101
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
102
|
Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwała M, Bujak-Gizycka B, Filip G, Grudzien G, Kapelak B, Żmudka K, Mrowiecki T, Sadowski J, Korbut R, Guzik TJ. Mechanisms of oxidative stress in human aortic aneurysms--association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol 2013; 168:2389-96. [PMID: 23506637 PMCID: PMC3819986 DOI: 10.1016/j.ijcard.2013.01.278] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/06/2013] [Accepted: 01/23/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED Aortic abdominal aneurysms (AAA) are important causes of cardiovascular morbidity and mortality. Oxidative stress may link multiple mechanisms of AAA including vascular inflammation and increased metalloproteinase activity. However, the mechanisms of vascular free radical production remain unknown. Accordingly, we aimed to determine sources and molecular regulation of vascular superoxide (O2(-)) production in human AAA. METHODS AND RESULTS AAA segments and matched non-dilated aortic samples were obtained from 40 subjects undergoing AAA repair. MDA levels (determined by HPLC/MS) were greater in plasma of AAA subjects (n=16) than in risk factor matched controls (n=16). Similarly, superoxide production, measured by lucigenin chemiluminescence and dihydroethidium fluorescence, was increased in aneurysmatic segments compared to non-dilated aortic specimens. NADPH oxidases and iNOS are the primary sources of O2(-) in AAA. Xanthine oxidase, mitochondrial oxidases and cyclooxygenase inhibition had minor or no effect. Protein kinase C inhibition had no effect on superoxide production in AAA. NADPH oxidase subunit mRNA levels for p22phox, nox2 and nox5 were significantly increased in AAAs while nox4 mRNA expression was lower. Superoxide production was higher in subjects with increased AAA repair risk Vanzetto score and was significantly associated with smoking, hypercholesterolemia and presence of CAD in AAA cohort. Basal superoxide production and NADPH oxidase activity were correlated to aneurysm size. CONCLUSIONS Increased expression and activity of NADPH oxidases are important mechanisms underlying oxidative stress in human aortic abdominal aneurysm. Uncoupled iNOS may link oxidative stress to inflammation in AAA. Oxidative stress is related to aneurysm size and major clinical risk factors in AAA patients.
Collapse
Affiliation(s)
- Bartłomiej Guzik
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Agnieszka Sagan
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | - Dominik Ludew
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | | | - Maciej Chwała
- Department of Vascular Surgery, J. Grande Hospital, Cracow, Poland
| | - Beata Bujak-Gizycka
- Department of Pharmacology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Grzegorz Filip
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Grzegorz Grudzien
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Boguslaw Kapelak
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Krzysztof Żmudka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Tomasz Mrowiecki
- Department of Vascular Surgery, J. Grande Hospital, Cracow, Poland
| | - Jerzy Sadowski
- Department of Cardiovascular Surgery, Institute of Cardiology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Tomasz J. Guzik
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| |
Collapse
|
103
|
Mirmiranpour H, Mousavizadeh M, Noshad S, Ghavami M, Ebadi M, Ghasemiesfe M, Nakhjavani M, Esteghamati A. Comparative effects of pioglitazone and metformin on oxidative stress markers in newly diagnosed type 2 diabetes patients: a randomized clinical trial. J Diabetes Complications 2013; 27:501-7. [PMID: 23891275 DOI: 10.1016/j.jdiacomp.2013.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022]
Abstract
AIMS Recent studies have suggested that pioglitazone exerts anti-oxidant properties which may countervail oxidative stress (OS). We aimed to elucidate the effects of pioglitazone on OS modulation and to compare its effects with metformin. METHODS Data from the randomized clinical trial (registration no.NCT01521624) were used. Newly diagnosed type 2 diabetes patients were assigned to pioglitazone 30mg daily (n=30), metformin 1000mg daily (n=50), or no medication (n=49). Recommendations for exercise and dietary modifications were provided for three groups. Serum concentrations of advanced oxidation protein products(AOPP), advanced glycation end products(AGE), ferritin reducing ability of plasma(FRAP), and enzymatic activities of paraoxonase(PON), lecithin-cholesterol asyltransferase(LCAT), and lipoprotein lipase(LPL) were measured at baseline and after three months. RESULTS In comparison with no medication, pioglitazone proved to be superior in OS amelioration (p<0.05 in all analyses). Compared with metformin, both medications were equally effective in decrement of AOPP and AGE, along with increment of PON (p=0.688, 0.140, and 0.273, respectively). FRAP concentrations increased significantly with metformin (p=0.012). On the other hand, pioglitazone yielded better efficacy in restoration of LCAT and LPL enzymatic activities (p=0.037, and <0.001, respectively). CONCLUSIONS Similar to metformin, three months treatment with Pioglitazone is beneficial in terms of OS alleviation and anti-oxidant capacity restoration.
Collapse
Affiliation(s)
- Hossein Mirmiranpour
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E. Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 2013; 9:401-28. [PMID: 23983473 PMCID: PMC3750863 DOI: 10.2147/vhrm.s33053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Sergio Raposeiras-Roubín
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
| | - José R González-Juanatey
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - Ezequiel Álvarez
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| |
Collapse
|
105
|
Dalaklioglu S, Kuscu N, Celik-Ozenci C, Bayram Z, Nacitarhan C, Ozdem SS. Chronic treatment with taurine ameliorates diabetes-induced dysfunction of nitric oxide-mediated neurogenic and endothelium-dependent corpus cavernosum relaxation in rats. Fundam Clin Pharmacol 2013; 28:394-404. [PMID: 23848484 DOI: 10.1111/fcp.12041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/02/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
This study was aimed to examine the effect of chronic taurine treatment on corpus cavernosum dysfunction in diabetic rats and to investigate possible underlying mechanisms. Thirty male rats were randomized to three groups of 10 each, including control, diabetic, and taurine-treated diabetic. Diabetes was induced in rats by streptozotocin (STZ, single intraperitoneal dose of 50 mg/kg body weight). Taurine was administered orally for 12 weeks (1% w/v in drinking water) from the day on which STZ was injected. At the end of the 12th week, strips of corpus cavernosum were suspended in an organ bath system for functional studies. Nitric oxide (NO)-mediated endothelium-dependent and neurogenic corpus cavernosum relaxation were evaluated by acetylcholine (ACh, 0.1-100 μm) and electrical field stimulation (EFS, 30 V, 5 ms, 2-32 Hz), respectively. The expressions of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS) (Ser-1177), neuronal nitric oxide synthase (nNOS), NADPH oxidase subunit gp91(phox) , Rho A, and Rho kinase in corpus cavernosum were semi-quantitatively assessed by immunohistochemistry. Induction of diabetes resulted in significant inhibition of NO-mediated endothelium-dependent and neurogenic corpus cavernosum relaxation. Furthermore, eNOS, p-eNOS, and nNOS expressions decreased significantly in diabetic rats compared to controls, while gp91(phox) , RhoA and Rho kinase expressions increased significantly. The diminished relaxation response to ACh and EFS as well as diabetes-related changes in expressions of these proteins in corpus cavernosum of diabetic rats was significantly improved by taurine. Taurine treatment improves NO-mediated relaxations of corpus cavernosum in diabetic rats probably by inhibiting NADPH oxidase/Rho kinase pathways.
