101
|
Harrison DG. The immune system in hypertension. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2014; 125:130-140. [PMID: 25125726 PMCID: PMC4112677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hypertension is generally attributed to perturbations of the vasculature, the kidney, and the central nervous system. During the past several years, it has become apparent that cells of the innate and adaptive immune system also contribute to this disease. Macrophages and T cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension, and likely contribute to end-organ damage. We have shown that mice lacking lymphocytes, such as recombinase-activating gene-deficient (RAG-1(-/-)) mice, have blunted hypertension in response to angiotensin II, increased salt levels, and norepinephrine. Adoptive transfer of T cells restores the blood pressure response to these stimuli. Others have shown that mice with severe combined immunodeficiency have blunted hypertension in response to angiotensin II. Deletion of the RAG gene in Dahl salt-sensitive rats reduces the hypertensive response to salt feeding. The central nervous system seems to orchestrate immune cell activation. We produced lesions of the anteroventral third ventricle and showed that these block T cell activation in response to angiotensin II. Likewise, we showed that genetic manipulation of reactive oxygen species in the subfornical organ modulates both hypertension and T cell activation. Current evidence indicates that production of cytokines including tumor necrosis factor alpha, interleukin 17, and interleukin 6 contribute to hypertension, likely by promoting vasoconstriction, production of reactive oxygen species, and sodium reabsorption in the kidney. We propose a working hypothesis linking the sympathetic nervous system, immune cells, the production of cytokines, and ultimately vascular and renal dysfunction, leading to augmentation of hypertension.
Collapse
Affiliation(s)
- David G. Harrison
- Correspondence and reprint requests: David G. Harrison, MD,
Division of Clinical Pharmacology, Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University, Nashville, TN 37232-6602615-875-3049615-875-3297
| |
Collapse
|
102
|
Kriska T, Cepura C, Gauthier KM, Campbell WB. Role of macrophage PPARγ in experimental hypertension. Am J Physiol Heart Circ Physiol 2013; 306:H26-32. [PMID: 24163073 DOI: 10.1152/ajpheart.00287.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted disruption of the Alox15 gene makes mice resistant to angiotensin II-, DOCA/salt-, and N(ω)-nitro-L-arginine methyl ester (L-NAME)-induced experimental hypertension. Macrophages, a primary source of Alox15, are facilitating this resistance, but the underlying mechanism is not known. Because Alox15 metabolites are peroxisome proliferator-activated receptor (PPAR)γ agonists, we hypothesized that activation of macrophage PPARγ is the key step in Alox15 mediation of hypertension. Thioglycollate, used for macrophage elicitation, selectively upregulated PPARγ and its target gene CD36 in peritoneal macrophages of both wild-type (WT) and Alox15(-/-) mice. Moreover, thioglycollate-injected Alox15(-/-) mice became hypertensive upon L-NAME treatment. A similar hypertensive effect was observed with adoptive transfer of thioglycollate-elicited Alox15(-/-) macrophages into Alox15(-/-) recipient mice. The role of PPARγ was further specified by using the selective PPARγ antagonist GW9662. WT mice treated with 50 μg/kg daily dose of GW9662 for 12 days became resistant to L-NAME-induced hypertension. The PPARγ antagonist treatment also prevented L-NAME-induced hypertension in thioglycollate-injected Alox15(-/-) mice, indicating a PPARγ-mediated effect in macrophage elicitation and the resultant hypertension. These results indicate a regulatory role for macrophage-localized PPARγ in L-NAME-induced experimental hypertension.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
103
|
Polichnowski AJ, Griffin KA, Long J, Williamson GA, Bidani AK. Blood pressure-renal blood flow relationships in conscious angiotensin II- and phenylephrine-infused rats. Am J Physiol Renal Physiol 2013; 305:F1074-84. [PMID: 23825067 DOI: 10.1152/ajprenal.00111.