101
|
Umbrello M, Dyson A, Feelisch M, Singer M. The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply-demand matching. Antioxid Redox Signal 2013; 19:1690-710. [PMID: 23311950 DOI: 10.1089/ars.2012.4979] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE A mismatch between energy supply and demand induces tissue hypoxia with the potential to cause cell death and organ failure. Whenever arterial oxygen concentration is reduced, increases in blood flow--hypoxic vasodilation--occur in an attempt to restore oxygen supply. Nitric oxide (NO) is a major signaling and effector molecule mediating the body's response to hypoxia, given its unique characteristics of vasodilation (improving blood flow and oxygen supply) and modulation of energetic metabolism (reducing oxygen consumption and promoting utilization of alternative pathways). RECENT ADVANCES This review covers the role of oxygen in metabolism and responses to hypoxia, the hemodynamic and metabolic effects of NO, and mechanisms underlying the involvement of NO in hypoxic vasodilation. Recent insights into NO metabolism will be discussed, including the role for dietary intake of nitrate, endogenous nitrite (NO₂⁻) reductases, and release of NO from storage pools. The processes through which NO levels are elevated during hypoxia are presented, namely, (i) increased synthesis from NO synthases, increased reduction of NO₂⁻ to NO by heme- or pterin-based enzymes and increased release from NO stores, and (ii) reduced deactivation by mitochondrial cytochrome c oxidase. CRITICAL ISSUES Several reviews covered modulation of energetic metabolism by NO, while here we highlight the crucial role NO plays in achieving cardiocirculatory homeostasis during acute hypoxia through both vasodilation and metabolic suppression. FUTURE DIRECTIONS We identify a key position for NO in the body's adaptation to an acute energy supply-demand mismatch.
Collapse
Affiliation(s)
- Michele Umbrello
- 1 Department of Medicine, Bloomsbury Institute of Intensive Care Medicine, University College London , London, United Kingdom
| | | | | | | |
Collapse
|
102
|
Park YJ, Yoon SJ, Suh HW, Kim DO, Park JR, Jung H, Kim TD, Yoon SR, Min JK, Na HJ, Lee SJ, Lee HG, Lee YH, Lee HB, Choi I. TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathog 2013; 9:e1003646. [PMID: 24098117 PMCID: PMC3789754 DOI: 10.1371/journal.ppat.1003646] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) has multiple functions, including tumor suppression and involvement in cell proliferation and apoptosis. However, its role in the inflammatory process remains unclear. In this report, we demonstrate that Txnip−/− mice are significantly more susceptible to lipopolysaccharide (LPS)-induced endotoxic shock. In response to LPS, Txnip−/− macrophages produced significantly higher levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS), and an iNOS inhibitor rescued Txnip−/− mice from endotoxic shock-induced death, demonstrating that NO is a major factor in TXNIP-mediated endotoxic shock. This susceptibility phenotype of Txnip−/− mice occurred despite reduced IL-1β secretion due to increased S-nitrosylation of NLRP3 compared to wild-type controls. Taken together, these data demonstrate that TXNIP is a novel molecule that links NO synthesis and NLRP3 inflammasome activation during endotoxic shock. TXNIP has many biological functions, including the inhibition of tumor growth, suppression of hepatocarcinogenesis, and regulation of glucose metabolism and reactive oxygen species (ROS) generation in different cell types. However, little is known about its role in the inflammatory process. In this study, our results demonstrate that TXNIP plays a critical role in the control of lethal endotoxin-induced shock by controlling NO production in innate immune cells via the regulation of iNOS expression. This regulation is mediated through changes in the activation and translocation of NF-κB that affect the NF-κB/iNOS pathway. In addition, excessive NO reduces the production of IL-1β via S-nitrosylation of the NLRP3 inflammasome. Subsequently, the survival of Txnip−/− mice is significantly decreased due to hypothermia and hypoglycemia. Overall, these results suggest that TXNIP is a novel therapeutic target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Young-Jun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung-Jin Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Woo Suh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Dong Oh Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeong-Ran Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science & Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hee-Jun Na
- Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy, School of Medicine, Chungnam National University, Chung-gu, Daejeon, Republic of Korea
| | - Hee-Bong Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
103
|
Abstract
Cardiac function is required for blood circulation and systemic oxygen delivery. However, the heart has intrinsic oxygen demands that must be met to maintain effective contractility. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis in all metazoan species. HIF-1 controls oxygen delivery, by regulating angiogenesis and vascular remodeling, and oxygen utilization, by regulating glucose metabolism and redox homeostasis. Analysis of animal models suggests that by activation of these homeostatic mechanisms, HIF-1 plays a critical protective role in the pathophysiology of ischemic heart disease and pressure-overload heart failure.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry; and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
104
|
Li D, Liu J, Zhang W, Ren J, Yan L, Liu H, Xu Z. Association between HIF1A P582S and A588T polymorphisms and the risk of urinary cancers: a meta-analysis. PLoS One 2013; 8:e63445. [PMID: 23723982 PMCID: PMC3664576 DOI: 10.1371/journal.pone.0063445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/28/2013] [Indexed: 12/27/2022] Open
Abstract
Purpose The hypoxia-inducible factor-1 alpha (HIF1A) plays a vital role in cancer initiation and progression. Previous studies have reported the existence of HIF1A P582S and A588T missense polymorphisms in renal, urothelial and prostatic carcinomas, however the effects remain conflicting. Therefore, we performed a meta-analysis to assess the association between these sites and the susceptibility of urinary cancers. Methods We searched the PubMed database without limits on language until Nov 25, 2012 for studies exploring the relationship of HIF1A P582S and A588T polymorphisms and urinary cancers. Still, article search was supplemented by screening the references of retrieved studies manually. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated to evaluate the strength of the associations between the two by RevMan 5.0 software. Simultaneously, publication bias was estimated by funnel plot and Begg’s test with Stata 12.1 software. Results Overall, 11 individual case-control studies with 5195 cases and 5786 controls for P582S polymorphism, and 9 studies with 3482 cases and 4304 controls for A588T polymorphism were respectively included in the final meta-analysis. For HIF1A P582S polymorphism, individuals with TT genotype showed 1.60 fold higher risk than the others carrying CT or CC genotypes in Caucasian population (OR = 1.60, 95% CI = 1.09–2.33, Pheterogeneity = 0.11, P = 0.02). For HIF1A A588T polymorphism, the A allele was significantly correlated with higher urinary cancers risk in Asian population (OR = 1.41, 95% CI = 1.03–1.93, Pheterogeneity = 0.22, P = 0.03). Still, significant associations were found for prostate cancer in the allele and dominant models (OR = 1.46, 95% CI = 1.01–2.12, Pheterogeneity = 0.49, P = 0.04 and OR = 1.45, 95% CI = 1.00–2.12, Pheterogeneity = 0.50, P = 0.05). Conclusions The current findings suggest that HIF1A P582S polymorphism correlates with urinary cancers risk in Caucasian population, while A588T polymorphism may increase the risk of urinary cancers in Asian population and prostate cancer.
