101
|
Guo X, Yuan S, Liu Z, Fang Q. Oxidation- and CaMKII-mediated sarcoplasmic reticulum Ca(2+) leak triggers atrial fibrillation in aging. J Cardiovasc Electrophysiol 2014; 25:645-52. [PMID: 24576293 DOI: 10.1111/jce.12395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Advanced age is a well-recognized predisposition to atrial fibrillation (AF). However, the cellular electrophysiological changes that underlie the heightened susceptibility to AF in aged individuals remain poorly understood. Sarcoplasmic reticulum (SR) Ca(2+) leak that results from posttranslational modification of type 2 ryanodine receptor channels (RyR2) has been implicated in arrhythmogenesis. We hypothesize that aging alters atrial myocytes Ca(2+) homeostasis and RyR2 function, which create a substrate for AF initiation. METHODS AND RESULTS We examined the susceptibility to AF in aged (24 months) and young adult (4-5 months) mice using an intraesophageal atrial electrical stimulation protocol. Aged mice showed significant higher AF induction rate (43.3%, n = 30) than young adults (8.8%, n = 34, P < 0.01). In accordance with these in vivo findings, significantly increased diastolic SR Ca(2+) leak and arrhythmogenic Ca(2+) activities with reduced SR Ca(2+) content were observed in aged atrial myocytes. Western blot showed RyR2 oxidation and phosphorylation at Ser2814 (Ca(2+) /calmodulin-dependent protein kinase II [CaMKII] site), but not phosphorylation at Ser2808 (protein kinase A [PKA] and CaMKII site), were increased in aged atrial myocytes. The selective CaMKII inhibitor (KN-93), as well as the antioxidant reagent (DTT) reversed the diastolic Ca(2+) leak and the frequency of spontaneous Ca(2+) transients in aged atrial myocytes, whereas PKA inhibition with H-89 was ineffective. CONCLUSIONS Aging increases both the oxidation and CaMKII-phosphorylation of RyR2, which result in diastolic SR Ca(2+) leak and facilitate AF initiation. These results contribute to the electrophysiological remodeling of aged atria and suggest a therapeutic strategy for AF treatment in aging.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | |
Collapse
|
102
|
Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, Jin H, Ohnuki Y, Tsuneoka Y, Kurotani R, Suita K, Kawakami Y, Hamaguchi S, Abe T, Kiyonari H, Tsunematsu T, Bai Y, Suzuki S, Hidaka Y, Umemura M, Ichikawa Y, Yokoyama U, Sato M, Ishikawa F, Izumi-Nakaseko H, Adachi-Akahane S, Tanaka H, Ishikawa Y. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest 2014; 124:2785-801. [PMID: 24892712 DOI: 10.1172/jci64784] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of β-adrenergic receptor-mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this paradigm. Mice lacking Epac1 (Epac1 KO) exhibited decreased cardiac contractility with reduced phospholamban (PLN) phosphorylation at serine-16, the major PKA-mediated phosphorylation site. In Epac1 KO mice, intracellular Ca2+ storage and the magnitude of Ca2+ movement were decreased; however, PKA expression remained unchanged, and activation of PKA with isoproterenol improved cardiac contractility. In contrast, direct activation of EPAC in cardiomyocytes led to increased PLN phosphorylation at serine-16, which was dependent on PLC and PKCε. Importantly, Epac1 deletion protected the heart from various stresses, while Epac2 deletion was not protective. Compared with WT mice, aortic banding induced a similar degree of cardiac hypertrophy in Epac1 KO; however, lack of Epac1 prevented subsequent cardiac dysfunction as a result of decreased cardiac myocyte apoptosis and fibrosis. Similarly, Epac1 KO animals showed resistance to isoproterenol- and aging-induced cardiomyopathy and attenuation of arrhythmogenic activity. These data support Epac1 as an important regulator of PKA-independent PLN phosphorylation and indicate that Epac1 regulates cardiac responsiveness to various stresses.
Collapse
|
103
|
Weeke P, Muhammad R, Delaney JT, Shaffer C, Mosley JD, Blair M, Short L, Stubblefield T, Roden DM, Darbar D. Whole-exome sequencing in familial atrial fibrillation. Eur Heart J 2014; 35:2477-83. [PMID: 24727801 DOI: 10.1093/eurheartj/ehu156] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Positional cloning and candidate gene approaches have shown that atrial fibrillation (AF) is a complex disease with familial aggregation. Here, we employed whole-exome sequencing (WES) in AF kindreds to identify variants associated with familial AF. METHODS AND RESULTS WES was performed on 18 individuals in six modestly sized familial AF kindreds. After filtering very rare variants by multiple metrics, we identified 39 very rare and potentially pathogenic variants [minor allele frequency (MAF) ≤0.04%] in genes not previously associated with AF. Despite stringent filtering >1 very rare variants in the 5/6 of the kindreds were identified, whereas no plausible variants contributing to familial AF were found in 1/6 of the kindreds. Two candidate AF variants in the calcium channel subunit genes (CACNB2 and CACNA2D4) were identified in two separate families using expression data and predicted function. CONCLUSION By coupling family data with exome sequencing, we identified multiple very rare potentially pathogenic variants in five of six families, suggestive of a complex disease mechanism, whereas none were identified in the remaining AF pedigree. This study highlights some important limitations and challenges associated with performing WES in AF including the importance of having large well-curated multi-generational pedigrees, the issue of potential AF misclassification, and limitations of WES technology when applied to a complex disease.
Collapse
Affiliation(s)
- Peter Weeke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark
| | - Raafia Muhammad
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jessica T Delaney
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Christian Shaffer
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan D Mosley
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Marcia Blair
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Laura Short
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Tanya Stubblefield
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Dan M Roden
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, 2215B Garland Avenue, Room 1285A MRB IV, Nashville 37323-6602, TN, USA
| | - Dawood Darbar
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, 2215B Garland Avenue, Room 1285A MRB IV, Nashville 37323-6602, TN, USA
| | | |
Collapse
|
104
|
Heijman J, Voigt N, Wehrens XHT, Dobrev D. Calcium dysregulation in atrial fibrillation: the role of CaMKII. Front Pharmacol 2014; 5:30. [PMID: 24624086 PMCID: PMC3940963 DOI: 10.3389/fphar.2014.00030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most frequently encountered clinical arrhythmia and is associated with increased morbidity and mortality. Ectopic activity and reentry are considered major arrhythmogenic mechanisms contributing to the initiation and maintenance of AF. In addition, AF is self-reinforcing through progressive electrical and structural remodeling which stabilize the arrhythmia and make it more difficult to treat. Recent research has suggested an important role for Ca(2+)-dysregulation in AF. Ca(2+)-handling abnormalities may promote ectopic activity, conduction abnormalities facilitating reentry, and AF-related remodeling. In this review article, we summarize the Ca(2+)-handling derangements occurring in AF and discuss their impact on fundamental arrhythmogenic mechanisms. We focus in particular on the role of the multifunctional Ca(2+)/calmodulin-dependent protein kinase type-II (CaMKII), which acts as a major link between Ca(2+)-dysregulation and arrhythmogenesis. CaMKII expression and activity are increased in AF and promote arrhythmogenesis through phosphorylation of various targets involved in cardiac electrophysiology and excitation-contraction coupling. We discuss the implications for potential novel therapeutic strategies for AF based on CaMKII and Ca(2+)-handling abnormalities.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, and Medicine-Cardiology, Baylor College of Medicine Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen Essen, Germany
| |
Collapse
|
105
|
Faggioni M, Savio-Galimberti E, Venkataraman R, Hwang HS, Kannankeril PJ, Darbar D, Knollmann BC. Suppression of spontaneous ca elevations prevents atrial fibrillation in calsequestrin 2-null hearts. Circ Arrhythm Electrophysiol 2014; 7:313-20. [PMID: 24493699 DOI: 10.1161/circep.113.000994] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) risk has been associated with leaky ryanodine receptor 2 (RyR2) Ca release channels. Patients with mutations in RyR2 or in the sarcoplasmic reticulum Ca-binding protein calsequestrin 2 (Casq2) display an increased risk for AF. Here, we examine the underlying mechanisms of AF associated with loss of Casq2 and test mechanism-based drug therapy. METHODS AND RESULTS Compared with wild-type Casq2+/+ mice, atrial burst pacing consistently induced atrial flutter or AF in Casq2-/- mice and in isolated Casq2-/- hearts. Atrial optical voltage maps obtained from isolated hearts revealed multiple independent activation sites arising predominantly from the pulmonary vein region. Ca and voltage mapping demonstrated diastolic subthreshold spontaneous Ca elevations (SCaEs) and delayed afterdepolarizations whenever the pacing train failed to induce AF. The dual RyR2 and Na channel inhibitor R-propafenone (3 μmol/L) significantly reduced frequency and amplitude of SCaEs and delayed afterdepolarizations in atrial myocytes and intact atria and prevented induction of AF. In contrast, the S-enantiomer of propafenone, an equipotent Na channel blocker but much weaker RyR2 inhibitor, did not reduce SCaEs and delayed afterdepolarizations and failed to prevent AF. CONCLUSIONS Loss of Casq2 increases risk of AF by promoting regional SCaEs and delayed afterdepolarizations in atrial tissue, which can be prevented by RyR2 inhibition with R-propafenone. Targeting AF caused by leaky RyR2 Ca channels with R-propafenone may be a more mechanism-based approach to treating this common arrhythmia.