Collapse
Affiliation(s)
- Selvinaz Dalaklioglu
- Department of Pharmacology, Medical Faculty, Akdeniz University, 07070, Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
106
|
Kikuchi K, Tancharoen S, Takeshige N, Yoshitomi M, Morioka M, Murai Y, Tanaka E. The efficacy of edaravone (radicut), a free radical scavenger, for cardiovascular disease. Int J Mol Sci 2013; 14:13909-30. [PMID: 23880849 PMCID: PMC3742225 DOI: 10.3390/ijms140713909] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023] Open
Abstract
Edaravone was originally developed as a potent free radical scavenger, and has been widely used to treat acute ischemic stroke in Japan since 2001. Free radicals play an important role in the pathogenesis of a variety of diseases, such as cardiovascular diseases and stroke. Therefore, free radicals may be targets for therapeutic intervention in these diseases. Edaravone shows protective effects on ischemic insults and inflammation in the heart, vessel, and brain in experimental studies. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic, and anti-cytokine effects in cardiovascular diseases and stroke. Edaravone has preventive effects on myocardial injury following ischemia and reperfusion in patients with acute myocardial infarction. Edaravone may represent a new therapeutic intervention for endothelial dysfunction in the setting of atherosclerosis, heart failure, diabetes, or hypertension, because these diseases result from oxidative stress and/or cytokine-induced apoptosis. This review evaluates the potential of edaravone for treatment of cardiovascular disease, and covers clinical and experimental studies conducted between 1984 and 2013. We propose that edaravone, which scavenges free radicals, may offer a novel option for treatment of cardiovascular diseases. However, additional clinical studies are necessary to verify the efficacy of edaravone.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
| | - Nobuyuki Takeshige
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Munetake Yoshitomi
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Yoshinaka Murai
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Author to whom correspondence should be addressed. E-Mail: ; Tel.: +81-942-31-7542; Fax: +81-942-31-7695
| |
Collapse
|
107
|
Kong X, Ma MZ, Qin L, Zhang Y, Li XY, Wang GD, Su Q, Zhang DY. Pioglitazone enhances the blood pressure-lowering effect of losartan via synergistic attenuation of angiotensin II-induced vasoconstriction. J Renin Angiotensin Aldosterone Syst 2013; 15:259-70. [PMID: 23676251 DOI: 10.1177/1470320313489061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION This study was designed to investigate the underlying mechanisms of synergistic antihypertensive effect produced by combination therapy of losartan and pioglitazone in metabolic syndrome (MS) rats. MATERIALS AND METHODS An MS model was induced by feeding rats a high-fat, high-sodium diet and 20% sucrose solution. Losartan (20 mg/kg/day), pioglitazone (10 mg/kg/day), and their combination were orally administered for eight consecutive weeks. Systolic blood pressure (SBP) and mean arterial pressure (MAP) were measured using the tail-cuff method and carotid arterial catheterization, respectively. The aortas were isolated and in vitro vascular reactivity studies were performed. The protein expression of angiotensin type 1 receptor (AT1), endothelial nitric oxide synthase (eNOS), phosphorylated eNOS and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47(phox), level of nitrotyrosine as well as activity of eNOS and NADPH oxidase in aortas of MS rats were detected. RESULTS After eight weeks of treatment, the SBP and MAP in the losartan (115 ± 5 and 106 ± 6 mmHg), pioglitazone (130 ± 6 and 118 ± 6 mmHg), and combination therapy (105 ± 6 and 98 ± 5 mmHg) groups were lower than those in the model group (150 ± 8 and 136 ± 9 mmHg). Combination therapy of losartan and pioglitazone reduced BP more than either monotherapy, and showed additive effects on improving endothelial dysfunction and abolishing the increased vascular responsiveness to angiotensin II. These synergistic effects were associated with further reductions in protein expression of p47(phox) and AT1, NADPH oxidase activity, and nitrotyrosine level. CONCLUSIONS Our data indicate that combined treatment exerts more beneficial effects on lowering BP and improving vascular lesions.
Collapse
Affiliation(s)
- Xiang Kong
- Department of Endocrinology, Xinhua Hospital,Shanghai Jiaotong University School of Medicine, China Department of Pharmacology, Third-Grade Pharmacology Laboratory of State Administration of Traditional Chinese Medicine, Wannan Medical College,China
| | - Ming-Zhe Ma
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital,Shanghai Jiaotong University School of Medicine, China
| | - Yan Zhang
- Department of Gastroenterology,Yijishan Hospital Affiliated to Wannan Medical College, China
| | - Xiao-Yong Li
- Department of Endocrinology, Xinhua Hospital,Shanghai Jiaotong University School of Medicine, China
| | - Guo-Dong Wang
- Department of Pharmacy, Wannan Medical College,China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital,Shanghai Jiaotong University School of Medicine, China
| | - Dao-You Zhang
- Department of Nephrology,Yijishan Hospital Affiliated to Wannan Medical College, China
| |
Collapse
|
108
|
Sulfur-Containing Angiotensin-Converting Enzyme Inhibitor 3-Thienylalanine-Ornithyl-Proline Activates Endothelial Function and Expression of Genes Involved in Renin–Angiotensin System. J Cardiovasc Pharmacol 2013; 61:311-7. [DOI: 10.1097/fjc.0b013e318280e16e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
109
|
Yin W, Voit EO. Function and design of the Nox1 system in vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2013; 7:20. [PMID: 23497394 PMCID: PMC3606394 DOI: 10.1186/1752-0509-7-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/18/2013] [Indexed: 11/24/2022]
Abstract
Background Recent studies have demonstrated that the activation of NADPH oxidase 1 (Nox1) plays an important role in the control of reactive oxygen species and their involvement in vascular physiology and pathophysiology. In order to function properly, Nox1 needs to be available in an optimal state, where it is ready to respond appropriately and efficiently to upstream signals. It must also be able to return quickly to this state as soon as the input signal disappears. While Nox1 activation has been discussed extensively in recent years, mechanisms for enzyme disassembly and proper subunit recovery have not received the same attention and therefore require investigation. Results We study the Nox1 system in vascular smooth smucle cells and propose four potential disassembly mechanisms. The analysis consists primarily of large-scale Monte-Carlo simulations whose results are essentially independent of specific parameter values. The computational analysis shows that a specific profile of subunit concentrations is crucial for optimal functioning and responsiveness of the system to input signals. Specifically, free p47phox and inactive Rac1 should be dominant under unstimulated resting conditions, and the proteolytic disassembly pathway should have a low flux, as it is relatively inefficient. The computational results also reveal that the optimal design of the three subunit recovery pathways depends on the intracellular settings of the pathway and that the response speeds of key reversible reactions within the pathway are of great importance. Conclusions Our results provide a systematic basis for understanding the dynamics of Nox1 and yield novel insights into its crucially important disassembly mechanisms. The rigorous comparisons of the relative importance of four potential disassembly pathways demonstrate that disassembly via proteolysis is the least effective mechanism. The relative significance of the other three recovery pathways varies among different scenarios. It is greatly affected by the required response speed of the system and depends critically on appropriate flux balances between forward and reverse reactions. Our findings are predictive and pose novel hypotheses that should be validated with future experiments.
Collapse
Affiliation(s)
- Weiwei Yin
- The Wallace H, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
110
|
Tsai CY, Wang CC, Lai TY, Tsu HN, Wang CH, Liang HY, Kuo WW. Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int J Cardiol 2013; 168:1286-97. [PMID: 23453443 DOI: 10.1016/j.ijcard.2012.12.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 11/10/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Hyperglycemia-induced reactive oxygen species (ROS) generation contributes to development of diabetic cardiomyopathy. Nuclear factor E2-related factor 2 (Nrf2), a redox-sensing transcription factor, induces the antioxidant enzyme expressions. Diallyl trisulfide (DATS) is the most powerful antioxidant among the sulfur-containing compounds in garlic oil. We investigated whether DATS inhibits hyperglycemia-induced ROS production via Nrf2-mediated activation of antioxidant enzymes in cardiac cells exposed to high glucose (HG). METHODS AND RESULTS Treatment of H9c2 cells with HG resulted in an increase in intracellular ROS level and caspase-3 activity, which were markedly reduced by the administration of DATS (10 μM). DATS treatment significantly increased Nrf2 protein stability and nuclear translocation, upregulated downstream gene HO-1, and suppressed its repressor Keap1. However, apoptosis was not inhibited by DATS in cells transfected with Nrf2-specific siRNA. Inhibition of PI3K/Akt signaling by LY294002 (PI3K inhibitor) or PI3K-specific siRNA not only decreased the level of DATS-induced Nrf2-mediated HO-1 expression, but also diminished the protective effects of DATS. Similar results were also observed in high glucose-exposed neonatal primary cardiomyocytes and streptozotocin-treated diabetic rats fed DATS at a dose of 40 mg/kg BW. CONCLUSIONS Our findings indicate that DATS protects against hyperglycemia-induced ROS-mediated apoptosis by upregulating the PI3K/Akt/Nrf2 pathway, which further activates Nrf2-regulated antioxidant enzymes in cardiomyocytes exposed to HG.
Collapse
Affiliation(s)
- Cheng-Yen Tsai
- Department of Pediatrics, China Medical University Beigang Hospital, Yunlin, Taiwan, ROC; Department of Biological Science & Technology College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
111
|
Yang Y, Cao Z, Tian L, Garvey WT, Cheng G. VPO1 mediates ApoE oxidation and impairs the clearance of plasma lipids. PLoS One 2013; 8:e57571. [PMID: 23451244 PMCID: PMC3581477 DOI: 10.1371/journal.pone.0057571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/23/2013] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE ApoE is an abundant component of chylomicron, VLDL, IDL, and HDL. It binds to multiple types of lipids and is implicated in cholesterol and triglyceride homeostasis. Oxidation of ApoE plays a crucial role in the genesis of atherosclerosis. It is proposed that heme-containing peroxidases (hPx) are major mediators of lipoprotein oxidization. Vascular peroxidase 1 (VPO1) is a recently-discovered hPx, which is expressed in cardiovascular system, lung, liver etc. and secreted into plasma. Its plasma concentration is three orders of magnitude of that of myeloperoxidase. If VPO1 mediates ApoE oxidation and affects the lipid metabolism remains to be elucidated. METHODS Recombinant ApoE and VPO1 were expressed and purified from stably-expressing cell lines deriving from HEK293 cells. ApoE oxidation was carried out by VPO1 in the presence of H2O2 and chloride. ApoE oxidation was verified by a variety of approaches including immunoblot and amino acid analyses. To evaluate the functional changes in VPO1-oxidized ApoE, lipid emulsion particle binding assays were employed. RESULTS Oxidized ApoE binds weaker to lipid emulsion particles, which mimic the large lipid complexes in vivo. In lipid efflux assay, oxidized ApoE showed reduced capability in efflux of lipids from foam cells. Mice administrated with oxidized ApoE via blood exhibited weaker clearance ability of plasma lipids. CONCLUSIONS Our data suggest that VPO1 is a new mediator regulating lipid homeostasis, implying a role in genesis and development of atherosclerosis.