Collapse
Affiliation(s)
- Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research Affiliated to Ministry of Education of P.R.China and Ministry of Public Health of P.R.China, Jinan, P.R.China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Shandong, China
| | - Wenhua Zhang
- Department of Urology, Qilu Hospital of Shandong University, Shandong, China
| | - Juchao Ren
- Department of Urology, Qilu Hospital of Shandong University, Shandong, China
| | - Lei Yan
- Department of Urology, Qilu Hospital of Shandong University, Shandong, China
| | - Hainan Liu
- Department of Urology, Qilu Hospital of Shandong University, Shandong, China
- * E-mail: (HL); (ZX)
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital of Shandong University, Shandong, China
- * E-mail: (HL); (ZX)
| |
Collapse
|
105
|
TOMITA MASAFUMI, OKUYAMA TOSHIKO, KATSUYAMA HIRONOBU, WATANABE YOKO, SHINONE KOTARO, NATA MASAYUKI, ISHIKAWA TAKAKI. Cardiotoxicity of methamphetamine under stress conditions: Comparison of single dose and long-term use. Mol Med Rep 2013; 7:1786-90. [DOI: 10.3892/mmr.2013.1408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/11/2013] [Indexed: 11/06/2022] Open
|
106
|
Cardiac KATP channel alterations associated with acclimation to hypoxia in goldfish (Carassius auratus L.). Comp Biochem Physiol A Mol Integr Physiol 2013; 164:554-64. [DOI: 10.1016/j.cbpa.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/24/2012] [Accepted: 12/25/2012] [Indexed: 01/21/2023]
|
107
|
Azadzoi KM, Master TA, Siroky MB. Effect of Chronic Ischemia on Constitutive and Inducible Nitric Oxide Synthase Expression in Erectile Tissue. ACTA ACUST UNITED AC 2013; 25:382-8. [PMID: 15064316 DOI: 10.1002/j.1939-4640.2004.tb02804.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arterial occlusive disease is one of the leading causes of organic erectile dysfunction (ED). Recent studies have shown that the incidence of cardiovascular disease closely correlates with the prevalence of ED. Also, ED is thought to be an early signal of impending cardiovascular problems. We previously found that the atherosclerosis of iliohypogastric arteries in the rabbit causes ED, down-regulates cavernosal neuronal nitric oxide synthase (nNOS) gene expression, and impairs NO synthesis. The goal of this study was to determine the effect of atherosclerosis-induced ischemia on cavernosal nNOS, endothelial NOS (eNOS), and inducible NOS (iNOS) expression and NO-mediated smooth muscle relaxation in the rabbit. Our study showed that iliac artery blood flow, intracavernosal blood flow, and intracavernosal oxygen tension were unchanged 4 weeks after the induction of arterial atherosclerosis, whereas they were significantly diminished at weeks 8 and 16. Erectile responses to nerve stimulation and cavernosal smooth muscle relaxation were unchanged at week 4 and were significantly diminished at weeks 8 and 16 after the induction of atherosclerosis. Western blotting showed that cavernosal nNOS and eNOS protein levels were unaffected at week 4 but were significantly decreased at weeks 8 and 16 after the induction of atherosclerosis. iNOS protein, however, markedly increased during the course of the induced arterial disease. Immunohistochemical staining showed no change in cavernosal eNOS or nNOS expression at week 4. A dramatic decrease in both was evident at 8 and 16 weeks. iNOS expression progressively increased between 4 and 16 weeks of atherosclerosis. Down-regulation of nNOS and eNOS, along with up-regulation of iNOS, may explain ischemic cavernosal smooth muscle relaxation impairment in the rabbit. Ischemically altered NOS expression may be of great pathophysiologic importance in atherosclerosis-induced ED. These data may provide further insight into the mechanism of arteriogenic ED.
Collapse
Affiliation(s)
- Kazem M Azadzoi
- Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
108
|
Park HS, Park JW, Kim HJ, Choi CW, Lee HJ, Kim BI, Chun YS. Sildenafil alleviates bronchopulmonary dysplasia in neonatal rats by activating the hypoxia-inducible factor signaling pathway. Am J Respir Cell Mol Biol 2012; 48:105-13. [PMID: 23065129 DOI: 10.1165/rcmb.2012-0043oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a major cause of morbidity in premature infants receiving oxygen therapy. Currently, sildenafil is being examined clinically to improve pulmonary function in patients with BPD. Based on the pharmacological action of sildenafil, the elevation of cyclic guanosine 3',5'-monophosphate (cGMP) in lung tissue is considered to underlie its beneficial effects, but this mechanism is not understood at the molecular level. Here, we examined the possibility that sildenafil helps the pulmonary system adapt to hyperoxic stress. To induce BPD, fetal rats were exposed to LPS before delivery, and neonates were exposed to hyperoxia, followed by intraperitoneal injections of sildenafil. Alveolarization was impaired in rats exposed to hyperoxia, and alveolarization significantly recovered with sildenafil. An immunohistochemical examination revealed that sildenafil effectively increased vascular distribution in lung tissue. Furthermore, the oxygen sensor hypoxia-inducible factor (HIF)-1/2α and the angiogenic factor vascular endothelial growth factor (VEGF) were highly expressed in the lungs of sildenafil-treated rats. In human small-airway epithelial cells, HIF-1/2α and its downstream genes, including VEGF, were confirmed to be induced by sildenafil at both the protein and mRNA levels. Mechanistically, cGMP in airway cells accumulated after sildenafil treatment because of interfering phosphodiesterase Type 5, and subsequently cGMP activated HIF-mediated hypoxic signaling by stimulating the phosphoinositide 3-kinase (PI3K)-v-akt murine thymoma viral oncogene homolog 1 (AKT)-mammalian target of rapamycin (mTOR) pathway. This study provides a better understanding about the mode of action for sildenafil, and suggests that HIF can be a potential target for treating patients with BPD.
Collapse
Affiliation(s)
- Hyoung-Sook Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Jong-Gu, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
109
|
Chang JM, Hwang DY, Chen SC, Kuo MC, Hung CC, Hwang SJ, Tsai JC, Chen HC. B7-1 expression regulates the hypoxia-driven cytoskeleton rearrangement in glomerular podocytes. Am J Physiol Renal Physiol 2012; 304:F127-36. [PMID: 23019228 DOI: 10.1152/ajprenal.00108.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hypoxia has been recognized as a common mechanism driving the progression of many glomerular diseases. Glomerular cells, although susceptible to hypoxic injuries, are less studied to unravel the hypoxia-related influences. In the present study, we showed that both lipopolysaccharide (LPS) and hypoxia induced B7-1 and hypoxia-inducible factor (HIF)-1α expression in podocytes. B7-1, an essential player in the regulation of podocyte stress fibers, interacted directly with the NH(2)-terminal oxygenation domain of HIF-1α protein and, therefore, might interfere with the HIF-related oxidative events. The suggestion was supported by the changes in the expression of inducible nitric oxide synthase and nitric oxide. The orderly arranged stress fibers in differentiated podocytes were disrupted by either LPS or hypoxic stimulation, and the disruption could be rescued if they were brought back to normal oxygen tension. Cell motility increased with the stimulation by LPS and hypoxia, most probably mediated by the induction of B7-1 and HIF-1α, respectively. We generated a B7-1 knockdown podocyte cell line using the lentiviral small interfering RNA system. The LPS- and hypoxia-induced stress fiber disruption was largely prevented in the B7-1 knockdown podocytes. The increased cell motility by LPS and hypoxia stimulations was also ameliorated in the B7-knockdown podocytes. In summary, we found that both B7-1 and HIF were upregulated by LPS and hypoxic stimulations in podocytes and they interacted with each other. Hypoxia disrupted the abundant stress fibers and increased cell motility. These hypoxia-induced changes were prevented in B7-knockdown podocytes, and they highlighted the importance of B7-1 expression in the hypoxia-related podocyte injuries.
Collapse
Affiliation(s)
- Jer-Ming Chang
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kango Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Zhou JY, Jiang ZA, Zhao CY, Zhen Z, Wang W, Nanji AA. Long-term binge and escalating ethanol exposure causes necroinflammation and fibrosis in rat liver. Alcohol Clin Exp Res 2012; 37:213-22. [PMID: 23009062 DOI: 10.1111/j.1530-0277.2012.01936.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 06/10/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND To investigate whether "binge" and escalating alcohol exposure in the rat influences the development of pathological liver injury. METHODS Time courses for the formation of eicosanoids by cyclooxygenase (COX), oxidative stress and nitrosative stress production, expression of hypoxia-inducible factor 1 (HIF-1), cytokines, hepatic tissue necroinflammation, and fibrosis were assessed in rats during 16 weeks of daily alcohol gavage. RESULTS In this model of binge and escalating levels of alcohol, hepatic steatosis, necrosis, and inflammation as well as fibrosis were increased over the 16-week period. The levels of COX-2, oxidative stress, nitrosative stress, HIF-1, proinflammatory mediators (tumor necrosis factor-α, interleukin 1(β) [IL-1(β) ], IL-6), and procollagen-I were increased over the 16-week period. The content of IL-10 in rat serum increased at the end of 4 and 8 weeks but decreased thereafter and was significantly decreased at 12 and 16 weeks. CONCLUSIONS A rat model of alcoholic liver disease (ALD) with long-term binge and escalating ethanol exposure was developed. Our data support the hypothesis that enhanced eicosanoid production by COX, oxidative stress and nitrosative stress, HIF-1, and the imbalance between pro- and anti-inflammatory cytokines plays an important role in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Jun-Ying Zhou
- Department of Infectious Disease , Third Hospital, Hebei Medical University, Shijiazhuang, China.
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
The vascular network delivers oxygen (O(2)) and nutrients to all cells within the body. It is therefore not surprising that O(2) availability serves as a primary regulator of this complex organ. Most transcriptional responses to low O(2) are mediated by hypoxia-inducible factors (HIFs), highly conserved transcription factors that control the expression of numerous angiogenic, metabolic, and cell cycle genes. Accordingly, the HIF pathway is currently viewed as a master regulator of angiogenesis. HIF modulation could provide therapeutic benefit for a wide array of pathologies, including cancer, ischemic heart disease, peripheral artery disease, wound healing, and neovascular eye diseases. Hypoxia promotes vessel growth by upregulating multiple pro-angiogenic pathways that mediate key aspects of endothelial, stromal, and vascular support cell biology. Interestingly, recent studies show that hypoxia influences additional aspects of angiogenesis, including vessel patterning, maturation, and function. Through extensive research, the integral role of hypoxia and HIF signaling in human disease is becoming increasingly clear. Consequently, a thorough understanding of how hypoxia regulates angiogenesis through an ever-expanding number of pathways in multiple cell types will be essential for the identification of new therapeutic targets and modalities.