Collapse
Affiliation(s)
- Michela Faggioni
- Division of Clinical Pharmacology, Department of Medicine, Division of Cardiology, Department of Medicine, Department of Biomedical Engineering and Physics, and Division of Cardiology, Department of Pediatrics, Vanderbilt University, Nashville, TN; and Department of Cardiovascular Diseases, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
106
|
Li N, Chiang DY, Wang S, Wang Q, Sun L, Voigt N, Respress JL, Ather S, Skapura DG, Jordan VK, Horrigan FT, Schmitz W, Müller FU, Valderrabano M, Nattel S, Dobrev D, Wehrens XHT. Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model. Circulation 2014; 129:1276-1285. [PMID: 24398018 DOI: 10.1161/circulationaha.113.006611] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The progression of atrial fibrillation (AF) from paroxysmal to persistent forms remains a major clinical challenge. Abnormal sarcoplasmic reticulum (SR) Ca(2+) leak via the ryanodine receptor type 2 (RyR2) has been observed as a source of ectopic activity in various AF models. However, its potential role in progression to long-lasting spontaneous AF (sAF) has never been tested. This study was designed to test the hypothesis that enhanced RyR2-mediated Ca(2+) release underlies the development of a substrate for sAF and to elucidate the underlying mechanisms. METHODS AND RESULTS CREM-IbΔC-X transgenic (CREM) mice developed age-dependent progression from spontaneous atrial ectopy to paroxysmal and eventually long-lasting AF. The development of sAF in CREM mice was preceded by enhanced diastolic Ca(2+) release, atrial enlargement, and marked conduction abnormalities. Genetic inhibition of Ca(2+)/calmodulin-dependent protein kinase II-mediated RyR2-S2814 phosphorylation in CREM mice normalized open probability of RyR2 channels and SR Ca(2+) release, delayed the development of spontaneous atrial ectopy, fully prevented sAF, suppressed atrial dilation, and forestalled atrial conduction abnormalities. Hyperactive RyR2 channels directly stimulated the Ca(2+)-dependent hypertrophic pathway nuclear factor of activated T cell/Rcan1-4, suggesting a role for the nuclear factor of activated T cell/Rcan1-4 system in the development of a substrate for long-lasting AF in CREM mice. CONCLUSIONS RyR2-mediated SR Ca(2+) leak directly underlies the development of a substrate for sAF in CREM mice, the first demonstration of a molecular mechanism underlying AF progression and sAF substrate development in an experimental model. Our work demonstrates that the role of abnormal diastolic Ca(2+) release in AF may not be restricted to the generation of atrial ectopy but extends to the development of atrial remodeling underlying the AF substrate.
Collapse
Affiliation(s)
- Na Li
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX
| | - David Y Chiang
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX.,TBMM program, Baylor College of Medicine, Houston, TX
| | - Sufen Wang
- Department of Cardiology, The Methodist Hospital, Houston, TX
| | - Qiongling Wang
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX
| | - Liang Sun
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX
| | - Niels Voigt
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Division of Experimental Cardiology, Heidelberg University, Mannheim, Germany
| | - Jonathan L Respress
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX
| | - Sameer Ather
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX
| | - Darlene G Skapura
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX
| | - Valerie K Jordan
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX
| | - Frank T Horrigan
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX
| | - Wilhelm Schmitz
- Institute of Pharmacology and Toxicology, University of Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Germany
| | - Miguel Valderrabano
- Division of Experimental Cardiology, Heidelberg University, Mannheim, Germany
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Division of Experimental Cardiology, Heidelberg University, Mannheim, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology&Biophysics, Baylor College of Medicine, Houston, TX.,Department of Medicine.Cardiology), Baylor College of Medicine, Houston, TX
| |
Collapse
|
107
|
Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XHT, Nattel S, Dobrev D. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 2013; 129:145-156. [PMID: 24249718 DOI: 10.1161/circulationaha.113.006641] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Electrical, structural, and Ca2+ -handling remodeling contribute to the perpetuation/progression of atrial fibrillation (AF). Recent evidence has suggested a role for spontaneous sarcoplasmic reticulum Ca2+ -release events in long-standing persistent AF, but the occurrence and mechanisms of sarcoplasmic reticulum Ca2+ -release events in paroxysmal AF (pAF) are unknown. METHOD AND RESULTS Right-atrial appendages from control sinus rhythm patients or patients with pAF (last episode a median of 10-20 days preoperatively) were analyzed with simultaneous measurements of [Ca2+]i (fluo-3-acetoxymethyl ester) and membrane currents/action potentials (patch-clamp) in isolated atrial cardiomyocytes, and Western blot. Action potential duration, L-type Ca2+ current, and Na+ /Ca2+ -exchange current were unaltered in pAF, indicating the absence of AF-induced electrical remodeling. In contrast, there were increases in SR Ca2+ leak and incidence of delayed after-depolarizations in pAF. Ca2+ -transient amplitude and sarcoplasmic reticulum Ca2+ load (caffeine-induced Ca2+ -transient amplitude, integrated Na+/Ca2+ -exchange current) were larger in pAF. Ca2+ -transient decay was faster in pAF, but the decay of caffeine-induced Ca2+ transients was unaltered, suggesting increased SERCA2a function. In agreement, phosphorylation (inactivation) of the SERCA2a-inhibitor protein phospholamban was increased in pAF. Ryanodine receptor fractional phosphorylation was unaltered in pAF, whereas ryanodine receptor expression and single-channel open probability were increased. A novel computational model of the human atrial cardiomyocyte indicated that both ryanodine receptor dysregulation and enhanced SERCA2a activity promote increased sarcoplasmic reticulum Ca2+ leak and sarcoplasmic reticulum Ca2+ -release events, causing delayed after-depolarizations/triggered activity in pAF. CONCLUSIONS Increased diastolic sarcoplasmic reticulum Ca2+ leak and related delayed after-depolarizations/triggered activity promote cellular arrhythmogenesis in pAF patients. Biochemical, functional, and modeling studies point to a combination of increased sarcoplasmic reticulum Ca2+ load related to phospholamban hyperphosphorylation and ryanodine receptor dysregulation as underlying mechanisms.
Collapse
Affiliation(s)
- Niels Voigt
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Division of Experimental Cardiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jordi Heijman
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Qiongling Wang
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics and Department of Medicine, Baylor College of Medicine, Houston, USA
| | - David Y Chiang
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics and Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Na Li
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics and Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics and Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal and Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Division of Experimental Cardiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
108
|
|
109
|
Posttranslational modifications of cardiac troponin T: An overview. J Mol Cell Cardiol 2013; 63:47-56. [DOI: 10.1016/j.yjmcc.2013.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/18/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
|
110
|
Heijman J, Dewenter M, El-Armouche A, Dobrev D. Function and regulation of serine/threonine phosphatases in the healthy and diseased heart. J Mol Cell Cardiol 2013; 64:90-8. [PMID: 24051368 DOI: 10.1016/j.yjmcc.2013.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation is a major control mechanism of a wide range of physiological processes and plays an important role in cardiac pathophysiology. Serine/threonine protein phosphatases control the dephosphorylation of a variety of cardiac proteins, thereby fine-tuning cardiac electrophysiology and function. Specificity of protein phosphatases type-1 and type-2A is achieved by multiprotein complexes that target the catalytic subunits to specific subcellular domains. Here, we describe the composition, regulation and target substrates of serine/threonine phosphatases in the heart. In addition, we provide an overview of pharmacological tools and genetic models to study the role of cardiac phosphatases. Finally, we review the role of protein phosphatases in the diseased heart, particularly in ventricular arrhythmias and atrial fibrillation and discuss their role as potential therapeutic targets.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, 45122 Essen, Germany
| | | | | | | |
Collapse
|
111
|
Affiliation(s)
- Kai-Chien Yang
- Lifespan Cardiovascular Institute, the Warren Alpert School of Medicine, Brown University, and the Providence Veterans Administration Medical Center, Providence, RI
| | | |
Collapse
|
112
|
Lalani GG, Schricker AA, Clopton P, Krummen DE, Narayan SM. Frequency analysis of atrial action potential alternans: a sensitive clinical index of individual propensity to atrial fibrillation. Circ Arrhythm Electrophysiol 2013; 6:859-67. [PMID: 23995250 DOI: 10.1161/circep.113.000204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Few clinical indices identify the propensity of patients to atrial fibrillation (AF) when not in AF. Repolarization alternans has been shown to indicate AF vulnerability, but is limited in its sensitivity to detect changes in action potential (AP) duration (APD), which may be subtle. We hypothesized that spectral analysis would be a more sensitive and robust marker of AP alternans and thus a better clinical index of individual propensity to AF than APD alternans. METHODS AND RESULTS In 31 patients (12 persistent AF, 15 paroxysmal AF, 4 controls with no AF), we recorded left (n=27) and right (n=6) atrial monophasic APs during incremental pacing from cycle length 500 ms (120 beats per minute) to AF onset. Alternans was measured by APD and spectral analysis. At baseline pacing (median cycle length [1st, 3rd quartiles], 500 ms [500, 500]), APD alternans was detected in only 7 of 27 AF patients (no controls), whereas spectral AP alternans was detected in 18 of 27 AF patients (no controls; P=0.003); AP alternans was more prevalent in persistent than paroxysmal AF, and absent in controls (P=0.018 APD; P=0.042 spectral). Spectral AP alternans magnitude at baseline was highest in persistent AF, with modest rate-dependent amplification, followed by paroxysmal AF, with marked rate dependence, and undetectable in controls until just before induced AF. CONCLUSIONS Spectral AP alternans near baseline rates can identify patients with, versus those without, clinical histories and pathophysiological substrates for AF. Future studies should examine whether the presence of spectral AP alternans during sinus rhythm may obviate the need to actually demonstrate AF, such as on ambulatory ECG monitoring.