Collapse
Affiliation(s)
- Youfeng Yang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | | | | | | |
Collapse
|
112
|
Fu R, Wang Q, Guo Q, Xu J, Wu X. XJP-1 protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by inhibiting NADPH oxidase subunit expression and modulating the PI3K/Akt/eNOS pathway. Vascul Pharmacol 2013; 58:78-86. [DOI: 10.1016/j.vph.2012.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 07/23/2012] [Accepted: 08/16/2012] [Indexed: 11/28/2022]
|
113
|
Zhou ZW, Xie XL, Zhou SF, Li CG. Mechanism of reversal of high glucose-induced endothelial nitric oxide synthase uncoupling by tanshinone IIA in human endothelial cell line EA.hy926. Eur J Pharmacol 2012; 697:97-105. [PMID: 23063542 DOI: 10.1016/j.ejphar.2012.09.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/11/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) uncoupling plays a causal role in endothelial dysfunction in many cardiovascular and metabolic diseases. Tanshinone IIA (Tan IIA), an active compound from Salvia miltiorrhiza, has been used to treat cardiovascular and metabolic diseases. However, the effects of Tan IIA on eNOS uncoupling have not been reported. We hypothesize that Tan IIA can regulate eNOS uncoupling in endothelium cells under oxidative stress. The results showed that eNOS-mediated NO generation was significantly decreased, accompanied by increased superoxide production and NOX4 expression. The ratio of eNOS dimer to monomer and NOS cofactor tetrahydrobiopterin (BH4) to 7,8-dihydrobiopterin (BH2) as well as expressions of heat-shock protein of 90kDa (HSP90), GTP cyclohydrolase-1 (GTPCH1) and dihydrofolate reductase (DHFR) were significantly decreased. Tan IIA significantly inhibited superoxide production and expression of NOX4, and increased NO generation and eNOS homodimerization, as well as expressions of HSP90, GTPCH1 and DHFR in a concentration-dependent manner. The ratio of BH4 to BH2 was also elevated by Tan IIA. In addition, Tan IIA significantly inhibited the increase in expression of PI3K in high glucose treated cells. Wortmannin, a PI3K inhibitor, significantly inhibited the high glucose induced NOX4 expression. The results demonstrated that Tan IIA restored eNOS uncoupling induced by high glucose by targeting NADPH oxidase, HSP90, GTPCH1 and DHFR, and PI3K pathway, which leads to reduced intracellular oxidative stress and increased NO generation. Tan IIA may be used as a prototype agent to restore eNOS coupling under certain cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Zhi-Wei Zhou
- Traditional & Complementary Medicine Program, RMIT Health Innovations Research Institute, School of Health Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | | | | | | |
Collapse
|
114
|
Lear SA, Sarna LK, Siow TJ, Mancini GBJ, Siow YL, O K. Oxidative stress is associated with visceral adipose tissue and subclinical atherosclerosis in a healthy multi-ethnic population. Appl Physiol Nutr Metab 2012; 37:1164-70. [PMID: 23057578 DOI: 10.1139/h2012-107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress plays an important role in the development of atherosclerosis. Excess visceral adipose tissue (VAT) and increased carotid intima-media thickness (IMT) are risk factors for coronary artery disease. We tested the hypothesis that VAT and IMT were associated with systemic oxidative stress. Healthy men and women (n = 565) matched for ethnicity (Aboriginal, Chinese, European, and South Asian) were recruited. Plasma malondialdehyde, a biomarker of oxidative stress, was measured as thiobarbituric acid reactive substances (TBARS). VAT and IMT were determined by computerized tomography and ultrasound scans, respectively. Plasma TBARS levels correlated with VAT and total atheroma burden (sum of IMT area and plaque area) in the entire cohort. When stratified by ethnicity, plasma TBARS levels correlated with distinct body composition and arterial measures in different ethnic populations with more associations present amongst Chinese and Europeans relative to Aboriginals and South Asians. VAT was associated with plasma TBARS levels independent of age, sex, ethnicity, smoking, and body mass index. Plasma TBARS levels were associated with IMT, the presence of plaques, and total atheroma burden, independent of age, sex, ethnicity, smoking, body mass index, and VAT. The association with total atheroma burden remained significant even when adjusted for apolipoprotein B. Results from the present study indicate that oxidative stress is positively associated with VAT as well as diffuse and focal carotid atherosclerosis in apparently healthy men and women.
Collapse
Affiliation(s)
- Scott A Lear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | |
Collapse
|
115
|
Golbidi S, Mesdaghinia A, Laher I. Exercise in the metabolic syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:349710. [PMID: 22829955 PMCID: PMC3399489 DOI: 10.1155/2012/349710] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/13/2012] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome is a clustering of obesity, diabetes, hyperlipidemia, and hypertension that is occurring in increasing frequency across the global population. Although there is some controversy about its diagnostic criteria, oxidative stress, which is defined as imbalance between the production and inactivation of reactive oxygen species, has a major pathophysiological role in all the components of this disease. Oxidative stress and consequent inflammation induce insulin resistance, which likely links the various components of this disease. We briefly review the role of oxidative stress as a major component of the metabolic syndrome and then discuss the impact of exercise on these pathophysiological pathways. Included in this paper is the effect of exercise in reducing fat-induced inflammation, blood pressure, and improving muscular metabolism.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Azam Mesdaghinia
- Physiology Research Center, Kashan University of Medical Sciences and Health Services, Kashan 87155/111, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
116
|
Abstract
Nitric oxide (NO) is recognized as one of the most important cardiovascular signaling molecules, with multiple regulatory effects on myocardial and vascular tissue as well as on other tissues and organ systems. With the growth in understanding of the range and mechanisms of NO effects on the cardiovascular system, it is now possible to consider pharmaceutical interventions that directly target NO or key steps in NO effector pathways. This article reviews aspects of the cardiovascular effects of NO, abnormalities in NO regulation in heart failure, and clinical trials of drugs that target specific aspects of NO signaling pathways.
Collapse
|
117
|
Liu YH, Lu M, Hu LF, Wong PTH, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 2012; 17:141-85. [PMID: 22304473 DOI: 10.1089/ars.2011.4005] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For more than a century, hydrogen sulfide (H(2)S) has been regarded as a toxic gas. This review surveys the growing recognition of the role of H(2)S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the cardiovascular system. In biological fluids, H(2)S gas is a weak acid that exists as about 15% H(2)S, 85% HS(-), and a trace of S(2-). Here, we use "H(2)S" to refer to this mixture. H(2)S has been found to influence heart contractile functions and may serve as a cardioprotectant for treating ischemic heart diseases and heart failure. Alterations of the endogenous H(2)S level have been found in animal models with various pathological conditions such as myocardial ischemia, spontaneous hypertension, and hypoxic pulmonary hypertension. In the vascular system, H(2)S exerts biphasic regulation of a vascular tone with varying effects based on its concentration and in the presence of nitric oxide. Over the past decade, several H(2)S-releasing compounds (NaHS, Na(2)S, GYY4137, etc.) have been utilized to test the effect of exogenous H(2)S under different physiological and pathological situations in vivo and in vitro. H(2)S has been found to promote angiogenesis and to protect against atherosclerosis and hypertension, while excess H(2)S may promote inflammation in septic or hemorrhagic shock. H(2)S-releasing compounds and inhibitors of H(2)S synthesis hold promise in alleviating specific disease conditions. This comprehensive review covers in detail the effects of H(2)S on the cardiovascular system, especially in disease situations, and also the various underlying mechanisms.