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic ANG II infusion in rodents is widely used as an experimental model of hypertension, yet very limited data are available describing the resulting blood pressure-renal blood flow (BP-RBF) relationships in conscious rats. Accordingly, male Sprague-Dawley rats (n = 19) were instrumented for chronic measurements of BP (radiotelemetry) and RBF (Transonic Systems, Ithaca, NY). One week later, two or three separate 2-h recordings of BP and RBF were obtained in conscious rats at 24-h intervals, in addition to separate 24-h BP recordings. Rats were then administered either ANG II (n = 11, 125 ng·kg(-1)·min(-1)) or phenylephrine (PE; n = 8, 50 mg·kg(-1)·day(-1)) as a control, ANG II-independent, pressor agent. Three days later the BP-RBF and 24-h BP recordings were repeated over several days. Despite similar increases in BP, PE led to significantly greater BP lability at the heart beat and very low frequency bandwidths. Conversely, ANG II, but not PE, caused significant renal vasoconstriction (a 62% increase in renal vascular resistance and a 21% decrease in RBF) and increased variability in BP-RBF relationships. Transfer function analysis of BP (input) and RBF (output) were consistent with a significant potentiation of the renal myogenic mechanism during ANG II administration, likely contributing, in part, to the exaggerated reductions in RBF during periods of BP elevations. We conclude that relatively equipressor doses of ANG II and PE lead to greatly different ambient BP profiles and effects on the renal vasculature when assessed in conscious rats. These data may have important implications regarding the pathogenesis of hypertension-induced injury in these models of hypertension.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Correspondence: A. K. Bidani, Loyola Univ. Medical Center, 2160 South First Ave., Maywood, IL 60153.
| | | | | | | | | |
Collapse
|
104
|
Abstract
PURPOSE OF REVIEW Despite apparent blood pressure (BP) control and renin-angiotensin system (RAS) blockade, the chronic kidney disease (CKD) outcomes have been suboptimal. Accordingly, this review is addressed to renal microvascular and autoregulatory impairments that underlie the enhanced dynamic glomerular BP transmission in CKD progression. RECENT FINDINGS Clinical data suggest that failure to achieve adequate 24-h BP control is likely contributing to the suboptimal outcomes in CKD. Whereas evidence continues to accumulate regarding the importance of preglomerular autoregulatory impairment to the dynamic glomerular BP transmission, emerging data indicate that nitric oxide-mediated efferent vasodilation may play an important role in mitigating the consequences of glomerular hypertension. By contrast, the vasoconstrictor effects of angiotensin II are expected to potentially reduce glomerular barotrauma and possibly enhance ischemic injury. When adequate BP measurement methods are used, the evidence for BP-independent injury initiating mechanisms is considerably weaker and the renoprotection by RAS blockade largely parallels its antihypertensive effectiveness. SUMMARY Adequate 24-h BP control presently offers the most feasible intervention for reducing glomerular BP transmission and improving suboptimal outcomes in CKD. Investigations addressed to improving myogenic autoregulation and/or enhancing nitric oxide-mediated efferent dilation in addition to the more downstream mediators may provide additional future therapeutic targets.
Collapse
|
105
|
Basu R, Lee J, Morton JS, Takawale A, Fan D, Kandalam V, Wang X, Davidge ST, Kassiri Z. TIMP3 is the primary TIMP to regulate agonist-induced vascular remodelling and hypertension. Cardiovasc Res 2013; 98:360-71. [PMID: 23524300 DOI: 10.1093/cvr/cvt067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS Hypertension is accompanied by structural remodelling of vascular extracellular matrix (ECM). Tissue inhibitor of metalloproteinases (TIMPs) inhibits matrix metalloproteinases (MMPs) that degrade the matrix structural proteins. In response to a hypertensive stimulus, the balance between MMPs and TIMPs is altered. We examined the role of TIMPs in agonist-induced hypertension. METHODS AND RESULTS We subjected TIMP-knockout mice to angiotensin II (Ang II) infusion, and found that Ang-II-induced hypertension in TIMP1(-/-), TIMP2(-/-), and TIMP4(-/-) mice was comparable to wild-type (WT) mice, but significantly suppressed in TIMP3(-/-) mice. Ex vivo pressure myography analyses on carotid and mesenteric arteries revealed that Ang-II-infused TIMP3(-/-) arteries were more distensible with impaired elastic recoil compared with the WT group. The acute response to vasoconstriction and vasodilation was intact in TIMP3(-/-) mesenteric and carotid arteries. Mesenteric arteries from TIMP3(-/-)-Ang II mice exhibited a reduced media-to-lumen ratio, suppressed collagen and elastin levels, elevated elastase and gelatinase proteolytic activities compared with WT-Ang II. TIMP3(-/-)-Ang II carotid arteries also showed adverse structural remodelling. Treatment of mice with doxycycline, a matrix metalloproteinase inhibitor, improved matrix integrity in mesenteric and carotid arteries in TIMP3(-/-)-Ang II and differentially regulated elastin and collagen levels in WT-Ang II vs. TIMP3(-/-)-Ang II. CONCLUSION Our study demonstrates a critical role for TIMP3, among all TIMPs, is preserving arterial ECM in response to Ang II. It is critical to acknowledge that the suppressed Ang-II-induced hypertension in TIMP3(-/-) mice is not a protective mechanism but owing to adverse remodelling in arterial matrix.