Collapse
Affiliation(s)
- Gautam G Lalani
- University of California-San Diego and Veterans Affairs Medical Center, San Diego, CA
| | | | | | | | | |
Collapse
|
113
|
Gupta MK, Gulick J, James J, Osinska H, Lorenz JN, Robbins J. Functional dissection of myosin binding protein C phosphorylation. J Mol Cell Cardiol 2013; 64:39-50. [PMID: 24001940 DOI: 10.1016/j.yjmcc.2013.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/28/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) phosphorylation is differentially regulated in the normal heart and during disease development. Our objective was to examine in detail three phosphorylatable sites (Ser-273, Ser-282, and Ser-302) present in the protein's cardiac-specific sequences, as these residues are differentially and reversibly phosphorylated during normal and abnormal cardiac function. Three transgenic lines were generated: DAA, which expressed cMyBP-C containing Asp-273, Ala-282, and Ala-302, in which a charged amino acid was placed at residue 273 and the remaining two sites rendered nonphosphorylatable by substituting alanines for the two serines; AAD containing Ala-273, Ala-282, and Asp-302, in which aspartate was placed at residue 302 and the remaining two sites rendered nonphosphorylatable; and SDS containing Ser-273, Asp-282, and Ser-302. These mice were compared to mice constructed previously along similar lines: wild type, in which normal cMyBP-C is transgenically expressed, AllP-, in which alanines were substituted and ADA mice as well. DAA and AAD mice showed pathology that was more severe than cMyBP-C nulls. DAA and AAD animals exhibited left ventricular chamber dilation, interstitial fibrosis, irregular cardiac rhythm and sudden cardiac death. Our results define the effects of the sites' post-translational modifications on cMyBP-C functionality and together, give a comprehensive picture of the potential consequences of site-specific phosphorylation. Ser-282 is a key residue in controlling S2 interaction with the thick and thin filaments. The new DAA and AAD constructs show that phosphorylation at one site in the absence of the ability to phosphorylate the other sites, depending upon the particular residues involved, can lead to severe cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Manish K Gupta
- The Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
114
|
Xu GJ, Gan TY, Tang BP, Chen ZH, Jiang T, Song JG, Guo X, Li JX. Age-related changes in cellular electrophysiology and calcium handling for atrial fibrillation. J Cell Mol Med 2013; 17:1109-18. [PMID: 23837844 PMCID: PMC4118170 DOI: 10.1111/jcmm.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022] Open
Abstract
This study was to investigate whether or not the dysfunction of atrial repolarization and abnormality of the intracellular Ca2+ handling protein was augmented with ageing. Four groups of dogs were studied, adult and aged dogs in sinus rhythm (SR) and atrial fibrillation (AF) induced by rapid atrial pacing. We used whole cell patch clamp recording techniques to measure L-type Ca2+ current in cardiomyocytes dispersed from the left atria. Expressions of the Ca2+ handling protein were measured by real-time quantitative reverse transcription-polymerase chain reaction and Western blot methods. Cardiomyocytes from old atria showed longer action potential (AP) duration to 90% repolarization, lower AP plateau potential and peak L-type Ca2+ current densities at both age groups in SR. AF led to a higher maximum diastolic potential, an increase of amplitude of phase 0, decreases of AP duration to 90% repolarization, plateau potential and peak L-type Ca2+ current densities. Compared to the adult group, mRNA and protein expressions of the L-type calcium channel a1c were decreased, whereas expressions of calcium adenosine triphosphatase were increased in the aged group. Compared to SR group, expressions of Ca2+ handling protein except for phospholamban were significantly decreased in both age groups with AF. We conclude that these ageing-induced electrophysiological and molecular changes showed that general pathophysiological adaptations might provide a substrate conducive to AF.
Collapse
Affiliation(s)
- Guo-Jun Xu
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Johnsen AB, Høydal M, Røsbjørgen R, Stølen T, Wisløff U. Aerobic interval training partly reverse contractile dysfunction and impaired Ca2+ handling in atrial myocytes from rats with post infarction heart failure. PLoS One 2013; 8:e66288. [PMID: 23799089 PMCID: PMC3682943 DOI: 10.1371/journal.pone.0066288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/05/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is limited knowledge about atrial myocyte Ca(2+) handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca(2+) handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction. METHODS AND RESULTS Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p<0.01) and time to relaxation was prolonged (p<0.01) in sedentary HF-rats compared to healthy controls. This was associated with decreased Ca(2+) amplitude, decreased SR Ca(2+) content, and slower Ca(2+) transient decay. Atrial myocytes from HF-rats had reduced sarcoplasmic reticulum Ca(2+) ATPase activity, increased Na(+)/Ca(2+)-exchanger activity and increased diastolic Ca(2+) leak through ryanodine receptors. High intensity aerobic interval training in HF-rats restored atrial myocyte contractile function and reversed changes in atrial Ca(2+) handling in HF. CONCLUSION Post infarction HF in rats causes profound impairment in atrial myocyte contractile function and Ca(2+) handling. The observed dysfunction in atrial myocytes was partly reversed after aerobic interval training.
Collapse
Affiliation(s)
- Anne Berit Johnsen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Høydal
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ragnhild Røsbjørgen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tomas Stølen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
116
|
Colman MA, Aslanidi OV, Kharche S, Boyett MR, Garratt C, Hancox JC, Zhang H. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria. J Physiol 2013; 591:4249-72. [PMID: 23732649 PMCID: PMC3779115 DOI: 10.1113/jphysiol.2013.254987] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche–Ramirez–Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca2+ handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves.
Collapse
Affiliation(s)
- Michael A Colman
- Professor H. Zhang: School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.
| | | | | | | | | | | | | |
Collapse
|
117
|
Gilda JE, Gomes AV. How phosphorylated can it get? Cardiac myosin binding protein C phosphorylation in heart failure. J Mol Cell Cardiol 2013; 62:108-10. [PMID: 23732927 DOI: 10.1016/j.yjmcc.2013.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 01/18/2023]
|
118
|
Greiser M, Schotten U. Dynamic remodeling of intracellular Ca2+ signaling during atrial fibrillation. J Mol Cell Cardiol 2013; 58:134-42. [DOI: 10.1016/j.yjmcc.2012.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/23/2022]
|
119
|
Voigt N, Dobrev D. Cellular and molecular correlates of ectopic activity in patients with atrial fibrillation. Europace 2013; 14 Suppl 5:v97-v105. [PMID: 23104921 DOI: 10.1093/europace/eus282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia and is associated with increased morbidity and mortality. Current drugs for AF treatment have limited efficacy and a substantial risk of proarrhythmic side effects, making novel drug development critical. Emerging evidence suggests that abnormal intracellular calcium (Ca(2+)) signalling is a key contributor to ectopic (triggered) electrical activity in human AF. Accordingly, atrial Ca(2+)-handling abnormalities underlying ectopic activity may constitute novel mechanism-based therapeutic approaches to treat AF. This article reviews the recent evidence for a role of cellular ectopic activity in human AF pathophysiology, discusses the molecular mechanisms underlying triggered activity in human atrial myocytes, and considers their relevance to the design of novel therapeutic options.