Collapse
Affiliation(s)
- Yi-Hong Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
118
|
Narne P, Ponnaluri KC, Singh S, Siraj M, Ishaq M. Relationship between angiotensin-converting enzyme gene insertion/deletion polymorphism, angiographically defined coronary artery disease and myocardial infarction in patients with type 2 diabetes mellitus. J Renin Angiotensin Aldosterone Syst 2012; 13:478-86. [PMID: 22679279 DOI: 10.1177/1470320312448947] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene has been implicated in the pathogenesis of cardiovascular diseases. The objective of the present study was to investigate the influence of ACE gene I/D polymorphism on the development and progression of coronary artery disease (CAD) and myocardial infarction (MI) in type 2 diabetic (T2DM) patients. MATERIALS AND METHODS We screened 283 T2DM patients, inclusive of 160 patients with angiographically defined CAD, 73 patients with MI, 89 patients without MI and 121 T2DM individuals with no evidence of CAD for ACE gene I /D polymorphism. RESULTS There was no significant difference in the distribution of genotypes and alleles of ACE gene I/D polymorphism between T2DM+CAD and T2DM (non-CAD) groups. However, a significant association of this polymorphism with MI in T2DM+CAD patients (p=0.024) was observed. Further analysis revealed that the frequencies of the DD and ID genotypes increased with the number of stenosed coronary vessels (p=0.026). The DD genotype and the D allele were more frequent in the subgroup of T2DM patients with multivessel CAD (p=0.01) than in individuals with single vessel stenosis. CONCLUSIONS These findings reveal a significant relationship between ACE gene I/D polymorphism, multivessel CAD and also the occurrence of MI in T2DM individuals with significant coronary stenoses in our population.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Genetics, Osmania University, India. Hyderabad , India.
| | | | | | | | | |
Collapse
|
119
|
Galán M, Kassan M, Choi SK, Partyka M, Trebak M, Henrion D, Matrougui K. A novel role for epidermal growth factor receptor tyrosine kinase and its downstream endoplasmic reticulum stress in cardiac damage and microvascular dysfunction in type 1 diabetes mellitus. Hypertension 2012; 60:71-80. [PMID: 22665120 DOI: 10.1161/hypertensionaha.112.192500] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase (EGFRtk) and endoplasmic reticulum (ER) stress are important factors in cardiovascular complications. Understanding whether enhanced EGFRtk activity and ER stress induction are involved in cardiac damage, and microvascular dysfunction in type 1 diabetes mellitus is an important question that has remained unanswered. Cardiac fibrosis and microvascular function were determined in C57BL/6J mice injected with streptozotocin only or in combination with EGFRtk inhibitor (AG1478), ER stress inhibitor (Tudca), or insulin for 2 weeks. In diabetic mice, we observed an increase in EGFRtk phosphorylation and ER stress marker expression (CHOP, ATF4, ATF6, and phosphorylated-eIF2α) in heart and mesenteric resistance arteries, which were reduced with AG1478, Tudca, and insulin. Cardiac fibrosis, enhanced collagen type I, and plasminogen activator inhibitor 1 were decreased with AG1478, Tudca, and insulin treatments. The impaired endothelium-dependent relaxation and -independent relaxation responses were also restored after treatments. The inhibition of NO synthesis reduced endothelium-dependent relaxation in control and treated streptozotocin mice, whereas the inhibition of NADPH oxidase improved endothelium-dependent relaxation only in streptozotocin mice. Moreover, in mesenteric resistance arteries, the mRNA levels of Nox2 and Nox4 and the NADPH oxidase activity were augmented in streptozotocin mice and reduced with treatments. This study unveiled novel roles for enhanced EGFRtk phosphorylation and its downstream ER stress in cardiac fibrosis and microvascular endothelial dysfunction in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Maria Galán
- Department of Physiology, Hypertension, and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Perindopril protects against streptozotocin-induced hyperglycemic myocardial damage/alterations. Hum Exp Toxicol 2012; 31:1132-43. [DOI: 10.1177/0960327112446817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High blood pressure, obesity, abnormal lipid profile, which often coexist with diabetes, tend to be associated with preclinical cardiovascular abnormalities and may contribute to the association of diabetes with cardiovascular events. Many studies have proved that streptozotocin (STZ) is responsible for type-2-diabetes-induced cardiovascular complications. Long-term perindopril therapy in patients with hypertension and diabetes has been observed to correct carotid remodeling by reducing hypertrophy. We studied the effect of perindopril (1 mg/kg/d orally [po]) on cardiovascular complications in neonatal model of rats, which was induced by administering STZ (90 mg/kg, intraperitoneally [ip]), in 5-d-old wistar rats and cardiac hypertrophy induced by isoprenaline (ISO; 5 mg/kg, ip) for 10 d. Various biochemical, cardiac, and hemodynamic parameters were measured at the end of 8 weeks of treatment in diabetes model and 10 d in hypertrophy model. STZ produced hyperglycemia, hyperinsulinemia, dyslipidemia, hypertension, bradycardia, increased creatinine kinase (CK-MB), lactate dehydrogenase enzymes (LDH) and C-reactive protein (CRP) levels, cardiac hypertrophy, and oxidative stress. Chronic treatment with perindopril significantly prevented STZ-induced hyperglycemia and hyperinsulinemia and controlled dyslipdemia in diabetic rats. Further, perindopril produced a significant reduction in elevated levels of CRP, LDH, and CK. STZ-induced hypertension and bradycardia were also prevented by perindopril treatment. Perindopril also produced beneficial effect by preventing cardiac hypertrophy as evident from cardiac hypertrophy index and left ventricular hypertrophic index. Perindopril also prevented STZ-induced oxidative stress. Similar results were obtained in ISO-induced cardiac hypertrophic model, which confirms the beneficial role of perindopril in cardiac hypertrophy. In conclusion, our data from both studies suggest that perindopril produced beneficial effect on cardiac complications.
Collapse
|
121
|
Kassan M, Galán M, Partyka M, Saifudeen Z, Henrion D, Trebak M, Matrougui K. Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler Thromb Vasc Biol 2012; 32:1652-61. [PMID: 22539597 DOI: 10.1161/atvbaha.112.249318] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cardiac damage and vascular dysfunction are major causes of morbidity and mortality in hypertension. In the present study, we explored the beneficial therapeutic effect of endoplasmic reticulum (ER) stress inhibition on cardiac damage and vascular dysfunction in hypertension. METHODS AND RESULTS Mice were infused with angiotensin II (400 ng/kg per minute) with or without ER stress inhibitors (taurine-conjugated ursodeoxycholic acid and 4-phenylbutyric acid) for 2 weeks. Mice infused with angiotensin II displayed an increase in blood pressure, cardiac hypertrophy and fibrosis associated with enhanced collagen I content, transforming growth factor-β1 (TGF-β1) activity, and ER stress markers, which were blunted after ER stress inhibition. Hypertension induced ER stress in aorta and mesenteric resistance arteries (MRA), enhanced TGF-β1 activity in aorta but not in MRA, and reduced endothelial NO synthase phosphorylation and endothelium-dependent relaxation (EDR) in aorta and MRA. The inhibition of ER stress significantly reduced TGF-β1 activity, enhanced endothelial NO synthase phosphorylation, and improved EDR. The inhibition of TGF-β1 pathway improved EDR in aorta but not in MRA, whereas the reduction in reactive oxygen species levels ameliorated EDR in MRA only. Infusion of tunicamycin in control mice induced ER stress in aorta and MRA, and reduced EDR by a TGF-β1-dependent mechanism in aorta and reactive oxygen species-dependent mechanism in MRA. CONCLUSIONS ER stress inhibition reduces cardiac damage and improves vascular function in hypertension. Therefore, ER stress could be a potential target for cardiovascular diseases.
Collapse
Affiliation(s)
- Modar Kassan
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Reactive oxygen species (ROS) have profound influences on cellular homeostasis. In excess, they can potentiate the oxidation of numerous molecules, including proteins, lipids, and nucleic acids, affecting function. Furthermore, ROS-mediated oxidation of proteins can directly or indirectly modulate gene expression via effects on redox-sensitive transcription factors or via effects on phospho-relay-mediated signal transduction. In doing so, ROS impact numerous fundamental cellular processes, and have thus been implicated as critical mediators of both homeostasis and disease pathogenesis. Vascular reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major contributor of ROS within the lung. The generation of ROS in the pulmonary vasculature has a pivotal role in endothelial cell (EC) activation and function. Alterations in EC phenotype contribute to vascular tone, permeability, and inflammatory responses and, thus, have been implicated in numerous diseases of the lung, including pulmonary hypertension, ischemic-reperfusion injury, and adult respiratory distress syndrome. Thus, although a detailed understanding of NOX-derived ROS in pulmonary EC biology in the context of health and disease is nascent, there is mounting evidence implicating these enzymes as critical modifiers of diseases of the lung and pulmonary circulation. The purpose of this review is to focus specifically on known as well as putative roles for pulmonary EC NOX, with attention to studies on the intact lung.
Collapse
Affiliation(s)
- Rachel Damico
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
123
|
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter produced in mammalian cells. It is responsible for physiological functions in many organs and systems, with attention focused mainly on the cardiovascular and nervous systems. In the vascular system, H2S produces biphasic effects in regulation of vascular tone. At lower concentrations, it induces vasoconstriction predominantly via decreasing cyclic adenosine monophosphate in smooth muscle cell and inhibiting the production and bioavailability of nitric oxide. At higher concentrations, it produces vasorelaxation mainly through opening of KATP channels and induction of intracellular acidification. Scavenging reactive oxygen species and elevation of cyclic guanosine monophosphate are also implicated in the vasorelaxant response. This review presents an overview of the current knowledge of H2S in the vascular system, with special emphasis and discussion on the involvement of various signaling pathways and ion channels based on current understanding and reported literature till date.