Collapse
Affiliation(s)
- Bryan L Krock
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
112
|
Ong SG, Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther 2012; 136:69-81. [PMID: 22800800 DOI: 10.1016/j.pharmthera.2012.07.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Hypoxia inducible factor (HIF) is an oxygen-sensitive transcription factor that enables aerobic organisms to adapt to hypoxia. This is achieved through the transcriptional activation of up to 200 genes, many of which are critical to cell survival. Under conditions of normoxia, the hydroxylation of HIF by prolyl hydroxylase domain-containing (PHD) enzymes targets it for polyubiquitination and proteosomal degradation by the von Hippel-Lindau protein (VHL). However, under hypoxic conditions, PHD activity is inhibited, thereby allowing HIF to accumulate and translocate to the nucleus, where it binds to the hypoxia-responsive element sequences of target gene promoters. Experimental studies suggest that HIF may act as a mediator of ischemic preconditioning, and that the genetic or pharmacological stabilization of HIF under normoxic conditions, may protect the heart against the detrimental effects of acute ischemia-reperfusion injury. The mechanisms underlying the cardioprotective effect of HIF are unclear, but it may be attributed to the transcriptional activation of genes associated with cardioprotection such as erythropoietin, heme oxygenase-1, and inducible nitric oxide synthase or it may be due to reprogramming of cell metabolism. In this review article, we highlight the role of HIF in mediating both adaptive and pathological processes in the heart, as well as focusing on the therapeutic potential of the HIF-signaling pathway as a target for cardioprotection.
Collapse
Affiliation(s)
- Sang-Ging Ong
- The Hatter Cardiovascular Institute, University College London Hospital, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| | | |
Collapse
|
113
|
Liu P, Chen S, Wu W, Liu B, Shen W, Wang F, He X, Zhang S. Contactin-1 (CNTN-1) overexpression is correlated with advanced clinical stage and lymph node metastasis in oesophageal squamous cell carcinomas. Jpn J Clin Oncol 2012; 42:612-8. [PMID: 22581910 DOI: 10.1093/jjco/hys066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Oesophageal squamous cell carcinoma is one of the deadliest malignancies worldwide. Contactin-1, a neural adhesion molecule, is implicated in tumour invasion and metastasis. The purpose of this study was to investigate the expression of CNTN-1 in normal and cancerous oesophageal tissue, and the potential relevance to clinicopathological features. METHODS Thirty normal oesophageal tissue samples and 82 primary oesophageal squamous cell carcinoma tissue samples were included in this study. The expression levels of CNTN-1, VEGF-C and HIF-1α messenger RNA were determined using reverse transcriptase-polymerase chain reaction and quantitative real-time polymerase chain reaction. The expression of the CNTN-1 protein was measured using immunohistochemistry. RESULTS The expression of CNTN-1 messenger RNA was significantly increased in the tumour tissue compared with the normal oesophageal tissue (P=0.001). The oesophageal squamous cell carcinoma tissue consistently showed higher CNTN-1 protein levels. The CNTN-1 expression correlated with the oesophageal squamous cell carcinoma stage (P=0.006), lymph node metastasis (P=0.018) and lymphatic invasion (P=0.035). The messenger RNA level of CNTN-1 correlated significantly with those of VEGF-C and HIF-1α. CONCLUSIONS The expression of CNTN-1 is upregulated in the oesophageal squamous cell carcinoma tissue and related to stage, lymph node metastasis and lymphatic invasion. Thus, CNTN-1 may be involved in the progression and pathogenesis of oesophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Gastroenterology, The Affiliated Jiangyin Hospital of Southeast University Medical School, 163 Shoushan Rd, Jiangyin 214400, China.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Singh N, Sharma G, Mishra V, Raghubir R. Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 2012; 32:491-507. [PMID: 22297543 PMCID: PMC11498632 DOI: 10.1007/s10571-012-9803-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/13/2012] [Indexed: 12/16/2022]
Abstract
A divergence in the supply and consumption of oxygen in brain tissue initiates complex cycle of biochemical and molecular events resulting in neuronal death. To overcome such adverse situation, the tissue has to adopt some cellular mechanisms such as induction of various transcription factors, such as hypoxia inducible factor (HIF). It is a transcriptional regulator of oxygen homeostasis and key factor to generate the adaptive responses through upregulation of various target genes involved in the erythropoiesis, angiogenesis as well as glucose metabolism and transport. On the other hand, some studies do suggest that HIF also plays a detrimental role in ischemic reperfusion injury by inducing the pro apoptotic molecules, cytokines such as Nix, BNip3, and IL-20 which cause mitochondrial dysfunction leading to cell death. Hence, modulation of HIF-1 activity seems to provide an innovative therapeutic target to reduce the cellular damage, which arises from ischemic injury. Apart from traditional oxygen dependent HIF regulation, the focus has now shifted toward oxygen independent regulation in cell specific manner through reactive oxygen species involving hypoxia-associated factor, and heat shock protein 90, etc. Therefore, future development of such small molecule regulators for HIF-1 stability and signaling may prove useful to therapeutically target for enhancing recovery and repair in I/R injury.
Collapse
Affiliation(s)
- Neetu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Gaurav Sharma
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Vikas Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Ram Raghubir
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| |
Collapse
|
115
|
Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 2011; 51:1952-65. [PMID: 21958548 DOI: 10.1016/j.freeradbiomed.2011.08.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/19/2022]
Abstract
Inducible nitric oxide synthase (iNOS) catalyzes the reaction that converts the substrates O(2) and l-arginine to the products nitric oxide (NO) and l-citrulline. Macrophages, and many other cell types, upregulate and express iNOS primarily in response to inflammatory stimuli. Physiological and pathophysiological oxygen tension can regulate NO production by iNOS at multiple levels, including transcriptional, translational, posttranslational, enzyme dimerization, cofactor availability, and substrate dependence. Cell culture techniques that emphasize control of cellular PO(2), and measurement of NO or its stable products, have been used by several investigators for in vitro study of the O(2) dependence of NO production at one or more of these levels. In most cell types, prior or concurrent exposure to cytokines or other inflammatory stimuli is required for the upregulation of iNOS mRNA and protein by hypoxia. Important transcription factors that target the iNOS promoter in hypoxia include hypoxia-inducible factor 1 and/or nuclear factor κB. In contrast to the upregulation of iNOS by hypoxia, in most cell types NO production is reduced by hypoxia. Recent work suggests a prominent role for O(2) substrate dependence in the short-term regulation of iNOS-mediated NO production.
Collapse
Affiliation(s)
- Mary A Robinson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010, USA
| | | | | |
Collapse
|
116
|
Goswami SK, Das DK. Oxygen Sensing, Cardiac Ischemia, HIF-1α and Some Emerging Concepts. Curr Cardiol Rev 2011; 6:265-73. [PMID: 22043202 PMCID: PMC3083807 DOI: 10.2174/157340310793566136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 11/22/2022] Open
Abstract
Oxygen plays a critical role in the perpetuation and propagation of almost all forms of life. The primary site of cellular oxygen consumption is the mitochondrial electron transport chain and in addition, oxygen is also used as a substrate for various enzymes involved in cellular homeostasis. Although our knowledge of the biochemistry and physiology of oxygen transport is century old, recent development of sophisticated tools of biophysical chemistry revealed that tissue oxygenation and oxygen sensing is a highly evolved process, especially in mammals. Perturbation of normal oxygen supply is associated with diseases like tumorigenesis, myocardial infarction and stroke. Available information suggests that when tissue oxygen supply is limited, mitochondria emanate signals involving reactive oxygen species generation which in turn stabilizes oxygen sensing transcription factor HIF-1. Upon stabilization, HIF-1 elicits necessary genetic response to cope with the diminished oxygen level. In view of such critical role of HIF-1 in cellular oxygen sensing, recently there has been a heightened interest in understanding the biology of HIF-1 in the context of cardiovascular system. The following review describes some of the recent advances in this regard.