Collapse
Affiliation(s)
- Niels Voigt
- Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | | |
Collapse
|
120
|
Heijman J, Voigt N, Nattel S, Dobrev D. Calcium handling and atrial fibrillation. Wien Med Wochenschr 2013; 162:287-91. [PMID: 22695810 DOI: 10.1007/s10354-012-0109-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia in the clinical setting. It is associated with substantial cardiovascular morbidity and mortality. Recent research has indicated that abnormal Ca(2+) handling plays a critical role in the induction and maintenance of AF, contributing to ectopic activity, AF-maintaining reentry circuits and related prothrombotic atrial hypocontractility. The AF-specific Ca(2+)-handling abnormalities may constitute viable therapeutic approaches to treat AF. Here, we review the causes, consequences, and therapeutic implications of altered atrial Ca(2+) handling for AF pathophysiology.
Collapse
Affiliation(s)
- Jordi Heijman
- Division of Experimental Cardiology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | | | |
Collapse
|
121
|
Sankaranarayanan R, Kirkwood G, Dibb K, Garratt CJ. Comparison of Atrial Fibrillation in the Young versus That in the Elderly: A Review. Cardiol Res Pract 2013; 2013:976976. [PMID: 23401843 PMCID: PMC3564268 DOI: 10.1155/2013/976976] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/09/2012] [Indexed: 02/07/2023] Open
Abstract
The incidence and prevalence of atrial fibrillation (AF) are projected to increase significantly worldwide, imposing a significant burden on healthcare resources. The disease itself is extremely heterogeneous in its epidemiology, pathophysiology, and treatment options based on individual patient characteristics. Whilst ageing is well recognised to be an independent risk factor for the development of AF, this condition also affects the young in whom the condition is frequently symptomatic and troublesome. Traditional thinking suggests that the causal factors and pathogenesis of the condition in the young with structurally normal atria but electrophysiological "triggers" in the form of pulmonary vein ectopics leading to lone AF are in stark contrast to that in the elderly who have AF primarily due to an abnormal substrate consisting of fibrosed and dilated atria acting in concert with the pulmonary vein triggers. However, there can be exceptions to this rule as there is increasing evidence of structural and electrophysiological abnormalities in the atrial substrate in young patients with "lone AF," as well as elderly patients who present with idiopathic AF. These reports seem to be blurring the distinction in the pathophysiology of so-called idiopathic lone AF in the young versus that in the elderly. Moreover with availability of improved and modern investigational and diagnostic techniques, novel causes of AF are being reported thereby seemingly consigning the diagnosis of "lone AF" to a rather mythical existence. We shall also elucidate in this paper the differences seen in the epidemiology, causes, pathogenesis, and clinical features of AF in the young versus that seen in the elderly, thereby requiring clearly defined management strategies to tackle this arrhythmia and its associated consequences.
Collapse
Affiliation(s)
- Rajiv Sankaranarayanan
- Unit of Cardiac Physiology, Cardiovascular Research Group, 3rd Floor, Core Technology Facility, The University of Manchester, M139PL, Grafton Street, Manchester M13 9NT, UK
- Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK
| | - Graeme Kirkwood
- Unit of Cardiac Physiology, Cardiovascular Research Group, 3rd Floor, Core Technology Facility, The University of Manchester, M139PL, Grafton Street, Manchester M13 9NT, UK
- Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK
| | - Katharine Dibb
- Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK
| | - Clifford J. Garratt
- Unit of Cardiac Physiology, Cardiovascular Research Group, 3rd Floor, Core Technology Facility, The University of Manchester, M139PL, Grafton Street, Manchester M13 9NT, UK
- Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK
| |
Collapse
|
122
|
Batra AS, Mohari N. Junctional ectopic tachycardia: Current strategies for diagnosis and management. PROGRESS IN PEDIATRIC CARDIOLOGY 2013. [DOI: 10.1016/j.ppedcard.2012.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
123
|
Heijman J, Voigt N, Dobrev D. New directions in antiarrhythmic drug therapy for atrial fibrillation. Future Cardiol 2013; 9:71-88. [DOI: 10.2217/fca.12.78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia and has a significant impact on morbidity and mortality. Current antiarrhythmic drugs for AF suffer from limited safety and efficacy, probably because they were not designed based on specific pathological mechanisms. Recent research has provided important insights into the mechanisms contributing to AF and highlighted several potential novel antiarrhythmic strategies. In this review, we highlight the main pathological mechanisms of AF, discuss traditional and novel aspects of atrial antiarrhythmic drugs in relation to these pathological mechanisms, and present potential novel therapeutic approaches including structure-based modulation of atrial-specific cardiac ion channels, restoring abnormal Ca2+ handling in AF and targeting atrial remodeling.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, Medical Faculty Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology, Medical Faculty Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
- Division of Experimental Cardiology, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Dobromir Dobrev
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
124
|
Bers DM, Grandi E. Human atrial fibrillation: insights from computational electrophysiological models. Trends Cardiovasc Med 2012; 21:145-50. [PMID: 22732550 DOI: 10.1016/j.tcm.2012.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/16/2022]
Abstract
Computational electrophysiology has proven useful to investigate the mechanisms of cardiac arrhythmias at various spatial scales, from isolated myocytes to the whole heart. This article reviews how mathematical modeling has aided our understanding of human atrial myocyte electrophysiology to study the contribution of structural and electrical remodeling to human atrial fibrillation. Potential new avenues of investigation and model development are suggested.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California at Davis, Davis, CA 95616-8636, USA.
| | | |
Collapse
|
125
|
Laszlo R, Konior A, Bentz K, Eick C, Schreiner B, Schreieck J, Bosch RF. Atrial reverse remodeling: restitution of early tachycardia-induced alterations of atrial ion currents after termination of rapid atrial pacing in rabbits. Res Vet Sci 2012; 94:320-4. [PMID: 22939085 DOI: 10.1016/j.rvsc.2012.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Studies report on the reversal of electrophysiological parameters altered by atrial tachycardia after cessation of the latter. However, there is no data concerning reversal of tachycardia-induced alterations of ion currents. Reverse remodeling of atrial ion currents (I(Ca,L), I(to), I(sus)) was studied in our rabbit model of tachycardia-induced electrical remodeling. METHODS Three groups each with four animals were built. Rapid atrial pacing (600/min) for 5 days was applied in all groups. Thereafter, different time intervals (5, 10, 20 days) were awaited before the patch clamp experiments. RESULTS Similar to I(to) remodeling in our model, within 20 days after cessation of atrial tachycardia, time course of I(to) reverse remodeling was also U-shaped. In contrast, there was no significant recovery of I(Ca,L) which was initially reduced by rapid atrial pacing. CONCLUSION Relevance of a missing recovery of I(Ca,L) is likely as this current is closely linked with intracellular calcium handling.
Collapse
Affiliation(s)
- Roman Laszlo
- Department of Cardiology, University of Tuebingen, Otfried-Mueller-Strasse 10, D-72076 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
126
|
Swaminathan PD, Purohit A, Hund TJ, Anderson ME. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 2012; 110:1661-77. [PMID: 22679140 DOI: 10.1161/circresaha.111.243956] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the past decade supports a view that activation of the multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca(2+) or oxidation, upstream signals with the capacity to transition CaMKII into a Ca(2+) and calmodulin-independent constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca(2+) homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof-of-concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and for reducing arrhythmias. We review the molecular physiology of CaMKII and discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction, and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.
Collapse
Affiliation(s)
- Paari Dominic Swaminathan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
127
|
WANG ZF, WANG XL, GAO GX. PR65A Regulates The Activity of The Zinc-finger Antiviral Protein*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
128
|
Sadayappan S, de Tombe PP. Cardiac myosin binding protein-C: redefining its structure and function. Biophys Rev 2012; 4:93-106. [PMID: 22707987 PMCID: PMC3374655 DOI: 10.1007/s12551-012-0067-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/13/2012] [Indexed: 01/10/2023] Open
Abstract
Mutations of cardiac myosin binding protein-C (cMyBP-C) are inherited by an estimated 60 million people worldwide, and the protein is the target of several kinases. Recent evidence further suggests that cMyBP-C mutations alter Ca(2+) transients, leading to electrophysiological dysfunction. Thus, while the importance of studying this cardiac sarcomere protein is clear, preliminary data in the literature have raised many questions. Therefore, in this article, we propose to review the structure and function of cMyBP-C with particular respect to the role(s) in cardiac contractility and whether its release into the circulatory system is a potential biomarker of myocardial infarction. We also discuss future directions and experimental designs that may lead to expanding the role(s) of cMyBP-C in the heart. In conclusion, we suggest that cMyBP-C is a regulatory protein that could offer a broad clinical utility in maintaining normal cardiac function.