Collapse
|
124
|
Tsai KH, Wang WJ, Lin CW, Pai P, Lai TY, Tsai CY, Kuo WW. NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose. J Cell Physiol 2012; 227:1347-57. [PMID: 21604272 DOI: 10.1002/jcp.22847] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyperglycemia-induced generation of reactive oxygen species (ROS) can lead to cardiomyocyte apoptosis and cardiac dysfunction. However, the mechanism by which high glucose causes cardiomyocyte apoptosis is not clear. In this study, we investigated the signaling pathways involved in NADPH oxidase-derived ROS-induced apoptosis in cardiomyocytes under hyperglycemic conditions. H9c2 cells were treated with 5.5 or 33 mM glucose for 36 h. We found that 33 mM glucose resulted in a time-dependent increase in ROS generation as well as a time-dependent increase in protein expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38, as well as the nuclear translocation of NF-kB. Treatment with apocynin or diphenylene iodonium (DPI), NADPH oxidase inhibitors, resulted in reduced expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38. In addition, treatment with JNK and NF-kB siRNAs blocked the activity of caspase-3. Furthermore, treatment with JNK, but not p38, siRNA inhibited the glucose-induced activation of NF-κB. Similar results were obtained in neonatal cardiomyocytes exposed to high glucose concentrations. Therefore, we propose that NADPH oxidase-derived ROS-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose.
Collapse
Affiliation(s)
- Kun-Hsi Tsai
- Department of Emergency, China Medical University Beigang Hospital, Yunlin County, Taiwan
| | | | | | | | | | | | | |
Collapse
|
125
|
Schramm A, Matusik P, Osmenda G, Guzik TJ. Targeting NADPH oxidases in vascular pharmacology. Vascul Pharmacol 2012; 56:216-31. [PMID: 22405985 DOI: 10.1016/j.vph.2012.02.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/21/2012] [Accepted: 02/25/2012] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a molecular dysregulation in reactive oxygen species (ROS) metabolism, which plays a key role in the pathogenesis of atherosclerosis, vascular inflammation and endothelial dysfunction. It is characterized by a loss of nitric oxide (NO) bioavailability. Large clinical trials such as HOPE and HPS have not shown a clinical benefit of antioxidant vitamin C or vitamin E treatment, putting into question the role of oxidative stress in cardiovascular disease. A change in the understanding of the molecular nature of oxidative stress has been driven by the results of these trials. Oxidative stress is no longer perceived as a simple imbalance between the production and scavenging of ROS, but as a dysfunction of enzymes involved in ROS production. NADPH oxidases are at the center of these events, underlying the dysfunction of other oxidases including eNOS uncoupling, xanthine oxidase and mitochondrial dysfunction. Thus NADPH oxidases are important therapeutic targets. Indeed, HMG-CoA reductase inhibitors (statins) as well as drugs interfering with the renin-angiotensin-aldosterone system inhibit NADPH oxidase activation and expression. Angiotensin-converting enzyme (ACE) inhibitors, AT1 receptor antagonists (sartans) and aliskiren, as well as spironolactone or eplerenone, have been discussed. Molecular aspects of NADPH oxidase regulation must be considered, while thinking about novel pharmacological targeting of this family of enzymes consisting of several homologs Nox1, Nox2, Nox3, Nox4 and Nox5 in humans. In order to properly design trials of antioxidant therapies, we must develop reliable techniques for the assessment of local and systemic oxidative stress. Classical antioxidants could be combined with novel oxidase inhibitors. In this review, we discuss NADPH oxidase inhibitors such as VAS2870, VAS3947, GK-136901, S17834 or plumbagin. Therefore, our efforts must focus on generating small molecular weight inhibitors of NADPH oxidases, allowing the selective inhibition of dysfunctional NADPH oxidase homologs. This appears to be the most reasonable approach, potentially much more efficient than non-selective scavenging of all ROS by the administration of antioxidants.
Collapse
Affiliation(s)
- Agata Schramm
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | | | | | | |
Collapse
|
126
|
Douglas G, Bendall JK, Crabtree MJ, Tatham AL, Carter EE, Hale AB, Channon KM. Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE⁻/⁻ mice. Cardiovasc Res 2012; 94:20-9. [PMID: 22287576 PMCID: PMC3307381 DOI: 10.1093/cvr/cvs026] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aims Vascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species derived from NADPH oxidases. However, it remains unclear whether a primary increase in superoxide production specifically in the endothelium alters the initiation or progression of atherosclerosis. Methods and results Mice overexpressing Nox2 specifically in the endothelium (Nox2-Tg) were crossed with ApoE−/− mice to produce Nox2-Tg ApoE−/− mice and ApoE−/− littermates. Endothelial overexpression of Nox2 in ApoE−/− mice did not alter blood pressure, but significantly increased vascular superoxide production compared with ApoE−/− littermates, measured using both lucigenin chemiluminescence and 2-hydroxyethidium production (ApoE−/−, 19.9 ± 6.3 vs. Nox2-Tg ApoE−/−, 47.0 ± 7.0 nmol 2-hydroxyethidium/aorta, P< 0.05). Increased endothelial superoxide production increased endothelial levels of vascular cell adhesion protein 1 and enhanced macrophage recruitment in early lesions in the aortic roots of 9-week-old mice, indicating increased atherosclerotic plaque initiation. However, endothelial-specific Nox2 overexpression did not alter native or angiotensin II-driven atherosclerosis in either the aortic root or the descending aorta. Conclusion Endothelial-targeted Nox2 overexpression in ApoE−/− mice is sufficient to increase vascular superoxide production and increase macrophage recruitment possible via activation of endothelial cells. However, this initial increase in macrophage recruitment did not alter the progression of atherosclerosis. These results indicate that Nox-mediated reactive oxygen species signalling has important cell-specific and distinct temporal roles in the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Gillian Douglas
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
127
|
Tang Y, Xu J, Qu W, Peng X, Xin P, Yang X, Ying C, Sun X, Hao L. Resveratrol reduces vascular cell senescence through attenuation of oxidative stress by SIRT1/NADPH oxidase-dependent mechanisms. J Nutr Biochem 2012; 23:1410-6. [PMID: 22284404 DOI: 10.1016/j.jnutbio.2011.08.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/23/2011] [Accepted: 08/30/2011] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Senescence of vascular cells contributes to the development of cardiovascular diseases and the overall aging. This study was undertaken to investigate the effects of resveratrol (Res) on amelioration of vascular cell aging and the role of SIRT1/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase pathway. METHODS AND RESULTS Adult male Wistar rats were treated with a high-fat/sucrose diet (HFS) in the presence or absence of Res for 3 months. HFS and in vitro treatment with high glucose increased the senescence cells and reactive oxygen species production in rat aorta and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Res protected against HFS- or high-glucose-induced increase in NADPH oxidase p47phox expression and decrease in SIRT1 level. Apocynin, a NADPH oxidase inhibitor, down-regulated p47phox protein expression, but had no influence on SIRT1 protein; sirtinol, a SIRT1 inhibitor, aggravated the decrease in SIRT1 protein level and the increase in p47phox protein expression induced by high glucose. CONCLUSION Our studies suggested that Res was able to reverse the senescence process in aorta induced by HFS in rats or induced by the exposure to high glucose in cultured BAECs. The underlying mechanism is at least SIRT1/NADPH oxidase pathway dependent.
Collapse
Affiliation(s)
- Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Lee R, Margaritis M, Channon KM, Antoniades C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem 2012; 19:2504-20. [PMID: 22489713 PMCID: PMC3412204 DOI: 10.2174/092986712800493057] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/25/2011] [Indexed: 11/22/2022]
Abstract
Oxidative stress is a key feature in atherogenesis, since reactive oxygen species (ROS) are involved in all stages of the disease, from endothelial dysfunction to atheromatic plaque formation and rupture. It is therefore important to identify reliable biomarkers allowing us to monitor vascular oxidative stress status. These may lead to improved understanding of disease pathogenesis and development of new therapeutic strategies. Measurement of circulating biomarkers of oxidative stress is challenging, since circulation usually behaves as a separate compartment to the individual structures of the vascular wall. However, measurement of stable products released by the reaction of ROS and vascular/circulating molecular structures is a particularly popular approach. Serum lipid hydroperoxides, plasma malondialdehyde or urine F2-isoprostanes are widely used and have a prognostic value in cardiovascular disease. Quantification of oxidative stress at a tissue level is much more accurate. Various chemiluminescence and high performance liquid chromatography assays have been developed over the last few years, and some of them are extremely accurate and specific. Electron spin resonance spectroscopy and micro-electrode assays able to detect ROS directly are also widely used. In conclusion, measurement of circulating biomarkers of oxidative stress is valuable, and some of them appear to have predictive value in cardiovascular disease. However, these biomarkers do not necessarily reflect intravascular oxidative stress and therefore cannot be used as therapeutic targets or markers to monitor pharmacological treatments in clinical settings. Measurement of vascular oxidative stress status is still the only reliable way to evaluate the involvement of oxidative stress in atherogenesis.
