101
|
Abstract
Siderophores are low molecular weight, high affinity iron chelating molecules that are essential virulence factors in many Gram-negative bacterial pathogens. Whereas the chemical structure of siderophores is extremely variable, the function of siderophores has been narrowly defined as the chelation and delivery of iron to bacteria for proliferation. The discovery of the host protein Lipocalin 2, capable of specifically sequestering the siderophore Enterobactin but not its glycosylated-derivative Salmochelin, indicated that diversity in structure could be an immune evasion mechanism that provides functional redundancy during infection. However, there is growing evidence that siderophores are specialized in their iron-acquisition functions, can perturb iron homeostasis in their hosts, and even bind non-iron metals to promote bacterial fitness. The combination of siderophores produced by a pathogen can enable inter-bacterial competition, modulate host cellular pathways, and determine the bacterial "replicative niche" during infection. This review will examine both classical and novel functions of siderophores to address the concept that siderophores are non-redundant virulence factors used to enhance bacterial pathogenesis.
Collapse
Affiliation(s)
- Victoria I Holden
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
102
|
Abstract
Cystic fibrosis (CF) lung disease is characterized by persistent and unresolved inflammation, with elevated proinflammatory and decreased anti-inflammatory cytokines, and greater numbers of immune cells. Hyperinflammation is recognized as a leading cause of lung tissue destruction in CF. Hyper-inflammation is not solely observed in the lungs of CF patients, since it may contribute to destruction of exocrine pancreas and, likely, to defects in gastrointestinal tract tissue integrity. Paradoxically, despite the robust inflammatory response, and elevated number of immune cells (such as neutrophils and macrophages), CF lungs fail to clear bacteria and are more susceptible to infections. Here, we have summarized the current understanding of immune dysregulation in CF, which may drive hyperinflammation and impaired host defense.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, 330 Cedar Street, FMP, Room#524, New Haven, CT 06520, USA.
| | - Tracey L Bonfield
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University School of Medicine, 0900 Euclid Avenue, Cleveland, OH 44106-4948, USA.
| |
Collapse
|
103
|
Zhao J, Wen C, Li M. Association Analysis of Interleukin-17 Gene Polymorphisms with the Risk Susceptibility to Tuberculosis. Lung 2016; 194:459-67. [PMID: 26899623 DOI: 10.1007/s00408-016-9860-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recently, many institutions have investigated the associations of interleukin-17 (IL17) polymorphisms with tuberculosis (TB) susceptibility, while those results are inconsistent. The purpose of this meta-analysis is to comprehensively assess whether IL17A rs22275913, IL17F rs763780, and IL17A rs3748067 polymorphisms are correlated with TB risk. METHODS Electronic bibliographic databases were searched for case-control studies which potentially focused on the relationship between the aforementioned polymorphisms and TB risk on October 15th, 2015. Pooled odds ratios (OR) combined with 95 % confidence intervals (CI) were employed to assess the associations. RESULTS There was no significant association of IL-17A rs22275913 polymorphism with susceptibility to TB in Asians or Caucasians. For IL-17A rs3748067 polymorphism, significant associations were observed in Asian (T vs. C: OR 1.461, 95 % CI 1.158-1.844, P = 0.001; TT vs. CC: OR 1.871, 95 % CI 1.140-3.069, P = 0.013; TT/TC vs. CC: OR 1.392 95 % CI 1.062-1.825, P = 0.017; TT vs. TC/CC OR 1.820, 95 % CI 1.111-2.981, P = 0.017). For IL-17F rs763780, we detected the significant associations under allele contrast, heterozygote, dominant and recessive models (C vs. T: OR 1.571, 95 % CI 1.352-1.824, P = 0.000; CT vs. TT: OR 1.624, 95 % CI 1.346-1.958, P = 0.000; CT/TT vs. TT: OR 1.639, 95 % CI 1.381-1.946, P = 0.000, respectively). The corresponding results were also detected in Asian populations (C vs. T: OR 1.068, 95 % CI 1.380-1.875, P = 0.000; CT vs. TT: OR 1.689, 95 % CI 1.390-2.053, P = 0.000; CT/TT vs. TT: OR 1.695, 95 % CI 1.420-2.023, P = 0.000), while there were no significant associations in Caucasian. CONCLUSION IL-17F rs763780 allele C and IL-17A rs3748067 allele C may be involved in the susceptibility to TB in Asian populations. There were no significant associations between IL-17A rs22275913 polymorphism and risk of TB.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, People's Republic of China
| | - Cen Wen
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Ming Li
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, People's Republic of China.