Collapse
Affiliation(s)
- Ratnadeep Basu
- Department of Physiology, University of Alberta, 474 HMRC, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
|
107
|
Simultaneous determination of renal plasma flow and glomerular filtration rate in conscious mice using dual bolus injection. J Pharmacol Toxicol Methods 2013; 67:187-93. [DOI: 10.1016/j.vascn.2013.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/19/2022]
|
108
|
Abstract
Chronic and acute renal diseases, irrespective of the initiating cause, have inflammation and immune system activation as a common underlying mechanism. The purpose of this review is to provide a broad overview of immune cells and inflammatory proteins that contribute to the pathogenesis of renal disease, and to discuss some of the physiological changes that occur in the kidney as a result of immune system activation. An overview of common forms of acute and chronic renal disease is provided, followed by a discussion of common therapies that have anti-inflammatory or immunosuppressive effects in the treatment of renal disease.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
109
|
Dubinion JH, do Carmo JM, Adi A, Hamza S, da Silva AA, Hall JE. Role of proopiomelanocortin neuron Stat3 in regulating arterial pressure and mediating the chronic effects of leptin. Hypertension 2013; 61:1066-74. [PMID: 23529161 DOI: 10.1161/hypertensionaha.111.00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although signal transducer and activator of transcription 3 (Stat3) is a key second messenger by which leptin regulates appetite and body weight, its role in specific neuronal populations in metabolic regulation and in mediating the chronic effects of leptin on blood pressure is unknown. The current study tested the hypothesis that Stat3 signaling in proopiomelanocortin (POMC) neurons mediates the chronic effects of leptin on mean arterial pressure (MAP), as well as on glucose regulation, energy expenditure, and food intake. Stat3(flox/flox) mice were crossed with POMC-Cre mice to generate mice with Stat3 deletion specifically in POMC neurons (Stat3(flox/flox)/POMC-Cre). Oxygen consumption (Vo2), carbon dioxide respiration (Vco2), motor activity, heat production, food intake, and MAP were measured 24 hours/d. After baseline measurements, leptin was infused (4 μg/kg per min, IP) for 7 days. Stat3(flox/flox)/POMC-Cre mice were hyperphagic, heavier, and had increased respiratory quotients compared with control Stat3(flox/flox) mice. Baseline MAP was not different between the groups, and chronic leptin infusion reduced food intake similarly in both groups (27 versus 29%). Vo2, Vco2, and heat production responses to leptin were not significantly different in control and Stat3(flox/flox)/POMC-Cre mice. However, leptin-mediated increases in MAP were completely abolished, and blood pressure responses to acute air-jet stress were attenuated in male Stat3(flox/flox)/POMC-Cre mice. These results indicate that Stat3 signaling in POMC neurons is essential for leptin-mediated increases in MAP, but not for anorexic or thermogenic effects of leptin.