Collapse
Affiliation(s)
| | | | | | - C Antoniades
- Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
129
|
Suzuki H, Nishizawa T, Tsugawa H, Mogami S, Hibi T. Roles of oxidative stress in stomach disorders. J Clin Biochem Nutr 2011; 50:35-9. [PMID: 22247598 PMCID: PMC3246180 DOI: 10.3164/jcbn.11-115sr] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/29/2011] [Indexed: 12/13/2022] Open
Abstract
The stomach is a sensitive digestive organ that is susceptible and exposed to exogenous pathogens from the diet. In response to such pathogens, the stomach induces oxidative stress, which might be related to the development of gastric organic disorders such as gastritis, gastric ulcers, and gastric cancer, as well as functional disorders such as functional dyspepsia. In particular, the bacterium Helicobacter pylori plays a major role in eliciting and confronting oxidative stress in the stomach. The present paper summarizes the pathogenesis of oxidative stress in the stomach during the development of various stomach diseases.
Collapse
Affiliation(s)
- Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
130
|
Golbidi S, Badran M, Laher I. Diabetes and alpha lipoic Acid. Front Pharmacol 2011; 2:69. [PMID: 22125537 PMCID: PMC3221300 DOI: 10.3389/fphar.2011.00069] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/18/2011] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is a multi-faceted metabolic disorder where there is increased oxidative stress that contributes to the pathogenesis of this debilitating disease. This has prompted several investigations into the use of antioxidants as a complementary therapeutic approach. Alpha lipoic acid, a naturally occurring dithiol compound which plays an essential role in mitochondrial bioenergetic reactions, has gained considerable attention as an antioxidant for use in managing diabetic complications. Lipoic acid quenches reactive oxygen species, chelates metal ions, and reduces the oxidized forms of other antioxidants such as vitamin C, vitamin E, and glutathione. It also boosts antioxidant defense system through Nrf-2-mediated antioxidant gene expression and by modulation of peroxisome proliferator activated receptors-regulated genes. ALA inhibits nuclear factor kappa B and activates AMPK in skeletal muscles, which in turn have a plethora of metabolic consequences. These diverse actions suggest that lipoic acid acts by multiple mechanisms, many of which have only been uncovered recently. In this review we briefly summarize the known biochemical properties of lipoic acid and then discussed the oxidative mechanisms implicated in diabetic complications and the mechanisms by which lipoic acid may ameliorate these reactions. The findings of some of the clinical trials in which lipoic acid administration has been tested in diabetic patients during the last 10 years are summarized. It appears that the clearest benefit of lipoic acid supplementation is in patients with diabetic neuropathy.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
131
|
Niemiec P, Nowak T, Balcerzyk A, Krauze J, Zak I. The CYBA gene A640G polymorphism influences predispositions to coronary artery disease through interactions with cigarette smoking and hypercholesterolemia. Biomarkers 2011; 16:405-12. [PMID: 21777168 DOI: 10.3109/1354750x.2011.580368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The CYBA gene encodes the p22phox peptide, an essential subunit of vascular NADPH oxidases. The aim of the study was to analyze potential interactions between CYBA gene A640G polymorphism and traditional risk factors of atherosclerosis. We studied 320 subjects: 160 patients with coronary artery disease (CAD) and 160 controls. The results of interactions were interpreted on the basis of synergy index values (SI, SIM). The 640G allele interacted with cigarette smoking (SI = 2.02, SIM = 2.32). Even greater increase of the CAD risk was found whenever the 640G allele interacted with both smoking and hypercholesterolemia (SI = 2.70, SIM = 3.60). The results suggest that the A640G polymorphism may influence individual predispositions to CAD through interactions with smoking and hypercholesterolemia.
Collapse
Affiliation(s)
- Pawel Niemiec
- Department of Biochemistry and Medical Genetics, Medical University of Silesia, School of Health Care, Katowice, Poland.
| | | | | | | | | |
Collapse
|
132
|
XIAO HONGBO, LU XIANGYANG, SUN ZHILIANG, HU YAPING, BAI XIA, ZHANG MINGJUN, CHEN XIAOJUN. PROTECTIVE EFFECTS OF SOLUBLE FIBER FROM UNDARIA PINNATIFIDA ON VASCULAR ENDOTHELIUM IN MICE. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00516.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
133
|
Murdoch CE, Alom-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, Brewer A, Shah AM. Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 2011; 106:527-38. [PMID: 21528437 PMCID: PMC3105229 DOI: 10.1007/s00395-011-0179-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/17/2011] [Accepted: 04/11/2011] [Indexed: 02/07/2023]
Abstract
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension.
Collapse
Affiliation(s)
- Colin E. Murdoch
- Cardiovascular Division, King’s College London British Heart Foundation Centre, London, SE5 9PJ UK
| | - Sara P. Alom-Ruiz
- Cardiovascular Division, King’s College London British Heart Foundation Centre, London, SE5 9PJ UK
| | - Minshu Wang
- Cardiovascular Division, King’s College London British Heart Foundation Centre, London, SE5 9PJ UK
| | - Min Zhang
- Cardiovascular Division, King’s College London British Heart Foundation Centre, London, SE5 9PJ UK
| | - Simon Walker
- Cardiovascular Division, King’s College London British Heart Foundation Centre, London, SE5 9PJ UK
| | - Bin Yu
- Cardiovascular Division, King’s College London British Heart Foundation Centre, London, SE5 9PJ UK
| | - Alison Brewer
- Cardiovascular Division, King’s College London British Heart Foundation Centre, London, SE5 9PJ UK
| | - Ajay M. Shah
- Cardiovascular Division, King’s College London British Heart Foundation Centre, London, SE5 9PJ UK
- Cardiovascular Division, The James Black Centre, King’s College London, 125 Coldharbour Lane, London, SE5 9NU UK
| |
Collapse
|
134
|
Abstract
In a previous issue of Annals of Medicine, we presented evidence in support of the concept that an abnormally increased production of reactive oxygen species plays a central role in the genesis and progression of cardiovascular disease. While a number of preclinical lines of evidence support this concept, and despite the results of many studies suggesting a beneficial impact of antioxidant drugs on endothelial function, large clinical trials have failed to demonstrate a benefit of antioxidants on cardiovascular outcomes. Studies exploring the possibility that classical antioxidants such as vitamin C, vitamin E, selenium, or folic acid may improve the prognosis of patients with cardiac disease have substantially reported neutral-and occasionally negative-results. In contrast, medications such as statins, ACE inhibitors, certain β-blockers, or angiotensin I receptor blockers, which possess indirect 'ancillary' antioxidant properties, have been associated with beneficial effects in both preclinical studies and large clinical trials. The reasons for the failure of the 'direct' approach to antioxidant therapy, and for the success of the therapy with these drugs, are discussed in the present review.
Collapse
Affiliation(s)
- Tommaso Gori
- II Medizinische Klinik für Kardiologie/Angiologie, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
135
|
Sirker A, Zhang M, Shah AM. NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 2011; 106:735-47. [PMID: 21598086 PMCID: PMC3149671 DOI: 10.1007/s00395-011-0190-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023]
Abstract
NADPH oxidase family enzymes (or NOXs) are the major sources of reactive oxygen species (ROS) that are implicated in the pathophysiology of many cardiovascular diseases. These enzymes appear to be especially important in the modulation of redox-sensitive signalling pathways that underlie key cellular functions such as growth, differentiation, migration and proliferation. Seven distinct members of the family have been identified of which four (namely NOX1, 2, 4 and 5) may have cardiovascular functions. In this article, we review our current understanding of the roles of NOX enzymes in several common cardiovascular disease states, with a focus on data from genetic studies and clinical data where available.
Collapse
Affiliation(s)
- Alexander Sirker
- Cardiovascular Division, King's College London British Heart Foundation Centre, London SE5 9PJ, UK
| | | | | |
Collapse
|
136
|
Musicki B, Liu T, Lagoda GA, Strong TD, Sezen SF, Johnson JM, Burnett AL. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase. J Sex Med 2011; 7:3023-32. [PMID: 20626609 DOI: 10.1111/j.1743-6109.2010.01880.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)-null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES The main outcome measures are the molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared with WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67(phox) , p47(phox) and gp91(phox) , eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P<0.05) the abnormalities in protein expressions of gp67(phox) and gp47(phox) , 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters. Protein expressions of P-eNOS-Ser-1177 and total eNOS were unaffected by hypercholesterolemia. CONCLUSION Activated NAD(P)H oxidase in the penis is an initial source of oxidative stress resulting in eNOS uncoupling, thus providing a mechanism of eNOS uncoupling and endothelial dysfunction in hypercholesterolemia-induced ED.