| |
Collapse
|
104
|
Li Y, Wang Z, Liu X, Tang J, Peng B, Wei Y. X-ray Irradiated Vaccine Confers protection against Pneumonia caused by Pseudomonas aeruginosa. Sci Rep 2016; 6:18823. [PMID: 26879055 PMCID: PMC4754647 DOI: 10.1038/srep18823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/24/2015] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium and one of the leading causes of nosocomial infection worldwide, however, no effective vaccine is currently available in the market. Here, we demonstrate that inactivation of the bacteria by X-ray irradiation inhibits its replication capability but retained antigenic expression functionally thus allowing its use as a potential vaccine. Mice immunized by this vaccine were challenged by the parental strain, the O-antigen-homologous strain PAO-1 (O2/O5) and heterologous strain PAO-6 (O6) in an acute pneumonia model. We further measured the protective effect of the vaccine, as well as host innate and cellular immunity responses. We found immunized mice could protect against both strains. Notably, the antiserum only had significant protective role against similar bacteria, while adoptive transfer of lymphocytes significantly controlled the spread of the virulent heterologous serogroup PAO-6 infection, and the protective role could be reversed by CD4 rather than CD8 antibody. We further revealed that vaccinated mice could rapidly recruit neutrophils to the airways early after intranasal challenge by PAO-6, and the irradiated vaccine was proved to be protective by the generated CD4(+) IL-17(+) Th17 cells. In conclusion, the generation of inactivated but metabolically active microbes is a promising strategy for safely vaccinating against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| | - Zhenling Wang
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| | - Xiaoxiao Liu
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| | - Jianying Tang
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| | - Bin Peng
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China.,Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuquan Wei
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| |
Collapse
|
105
|
IL-17 in Chronic Inflammation: From Discovery to Targeting. Trends Mol Med 2016; 22:230-241. [PMID: 26837266 DOI: 10.1016/j.molmed.2016.01.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/04/2016] [Accepted: 01/10/2016] [Indexed: 02/08/2023]
Abstract
Interleukin-17 (IL-17) is a cytokine which elicits protection against extracellular bacterial and fungal infections and which plays important roles in inflammation. However, when produced in excess, it contributes to chronic inflammation associated with many inflammatory and autoimmune disorders. This has made IL-17 an attractive therapeutic target. The present review describes the structure of the IL-17 family, the IL-17 receptor complex, and the cells producing IL-17. The contributions of IL-17 to disease as well as new IL-17-based treatment options are discussed. Finally, the results of IL-17 or IL-17 receptor inhibitors in clinical trials are detailed. With a fruitful outlook, drug registration has now been granted for psoriasis psoriatic arthritis and ankylosing spondylitis, and also bears great potential in a growing number of conditions.
Collapse
|
106
|
Abstract
INTRODUCTION Plaque psoriasis is a chronic inflammatory disease that can result in significant physical, psychological and quality of life impairments. Until recently, biologic treatment for psoriasis was limited to tumor necrosis factor-α inhibitors and an interleukin (IL)-12/23 p40 subunit inhibitor. Newly developed biologics targeting the pro-inflammatory IL-17A cytokine have shown success in providing higher levels of clinical efficacy in patients with psoriasis. Secukinumab, a member of this novel class of IL-17 inhibitors, is the latest biologic to receive US FDA approval for the treatment of moderate-to-severe plaque psoriasis. AREAS COVERED This comprehensive review will cover the pharmacology, efficacy, safety and future role of secukinumab and other IL-17 blockers in the treatment of plaque psoriasis. EXPERT OPINION While biologics have revolutionized patient care for chronic plaque psoriasis, they are associated with loss of response over time. When treatment failure occurs with existing biologics, physicians are left with few alternative treatment options to offer patients. The introduction of secukinumab has provided an additional therapeutic agent that offers improved skin clearance, better health related quality of life and a favorable side-effect profile.