Collapse
Affiliation(s)
- Shyamal K Goswami
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut, CT 06030- 1110, USA
| | | |
Collapse
|
117
|
Wang S, Qian Y, Gong D, Zhang Y, Fan Y. Resveratrol attenuates acute hypoxic injury in cardiomyocytes: Correlation with inhibition of iNOS–NO signaling pathway. Eur J Pharm Sci 2011; 44:416-21. [DOI: 10.1016/j.ejps.2011.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/09/2011] [Accepted: 08/30/2011] [Indexed: 01/06/2023]
|
118
|
Rus A, Del Moral ML, Molina F, Peinado MA. Upregulation of cardiac NO/NOS system during short-term hypoxia and the subsequent reoxygenation period. Eur J Histochem 2011; 55:e17. [PMID: 22193297 PMCID: PMC3284153 DOI: 10.4081/ejh.2011.e17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/05/2023] Open
Abstract
Hypoxia/reoxygenation (H/R) reportedly influences nitric oxide (NO) production and NO synthase (NOS) expression in the heart. Nonetheless, a number of works have shown controversial results regarding the changes that the cardiac NO/NOS system undergoes under such situations. Therefore, this study aims to clarify the behaviour of this system in the hypoxic heart by investigating seven different reoxygenation times. Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0, 2, 12, 24, 48, 72 h, and 5 days) in a novel approach to address the events provoked by assaults under such circumstances. Endothelial and inducible NOS (eNOS and iNOS) mRNA and protein expression, as well as enzymatic activity and enzyme location were determined. NO levels were indirectly quantified as nitrate/nitrite, and other S-nitroso compounds (NOx), which would act as NO-storage molecules. The results showed a significant increase in eNOS mRNA, protein and activity, as well as in NOx levels immediately after hypoxia, while iNOS protein and activity were induced throughout the reoxygenation period. These findings indicate that, not only short-term hypoxia, but also the subsequent reoxygenation period upregulate cardiac NO/NOS system until at least 5 days after the hypoxic stimulus, implying major involvement of this system in the changes occurring in the heart in response to H/R.
Collapse
Affiliation(s)
- A Rus
- Department of Experimental Biology (Building B-3), University of Jaén,Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | | | | | | |
Collapse
|
119
|
Wang YY, Liu S, Lian F, Yang WG, Xue S. Toll-like receptor 7/8 agonist resiquimod induces late preconditioning in neonatal cardiac myocytes. Acta Pharmacol Sin 2011; 32:565-72. [PMID: 21516132 DOI: 10.1038/aps.2011.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM To investigate whether R-848 (resiquimod, toll-like receptor 7/8 agonist) can induce late preconditioning in neonatal cardiac myocytes. METHODS The protective effects of R-848 on neonatal myocytes against anoxia-reoxygenation-induced injury were tested, and intracellular reactive oxygen species (ROS) were determined. The protein synthesis inhibitor cyclohexamide (CH) and the ROS scavenger N-acetylcysteine (NAC) were used in this model to test if new protein synthesis and oxidative stress were necessary for their cardioprotective effects. The activation of nuclear factor kappa B (NFκB) and hypoxia inducible factor 1 (HIF1) was investigated by electrophoretic mobility shift assays (EMSA), and inducible nitric oxide synthase (iNOS) was assessed by immunoblotting. After iNOS was down-regulated by small interfering RNA (siRNA) transfection, the cardioprotective effect was reassessed. RESULTS ROS were triggered soon after R-848 (0.01-1.0 μg/L) administration, however, the cardioprotective effect of which was induced 24 h later. This protection was abolished by CH or NAC pretreatment. NFκB and HIF1 activation and iNOS up-regulation were involved in this protective mechanism. The cardioprotective effect was also attenuated after iNOS was knocked down. CONCLUSION R-848 provided a cardioprotective effect through a late preconditioning mechanism via a ROS/NFκB-HIF1/iNOS-dependent pathway.
Collapse
|
120
|
Is endothelial-nitric-oxide-synthase-derived nitric oxide involved in cardiac hypoxia/reoxygenation-related damage? J Biosci 2011; 36:69-78. [DOI: 10.1007/s12038-011-9006-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
121
|
Rus A, Molina F, Peinado MÁ, Del Moral ML. Nitric oxide averts hypoxia-induced damage during reoxygenation in rat heart. Microsc Res Tech 2011; 74:1093-103. [PMID: 21538695 DOI: 10.1002/jemt.21000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/28/2011] [Indexed: 01/18/2023]
Abstract
Nitric oxide (NO), synthesized by the hemoproteins NO synthases (NOS), is known to play important roles in physiological and pathological conditions in the heart, including hypoxia/reoxygenation (H/R). This work investigates the role that endogenous NO plays in the cardiac H/R-induced injury. A follow-up study was conducted in Wistar rats subjected to 30 min of hypoxia, with or without prior treatment using the nonselective NOS inhibitor L-NAME (1.5 mM). The rats were studied at 0 h, 12 h, and 5 days of reoxygenation, analysing parameters of cell, and tissue damage (lipid peroxidation, apoptosis, and protein nitration), as well as in situ NOS activity and NO production (NOx). The results showed that after L-NAME administration, in situ NOS activity was almost completely eliminated in all the experimental groups, and consequently, NOx levels fell. Contrarily, the lipid peroxidation level and the percentage of apoptotic cells rose throughout the reoxygenation period. These results reveal that NOS inhibition exacerbates the peroxidative and apoptotic damage observed before the treatment with L-NAME in the hypoxic heart, pointing to a cardioprotective role of NOS-derived NO against H/R-induced injury. These findings could open the possibility of future studies to design new therapies for H/R-dysfunctions based on NO-pharmacology.
Collapse
Affiliation(s)
- Alma Rus
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, Jaén 23071, Spain.
| | | | | | | |
Collapse
|
122
|
Belaidi E, Beguin PC, Levy P, Ribuot C, Godin-Ribuot D. Delayed myocardial preconditioning induced by cobalt chloride in the rat: HIF-1α and iNOS involvement. Fundam Clin Pharmacol 2011; 26:454-62. [DOI: 10.1111/j.1472-8206.2011.00940.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
123
|
Zeng X, Zeng YS, Ma YH, Lu LY, Du BL, Zhang W, Li Y, Chan WY. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant 2011; 20:1881-1899. [PMID: 21396163 DOI: 10.3727/096368911x566181] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Three-dimensional (3D) gelatin sponge (GS) scaffolds were constructed by ensheathing GS with a thin film of poly-(lactide-co-glycolide) (PLGA). Rat bone marrow-derived mesenchymal stem cells (MSCs) were isolated, cultured, and then seeded to the scaffolds. Distribution of cells and cell growth, survival, and proliferation within the scaffolds were then determined. Immunofluorescence and Western blot analysis were employed to detect the deposition of fibronectin to the scaffolds on day 3 and day 7 of culture. Scaffolds with or without MSCs were then transplanted into the transected rat spinal cord. One or 8 weeks following transplantation, cavity areas, activated macrophages/microglia, expression of TNF-α and IL-1β, and neovascularization within the grafts were examined and quantified. Deposition of fibronectin (FN) and expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) as potential inducing factors for angiogenesis were also examined. Results showed that 3D GS scaffolds allowed MSCs to adhere, survive, and proliferate and also FN to deposit. In vivo transplantation experiments demonstrated that these scaffolds were biocompatible, and MSCs seeded to the scaffolds played an important role in attenuating inflammation, promoting angiogenesis, and reducing cavity formation. Therefore, the GS scaffolds with MSCs may serve as promising supporting transplants for repairing spinal cord injury.
Collapse
Affiliation(s)
- Xiang Zeng
- Research Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Chan JYH, Tsai CY, Wu CHY, Li FCH, Dai KY, Sun EYH, Chan SHH, Chang AYW. Sumoylation of hypoxia-inducible factor-1α ameliorates failure of brain stem cardiovascular regulation in experimental brain death. PLoS One 2011; 6:e17375. [PMID: 21390240 PMCID: PMC3048406 DOI: 10.1371/journal.pone.0017375] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/01/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM). RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α) plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death. METHODOLOGY/PRINCIPAL FINDINGS A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1), Ubc9 (the only known conjugating enzyme for the sumoylation pathway) or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase. CONCLUSIONS/SIGNIFICANCE We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem cardiovascular regulatory failure during experimental brain death via upregulation of nitric oxide synthase I/protein kinase G signaling. This information should offer new therapeutic initiatives against this fatal eventuality.
Collapse
Affiliation(s)
- Julie Y. H. Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China
| | - Ching-Yi Tsai
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China
| | - Carol H. Y. Wu
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China
| | - Faith C. H. Li
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China
| | - Kuang-Yu Dai
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China
| | - Enya Y. H. Sun
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China
| | - Samuel H. H. Chan
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China
- * E-mail: (SHHC); (AYWC)
| | - Alice Y. W. Chang
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China
- * E-mail: (SHHC); (AYWC)
| |
Collapse
|
125
|
Wheaton WW, Chandel NS. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol 2011; 300:C385-93. [PMID: 21123733 PMCID: PMC3063979 DOI: 10.1152/ajpcell.00485.2010] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 01/11/2023]
Abstract
Adaptation to lowering oxygen levels (hypoxia) requires coordinated downregulation of metabolic demand and supply to prevent a mismatch in ATP utilization and production that might culminate in a bioenergetic collapse. Hypoxia diminishes ATP utilization by downregulating protein translation and the activity of the Na-K-ATPase. Hypoxia diminishes ATP production in part by lowering the activity of the electron transport chain through activation of the transcription factor hypoxia-inducible factor-1. The decrease in electron transport limits the overproduction of reactove oxygen species during hypoxia and slows the rate of oxygen depletion to prevent anoxia. In this review, we discuss these mechanisms that diminish metabolic supply and demand for adaptation to hypoxia.