Collapse
Affiliation(s)
- John H Dubinion
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
110
|
Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther 2013; 138:428-40. [PMID: 23458610 DOI: 10.1016/j.pharmthera.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Hypertension is an epidemic health concern and a major risk factor for the development of cardiovascular disease. Although there are available treatment strategies for hypertension, numerous hypertensive patients do not have their clinical symptoms under control and it is imperative that new avenues to treat or prevent high blood pressure in these patients are developed. It is well established that increases in sympathetic nervous system (SNS) outflow and enhanced renin-angiotensin system (RAS) activity are common features of hypertension and various pathological conditions that predispose individuals to hypertension. More recently, hypertension has also become recognized as an immune condition and accumulating evidence suggests that interactions between the RAS, SNS and immune systems play a role in blood pressure regulation. This review summarizes what is known about the interconnections between the RAS, SNS and immune systems in the neural regulation of blood pressure. Based on the reviewed studies, a model for RAS/neuroimmune interactions during hypertension is proposed and the therapeutic potential of targeting RAS/neuroimmune interactions in hypertensive patients is discussed. Special emphasis is placed on the applicability of the proposed model to obesity-related hypertension.
Collapse
|
111
|
Madhur MS, Harrison DG. Synapses, signals, CDs, and cytokines: interactions of the autonomic nervous system and immunity in hypertension. Circ Res 2013; 111:1113-6. [PMID: 23065340 DOI: 10.1161/circresaha.112.278408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
112
|
Zouein FA, Zgheib C, Hamza S, Fuseler JW, Hall JE, Soljancic A, Lopez-Ruiz A, Kurdi M, Booz GW. Role of STAT3 in angiotensin II-induced hypertension and cardiac remodeling revealed by mice lacking STAT3 serine 727 phosphorylation. Hypertens Res 2013; 36:496-503. [PMID: 23364341 DOI: 10.1038/hr.2012.223] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
STAT3 is involved in protection of the heart provided by ischemic preconditioning. However, the role of this transcription factor in the heart in chronic stresses such as hypertension has not been defined. We assessed whether STAT3 is important in hypertension-induced cardiac remodeling using mice with reduced STAT3 activity due to a S727A mutation (SA/SA). Wild type (WT) and SA/SA mice received angiotensin (ANG) II or saline for 17 days. ANG II increased mean arterial and systolic pressure in SA/SA and WT mice, but cardiac levels of cytokines associated with heart failure were increased less in SA/SA mice. Unlike WT mice, hearts of SA/SA mice showed signs of developing systolic dysfunction as evidenced by reduction in ejection fraction and fractional shortening. In the left ventricle of both WT and SA/SA mice, ANG II induced fibrosis. However, fibrosis in SA/SA mice appeared more extensive and was associated with loss of myocytes. Cardiac hypertrophy as indexed by heart to body weight ratio and left ventricular anterior wall dimension during diastole was greater in WT mice. In WT+ANG II mice there was an increase in the mass of individual myofibrils. In contrast, cardiac myocytes of SA/SA+ANG II mice showed a loss in myofibrils and myofibrillar mass density was decreased during ANG II infusion. Our findings reveal that STAT3 transcriptional activity is important for normal cardiac myocyte myofibril morphology. Loss of STAT3 may impair cardiac function in the hypertensive heart due to defective myofibrillar structure and remodeling that may lead to heart failure.