Collapse
Affiliation(s)
- Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave., Maywood, IL 60153 USA
| | - Pieter P. de Tombe
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave., Maywood, IL 60153 USA
| |
Collapse
|
129
|
Grandi E, Workman AJ, Pandit SV. Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation. J Atr Fibrillation 2012; 4:495. [PMID: 28496736 DOI: 10.4022/jafib.495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/10/2012] [Accepted: 03/19/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca2+ transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Sandeep V Pandit
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
130
|
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmia, and is responsible for substantial morbidity and mortality in the general population. Current treatments have moderate efficacy and considerable risks, especially of pro-arrhythmia, highlighting the need for new therapeutic strategies. In recent years, substantial efforts have been invested in developing novel treatments that target the underlying molecular determinants of atrial fibrillation, and several new compounds are under development. This Review focuses on the mechanistic rationale for the development of new anti-atrial fibrillation drugs, on the molecular and structural motifs that they target and on the results obtained so far in experimental and clinical studies.
Collapse
|
131
|
Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XHT, Dobrev D. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 2012; 125:2059-70. [PMID: 22456474 DOI: 10.1161/circulationaha.111.067306] [Citation(s) in RCA: 481] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Delayed afterdepolarizations (DADs) carried by Na(+)-Ca(2+)-exchange current (I(NCX)) in response to sarcoplasmic reticulum (SR) Ca(2+) leak can promote atrial fibrillation (AF). The mechanisms leading to delayed afterdepolarizations in AF patients have not been defined. METHODS AND RESULTS Protein levels (Western blot), membrane currents and action potentials (patch clamp), and [Ca(2+)](i) (Fluo-3) were measured in right atrial samples from 76 sinus rhythm (control) and 72 chronic AF (cAF) patients. Diastolic [Ca(2+)](i) and SR Ca(2+) content (integrated I(NCX) during caffeine-induced Ca(2+) transient) were unchanged, whereas diastolic SR Ca(2+) leak, estimated by blocking ryanodine receptors (RyR2) with tetracaine, was ≈50% higher in cAF versus control. Single-channel recordings from atrial RyR2 reconstituted into lipid bilayers revealed enhanced open probability in cAF samples, providing a molecular basis for increased SR Ca(2+) leak. Calmodulin expression (60%), Ca(2+)/calmodulin-dependent protein kinase-II (CaMKII) autophosphorylation at Thr287 (87%), and RyR2 phosphorylation at Ser2808 (protein kinase A/CaMKII site, 236%) and Ser2814 (CaMKII site, 77%) were increased in cAF. The selective CaMKII blocker KN-93 decreased SR Ca(2+) leak, the frequency of spontaneous Ca(2+) release events, and RyR2 open probability in cAF, whereas protein kinase A inhibition with H-89 was ineffective. Knock-in mice with constitutively phosphorylated RyR2 at Ser2814 showed a higher incidence of Ca(2+) sparks and increased susceptibility to pacing-induced AF compared with controls. The relationship between [Ca(2+)](i) and I(NCX) density revealed I(NCX) upregulation in cAF. Spontaneous Ca(2+) release events accompanied by inward I(NCX) currents and delayed afterdepolarizations/triggered activity occurred more often and the sensitivity of resting membrane voltage to elevated [Ca(2+)](i) (diastolic [Ca(2+)](i)-voltage coupling gain) was higher in cAF compared with control. CONCLUSIONS Enhanced SR Ca(2+) leak through CaMKII-hyperphosphorylated RyR2, in combination with larger I(NCX) for a given SR Ca(2+) release and increased diastolic [Ca(2+)](i)-voltage coupling gain, causes AF-promoting atrial delayed afterdepolarizations/triggered activity in cAF patients.
Collapse
Affiliation(s)
- Niels Voigt
- Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Meijering RAM, Zhang D, Hoogstra-Berends F, Henning RH, Brundel BJJM. Loss of proteostatic control as a substrate for atrial fibrillation: a novel target for upstream therapy by heat shock proteins. Front Physiol 2012; 3:36. [PMID: 22375124 PMCID: PMC3284689 DOI: 10.3389/fphys.2012.00036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/09/2012] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common, sustained clinical tachyarrhythmia associated with significant morbidity and mortality. AF is a persistent condition with progressive structural remodeling of the atrial cardiomyocytes due to the AF itself, resulting in cellular changes commonly observed in aging and in other heart diseases. While rhythm control by electrocardioversion or drug treatment is the treatment of choice in symptomatic AF patients, its efficacy is still limited. Current research is directed at preventing first-onset AF by limiting the development of substrates underlying AF progression and resembles mechanism-based therapy. Upstream therapy refers to the use of non-ion channel anti-arrhythmic drugs that modify the atrial substrate- or target-specific mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention) or recurrence of the arrhythmia following (spontaneous) conversion (secondary prevention). Heat shock proteins (HSPs) are molecular chaperones and comprise a large family of proteins involved in the protection against various forms of cellular stress. Their classical function is the conservation of proteostasis via prevention of toxic protein aggregation by binding to (partially) unfolded proteins. Our recent data reveal that HSPs prevent electrical, contractile, and structural remodeling of cardiomyocytes, thus attenuating the AF substrate in cellular, Drosophila melanogaster, and animal experimental models. Furthermore, studies in humans suggest a protective role for HSPs against the progression from paroxysmal AF to persistent AF and in recurrence of AF. In this review, we discuss upregulation of the heat shock response system as a novel target for upstream therapy to prevent derailment of proteostasis and consequently progression and recurrence of AF.
Collapse
Affiliation(s)
- Roelien A M Meijering
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | | | | | | | | |
Collapse
|
133
|
Decker RS, Nakamura S, Decker ML, Sausamuta M, Sinno S, Harris K, Klocke FJ, Kulikovskaya I, Winegrad S. The dynamic role of cardiac myosin binding protein-C during ischemia. J Mol Cell Cardiol 2012; 52:1145-54. [PMID: 22281395 DOI: 10.1016/j.yjmcc.2012.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 12/16/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is a myofibrillar protein important for normal myocardial contractility and stability. In mutated form it can cause cardiomyopathy and heart failure. cMyBP-C appears to have separate regions for different functions. Three phosphorylation sites near the N terminus modulate contractility by their effect on both the kinetics of contraction and the binding site of the N-terminus. The C terminal region binds to myosin rods and stabilizes thick filament structure. The aim of the study reported here was to test whether cMyBPC is important in producing the structural and functional changes that result from ischemia/reperfusion. In this study the sequential changes in cMyBP-C, contractility, and thick filament structure following dephosphorylation of cMyBP-C associated with ischemia and reperfusion have been studied in biopsied specimens from chronically instrumented dogs. One and two dimensional electrophoresis, electron microscopy and immunocytochemistry with multiple antibodies generated against different domains in cMyBP-C have been used to follow structural changes in cMyBP-C. Ischemia produced dephosphorylation of cMyBP-C. Subsequent reperfusion released the dephosphorylated cMyBP-C from myofibrils and activated proteolysis of the cytoplasmic cMyBP-C. This in turn leads to increased vulnerability of cMyBP-C to proteolysis and increased degradation of thick filaments. The state of cMyBP-C appears to be closely related to phosphorylation and dephosphorylation of serine 282. In the absence of the stabilizing action of cMyBP-C either as a consequence of genetic mutation or dephosphorylation, premature degradation of thick filaments occurs and is accompanied by persistent contractile dysfunction.
Collapse
Affiliation(s)
- Robert S Decker
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Voigt N, Nattel S, Dobrev D. Proarrhythmic atrial calcium cycling in the diseased heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1175-91. [PMID: 22453988 DOI: 10.1007/978-94-007-2888-2_53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades Ca(2+) has been found to play a crucial role in cardiac arrhythmias associated with heart failure and a number of congenital arrhythmia syndromes. Recent studies demonstrated that altered atrial Ca(2+) cycling may promote the initiation and maintenance of atrial fibrillation, the most common clinical arrhythmia that contributes significantly to population morbidity and mortality. This article describes physiological Ca(2+) cycling mechanisms in atrial cardiomyocytes and relates them to fundamental cellular proarrhythmic mechanisms involving Ca(2+) signaling abnormalities in the atrium during atrial fibrillation.
Collapse
Affiliation(s)
- Niels Voigt
- Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
135
|
Alternative strategies in arrhythmia therapy: evaluation of Na/Ca exchange as an anti-arrhythmic target. Pharmacol Ther 2011; 134:26-42. [PMID: 22197992 DOI: 10.1016/j.pharmthera.2011.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 01/08/2023]
Abstract
The search for alternative anti-arrhythmic strategies is fueled by an unmet medical need as well as by the opportunities arising from identification of novel targets and novel drugs. Na/Ca exchange is a potential target involved in several types of arrhythmias, such as those related to ischemia-reperfusion, heart failure and also some forms of genetic arrhythmias. Inhibition of Na/Ca exchange is theoretically not only anti-arrhythmic but also increases cellular Ca(2+) content. This could be an advantage in conditions of low inotropy, such as in heart failure, but may also worsen conditions such as the recovery from ischemia or relaxation abnormalities. With the available drugs such as KB-R7943 and SEA-0400 these theories have now been tested in a number of cellular and in vivo models. Experience is overall rather positive and seems less hampered by the potential drawbacks than expected. This may be because the currently available drugs are not highly selective, with additional benefit derived from concurrent effects. While this precludes a definite answer regarding the benefit of a pure NCX inhibitor, they indicate that Na/Ca exchange inhibition as part of a multi-target strategy is an avenue to be considered. Such studies will need further 'bench' work and testing in relevant preclinical models, including chronic disease.