Collapse
Affiliation(s)
- William W Wheaton
- Division of Pulmonary & Critical Care Medicine, 240 East Huron Ave., McGraw M-334, Chicago, IL 60611-2909, USA
| | | |
Collapse
|
126
|
Rus A, Molina F, Peinado MA, del Moral ML. Endothelial NOS-derived nitric oxide prevents injury resulting from reoxygenation in the hypoxic lung. Free Radic Res 2011; 44:1027-35. [PMID: 20815765 DOI: 10.3109/10715762.2010.498479] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To date, the role that NO derived from endothelial NO synthase (eNOS) plays in the development of the injuries occurring under hypoxia/reoxygenation (H/R) in the lung remains unknown and thus constitutes the subject of the present work. A follow-up study was conducted in Wistar rats submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 48 h and 5 days), with or without prior treatment using the eNOS inhibitor L-NIO (20 mg/kg). Lipid peroxidation, apoptosis, protein nitration and NO production (NOx) were analysed. The results showed that L-NIO administration lowered NOx levels in all the experimental groups. Contrarily, the lipid peroxidation level and the percentage of apoptotic cells rose, implying that eNOS-derived NO may have a protective effect against the injuries occurring during H/R in the lung. These findings could open the possibility of future studies to design new therapies for this type of hypoxia based on NO-pharmacology.
Collapse
Affiliation(s)
- Alma Rus
- Department of Experimental Biology, University of Jaén, Spain
| | | | | | | |
Collapse
|
127
|
Rus A, Peinado MA, Castro L, Del Moral ML. Lung eNOS and iNOS are reoxygenation time-dependent upregulated after acute hypoxia. Anat Rec (Hoboken) 2010; 293:1089-98. [PMID: 20225207 DOI: 10.1002/ar.21141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nitric oxide plays a critical role in many physiological and physiopathological processes in the lung. Changes in the NO/NOS (Nitric Oxide/Nitric Oxide Synthase) system after hypoxia situations remain controversial in this organ, so that the aim of this work is to perform a complete study of this system in the hypoxic lung after different reoxygenation times ranging from 0 h to 5 days posthypoxia. This is a novel follow-up study carried out in Wistar rats submitted for 30 min to acute hypobaric hypoxia. We measured endothelial and inducible NOS (eNOS, iNOS) mRNA and protein expression, location, and in situ NOS activity as well as nitrated protein expression and location. In addition, NO levels were indirectly quantified (NOx) as well as the apoptosis level. Results showed an increase in eNOS mRNA, protein, activity as well as eNOS positive immunostaining at 0 h posthypoxia, coinciding with raised NOx levels. Contrary, iNOS, nitrated protein expression and apoptosis level augmented during the final reoxygenation times. The lung NO/NOS system provokes two responses to the hypoxia/reoxygenation processes: (i) eNOS is responsible of the immediate response, producing NO, which causes vasodilation and bronchodilation, and (ii) iNOS is related to the second late response, which seems to be involved in some of the deleterious consequences that hypoxia induces in the lung.
Collapse
Affiliation(s)
- Alma Rus
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | | | | |
Collapse
|
128
|
Rus A, Castro L, Del Moral ML, Peinado A. Inducible NOS inhibitor 1400W reduces hypoxia/re-oxygenation injury in rat lung. Redox Rep 2010; 15:169-78. [PMID: 20663293 DOI: 10.1179/174329210x12650506623609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO(*)) from inducible NO(*) synthase (iNOS) has been reported to either protect against, or contribute to, hypoxia/re-oxygenation lung injury. The present work aimed to clarify this double role in the hypoxic lung. With this objective, a follow-up study was made in Wistar rats submitted to hypoxia/re-oxygenation (hypoxia for 30 min; re-oxygenation of 0 h, 48 h, and 5 days), with or without prior treatment with the selective iNOS inhibitor 1400W (10 mg/kg). NO(*) levels (NOx), lipid peroxidation, apoptosis, and protein nitration were analysed. This is the first time-course study which investigates the effects of 1400W during hypoxia/re-oxygenation in the rat lung. The results showed that the administration of 1400W lowered NOx levels in all the experimental groups. In addition, lipid peroxidation, the percentage of apoptotic cells, and nitrated protein expression fell in the late post-hypoxia period (48 h and 5 days). Our results reveal that the inhibition of iNOS in the hypoxic lung reduced the damage observed before the treatment with 1400W, suggesting that iNOS-derived NO(*) may exert a negative effect on this organ during hypoxia/re-oxygenation. These findings are notable, since they indicate that any therapeutic strategy aimed at controlling excess generation of NO(*) from iNOS may be useful in alleviating NO(*)-mediated adverse effects in hypoxic lungs.
Collapse
Affiliation(s)
- Alma Rus
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | | | | |
Collapse
|
129
|
Dai KY, Chan SH, Chang AY. Heme oxygenase-1 plays a pro-life role in experimental brain stem death via nitric oxide synthase I/protein kinase G signaling at rostral ventrolateral medulla. J Biomed Sci 2010; 17:72. [PMID: 20819234 PMCID: PMC2941487 DOI: 10.1186/1423-0127-17-72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/07/2010] [Indexed: 12/13/2022] Open
Abstract
Background Despite its clinical importance, a dearth of information exists on the cellular and molecular mechanisms that underpin brain stem death. A suitable neural substrate for mechanistic delineation on brain stem death resides in the rostral ventrolateral medulla (RVLM) because it is the origin of a life-and-death signal that sequentially increases (pro-life) and decreases (pro-death) to reflect the advancing central cardiovascular regulatory dysfunction during the progression towards brain stem death in critically ill patients. The present study evaluated the hypothesis that heme oxygnase-1 (HO-1) may play a pro-life role as an interposing signal between hypoxia-inducible factor-1 (HIF-1) and nitric oxide synthase I (NOS I)/protein kinase G (PKG) cascade in RVLM, which sustains central cardiovascular regulatory functions during brain stem death. Methods We performed cardiovascular, pharmacological, biochemical and confocal microscopy experiments in conjunction with an experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of adult male Sprague-Dawley rats. Results Western blot analysis coupled with laser scanning confocal microscopy revealed that augmented HO-1 expression that was confined to the cytoplasm of RVLM neurons occurred preferentially during the pro-life phase of experimental brain stem death and was antagonized by immunoneutralization of HIF-1α or HIF-1β in RVLM. On the other hand, the cytoplasmic presence of HO-2 in RVLM neurons manifested insignificant changes during both phases. Furthermore, immunoneutralization of HO-1 or knockdown of ho-1 gene in RVLM blunted the augmented life-and-death signals exhibited during the pro-life phase. Those pretreatments also blocked the upregulated pro-life NOS I/PKG signaling without affecting the pro-death NOS II/peroxynitrite cascade in RVLM. Conclusions We conclude that transcriptional upregulation of HO-1 on activation by HIF-1 in RVLM plays a preferential pro-life role by sustaining central cardiovascular regulatory functions during brain stem death via upregulation of NOS I/PKG signaling pathway. Our results further showed that the pro-dead NOS II/peroxynitrite cascade in RVLM is not included in this repertoire of cellular events.
Collapse
Affiliation(s)
- Kuang-Yu Dai
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial, Hospital-Kaohsiung Medical Center, Kaohsiung County 83301, Taiwan
| | | | | |
Collapse
|
130
|
Abstract
Since its discovery in early 1990s, hypoxia inducible factor 1 (HIF-1) has been increasingly recognized for its key role in transcriptional control of more than a hundred genes that regulate a wide-spectrum of cellular functional events, including angiogenesis, vasomotor control, glucose and energy metabolism, erythropoiesis, iron homeostasis, pH regulation, cell proliferation and viability. Evidence accumulated during the past 7 years suggests a critical role for HIF-1alpha in mediating cardioprotection. The purpose of our present article is to provide an updated overview on this important regulator of gene expression in the cellular stress-responsive and adaptive process. We have particularly emphasized the involvement of HIF-1 in the induction of cardioprotective molecules, such as inducible nitric oxide synthase (iNOS), hemeoxygenase 1 (HO-1), and erythropoietin (EPO), which in turn alleviate myocardial damages caused by harmful events such as ischemia-reperfusion injury. Despite these advances, further in-depth studies are needed to elucidate the possible coordination or interaction between HIF-1alpha and other key transcription factors in regulating protein expression that leads to cardioprotection.