Collapse
Affiliation(s)
- Fouad A Zouein
- Department of Pharmacology and Toxicology, and Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Shao W, Seth DM, Prieto MC, Kobori H, Navar LG. Activation of the renin-angiotensin system by a low-salt diet does not augment intratubular angiotensinogen and angiotensin II in rats. Am J Physiol Renal Physiol 2013; 304:F505-14. [PMID: 23303412 DOI: 10.1152/ajprenal.00587.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In angiotensin II (ANG II) infusion hypertension, there is an augmentation of intratubular angiotensinogen (AGT) and ANG II leading to increased urinary AGT and ANG II excretion rates associated with tissue injury. However, the changes in urinary AGT and ANG II excretion rates and markers of renal injury during physiologically induced stimulation of the renin-angiotensin system (RAS) by a low-salt diet remain unclear. Male Sprague-Dawley rats received a low-salt diet (0.03% NaCl; n = 6) and normal-salt diet (0.3% NaCl, n = 6) for 13 days. Low-salt diet rats had markedly higher plasma renin activity and plasma ANG II levels. Kidney cortex renin mRNA, kidney AGT mRNA, and AGT immunoreactivity were not different; however, medullary renin mRNA, kidney renin content, and kidney ANG II levels were significantly elevated by the low-salt diet. Kidney renin immunoreactivity was also markedly increased in juxtaglomerular apparati and in cortical and medullary collecting ducts. Urinary AGT excretion rates and urinary ANG II excretion rates were not augmented by the low-salt diet. The low-salt diet caused mild renal fibrosis in glomeruli and the tubulointerstitium, but no other signs of kidney injury were evident. These results indicate that, in contrast to the response in ANG II infusion hypertension, the elevated plasma and intrarenal ANG II levels caused by physiological stimulation of RAS are not reflected by increased urinary AGT or ANG II excretion rates or the development of renal injury.
Collapse
Affiliation(s)
- Weijian Shao
- Dept. of Physiology, SL39, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
114
|
Basu R, Fan D, Kandalam V, Lee J, Das SK, Wang X, Baldwin TA, Oudit GY, Kassiri Z. Loss of Timp3 gene leads to abdominal aortic aneurysm formation in response to angiotensin II. J Biol Chem 2012; 287:44083-96. [PMID: 23144462 DOI: 10.1074/jbc.m112.425652] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aortic aneurysm is dilation of the aorta primarily due to degradation of the aortic wall extracellular matrix (ECM). Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs), the proteases that degrade the ECM. Timp3 is the only ECM-bound Timp, and its levels are altered in the aorta from patients with abdominal aortic aneurysm (AAA). We investigated the causal role of Timp3 in AAA formation. Infusion of angiotensin II (Ang II) using micro-osmotic (Alzet) pumps in Timp3(-/-) male mice, but not in wild type control mice, led to adverse remodeling of the abdominal aorta, reduced collagen and elastin proteins but not mRNA, and elevated proteolytic activities, suggesting excess protein degradation within 2 weeks that led to formation of AAA by 4 weeks. Intriguingly, despite early up-regulation of MMP2 in Timp3(-/-)Ang II aortas, additional deletion of Mmp2 in these mice (Timp3(-/-)/Mmp2(-/-)) resulted in exacerbated AAA, compromised survival due to aortic rupture, and inflammation in the abdominal aorta. Reconstitution of WT bone marrow in Timp3(-/-)/Mmp2(-/-) mice reduced inflammation and prevented AAA in these animals following Ang II infusion. Treatment with a broad spectrum MMP inhibitor (PD166793) prevented the Ang II-induced AAA in Timp3(-/-) and Timp3(-/-)/Mmp2(-/-) mice. Our study demonstrates that the regulatory function of TIMP3 is critical in preventing adverse vascular remodeling and AAA. Hence, replenishing TIMP3, a physiological inhibitor of a number of metalloproteinases, could serve as a therapeutic approach in limiting AAA development or expansion.
Collapse
Affiliation(s)
- Ratnadeep Basu
- Department of Physiology, Division of Cardiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Jun JY, Zubcevic J, Qi Y, Afzal A, Carvajal JM, Thinschmidt JS, Grant MB, Mocco J, Raizada MK. Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension. Hypertension 2012; 60:1316-23. [PMID: 23045460 DOI: 10.1161/hypertensionaha.112.199547] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.
Collapse
Affiliation(s)
- Joo Yun Jun
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Kaese S, Verheule S. Cardiac electrophysiology in mice: a matter of size. Front Physiol 2012; 3:345. [PMID: 22973235 PMCID: PMC3433738 DOI: 10.3389/fphys.2012.00345] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/09/2012] [Indexed: 12/27/2022] Open
Abstract
Over the last decade, mouse models have become a popular instrument for studying cardiac arrhythmias. This review assesses in which respects a mouse heart is a miniature human heart, a suitable model for studying mechanisms of cardiac arrhythmias in humans and in which respects human and murine hearts differ. Section I considers the issue of scaling of mammalian cardiac (electro) physiology to body mass. Then, we summarize differences between mice and humans in cardiac activation (section II) and the currents underlying the action potential in the murine working myocardium (section III). Changes in cardiac electrophysiology in mouse models of heart disease are briefly outlined in section IV, while section V discusses technical considerations pertaining to recording cardiac electrical activity in mice. Finally, section VI offers general considerations on the influence of cardiac size on the mechanisms of tachy-arrhythmias.