Collapse
|
136
|
Li N, Wang T, Wang W, Cutler MJ, Wang Q, Voigt N, Rosenbaum DS, Dobrev D, Wehrens XHT. Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice. Circ Res 2011; 110:465-70. [PMID: 22158709 DOI: 10.1161/circresaha.111.253229] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Abnormal calcium release from sarcoplasmic reticulum (SR) is considered an important trigger of atrial fibrillation (AF). Whereas increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity has been proposed to contribute to SR leak and AF induction, downstream targets of CaMKII remain controversial. OBJECTIVE To test the hypothesis that inhibition of CaMKII-phosphorylated type-2 ryanodine receptors (RyR2) prevents AF initiation in FKBP12.6-deficient (-/-) mice. METHODS AND RESULTS Mice lacking RyR2-stabilizing subunit FKBP12.6 had a higher incidence of spontaneous and pacing-induced AF compared with wild-type mice. Atrial myocytes from FKBP12.6-/- mice exhibited spontaneous Ca(2+) waves (SCaWs) leading to Na(+)/Ca(2+)-exchanger activation and delayed afterdepolarizations (DADs). Mutation S2814A in RyR2, which inhibits CaMKII phosphorylation, reduced Ca(2+) spark frequency, SR Ca(2+) leak, and DADs in atrial myocytes from FKBP12.6-/-:S2814A mice compared with FKBP12.6-/- mice. Moreover, FKBP12.6-/-:S2814A mice exhibited a reduced susceptibility to inducible AF, whereas FKBP12.6-/-:S2808A mice were not protected from AF. CONCLUSIONS FKBP12.6 mice exhibit AF caused by SR Ca(2+) leak, Na(+)/Ca(2+)-exchanger activation, and DADs, which promote triggered activity. Genetic inhibition of RyR2-S2814 phosphorylation prevents AF induction in FKBP12.6-/- mice by suppressing SR Ca(2+) leak and DADs. These results suggest suppression of RyR2-S2814 phosphorylation as a potential anti-AF therapeutic target.
Collapse
Affiliation(s)
- Na Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Smith AH, Owen J, Borgman KY, Fish FA, Kannankeril PJ. Relation of milrinone after surgery for congenital heart disease to significant postoperative tachyarrhythmias. Am J Cardiol 2011; 108:1620-4. [PMID: 21890079 DOI: 10.1016/j.amjcard.2011.07.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 11/17/2022]
Abstract
Milrinone reduces the risk of low cardiac output syndrome for some pediatric patients after congenital heart surgery. Data from adults undergoing cardiac surgery suggest an association between milrinone and an increased risk of postoperative arrhythmias. We tested the hypothesis that milrinone is an independent risk factor for tachyarrhythmias after congenital heart surgery. Subjects undergoing congenital heart surgery at our institution were consecutively enrolled for 38 months, through September 2010. The data were prospectively collected, including a review of full-disclosure telemetry and the medical records. Within 38 months, 603 enrolled subjects underwent 724 operative procedures. The median age was 5.5 months (range 0.0 to 426), the median weight was 6.0 kg (range 0.7 to 108), and the cohort was 45% female. The overall arrhythmia incidence was 50%, most commonly monomorphic ventricular tachycardia (n = 85, 12%), junctional ectopic tachycardia (n = 69, 10%), accelerated junctional rhythm (n = 58, 8%), and atrial tachyarrhythmias (including atrial fibrillation, atrial flutter, and ectopic or chaotic atrial tachycardia, n = 58, 8%). Multivariate logistic regression analysis demonstrated that independent of age <1 month, the use of cardiopulmonary bypass, the duration of cardiopulmonary bypass, Risk Adjusted classification for Congenital Heart Surgery, version 1, score >3, and the use of epinephrine or dopamine, milrinone use on admission to the cardiac intensive care unit remained independently associated with an increase in the odds of postoperative tachyarrhythmia resulting in an intervention (odds ratio 2.8, 95% confidence interval 1.3 to 6.0, p = 0.007). In conclusion, milrinone use is an independent risk factor for clinically significant tachyarrhythmias in the early postoperative period after congenital heart surgery.
Collapse
Affiliation(s)
- Andrew H Smith
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA.
| | | | | | | | | |
Collapse
|
138
|
Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, Bers DM. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res 2011; 109:1055-66. [PMID: 21921263 DOI: 10.1161/circresaha.111.253955] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Understanding atrial fibrillation (AF) requires integrated understanding of ionic currents and Ca2+ transport in remodeled human atrium, but appropriate models are limited. OBJECTIVE To study AF, we developed a new human atrial action potential (AP) model, derived from atrial experimental results and our human ventricular myocyte model. METHODS AND RESULTS Atria versus ventricles have lower I(K1), resulting in more depolarized resting membrane potential (≈7 mV). We used higher I(to,fast) density in atrium, removed I(to,slow), and included an atrial-specific I(Kur). I(NCX) and I(NaK) densities were reduced in atrial versus ventricular myocytes according to experimental results. SERCA function was altered to reproduce human atrial myocyte Ca2+ transients. To simulate chronic AF, we reduced I(CaL), I(to), I(Kur) and SERCA, and increased I(K1),I(Ks) and I(NCX). We also investigated the link between Kv1.5 channelopathy, [Ca2+]i, and AF. The sinus rhythm model showed a typical human atrial AP morphology. Consistent with experiments, the model showed shorter APs and reduced AP duration shortening at increasing pacing frequencies in AF or when I(CaL) was partially blocked, suggesting a crucial role of Ca2+ and Na+ in this effect. This also explained blunted Ca2+ transient and rate-adaptation of [Ca2+]i and [Na+]i in chronic AF. Moreover, increasing [Na+]i and altered I(NaK) and I(NCX) causes rate-dependent atrial AP shortening. Blocking I(Kur) to mimic Kv1.5 loss-of-function increased [Ca2+]i and caused early afterdepolarizations under adrenergic stress, as observed experimentally. CONCLUSIONS Our study provides a novel tool and insights into ionic bases of atrioventricular AP differences, and shows how Na+ and Ca2+ homeostases critically mediate abnormal repolarization in AF.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Dr, GBSF Room 3513, Davis, CA 95616-8636, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
El-Armouche A, Wittköpper K, Fuller W, Howie J, Shattock MJ, Pavlovic D. Phospholemman-dependent regulation of the cardiac Na/K-ATPase activity is modulated by inhibitor-1 sensitive type-1 phosphatase. FASEB J 2011; 25:4467-75. [PMID: 21849407 DOI: 10.1096/fj.11-184903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac Na/K-ATPase (NKA) is regulated by its accessory protein phospholemman (PLM). Whereas kinase-induced PLM phosphorylation has been shown to mediate NKA stimulation, the role of endogenous phosphatases is presently unknown. We investigated the role of protein phosphatase-1 (PP-1) on PLM phosphorylation and NKA activity in rat cardiomyocytes and failing human hearts. Incubation of rat cardiomyocytes with the chemical PP-1/PP-2A inhibitor okadaic acid or the specific PP-1-inhibitor peptide (I-1ct) identified PLM phosphorylation at Ser-68 as the main substrate for PP-1. Moreover, myocytes adenovirally overexpressing PP-1 inhibitor-1 protein (I-1,Ad-I-1/eGFP) showed a 70% increase in PLM Ser-68 phosphorylation and 65% increase in NKA current, compared with enhanced green fluorescence protein (eGFP)-infected controls (Ad-eGFP), using Western blotting and voltage clamping, respectively. Notably, in left ventricular myocardium from patients with heart failure, PLM Ser-68 phosphorylation was ≈ 50% lower (n=7) than in nonfailing controls (n=7). We provide the first physiological and biochemical evidence that PLM phosphorylation and cardiac Na/K-ATPase activity are negatively regulated by PP-1 and that this regulatory mechanism could be counteracted by I-1. This novel mechanism is markedly perturbed in failing hearts favoring PLM dephosphorylation and NKA deactivation and thus may contribute to maladaptive hypertrophy and arrhythmogenesis via chronically higher intracellular Na and Ca concentrations.