Collapse
|
131
|
Rus A, Molina F, Peinado MÁ, Del Moral ML. Endogenous nitric oxide can act as beneficial or deleterious in the hypoxic lung depending on the reoxygenation time. Anat Rec (Hoboken) 2010; 293:2193-201. [PMID: 20734424 DOI: 10.1002/ar.21229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/01/2010] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) has been implicated in many pathophysiological situations in the lung, including hypoxia/reoxygenation. This work seeks to clarify the current controversy concerning the double protective/toxic role of endogenous NO under hypoxia/reoxygenation situations in the lung by using a nitric oxide synthase (NOS) inhibitor, in a novel approach to address the problems raised from assaults under such circumstances. A follow-up study was conducted in Wistar rats submitted to hypoxia/reoxygenation (hypoxia for 30 min; reoxygenation of 0 h, 48 h, and 5 days), with or without prior treatment using the nonselective NOS inhibitor L-NAME (1.5 mM, in drinking water). Lipid peroxidation, apoptosis level, protein nitration, in situ NOS activity and NO production (NOx) were analyzed. This is the first work to focus on the time-course effects of L-NAME in the adult rat lung submitted to hypoxia/reoxygenation. The results showed that after L-NAME administration, in situ NOS activity was almost completely eliminated and consequently, NOx levels fell. Lipid peroxidation and the percentage of apoptotic cells rose at the earliest reoxygenation time (0 h), but decreased in the later period (48 h and 5 days). Also nitrated protein expression decreased at 48 h and 5 days posthypoxia. These results suggest that NOS-derived NO exerts two different effects on lung hypoxia/reoxygenation injury depending on the reoxygenation time: NO has a beneficial role just after the hypoxic stimulus and a deleterious effect in the later reoxygenation times. Moreover, we propose that this dual role of NO depends directly on the producer NOS isoform.
Collapse
Affiliation(s)
- Alma Rus
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | | | | |
Collapse
|
132
|
Cadenas S, Aragonés J, Landázuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res 2010; 88:219-28. [PMID: 20679415 DOI: 10.1093/cvr/cvq256] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under hypoxic conditions, mitochondria can represent a threat to the cell because of their capacity to generate toxic reactive oxygen species (ROS). However, cardiomyocytes are equipped with an oxygen-sensing pathway that involves prolyl hydroxylase oxygen sensors and hypoxia-inducible factors (HIFs), which induces a tightly regulated programme to keep ischaemic mitochondrial activity under control. The aim of this review is to provide an update on the pathways leading to mitochondrial reprogramming, which occurs in the myocardium during ischaemia, with particular emphasis on those induced by HIF activation. We start by studying the mechanisms of mitochondrial damage during ischaemia and upon reperfusion, highlighting the importance of the formation of the mitochondrial permeability transition pore during reperfusion and its consequences for cardiomyocyte survival. Next, we analyse hypoxia-induced metabolic reprogramming through HIF and its important consequences for mitochondrial bioenergetics, as well as the phenomenon known as the hibernating myocardium. Subsequently, we examine the mechanisms underlying ischaemic preconditioning, focusing, in particular, on those that involve the HIF pathway, such as adenosine signalling, sub-lethal ROS generation, and nitric oxide production. Finally, the role of the mitochondrial uncoupling proteins in ischaemia tolerance is discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa , Diego de León 62, 28006 Madrid, Spain.
| | | | | |
Collapse
|
133
|
Affiliation(s)
- Ewa A Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Centre for Heart Diseases, Military Hospital, ul Weigla 5, Wroclaw 50-981, Poland.
| | | |
Collapse
|
134
|
Rane S, He M, Sayed D, Yan L, Vatner D, Abdellatif M. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell Signal 2010; 22:1054-62. [PMID: 20193759 PMCID: PMC2872486 DOI: 10.1016/j.cellsig.2010.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/19/2010] [Indexed: 11/24/2022]
Abstract
We have recently reported that downregulation of miR-199a-5p is necessary and sufficient for inducing upregulation of its targets, including hypoxia-inducible factor-1 alpha (Hif-1 alpha) and Sirt1, during hypoxia preconditioning (HPC). Conversely, others and we have reported that miR-199a-5p is upregulated during cardiac hypertrophy. Thus, the objective of this study was to delineate the signaling pathways that regulate the expression of miR-199a-5p and its targets, and their role in myocyte survival during hypoxia. Since HPC is mediated through activation of the AKT pathway, we questioned if AKT is sufficient for inducing downregulation of miR-199a-5p. Our present study shows that overexpression of a constitutively active AKT (caAKT) induced 70% reduction in miR-199a-5p and was associated with a robust increase in HiF-1 alpha (10+/-2 fold) and Sirt1 (4+/-0.8 fold) that was reversed by overexpression of miR-199a-5p. Similarly, insulin receptor-stimulated activation of the AKT pathway induced downregulation of miR-199a-5p and upregulation of its targets. In contrast, beta-adrenergic receptor (beta AR) activation in vitro and in vivo, induced 1.8-3.5-fold increase in miR-199a-5p. Accordingly, we predicted that beta AR would antagonize AKT-induced, miR-199a-5p-dependent, upregulation of Hif-1 alpha and Sirt1. Indeed, pre-treating the myocytes with isoproterenol before applying HPC, caAKT, or insulin resulted in 87+/-3%, 75+/-15%, and 100% reductions in Hif-1 alpha expression, respectively, and sensitized the cells to hypoxic injury. Thus, activation of beta-adrenergic signaling counteracts the survival effects of the AKT pathway via upregulating miR-199a-5p.
Collapse
Affiliation(s)
| | - Minzhen He
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Danish Sayed
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Lin Yan
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Dorothy Vatner
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Maha Abdellatif
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
135
|
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23:75-93. [PMID: 20438856 DOI: 10.1016/j.niox.2010.04.007] [Citation(s) in RCA: 394] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
136
|
Rus A, del Moral ML, Molina F, Peinado MA. Does inducible NOS have a protective role against hypoxia/reoxygenation injury in rat heart? Cardiovasc Pathol 2010; 20:e17-25. [PMID: 20418118 DOI: 10.1016/j.carpath.2010.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/31/2009] [Accepted: 01/05/2010] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The present study analyzes the role of the nitric oxide (NO) derived from inducible NO synthase (iNOS) under cardiac hypoxia/reoxygenation situations. METHODS For this, we have designed a follow-up study of different parameters of cell and tissue damage in the heart of Wistar rats submitted for 30 min to acute hypobaric hypoxia, with or without prior treatment with the selective iNOS inhibitor N-(3-(aminomethyl)benzyl) acetamidine or 1400W (10 mg/kg). The rats were studied at 0 h, 12 h, and 5 days of reoxygenation, analyzing NO production (NOx), lipid peroxidation, apoptosis, and protein nitration expression and location. This is the first time-course study which analyzes the effects of the iNOS inhibition by 1400W during hypoxia/reoxygenation in the adult rat heart. RESULTS The results show that when 1400W was administered before the hypoxic episode, NOx levels fell, while both the lipid peroxidation level and the percentage of apoptotic cells rose throughout the reoxygenation period. Levels of nitrated proteins expression fell only at 12 h post-hypoxia. CONCLUSIONS The inhibition of iNOS raises the peroxidative and apoptotic level in the hypoxic heart indicating that this isoform may have a protective effect on this organ against hypoxia/reoxygenation injuries, and challenging the conventional wisdom that iNOS is deleterious under these conditions. These findings could help in the design of new treatments based on NO pharmacology against hypoxia/reoxygenation dysfunctions.