Collapse
Affiliation(s)
- Biljana Musicki
- Department of Urology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | |
Collapse
|
137
|
Inhibitory effect of Ruta graveolens L. on oxidative damage, inflammation and aortic pathology in hypercholesteromic rats. ACTA ACUST UNITED AC 2011; 63:285-90. [DOI: 10.1016/j.etp.2010.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 12/16/2009] [Accepted: 01/26/2010] [Indexed: 11/21/2022]
|
138
|
The C242T polymorphism of the gene encoding cytochrome b-245 alpha is not associated with paediatric ischaemic stroke: family-based and case-control study. Neurol Neurochir Pol 2011; 44:453-8. [PMID: 21082491 DOI: 10.1016/s0028-3843(14)60135-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Reactive oxygen species play an important role in the physiology and pathology of cerebral arteries, including ischaemic stroke. The cytochrome b-245 alpha gene (CYBA) encodes cytochrome b-245 alpha light chain (p22phox peptide), a critical element of NAD(P)H oxidases, the most important source of superoxide anion in the cerebral arteries. To search for genetic factors associated with paediatric ischaemic stroke, the possible association between CYBA gene C242T polymorphism and the disease was evaluated. MATERIAL AND METHODS The study group consisted of 238 individuals: children with ischaemic stroke (n = 70), their biological parents (n = 118) and children without any symptoms of stroke (n = 50). The C242T polymorphism was genotyped using polymerase chain reaction - restriction fragment length methodology. To evaluate the possible association between polymorphism and stroke, the transmission disequilibrium test and the case-control method were applied. RESULTS The C242 allele was transmitted more frequently than 242T (62.2% vs. 37.8%) but observed frequencies did not differ significantly from expected (p = 0.10). There were also no significant differences in allele and genotype distribution between patients and control subjects (patients: CC - 50.0%, CT - 38.6%, TT - 11.4% vs. controls: CC - 52.0%, CT - 36.0%, TT - 12.0%). CONCLUSIONS The study did not show that the C242T polymorphism of the CYBA gene is a risk factor of ischaemic stroke in children.
Collapse
|
139
|
Garcia-Bailo B, El-Sohemy A, Haddad PS, Arora P, Benzaied F, Karmali M, Badawi A. Vitamins D, C, and E in the prevention of type 2 diabetes mellitus: modulation of inflammation and oxidative stress. Biologics 2011; 5:7-19. [PMID: 21383912 PMCID: PMC3044790 DOI: 10.2147/btt.s14417] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Indexed: 12/15/2022]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide, and certain population subgroups are especially vulnerable to the disease. To reduce T2DM risk and progression at the population level, preventative strategies are needed that can be implemented on a population-wide scale with minimal cost and effort. Chronic low-grade inflammation resulting from oxidative stress and imbalances in the innate immune system has been associated with obesity, metabolic syndrome, and insulin resistance – critical stages in the development and progression of T2DM. Therefore, inflammation may play a causal role in the pathogenesis of T2DM, and reducing it via modulation of oxidative stress and the innate immune response could lead to a status of improved insulin sensitivity and delayed disease onset. Dietary supplementation with anti-inflammatory and antioxidant nutritional factors, such as micronutrients, might present a novel strategy toward the prevention and control of T2DM at the population level. This review examines current knowledge linking oxidation, inflammatory signaling pathways, and vitamin supplementation or intake to the risk of T2DM. The concept that micronutrients, via attenuation of inflammation, could be employed as a novel preventive measure for T2DM is evaluated in the context of its relevance to public health.
Collapse
Affiliation(s)
- Bibiana Garcia-Bailo
- Office for Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
140
|
Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:259-69. [PMID: 20716913 PMCID: PMC2835914 DOI: 10.4161/oxim.2.5.9441] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During physiological processes molecules undergo chemical changes involving reducing and oxidizing reactions. A molecule with an unpaired electron can combine with a molecule capable of donating an electron. The donation of an electron is termed as oxidation whereas the gaining of an electron is called reduction. Reduction and oxidation can render the reduced molecule unstable and make it free to react with other molecules to cause damage to cellular and sub-cellular components such as membranes, proteins and DNA. In this paper, we have discussed the formation of reactive oxidant species originating from a variety of sources such as nitric oxide (NO) synthase (NOS), xanthine oxidases (XO), the cyclooxygenases, nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase isoforms and metal-catalysed reactions. In addition, we present a treatise on the physiological defences such as specialized enzymes and antioxidants that maintain reduction-oxidation (redox) balance. We have also given an account of how enzymes and antioxidants can be exhausted by the excessive production of reactive oxidant species (ROS) resulting in oxidative stress/nitrosative stress, a process that is an important mediator of cell damage. Important aspects of redox imbalance that triggers the activity of a number of signalling pathways including transcription factors activity, a process that is ubiquitous in cardiovascular disease related to ischemia/reperfusion injury have also been presented.
Collapse
Affiliation(s)
- Maqsood M Elahi
- Wessex Cardiothoracic Centre, BUPA Hospital, Southampton, UK
| | | | | |
Collapse
|
141
|
Niwa A, Tajiri T, Higashino H. Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 2011; 48:194-202. [PMID: 21562638 PMCID: PMC3082073 DOI: 10.3164/jcbn.10-78] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022] Open
Abstract
Ipomoea batatas, Agaricus blazei and Smallanthus sonchifolius are known to favorably influence diabetes mellitus. To clarify their antidiabetic efficacy and hypoglycemic mechanisms, we treated streptozotocin-induced diabetic rats with daily oral feeding of powdered Ipomoea batatas (5 g kg−1 d−1), Agaricus blazei (1 g kg−1 d−1) or Smallanthus sonchifolius (4 g kg−1 d−1) for 2 months. Treatments with Ipomoea batatas or Agaricus blazei, but not Smallanthus sonchifolius, significantly suppressed the increases of fasting plasma glucose and hemoglobin A1c levels, and restored body weight loss during diabetes. Serum insulin levels after oral glucose administration tests increased along the treatments of Ipomoea batatas or Agaricus blazei. Moreover, Ipomoea batatas and Agaricus blazei reduced superoxide production from leukocytes and vascular homogenates, serum 8-oxo-2'-deoxyguanosine, and vascular nitrotyrosine formation of diabetic rats to comparable levels of normal control animals. Stress- and inflammation-related p38 mitogen-activated protein kinase activity and tumor necrosis factor-α production of diabetic rats were significantly depressed by Ipomoea batatas administration. Histological examination also exhibited improvement of pancreatic β-cells mass after treatments with Ipomoea batatas or Agaricus blazei. These results suggest that hypoglycemic effects of Ipomoea batatas or Agaricus blazei result from their suppression of oxidative stress and proinflammatory cytokine production followed by improvement of pancreatic β-cells mass.
Collapse
Affiliation(s)
- Atsuko Niwa
- Department of Pharmacology, Kinki University School of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | |
Collapse
|
142
|
|
143
|
Olukman M, Orhan CE, Celenk FG, Ulker S. Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. J Diabetes Complications 2010; 24:415-23. [PMID: 20226688 DOI: 10.1016/j.jdiacomp.2010.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/23/2009] [Accepted: 02/04/2010] [Indexed: 12/14/2022]
Abstract
AIM Increased production of reactive oxygen species (ROS) in the diabetic vasculature results in the impairment of nitric oxide (NO)-mediated relaxations leading to impaired endothelium-dependent vasodilation. An important source of ROS is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and the inhibition of this enzyme is an active area of interest. This study aimed to investigate the effects of apocynin, an NADPH oxidase inhibitor, on endothelial dysfunction and on the expression of NO synthase (NOS) and NADPH oxidase in thoracic aorta of diabetic rats. METHOD Streptozotocin (STZ)-diabetic rats received apocynin (16 mg/kg per day) for 4 weeks. Endothelium-dependent and -independent relaxations were determined in thoracic aortic rings. Western blotting and RT-PCR analysis were performed for NOSs and NADPH oxidase in the aortic tissue. RESULTS Acetylcholine-induced relaxations and l-NAME-induced contractions were decreased in diabetic aorta. The decrease in acetylcholine and l-NAME responses were prevented by apocynin treatment without a significant change in plasma glucose levels. Endothelial NOS (eNOS) protein and mRNA expression exhibited significant decrease in diabetes, while protein and/or mRNA expressions of inducible NOS (iNOS) as well as p22(phox) and gp91(phox) subunits of NADPH oxidase were increased, and these alterations were markedly prevented by apocynin treatment. CONCLUSION NADPH oxidase expression is increased in diabetic rat aorta. NADPH oxidase-mediated oxidative stress is accompanied by the decreased eNOS and increased iNOS expressions, contributing to endothelial dysfunction. Apocynin effectively prevents the increased NADPH oxidase expression in diabetic aorta and restores the alterations in NOS expression, blocking the vicious cycle leading to diabetes-associated endothelial dysfunction.