Collapse
Affiliation(s)
- Ali El-Armouche
- Department of Pharmacology, Heart Center, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
140
|
Maesen B, Nijs J, Maessen J, Allessie M, Schotten U. Post-operative atrial fibrillation: a maze of mechanisms. Europace 2011; 14:159-74. [PMID: 21821851 PMCID: PMC3262403 DOI: 10.1093/europace/eur208] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Post-operative atrial fibrillation (POAF) is one of the most frequent complications of cardiac surgery and an important predictor of patient morbidity as well as of prolonged hospitalization. It significantly increases costs for hospitalization. Insights into the pathophysiological factors causing POAF have been provided by both experimental and clinical investigations and show that POAF is ‘multi-factorial’. Facilitating factors in the mechanism of the arrhythmia can be classified as acute factors caused by the surgical intervention and chronic factors related to structural heart disease and ageing of the heart. Furthermore, some proarrhythmic mechanisms specifically occur in the setting of POAF. For example, inflammation and beta-adrenergic activation have been shown to play a prominent role in POAF, while these mechanisms are less important in non-surgical AF. More recently, it has been shown that atrial fibrosis and the presence of an electrophysiological substrate capable of maintaining AF also promote the arrhythmia, indicating that POAF has some proarrhythmic mechanisms in common with other forms of AF. The clinical setting of POAF offers numerous opportunities to study its mechanisms. During cardiac surgery, biopsies can be taken and detailed electrophysiological measurements can be performed. Furthermore, the specific time course of POAF, with the delayed onset and the transient character of the arrhythmia, also provides important insight into its mechanisms. This review discusses the mechanistic interaction between predisposing factors and the electrophysiological mechanisms resulting in POAF and their therapeutic implications.
Collapse
Affiliation(s)
- Bart Maesen
- Department of Cardiothoracic Surgery, University Hospital of Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
141
|
Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 2011; 121:2955-68. [PMID: 21804195 DOI: 10.1172/jci46315] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is an extremely common cardiac rhythm disorder that causes substantial morbidity and contributes to mortality. The mechanisms underlying AF are complex, involving both increased spontaneous ectopic firing of atrial cells and impulse reentry through atrial tissue. Over the past ten years, there has been enormous progress in understanding the underlying molecular pathobiology. This article reviews the basic mechanisms and molecular processes causing AF. We discuss the ways in which cardiac disease states, extracardiac factors, and abnormal genetic control lead to the arrhythmia. We conclude with a discussion of the potential therapeutic implications that might arise from an improved mechanistic understanding.
Collapse
Affiliation(s)
- Reza Wakili
- Research Center, Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
142
|
Narayan SM, Franz MR, Clopton P, Pruvot EJ, Krummen DE. Repolarization alternans reveals vulnerability to human atrial fibrillation. Circulation 2011; 123:2922-30. [PMID: 21646498 DOI: 10.1161/circulationaha.110.977827] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The substrates for human atrial fibrillation (AF) are poorly understood, but involve abnormal repolarization (action potential duration [APD]). We hypothesized that beat-to-beat oscillations in APD may explain AF substrates, and why vulnerability to AF forms a spectrum from control subjects without AF to patients with paroxysmal then persistent AF. METHODS AND RESULTS In 33 subjects (12 with persistent AF, 13 with paroxysmal AF, and 8 controls without AF), we recorded left (n=33) and right (n=6) atrial APD on pacing from cycle lengths 600 to 500 ms (100 to 120 bpm) up to the point where AF initiated. Action potential duration alternans required progressively faster rates for patients with persistent AF, patients with paroxysmal AF, and controls (cycle length 411±94 versus 372±72 versus 218±33 ms; P<0.01). In AF patients, APD alternans occurred at rates as slow as 100 to 120 bpm, unrelated to APD restitution (P>0.10). In this milieu, spontaneous ectopy initiated AF. At fast rates, APD alternans disorganized to complex oscillations en route to AF. Complex oscillations also arose at progressively faster rates for persistent AF, paroxysmal AF, and controls (cycle length: 316±99 versus 266±19 versus 177±16 ms; P=0.02). In paroxysmal AF, APD oscillations amplified before AF (P<0.001). In controls, APD alternans arose only at very fast rates (cycle length <250 ms; P<0.001 versus AF groups) just preceding AF. In 4 AF patients in whom rapid pacing did not initiate AF, APD alternans arose transiently then extinguished. CONCLUSIONS Atrial APD alternans reveals dynamic substrates for AF, arising most readily (at lower rates and higher magnitudes) in persistent AF then paroxysmal AF, and least readily in controls. APD alternans preceded all AF episodes and was absent when AF did not initiate. The cellular mechanisms for APD alternans near resting heart rates require definition.
Collapse
Affiliation(s)
- Sanjiv M Narayan
- VAMC/Cardiology, University of California-San Diego, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | | | | | | | | |
Collapse
|
143
|
Sadayappan S, Gulick J, Osinska H, Barefield D, Cuello F, Avkiran M, Lasko VM, Lorenz JN, Maillet M, Martin JL, Brown JH, Bers DM, Molkentin JD, James J, Robbins J. A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function. Circ Res 2011; 109:141-50. [PMID: 21597010 DOI: 10.1161/circresaha.111.242560] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Cardiac myosin-binding protein-C (cMyBP-C) phosphorylation at Ser-273, Ser-282, and Ser-302 regulates myocardial contractility. In vitro and in vivo experiments suggest the nonequivalence of these sites and the potential importance of Ser-282 phosphorylation in modulating the protein's overall phosphorylation and myocardial function. OBJECTIVE To determine whether complete cMyBP-C phosphorylation is dependent on Ser-282 phosphorylation and to define its role in myocardial function. We hypothesized that Ser-282 regulates Ser-302 phosphorylation and cardiac function during β-adrenergic stimulation. METHODS AND RESULTS Using recombinant human C1-M-C2 peptides in vitro, we determined that protein kinase A can phosphorylate Ser-273, Ser-282, and Ser-302. Protein kinase C can also phosphorylate Ser-273 and Ser-302. In contrast, Ca(2+)-calmodulin-activated kinase II targets Ser-302 but can also target Ser-282 at nonphysiological calcium concentrations. Strikingly, Ser-302 phosphorylation by Ca(2+)-calmodulin-activated kinase II was abolished by ablating the ability of Ser-282 to be phosphorylated via alanine substitution. To determine the functional roles of the sites in vivo, three transgenic lines, which expressed cMyBP-C containing either Ser-273-Ala-282-Ser-302 (cMyBP-C(SAS)), Ala-273-Asp-282-Ala-302 (cMyBP-C(ADA)), or Asp-273-Ala-282-Asp-302 (cMyBP-C(DAD)), were generated. Mutant protein was completely substituted for endogenous cMyBP-C by breeding each mouse line into a cMyBP-C null (t/t) background. Serine-to-alanine substitutions were used to ablate the abilities of the residues to be phosphorylated, whereas serine-to-aspartate substitutions were used to mimic the charged state conferred by phosphorylation. Compared to control nontransgenic mice, as well as transgenic mice expressing wild-type cMyBP-C, the transgenic cMyBP-C(SAS(t/t)), cMyBP-C(ADA(t/t)), and cMyBP-C(DAD(t/t)) mice showed no increases in morbidity and mortality and partially rescued the cMyBP-C((t/t)) phenotype. The loss of cMyBP-C phosphorylation at Ser-282 led to an altered β-adrenergic response. In vivo hemodynamic studies revealed that contractility was unaffected but that cMyBP-C(SAS(t/t)) hearts showed decreased diastolic function at baseline. However, the normal increases in cardiac function (increased contractility/relaxation) as a result of infusion of β-agonist was significantly decreased in all of the mutants, suggesting that competency for phosphorylation at multiple sites in cMyBP-C is a prerequisite for normal β-adrenergic responsiveness. CONCLUSIONS Ser-282 has a unique regulatory role in that its phosphorylation is critical for the subsequent phosphorylation of Ser-302. However, each residue plays a role in regulating the contractile response to β-agonist stimulation.
Collapse
Affiliation(s)
- Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Kirchhof P, Kahr PC, Kaese S, Piccini I, Vokshi I, Scheld HH, Rotering H, Fortmueller L, Laakmann S, Verheule S, Schotten U, Fabritz L, Brown NA. PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:123-33. [PMID: 21282332 DOI: 10.1161/circgenetics.110.958058] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Intergenic variations on chromosome 4q25, close to the PITX2 transcription factor gene, are associated with atrial fibrillation (AF). We therefore tested whether adult hearts express PITX2 and whether variation in expression affects cardiac function. METHODS AND RESULTS mRNA for PITX2 isoform c was expressed in left atria of human and mouse, with levels in right atrium and left and right ventricles being 100-fold lower. In mice heterozygous for Pitx2c (Pitx2c(+/-)), left atrial Pitx2c expression was 60% of wild-type and cardiac morphology and function were not altered, except for slightly elevated pulmonary flow velocity. Isolated Pitx2c(+/-) hearts were susceptible to AF during programmed stimulation. At short paced cycle lengths, atrial action potential durations were shorter in Pitx2c(+/-) than in wild-type. Perfusion with the β-receptor agonist orciprenaline abolished inducibility of AF and reduced the effect on action potential duration. Spontaneous heart rates, atrial conduction velocities, and activation patterns were not affected in Pitx2c(+/-) hearts, suggesting that action potential duration shortening caused wave length reduction and inducibility of AF. Expression array analyses comparing Pitx2c(+/-) with wild-type, for left atrial and right atrial tissue separately, identified genes related to calcium ion binding, gap and tight junctions, ion channels, and melanogenesis as being affected by the reduced expression of Pitx2c. CONCLUSIONS These findings demonstrate a physiological role for PITX2 in the adult heart and support the hypothesis that dysregulation of PITX2 expression can be responsible for susceptibility to AF.