Collapse
Affiliation(s)
- Sven Kaese
- Division of Experimental and Clinical Electrophysiology, Department of Cardiology and Angiology, University Hospital Münster Münster, Germany
| | | |
Collapse
|
117
|
Kim HG, Hwang YP, Han EH, Choi JH, Kwon KI, Chung YC, Jeong MH, Jeong TC, Kang W, Jeong HG. The coffee diterpene kahweol inhibits metastasis by modulating expressions of MMPs and VEGF via STAT3 inactivation. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
118
|
Harrison DG, Marvar PJ, Titze JM. Vascular inflammatory cells in hypertension. Front Physiol 2012; 3:128. [PMID: 22586409 PMCID: PMC3345946 DOI: 10.3389/fphys.2012.00128] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/16/2012] [Indexed: 12/11/2022] Open
Abstract
Hypertension is a common disorder with uncertain etiology. In the last several years, it has become evident that components of both the innate and adaptive immune system play an essential role in hypertension. Macrophages and T cells accumulate in the perivascular fat, the heart and the kidney of hypertensive patients, and in animals with experimental hypertension. Various immunosuppressive agents lower blood pressure and prevent end-organ damage. Mice lacking lymphocytes are protected against hypertension, and adoptive transfer of T cells, but not B cells in the animals restores their blood pressure response to stimuli such as angiotensin II or high salt. Recent studies have shown that mice lacking macrophages have blunted hypertension in response to angiotensin II and that genetic deletion of macrophages markedly reduces experimental hypertension. Dendritic cells have also been implicated in this disease. Many hypertensive stimuli have triggering effects on the central nervous system and signals arising from the circumventricular organ seem to promote inflammation. Studies have suggested that central signals activate macrophages and T cells, which home to the kidney and vasculature and release cytokines, including IL-6 and IL-17, which in turn cause renal and vascular dysfunction and lead to blood pressure elevation. These recent discoveries provide a new understanding of hypertension and provide novel therapeutic opportunities for treatment of this serious disease.
Collapse
Affiliation(s)
- David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Nashville, TN, USA
| | | | | |
Collapse
|
119
|
Han YL, Li YL, Jia LX, Cheng JZ, Qi YF, Zhang HJ, Du J. Reciprocal interaction between macrophages and T cells stimulates IFN-γ and MCP-1 production in Ang II-induced cardiac inflammation and fibrosis. PLoS One 2012; 7:e35506. [PMID: 22567105 PMCID: PMC3342394 DOI: 10.1371/journal.pone.0035506] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/16/2012] [Indexed: 12/22/2022] Open
Abstract
Background The inflammatory response plays a critical role in hypertension-induced cardiac remodeling. We aimed to study how interaction among inflammatory cells causes inflammatory responses in the process of hypertensive cardiac fibrosis. Methodology/Principal Findings Infusion of angiotensin II (Ang II, 1500 ng/kg/min) in mice rapidly induced the expression of interferon γ (IFN-γ) and leukocytes infiltration into the heart. To determine the role of IFN-γ on cardiac inflammation and remodeling, both wild-type (WT) and IFN-γ-knockout (KO) mice were infused Ang II for 7 days, and were found an equal blood pressure increase. However, knockout of IFN-γ prevented Ang II-induced: 1) infiltration of macrophages and T cells into cardiac tissue; 2) expression of tumor necrosis factor α and monocyte chemoattractant protein 1 (MCP-1), and 3) cardiac fibrosis, including the expression of α-smooth muscle actin and collagen I (all p<0.05). Cultured T cells or macrophages alone expressed very low level of IFN-γ, however, co-culture of T cells and macrophages increased IFN-γ expression by 19.8±0.95 folds (vs. WT macrophage, p<0.001) and 20.9 ± 2.09 folds (vs. WT T cells, p<0.001). In vitro co-culture studies using T cells and macrophages from WT or IFN-γ KO mice demonstrated that T cells were primary source for IFN-γ production. Co-culture of WT macrophages with WT T cells, but not with IFN-γ-knockout T cells, increased IFN-γ production (p<0.01). Moreover, IFN-γ produced by T cells amplified MCP-1 expression in macrophages and stimulated macrophage migration. Conclusions/Significance Reciprocal interaction between macrophages and T cells in heart stimulates IFN-γ expression, leading to increased MCP-1 expression in macrophages, which results a forward-feed recruitment of macrophages, thus contributing to Ang II-induced cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Ya-lei Han
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Yu-lin Li
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Li-xin Jia
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Ji-zhong Cheng
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Yong-fen Qi
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Hong-jia Zhang
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
120
|
Abboud FM, Harwani SC, Chapleau MW. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension 2012; 59:755-62. [PMID: 22331383 DOI: 10.1161/hypertensionaha.111.186833] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- François M Abboud
- Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081, USA.
