular myocytes isolated from wild-type (WT) and knock-in mice harboring the R4496C mutation (RyR2(R4496C+/-)). Pacing protocols did not elicit delayed afterdepolarizations (DADs) (n=20) in WT but induced DADs in 21 of 33 (63%) RyR2(R4496C+/-) myocytes (P=0.001). Superfusion with isoproterenol (30 nmol/L) induced small DADs (45%) and no triggered activity in WT myocytes, whereas it elicited DADs in 87% and triggered activity in 60% of RyR2(R4496C+/-) myocytes (P=0.001). DADs and triggered activity were abolished by ryanodine (10 micromol/L) but not by K201 (1 micromol/L or 10 micromol/L). In vivo administration of K201 failed to prevent induction of polymorphic ventricular tachycardia (VT) in RyR2(R4496C+/-) mice. Measurement of the FKBP12.6/RyR2 ratio in the heavy sarcoplasmic reticulum membrane showed normal RyR2-FKBP12.6 interaction both in WT and RyR2(R4496C+/-) either before and after treatment with caffeine and epinephrine. We suggest that (1) triggered activity is the likely arrhythmogenic mechanism of CPVT; (2) K201 fails to prevent DADs in RyR2(R4496C+/-) myocytes and ventricular arrhythmias in RyR2(R4496C+/-) mice; and (3) RyR2-FKBP12.6 interaction in RyR2(R4496C+/-) is identical to that of WT both before and after epinephrine and caffeine, thus suggesting that it is unlikely that the R4496C mutation interferes with the RyR2/FKBP12.6 complex.
Collapse
Affiliation(s)
- Nian Liu
- Molecular Cardiology, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|