Collapse
Affiliation(s)
- Alma Rus
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071, Jaén, Spain
| | | | | | | |
Collapse
|
137
|
Rhenals MV, Strasberg-Rieber M, Rieber M. Nitric Oxide Donors or Nitrite Counteract Copper-[dithiocarbamate]2-Mediated Tumor Cell Death and Inducible Nitric Oxide Synthase Down-Regulation: Possible Role of a Nitrosyl-Copper [Dithiocarbamate]2 Complex. J Med Chem 2010; 53:1627-35. [DOI: 10.1021/jm901314r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Maricela Viola Rhenals
- Instituto Venezolano de Investigaciones Cientificas (IVIC), Centre for Microbiology & Cell Biology, Tumor Cell Biology Laboratory, Apartado 20632, Caracas 1020-A, Venezuela
| | - Mary Strasberg-Rieber
- Instituto Venezolano de Investigaciones Cientificas (IVIC), Centre for Microbiology & Cell Biology, Tumor Cell Biology Laboratory, Apartado 20632, Caracas 1020-A, Venezuela
| | - Manuel Rieber
- Instituto Venezolano de Investigaciones Cientificas (IVIC), Centre for Microbiology & Cell Biology, Tumor Cell Biology Laboratory, Apartado 20632, Caracas 1020-A, Venezuela
| |
Collapse
|
138
|
Robinson MA, Turtle SW, Otto CM, Koch CJ. pO(2)-dependent NO production determines OPPC activity in macrophages. Free Radic Biol Med 2010; 48:189-95. [PMID: 19822207 PMCID: PMC4159751 DOI: 10.1016/j.freeradbiomed.2009.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/28/2009] [Accepted: 10/06/2009] [Indexed: 01/01/2023]
Abstract
Stimulated macrophages produce nitric oxide (NO) via inducible nitric oxide synthase (iNOS) using molecular O(2), L-arginine, and NADPH. Exposure of macrophages to hypoxia decreases NO production within seconds, suggesting substrate limitation as the mechanism. Conflicting data exist regarding the effect of pO(2) on NADPH production via the oxidative pentose phosphate cycle (OPPC). Therefore, the present studies were developed to determine whether NADPH could be limiting for NO production under hypoxia. Production of NO metabolites (NOx) and OPPC activity by RAW 264.7 cells was significantly increased by stimulation with lipopolysaccharide (LPS) and interferon gamma (IFNgamma) at pO(2) ranging from 0.07 to 50%. OPPC activity correlated linearly with NOx production at pO(2)>0.13%. Increased OPPC activity by stimulated RAW 264.7 cells was significantly reduced by 1400 W, an iNOS inhibitor. OPPC activity was significantly increased by concomitant treatment of stimulated RAW 264.7 cells with chemical oxidants such as hydroxyethyldisulfide or pimonidazole, at 0.07 and 50% O(2), without decreasing NOx production. These results are the first to investigate the effect of pO(2) on the relationship between NO production and OPPC activity, and to rule out limitations in OPPC activity as a mechanism by which NO production is decreased under hypoxia.
Collapse
Affiliation(s)
- Mary A. Robinson
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania Philadelphia PA 19104
| | - Stephen W. Turtle
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania Philadelphia PA 19104
| | - Cynthia M. Otto
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania Philadelphia PA 19104
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania Philadelphia, PA 19104
| | - Cameron J. Koch
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania Philadelphia PA 19104
| |
Collapse
|
139
|
|
140
|
Bakan V, Ciralik H, Tolun FI, Atli Y, Mil A, Oztürk S. Protective effect of erythropoietin on torsion/detorsion injury in rat model. J Pediatr Surg 2009; 44:1988-94. [PMID: 19853760 DOI: 10.1016/j.jpedsurg.2009.02.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of the study is to investigate the effects of erythropoietin on torsion/detorsion injury in rats. METHODS Forty rats were divided randomly into 5 groups: group I (sham, S), sham operation; group II (torsion/detorsion 1, T/D(1)), 3 hours ischemia and 1 hour reperfusion; group III (torsion/detorsion 2, T/D(2)), 3 hours ischemia and 48 hours reperfusion; group IV (erythropoietin 1, EPO(1)), 3 hours ischemia, 1 hour reperfusion, and a single dose of EPO; and group V (erythropoietin 2, EPO(2)), 3 hours ischemia, 48 hours reperfusion, and 2 doses of EPO. Malondialdehyde (MDA) and nitric oxide (NO) levels and activities of superoxide dismutase and catalase were measured. Tissue damage to ovarian tissue was scored by histologic examination. Data were compared among groups with parametric tests. RESULTS The MDA levels in the S and EPO groups were significantly lower than the T/D groups (P < .001). Catalase and superoxide dismutase activities, and NO levels in the S and EPO groups were significantly higher than in the T/D groups (P < .05). Ovarian tissue damage in the S and EPO groups was significantly less than in the T/D groups (P < .05). Levels of all biochemical markers and ovarian tissue damage scores were similar among the S, EPO(1), and EPO(2) groups (P > .05). CONCLUSION Erythropoietin attenuates ischemia-reperfusion injury when given during the acute phase of ovarian torsion-detorsion in a rat model.
Collapse
Affiliation(s)
- Vedat Bakan
- Faculty of Medicine, Department of Pediatric Surgery, Sutcu Imam University, Kahramanmaras 46100, Turkey.
| | | | | | | | | | | |
Collapse
|
141
|
Kwon SJ, Lee GT, Lee JH, Kim WJ, Kim IY. Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology 2009; 128:e758-65. [PMID: 19740337 DOI: 10.1111/j.1365-2567.2009.03079.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily. In the present study, we investigated the effect of BMPs on the production of inducible nitric oxide synthase (iNOS) in the murine macrophage cell line, RAW 264.7, and in mouse peritoneal macrophages. Among the BMPs, only BMP-6 induced iNOS expression in a time-dependent and dose-dependent manner in both cell types. Induction of iNOS was inhibited by both cycloheximide and actinomycin D, indicating that the induction of iNOS expression by BMP-6 requires new protein synthesis. Mechanistic studies revealed that the BMP-6-induced iNOS expression requires both Smads and nuclear factor-kappa B (NF-kappaB) signalling pathways. Furthermore, induction of interleukin-1beta (IL-1beta) was necessary for iNOS induction by BMP-6. These observations suggest that BMP-6 stimulates macrophages to produce iNOS through IL-1beta via Smad and NF-kappaB signalling pathways and that BMP-6 may be an important regulator of macrophages.
Collapse
Affiliation(s)
- Seok J Kwon
- Urologic Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | | | | | | | | |
Collapse
|
142
|
Abstract
Intrauterine hypoxia impacts fetal growth and organ function. Inducible nitric oxide synthase (iNOS) and neuronal NOS (nNOS) expression was measured to assess the response of fetal hearts to hypoxic (HPX) stress. Pregnant guinea pigs were housed in a hypoxic chamber (10.5% O2 for 14 d, n = 17) or room air [normoxic (NMX), n = 17]. Hearts of anesthetized near-term fetuses were removed. mRNA [hypoxia-inducible factor, (HIF)-1alpha, 1beta, 2alpha, 3alpha, iNOS, and nNOS] and protein levels (HIF-1alpha, iNOS, and nNOS) of fetal cardiac left ventricles were quantified by real time polymerase chain reaction (PCR) and Western analysis, respectively. Cardiac nitrite/nitrate levels were measured in the presence/absence of L-N6-(1-iminoethyl)-lysine (L-NIL), an iNOS inhibitor, administered to pregnant sows. Hypoxia significantly increased fetal cardiac HIF-1alpha and -2alpha mRNA, HIF-1alpha protein but not HIF-3alpha or -1beta mRNA levels. Hypoxia increased both iNOS mRNA (by 5x) and protein (by 23%) levels but had no effect on nNOS levels. Nitrite/nitrate levels were increased in HPX hearts by 2.5x and decreased with L-NIL by 67 +/- 14%. Thus, up-regulation of iNOS-derived nitric oxide (NO) generation is an important mechanism by which fetal hearts respond to chronic hypoxic stress.
Collapse
Affiliation(s)
- Loren Thompson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
143
|
Cowley AW. Renal medullary oxidative stress, pressure-natriuresis, and hypertension. Hypertension 2008; 52:777-86. [PMID: 18852392 PMCID: PMC2659638 DOI: 10.1161/hypertensionaha.107.092858] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/22/2008] [Indexed: 01/15/2023]
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
144
|
Isoflurane preconditioning activates HIF-1alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury. Brain Res 2008; 1245:26-35. [PMID: 18930717 DOI: 10.1016/j.brainres.2008.09.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/22/2022]
Abstract
Preconditioning neurons with isoflurane, a commonly used volatile anesthetic in clinical practice, improves tolerance of subsequent ischemia in both intact animal models and in vitro preparations. To investigate the mechanisms of this protection, we primarily cultured rat hippocampal neurons and simulated ischemia in vitro by oxygen-glucose deprivation (OGD). Neuron viability was measured. Neuron injury was observed by inverted phase contrast microscope and assessed by lactate dehydrogenase (LDH) release. Gene expression was examined by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Isoflurane exposure for 2 h at 24 h before a 2 h OGD dose-dependently reduced cell injury. Isoflurane accumulated phosphorylation/activation of extracellular signal-related kinases 1 and 2 (Erk1/2) and hypoxia inducible factor (HIF)-1alpha, a transcription factor involved in cell survival. Inhibition of the phospho-Erk1/2 partially abolished the isoflurane preconditioning-induced HIF-1alpha protein content accumulation and neuroprotection. Isoflurane also increased inducible nitric oxide synthase (iNOS) mRNA levels, a downstream gene of HIF-1alpha. Thus, the current results indicate that isoflurane preconditioning activates HIF-1alpha during protection against OGD neuronal injury and the activation might be partly mediated by the Erk1/2 pathway.