Collapse
Affiliation(s)
- Paulus Kirchhof
- Department of Cardiology and Angiology, University Hospital Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Myosin-binding protein C (MyBP-C) is a thick filament protein consisting of 1274 amino acid residues (149 kDa) that was identified by Starr and Offer over 30 years ago as a contaminant present in a preparation of purified myosin. Since then, numerous studies have defined the muscle-specific isoforms, the structure, and the importance of the proteins in normal striated muscle structure and function. Underlying the critical role the protein plays, it is now apparent that mutations in the cardiac isoform (cMyBP-C) are responsible for a substantial proportion (30-40%) of genotyped cases of familial hypertrophic cardiomyopathy. Although generally accepted that MyBP-C can interact with all three filament systems within the sarcomere (the thick, thin, and titin filaments), the exact nature of these interactions and the functional consequences of modified binding remain obscure. In addition to these structural considerations, cMyBP-C can serve as a point of convergence for signaling processes in the cardiomyocyte via post-translational modifications mediated by kinases that phosphorylate residues in the cardiac-specific isoform sequence. Thus, cMyBP-C is a critical nodal point that has both important structural and signaling roles and whose modifications are known to cause significant human cardiac disease.
Collapse
Affiliation(s)
- Jeanne James
- From the Department of Pediatrics and the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Jeffrey Robbins
- From the Department of Pediatrics and the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
146
|
Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 2011; 91:265-325. [PMID: 21248168 DOI: 10.1152/physrev.00031.2009] [Citation(s) in RCA: 881] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological alterations promoting AF have been studied extensively in animal models. Atrial tachycardia or AF itself shortens atrial refractoriness and causes loss of atrial contractility. Aging, neurohumoral activation, and chronic atrial stretch due to structural heart disease activate a variety of signaling pathways leading to histological changes in the atria including myocyte hypertrophy, fibroblast proliferation, and complex alterations of the extracellular matrix including tissue fibrosis. These changes in electrical, contractile, and structural properties of the atria have been called "atrial remodeling." The resulting electrophysiological substrate is characterized by shortening of atrial refractoriness and reentrant wavelength or by local conduction heterogeneities caused by disruption of electrical interconnections between muscle bundles. Under these conditions, ectopic activity originating from the pulmonary veins or other sites is more likely to occur and to trigger longer episodes of AF. Many of these alterations also occur in patients with or at risk for AF, although the direct demonstration of these mechanisms is sometimes challenging. The diversity of etiological factors and electrophysiological mechanisms promoting AF in humans hampers the development of more effective therapy of AF. This review aims to give a translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process. We pay attention to translation of pathophysiological insights gained from in vitro experiments and animal models to patients. Also, suggestions for future research objectives and therapeutical implications are discussed.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
147
|
Wittköpper K, Dobrev D, Eschenhagen T, El-Armouche A. Phosphatase-1 inhibitor-1 in physiological and pathological β-adrenoceptor signalling. Cardiovasc Res 2011; 91:392-401. [PMID: 21354993 DOI: 10.1093/cvr/cvr058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Control of protein phosphorylation-dephosphorylation events occurs through regulation of protein kinases and phosphatases. Phosphatase type 1 (PP-1) provides the main activity of serine/threonine protein phosphatases in the heart. Inhibitor-1 (I-1) was the first endogenous molecule found to inhibit PP-1 specifically. Notably, I-1 is activated by cAMP-dependent protein kinase A (PKA), and the subsequent prevention of target dephosphorylation by PP-1 provides distal amplification of β-adrenoceptor (β-AR) signalling. I-1 was found to be down-regulated and hypo-phosphorylated in human and experimental heart failure but hyperactive in human atrial fibrillation, implicating I-1 in the pathogenesis of heart failure and arrhythmias. Consequently, the therapeutic potential of I-1 in heart failure and arrhythmias has recently been addressed by the generation and analysis of several I-1 genetic mouse models. This review summarizes and discusses these data, highlights partially controversial issues on whether I-1 should be therapeutically reinforced or inhibited and suggests future directions to better understand the functional role of I-1 in physiological and pathological β-AR signalling.
Collapse
Affiliation(s)
- Katrin Wittköpper
- Department of Pharmacology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
148
|
Wehrens XHT. CaMKII regulation of the cardiac ryanodine receptor and sarcoplasmic reticulum calcium release. Heart Rhythm 2011; 8:323-5. [PMID: 20887810 PMCID: PMC3020993 DOI: 10.1016/j.hrthm.2010.09.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/21/2010] [Indexed: 12/19/2022]
Abstract
Spontaneous release of Ca2+ from the sarcoplasmic reticulum has emerged as a mechanism underlying triggered activity and cardiac arrhythmias. Recent studies suggest an important role for increased Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of ryanodine receptors (RyR2) in the induction of arrhythmias. This article briefly reviews the mechanisms underlying CaMKII regulation of RyR2 and discusses directions of current and future research.
Collapse
Affiliation(s)
- Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
149
|
Sachan N, Dey A, Rotter D, Grinsfelder DB, Battiprolu PK, Sikder D, Copeland V, Oh M, Bush E, Shelton JM, Bibb JA, Hill JA, Rothermel BA. Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart. Circ Res 2011; 108:437-45. [PMID: 21233454 DOI: 10.1161/circresaha.110.235309] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Despite overwhelming evidence of the importance of circadian rhythms in cardiovascular health and disease, little is known regarding the circadian regulation of intracellular signaling pathways controlling cardiac function and remodeling. OBJECTIVE To assess circadian changes in processes dependent on the protein phosphatase calcineurin, relative to changes in phosphorylation of cardiac proteins, in normal, hypertrophic, and failing hearts. METHODS AND RESULTS We found evidence of large circadian oscillations in calcineurin-dependent activities in the left ventricle of healthy C57BL/6 mice. Calcineurin-dependent transcript levels and nuclear occupancy of the NFAT (nuclear factor of activated T cells) regularly fluctuated as much as 20-fold over the course of a day, peaking in the morning when mice enter a period of rest. Phosphorylation of the protein phosphatase 1 inhibitor 1 (I-1), a direct calcineurin substrate, and phospholamban, an indirect target, oscillated directly out of phase with calcineurin-dependent signaling. Using a surgical model of cardiac pressure overload, we found that although calcineurin-dependent activities were markedly elevated, the circadian pattern of activation was maintained, whereas, oscillations in phospholamban and I-1 phosphorylation were lost. Changes in the expression of fetal gene markers of heart failure did not mirror the rhythm in calcineurin/NFAT activation, suggesting that these may not be direct transcriptional target genes. Cardiac function in mice subjected to pressure overload was significantly lower in the morning than in the evening when assessed by echocardiography. CONCLUSIONS Normal, opposing circadian oscillations in calcineurin-dependent activities and phosphorylation of proteins that regulate contractility are disrupted in heart failure.
Collapse
Affiliation(s)
- Nita Sachan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Greiser M, Lederer WJ, Schotten U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation. Cardiovasc Res 2010; 89:722-33. [PMID: 21159669 DOI: 10.1093/cvr/cvq389] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia. As the most important risk factor for embolic stroke, AF is associated with a high morbidity and mortality. Despite decades of research, successful (pharmacological and interventional) 'ablation' of the arrhythmia remains challenging. AF is characterized by a diverse aetiology, including heart failure, hypertension, and valvular disease. Based on this understanding, new treatment strategies that are specifically tailored to the underlying pathophysiology of a certain 'type' of AF are being developed. One important aspect of AF pathophysiology is altered intracellular Ca(2+) handling. Due to the increase in the atrial activation rate and the subsequent initial [Ca(2+)](i) overload, AF induces 'remodelling' of intracellular Ca(2+) handling. Current research focuses on unravelling the contribution of altered intracellular Ca(2+) handling to different types of AF. More specifically, changes in intracellular Ca(2+) homeostasis preceding the onset of AF, in conditions which predispose to AF (e.g. heart failure), appear to be different from changes in Ca(2+) handling developing after the onset of AF. Here we review and critique altered intracellular Ca(2+) handling and its contribution to three specific aspects of AF pathophysiology, (i) excitation-transcription coupling and Ca(2+)-dependent signalling pathways, (ii) atrial contractile dysfunction, and (iii) arrhythmogenicity.
Collapse
Affiliation(s)
- Maura Greiser
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|