| | | | | |
Collapse
|
121
|
Zhang W, Wang W, Yu H, Zhang Y, Dai Y, Ning C, Tao L, Sun H, Kellems RE, Blackburn MR, Xia Y. Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension 2011; 59:136-44. [PMID: 22068875 DOI: 10.1161/hypertensionaha.111.173328] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease (CKD) is a prevalent life-threatening disease frequently associated with hypertension, progression to renal fibrosis, and eventual renal failure. Although the pathogenesis of CKD remains largely unknown, an increased inflammatory response is known to be associated with the disease and has long been speculated to contribute to disease development. However, the causative factors, the exact role of the increased inflammatory cascade in CKD, and the underlying mechanisms for its progression remain unidentified. Here we report that interleukin 6 (IL-6) expression levels were significantly increased in the kidneys collected from CKD patients and further elevated in CKD patients characterized with hypertension. Functionally, we determined that angiotensin II is a causative factor responsible for IL-6 induction in the mouse kidney and that genetic deletion of IL-6 significantly reduced hypertension and key features of CKD, including renal injury and progression to renal fibrosis in angiotensin II-infused mice. Mechanistically, we provide both human and mouse evidence that IL-6 is a key cytokine functioning downstream of angiotensin II signaling to directly induce fibrotic gene expression and preproendothelin 1 mRNA expression in the kidney. Overall, both the mouse and human studies reported here provide evidence that angiotensin II induces IL-6 production in the kidney, and that, in addition to its role in hypertension, increased IL-6 may play an important pathogenic role in CKD by inducing fibrotic gene expression and ET-1 gene expression. These findings immediately suggest that the IL-6 signaling is a novel therapeutic target to manage this devastating disorder affecting millions worldwide.
Collapse
Affiliation(s)
- Weiru Zhang
- Department of Biochemistry, University of Texas-Houston Medical School, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Inflammation and hypertension: the interplay of interleukin-6, dietary sodium, and the renin-angiotensin system in humans. Am J Hypertens 2011; 24:1143-8. [PMID: 21716327 DOI: 10.1038/ajh.2011.113] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prior evidence suggests a link between inflammation and hypertension. Interleukin-6 (IL-6) has been implicated in animal studies to play an important role in angiotensin II (ANGII)-mediated hypertension. The aim of this study was to examine the relationship of IL-6 and renin-angiotensin system (RAS) activity in human hypertension. METHODS Data from 385 hypertensives and 196 normotensives are included in this report. Blood pressure and laboratory evaluation were performed on liberal and low sodium diets. IL-6 response to an ANGII infusion was evaluated to assess the effect of acute RAS activation. RESULTS Hypertensives had higher baseline IL-6 and C-reactive protein (CRP) compared with normotensives on both diets. IL-6 increased in response to ANGII in hypertensives and normotensives (28% in hypertensives, 31% in normotensives, P ≤ 0.001 for change from baseline). In the setting of RAS activation by a low salt diet, multivariate regression analysis adjusted for age, body mass index (BMI), gender, race, and hypertension status demonstrated an independent positive association of plasma renin activity (PRA) with CRP (β = 0.199, P < 0.001). There was no significant difference in IL-6 or CRP levels between liberal and low sodium diets. CONCLUSION These findings confirm an association between hypertension and inflammation and provide human data supporting previous evidence from animal studies that IL-6 plays a role in ANGII-mediated hypertension. Notably, compared to levels on a liberal sodium diet, neither IL-6 nor CRP were higher with activation of the RAS by a low salt diet indicating that a low sodium diet is not inflammatory despite increased RAS activity.