Collapse
|
145
|
Garedew A, Moncada S. Mitochondrial dysfunction and HIF1alpha stabilization in inflammation. J Cell Sci 2008; 121:3468-75. [PMID: 18827009 DOI: 10.1242/jcs.034660] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Activation of murine-derived J774.A1 macrophages with interferon gamma and lipopolysaccharide leads to a progressive mitochondrial defect characterized by inhibition of oxygen consumption and a decrease in the generation of ATP by oxidative phosphorylation. These changes are dependent on the generation of nitric oxide (NO) by an inducible NO synthase that becomes a significant consumer of oxygen. Furthermore, in these activated cells there is a biphasic stabilization of the hypoxia-inducible factor HIF1alpha, the second phase of which is also dependent on the presence of NO. The mitochondrial defect and stabilization of HIF1alpha synergize to activate glycolysis, which, at its maximum, generates quantities of ATP greater than those produced by non-activated cells. Nevertheless, the amount of ATP generated is not sufficient to fulfil the energy requirements of the activated cells, probably leading to a progressive energy deficit with the consequent inhibition of cell proliferation and death.
Collapse
Affiliation(s)
- Assegid Garedew
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
146
|
Hypoxia-induced regulation of nitric oxide synthase in cardiac endothelial cells and myocytes and the role of the PI3-K/PKB pathway. Mol Cell Biochem 2008; 321:23-35. [PMID: 18791856 DOI: 10.1007/s11010-008-9906-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/19/2008] [Indexed: 01/26/2023]
Abstract
UNLABELLED The roles of endothelial nitric oxide synthase (eNOS), and its putative association with protein kinase B (PKB), and inducible nitric oxide synthase (iNOS) are not well characterized in hypoxic cardiac cells and there is a lack of studies that measure nitric oxide (NO) directly. OBJECTIVE To measure NO production in cardiomyocytes and cardiac microvascular endothelial cells (CMECs) under baseline and hypoxic conditions and to evaluate the expression, regulation and activation of eNOS, iNOS and PKB. The effect of PI3-K/PKB inhibition on NO production and eNOS expression/activation was also investigated. METHODS Adult rat cardiomyocytes and rat CMECs were made hypoxic by cell pelleting and low PO(2) incubation. Intracellular NO was measured by FACS analysis of DAF-2/DA fluorescence, and eNOS, iNOS and PKB were evaluated by Western blotting or flow cytometry. Upstream PKB inhibition was achieved with wortmannin. RESULTS (1) NO levels increased in both cell types after exposure to hypoxia. (2) In hypoxic CMECs, eNOS was upregulated and activated, no iNOS expression was observed and PKB was activated. (3) In myocytes, hypoxia did not affect eNOS expression, but increased its activation. Activated PKB also increased during hypoxia. FACS analysis showed increased iNOS in hypoxic myocytes. (4) Wortmannin resulted in decreased hypoxia-induced NO production and reduced activated eNOS levels. CONCLUSIONS Cardiomyocytes and CMECs show increased NO production during hypoxia. eNOS seems to be the main NOS isoform involved as source of the increased NO generation, although there may be a role for iNOS and other non-eNOS sources of NO in the hypoxic myocytes. Hypoxia-induced PKB and eNOS activation occurred simultaneously in both cell types, and the PI3-K/PKB pathway was associated with hypoxia-induced NO production via eNOS activation.
Collapse
|
147
|
Liu H, Fisher SA. Hypoxia-inducible transcription factor-1alpha triggers an autocrine survival pathway during embryonic cardiac outflow tract remodeling. Circ Res 2008; 102:1331-9. [PMID: 18467628 PMCID: PMC2737478 DOI: 10.1161/circresaha.107.167858] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cardiac outflow tract (OFT) of birds and mammals undergoes complex remodeling in the transition to a dual circulation. We have previously suggested a role of myocardial hypoxia and hypoxia inducible factor (HIF)-1 in the apoptosis-dependent remodeling of the OFT. In the present study, we transduced recombinant adenovirus-mediated HIF-1alpha in embryonic chick OFT myocardium to test its role in OFT remodeling. HIF-1alpha reduced the prevalence of apoptosis in OFT cardiomyocytes at stages 25 and 30, as determined by lysosome accumulation and caspase-3 activity. Associated conotruncal defects included malrotation of the aorta and excessive infundibular myocardium. HIF-1 targets induced in these gain-of-function experiments included vascular endothelial growth factor (VEGF), inducible nitric oxide synthase, and stromal cell-derived factor-1. To test the role of VEGF in this context, an adenovirus expressing secreted Flk1 (VEGF receptor 2) that binds and blocks VEGF signaling was targeted to the OFT myocardium. This caused increased cell death in the OFT myocardium at stages 25 and 30. Associated conotruncal heart defects included malrotation of the aorta, defects in the subpulmonic infundibulum associated with a small right ventricle, and increased OFT mesenchyme with failure of semilunar valve formation. We conclude that hypoxia signaling through HIF-1 and VEGF provides an autocrine survival signal in the developing cardiac OFT and that perturbation in this pathway causes OFT defects that model congenital human conotruncal heart defects.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
148
|
Li N, Chen L, Yi F, Xia M, Li PL. Salt-sensitive hypertension induced by decoy of transcription factor hypoxia-inducible factor-1alpha in the renal medulla. Circ Res 2008; 102:1101-8. [PMID: 18356541 PMCID: PMC2649696 DOI: 10.1161/circresaha.107.169201] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia inducible factor (HIF)-1alpha, a transcription factor, is abundantly expressed in the renal medulla and regulates many oxygen-sensitive genes such as nitric oxide synthase, cyclooxygenase-2, and heme oxygenase-1. Given the important roles of these genes in the control of arterial pressure, the present study was to test the hypothesis that HIF-1alpha-mediated gene activation serves as an antihypertensive pathway by regulating renal medullary function and sodium excretion. HIF-1alpha decoy oligodeoxynucleotides (ODNs) or scrambled ODNs were transfected into the renal medulla in uninephrectomized Sprague-Dawley rats. Two weeks after ODN transfection, the HIF-1alpha binding activities were significantly inhibited by 45%, and high salt-induced increases of nitric oxide synthase-2 and heme oxygenase-1 transcriptions were also inhibited by 70% and 61% in the renal medulla from decoy rats. The natriuretic responses and increases of renal medullary blood flow responding to the elevations of renal perfusion pressure were significantly blunted by 50% and 37% in decoy rats. Intravenously acute sodium loading increased medullary blood flow and urinary sodium excretion, which was remarkably attenuated in decoy rats. In decoy rats, high salt intake caused a greater positive sodium balance. Consequently, arterial pressure was remarkably increased (from 118+/-1.9 to 154+/-6.3 mm Hg) in decoy rats but not in control rats when the rats were challenged with a high salt diet. There was no blood pressure change in decoy rats that were maintained in normal salt diet. In conclusion, HIF-1alpha-mediated gene activation importantly participates in the regulation of renal medullary function and long-term arterial blood pressure.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298, USA.
| | | | | | | | | |
Collapse
|
149
|
Wunderlich L, Paragh G, Wikonkál NM, Bánhegyi G, Kárpáti S, Mandl J. UVB induces a biphasic response of HIF-1α in cultured human keratinocytes. Exp Dermatol 2008; 17:335-42. [DOI: 10.1111/j.1600-0625.2007.00640.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
150
|
Inducible nitric oxide synthase-nitric oxide plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Transplantation 2008; 85:323-30. [PMID: 18301327 DOI: 10.1097/tp.0b013e31816168f9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Islet transplantation is a potential strategy to cure type 1 diabetes mellitus. However, a substantial part of the islet graft becomes nonfunctional due to several factors including hypoxia. However, the precise mechanism of cell damage is largely unknown in hypoxic exposure to pancreatic beta cells. The aim of the present study was to investigate whether acute and severe hypoxic injury could involve inducible nitric oxide synthase (iNOS)-nitric oxide (NO) signaling in beta cells. METHODS The rat beta cell line (INS-1) and primary rat islets were incubated in an anoxic chamber. Cell viability was determined by propium iodide staining or cell counting kit. The expression of iNOS mRNA and protein was examined using reverse-transcription polymerase chain reaction and Western blot analysis. NO production was measured as nitrite accumulation by Griess reagent method. RESULTS After hypoxic exposure, marked cell death occurred in INS-1 cells and rat islets, accompanied by increase in activated caspase-3 expression. NO production was increased in the culture medium in a time-dependent manner. Increase in expression of iNOS mRNA and protein was found. Pretreatment with a selective iNOS inhibitor, 1400W, significantly prevented cell death during hypoxia. In addition, hypoxia activated c-Jun N-terminal kinase (JNK) significantly, but the addition of 1400W inhibited hypoxia-induced JNK phosphorylation. CONCLUSIONS Our data suggest that iNOS-NO plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Therefore, iNOS-NO might be a potential therapeutic target for preserving beta cell survival in islet transplantation through prevention of hypoxia-mediated cell death.
Collapse
|