Collapse
MESH Headings
- Acetophenones/administration & dosage
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/physiopathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/administration & dosage
- Gene Expression Regulation, Enzymologic/drug effects
- Male
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/genetics
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Murat Olukman
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | | | | | | |
Collapse
|
144
|
Münzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010; 31:2741-8. [PMID: 20974801 DOI: 10.1093/eurheartj/ehq396] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An abnormal production of reactive oxygen species (ROS) and the subsequent decrease in vascular bioavailability of nitric oxide (NO) have long been proposed to be the common pathogenetic mechanism of the endothelial dysfunction, resulting from diverse cardiovascular risk factors such as hypercholesterolaemia, diabetes mellitus, chronic smoking, metabolic syndrome, and hypertension. Superoxide produced by the nicotinamide dinucleotide phosphate (NADPH) oxidase, mitochondrial sources, or the xanthine oxidase may react with NO, thereby resulting in excessive formation of peroxynitrite, a reactive nitrogen species that has been demonstrated to accelerate the atherosclerotic process by causing direct structural damage and by causing further ROS production. Despite this sound biological rationale and a number of pre-clinical and clinical lines of evidence, studies testing the effects of classical antioxidants such as vitamin C, vitamin E, or folic acid in combination with vitamin E have been disappointing. Rather, substances such as statins, angiotensin-converting enzyme inhibitors, or AT1-receptor blockers, which possess indirect antioxidant properties mediated by the stimulation of NO production and simultaneous inhibition of superoxide production (e.g. from the NADPH oxidase), have been shown to improve vascular function in pre-clinical and clinical studies and to reduce the incidence of cardiovascular events in patients with cardiovascular disease. Today, oxidative stress remains an attractive target for cardiovascular prevention and therapy. However, a deeper understanding of its source, and of its role in vascular pathology, is necessary before new trials are attempted.
Collapse
Affiliation(s)
- Thomas Münzel
- II Medizinische Klinik für Kardiologie/Angiologie, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | | | |
Collapse
|
145
|
Huang A, Yan C, Suematsu N, Cuevas A, Yang YM, Kertowidjojo E, Hintze TH, Kaley G, Sun D. Impaired flow-induced dilation of coronary arterioles of dogs fed a low-salt diet: roles of ANG II, PKC, and NAD(P)H oxidase. Am J Physiol Heart Circ Physiol 2010; 299:H1476-83. [PMID: 20833958 DOI: 10.1152/ajpheart.01250.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Low-salt (LS) diet has been considered to be beneficial in the prevention and treatment of hypertension; however, it also increases plasma angiotensin (ANG) II and may cause adverse cardiovascular effects, such as endothelial dysfunction. We assessed endothelial function of coronary arterioles and vascular superoxide production, as a function of LS diet. Dogs were fed with LS (0.05% NaCl) or a normal-salt (NS, 0.65% NaCl) diet for 2 wk. There were threefold increases in plasma ANG II, associated with a 60% reduction in flow-induced dilation (FID) in coronary arterioles of LS compared with NS dogs. In vessels of NS dogs, FID was primarily mediated by nitric oxide (NO), as indicated by an eliminated FID by N(ω)-nitro-l-arginine methyl ester (l-NAME). In vessels of LS dogs, however, FID was eliminated. Administration of apocynin, a NAD(P)H oxidase inhibitor, partially restored FID and additional l-NAME eliminated FID. Generation of superoxide, measured with dihydroethidium, was significantly greater in vessels of LS than in NS dogs, which was further increased in response to ANG II or phorbol 12,13-dibutyrate, an agonist of protein kinase C (PKC). The enhanced superoxide was normalized by apocynin, losartan (a blocker of angiotensin type 1 receptor), and chelerythrine chloride (an antagonist of PKC). Western blotting indicated an upregulation of gp91(phox) and p47(phox), associated with increased expression of phosphorylated PKC in vessels of LS dogs. In separate experiments, dogs were fed simultaneously with LS and losartan (LS + Losa) for 2 wk. There was a significant increase in plasma ANG II in LS + Losa dogs, which, however, was associated with normal FID and gp91(phox) expression in coronary arterioles. In conclusion, LS led to endothelial dysfunction, as indicated by an impaired flow-induced dilation caused by decreasing NO bioavailibility, a response that involves angiotensin-induced activation of PKC that, in turn, activates vascular NAD(P)H oxidase to produce superoxide.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Oyama JI, Satoh S, Suematsu N, Kadokami T, Maeda T, Sugano M, Makino N. Scavenging free radicals improves endothelial dysfunction in human coronary arteries in vivo. Heart Vessels 2010; 25:379-85. [DOI: 10.1007/s00380-009-1221-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/06/2009] [Indexed: 10/19/2022]
|
147
|
Bronas UG, Dengel DR. Influence of Vascular Oxidative Stress and Inflammation on the Development and Progression of Atherosclerosis. Am J Lifestyle Med 2010. [DOI: 10.1177/1559827610375534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular disease (CVD) risk factors such as hypertension, diabetes, dyslipidemia, smoking, physical inactivity, and obesity increase production of vascular reactive oxygen species (ROS), which results in a reduction of bioavailable nitric oxide and ultimately endothelial dysfunction and endothelial cell activation. ROS appears to mediate the inflammatory pathways that participate in the development and progression of atherosclerosis. There are numerous markers of oxidative stress and inflammation available for assessing the therapeutic response to interventions, but few are currently recommended for clinical use. Exercise training improves endothelial function via several mechanisms, including increased endothelial nitric oxide synthase—nitric oxide (eNOS-NO)— mediated production, increased activity and amount of antioxidants, attenuated ROS production, and an apparent reduction in systemic inflammation, possibly related to an increase in myokines resulting from skeletal muscle activation. Dietary antioxidant supplementation may improve endothelial function, oxidative stress, and inflammation, but much controversy exists regarding the use of antioxidant supplementation in primary and secondary CVD prevention. The purpose of this article is to review the contribution of vascular oxidative stress and activation of the inflammatory pathways in the pathogenesis of CVD and to review common methods used in clinical research to assess vascular oxidative stress and inflammation in response to therapeutic lifestyle interventions.
Collapse
Affiliation(s)
- Ulf G. Bronas
- School of Nursing, University of Minnesota, Minneapolis,
| | | |
Collapse
|
148
|
Khalil MI, Sulaiman SA. The potential role of honey and its polyphenols in preventing heart diseases: a review. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2010; 7:315-21. [PMID: 21731163 PMCID: PMC3005390 DOI: 10.4314/ajtcam.v7i4.56693] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Honey is rich in phenolic compounds, which act as natural antioxidants and are becoming increasingly popular because of their potential role in contributing to human health. A wide range of phenolic constituents is present in honey like quercetin, caffeic acid phenethyl ester (CAPE), acacetin, kaempferol, galangin which have promising effect in the treatment of cardiovascular diseases. Many epidemiological studies have shown that regular intake of phenolic compounds is associated with reduced risk of heart diseases. In coronary heart disease, the protective effects of phenolic compounds include mainly antithrombotic, anti-ischemic, anti-oxidant, and vasorelaxant. It is suggested that flavonoids decrease the risk of coronary heart disease by three major actions: improving coronary vasodilatation, decreasing the ability of platelets in the blood to clot, and preventing low-density lipoproteins (LDLs) from oxidizing. In this review paper, we discussed the preventive role of polyphenols of honey against cardiovascular diseases.
Collapse
Affiliation(s)
- M I Khalil
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | |
Collapse
|
149
|
Mustapha NM, Tarr JM, Kohner EM, Chibber R. NADPH Oxidase versus Mitochondria-Derived ROS in Glucose-Induced Apoptosis of Pericytes in Early Diabetic Retinopathy. J Ophthalmol 2010; 2010:746978. [PMID: 20652059 PMCID: PMC2905948 DOI: 10.1155/2010/746978] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/29/2010] [Accepted: 04/23/2010] [Indexed: 01/15/2023] Open
Abstract
Objectives. Using apocynin (inhibitor of NADPH oxidase), and Mitoquinol 10 nitrate (MitoQ; mitochondrial-targeted antioxidant), we addressed the importance of mitochondria versus NADPH oxidase-derived ROS in glucose-induced apoptosis of pericytes. Methods. NADPH oxidase was localised using Western blot analysis and cytochrome C reduction assay. Apoptosis was detected by measuring caspase-3 activity. Intracellular glucose concentration, ROS formation and Nepsilon-(carboxymethyl) lysine (CML) content were measured using Amplex Red assay kit, dihydroethidium (DHE), and competitive immunoabsorbant enzyme-linked assay (ELISA), respectively. Results. NADPH oxidase was localised in the cytoplasm of pericytes suggesting ROS production within intracellular compartments. High glucose (25 mM) significantly increased apoptosis, intracellular glucose concentration, and CML content. Apoptosis was associated with increased gp91phox expression, activity of NADPH oxidase, and intracellular ROS production. Apocynin and not MitoQ significantly blunted the generation of ROS, formation of intracellular CML and apoptosis. Conclusions. NADPH oxidase and not mitochondria-derived ROS is responsible for the accelerated apoptosis of pericytes in diabetic retinopathy.
Collapse
Affiliation(s)
- Nik M. Mustapha
- Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia
- Cardiovascular Division, GKT School of Biomedical & Health Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Joanna M. Tarr
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, Peninsula Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Eva M. Kohner
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, Peninsula Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Rakesh Chibber
- Cardiovascular Division, GKT School of Biomedical & Health Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, Peninsula Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| |
Collapse
|
150
|
Fatehi-Hassanabad Z, Chan CB, Furman BL. Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol 2010; 636:8-17. [DOI: 10.1016/j.ejphar.2010.03.048] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/27/2010] [Accepted: 03/22/2010] [Indexed: 02/07/2023]
|