Collapse
|
123
|
Banes-Berceli AKL, Al-Azawi H, Proctor D, Qu H, Femminineo D, Hill-Pyror C, Webb RC, Brands MW. Angiotensin II utilizes Janus kinase 2 in hypertension, but not in the physiological control of blood pressure, during low-salt intake. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1169-76. [PMID: 21813872 PMCID: PMC3197339 DOI: 10.1152/ajpregu.00071.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/18/2011] [Indexed: 11/22/2022]
Abstract
Janus kinase (JAK) 2 is activated by ANG II in vitro and in vivo, and chronic blockade of JAK2 by the JAK2 inhibitor AG-490 has been shown recently to attenuate ANG II hypertension in mice. In this study, AG-490 was infused intravenously in chronically instrumented rats to determine if the blunted hypertension was linked to attenuation of the renal actions of ANG II. In male Sprague-Dawley rats, after a control period, ANG II at 10 ng·kg(-1)·min(-1) was infused intravenously with or without AG-490 at 10 ng·kg(-1)·min(-1) iv for 11 days. ANG II infusion (18 h/day) increased mean arterial pressure from 91 ± 3 to 168 ± 7 mmHg by day 11. That response was attenuated significantly in the ANG II + AG-490 group, with mean arterial pressure increasing only from 92 ± 5 to 127 ± 3 mmHg. ANG II infusion markedly decreased urinary sodium excretion, caused a rapid and sustained decrease in glomerular filtration rate to ∼60% of control, and increased renal JAK2 phosphorylation; all these responses were blocked by AG-490. However, chronic AG-490 treatment had no effect on the ability of a separate group of normal rats to maintain normal blood pressure when they were switched rapidly to a low-sodium diet, whereas blood pressure fell dramatically in losartan-treated rats on a low-sodium diet. These data suggest that activation of the JAK/STAT pathway is critical for the development of ANG II-induced hypertension by mediating its effects on renal sodium excretory capability, but the physiological control of blood pressure by ANG II with a low-salt diet does not require JAK2 activation.
Collapse
|
124
|
Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol 2011; 11:180-6. [PMID: 21339086 DOI: 10.1016/j.coph.2011.01.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/20/2022]
Abstract
The increased activity of intrarenal renin-angiotensin system (RAS) in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis and renal injury. Increases in intrarenal and interstitial angiotensin (Ang) II levels are due to increased AT(1) receptor mediated Ang II uptake and stimulation of renal angiotensinogen (AGT) mRNA and protein expression. Augmented proximal tubule AGT production increases tubular AGT secretion and spillover of AGT into the distal nephron and urine. Increased renin formation by principal cells of the collecting ducts forms Ang I from AGT thus increasing Ang II. The catalytic actions of renin and prorenin are enhanced by prorenin receptors (PRRs) on the intercalated cells. The resultant increased intrarenal Ang II levels contribute to the genesis of chronic hypertension.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA.
| | | | | | | |
Collapse
|
125
|
Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension 2010; 57:132-40. [PMID: 21149826 DOI: 10.1161/hypertensionaha.110.163576] [Citation(s) in RCA: 589] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David G Harrison
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Ryan MJ. Does interleukin 6 contribute to renal hemodynamic changes during angiotensin II-dependent hypertension? Hypertension 2010; 56:819-21. [PMID: 20921427 DOI: 10.1161/hypertensionaha.110.159350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|