Collapse
Affiliation(s)
- Brooke Rothstein
- a Department of Dermatology , Tufts Medical Center, Tufts University School of Medicine , 800 Washington St, #114, Boston , MA 02111 , USA
| | - Alice Gottlieb
- a Department of Dermatology , Tufts Medical Center, Tufts University School of Medicine , 800 Washington St, #114, Boston , MA 02111 , USA
| |
Collapse
|
107
|
The IL17F and IL17RA Genetic Variants Increase Risk of Cerebral Malaria in Two African Populations. Infect Immun 2015; 84:590-7. [PMID: 26667835 DOI: 10.1128/iai.00671-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
Cerebral malaria (CM) is a neurological complication of infection with Plasmodium falciparum that is partly caused by cytokine-mediated inflammation. It is not known whether interleukin-17 (IL-17) cytokines, which regulate inflammation, control the development of CM. To evaluate the involvement of IL-17 cytokines in CM, we analyzed 46 common polymorphisms in IL17A, IL17F, and IL17RA (which encodes the common receptor chain of the members of the IL-17 family) in two independent African populations. A case-control study involving 115 Nigerian children with CM and 160 controls from the community (CC) showed that IL17F reference single nucleotide polymorphism (SNP) 6913472 (rs6913472) (P = 0.004; odds ratio [OR] = 3.12), IL17F rs4715291 (P = 0.004; OR = 2.82), IL17RA rs12159217 (P = 0.01; OR = 2.27), and IL17RA rs41396547 (P = 0.026; OR = 3.15) were independently associated with CM. A replication study was performed in 240 nuclear Malian family trios (two parents with one CM child). We replicated the association for 3 SNPs, IL17F rs6913472 (P = 0.03; OR = 1.39), IL17RA rs12159217 (P = 0.01; OR = 1.52), and IL17RA rs41396547 (P = 0.04; OR = 3.50). We also found that one additional SNP, IL17RA rs41433045, in linkage disequilibrium (LD) with rs41396547, was associated with CM in both Nigeria and Mali (P = 0.002; OR = 4.12 in the combined sample). We excluded the possibility that SNPs outside IL17F and IL17RA, in strong LD with the associated SNPs, could account for the observed associations. Furthermore, the results of a functional study indicated that the aggravating GA genotype of IL17F rs6913472 was associated with lower IL-17F concentrations. Our findings show for the first time that IL17F and IL17RA polymorphisms modulate susceptibility to CM and provide evidence that IL-17F protects against CM.
Collapse
|
108
|
Interleukin-17 Could Promote Breast Cancer Progression at Several Stages of the Disease. Mediators Inflamm 2015; 2015:804347. [PMID: 26783383 PMCID: PMC4691460 DOI: 10.1155/2015/804347] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/29/2015] [Indexed: 01/05/2023] Open
Abstract
Metastatic disease accounts for more than 90% of deaths from breast cancer. Yet the factors that trigger metastasis, often years after primary tumor removal, are not understood well. Recently the proinflammatory cytokine interleukin- (IL-) 17 family has been associated with poor prognosis in breast cancer. Here we review current literature on the pathogenic mechanisms driven by IL-17 during breast cancer progression and connect these findings to metastasis. These include (1) direct effects of IL-17 on tumor cells promoting tumor cell survival and invasiveness, (2) regulation of tumor angiogenesis, and (3) interaction with myeloid derived suppressor cells (MDSCs) to inhibit antitumor immune response and collaborate at the distant metastatic site. Furthermore, IL-17 might also be a culprit in bone destruction caused by late stage bone metastasis. Interestingly, in addition to these potential prometastasis functions, there is also evidence for an opposite, antitumor role of IL-17 during cancer therapies. We hypothesize that these contradictory roles may be due to chronic, imbalanced versus acute transient nature of the immune reactions, as well as differences in the cells that interact with IL-17+ cells under different circumstances.
Collapse
|
109
|
Volpe E, Battistini L, Borsellino G. Advances in T Helper 17 Cell Biology: Pathogenic Role and Potential Therapy in Multiple Sclerosis. Mediators Inflamm 2015; 2015:475158. [PMID: 26770017 PMCID: PMC4685148 DOI: 10.1155/2015/475158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/19/2015] [Indexed: 01/08/2023] Open
Abstract
The discovery of the T helper (Th) 17 lineage, involved in the protection against fungal and extracellular bacterial infections, has profoundly revolutionized our current understanding of T cell-mediated responses in autoimmune diseases, including multiple sclerosis (MS). Indeed, recent data demonstrate the pathogenic role of Th17 cells in autoimmune disorders. In particular, studies in MS and in its animal model (EAE, experimental autoimmune encephalomyelitis) have revealed a crucial role of Th17 cells in the pathogenesis of autoimmune demyelinating diseases in both mice and humans. Over the past years, several important aspects concerning Th17 cells have been elucidated, such as the factors which promote or inhibit their differentiation and the effector cytokines which mediate their responses. The identification of the features endowing Th17 cells with high pathogenicity in MS is of particular interest, and discoveries in Th17 cell biology and function could lead to the design of new strategies aimed at modulating the immune response in MS. Here, we will discuss recent advances in this field, with particular focus on the mechanisms conferring pathogenicity in MS and their potential modulation.
Collapse
Affiliation(s)
- Elisabetta Volpe
- Neuroimmunology Unit, Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
110
|
Yamagata T, Skepner J, Yang J. Targeting Th17 Effector Cytokines for the Treatment of Autoimmune Diseases. Arch Immunol Ther Exp (Warsz) 2015; 63:405-14. [PMID: 26358867 DOI: 10.1007/s00005-015-0362-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-17-producing T cells, especially T helper (Th)17 cells, play a critical role in the pathogenesis of a variety of autoimmune inflammatory diseases. The pathogenic function of Th17 cells results from their production of Th17 effector cytokines, namely IL-17 (or IL-17A), IL-17F, IL-22 and IL-26. The importance of IL-17 has been demonstrated by antibody neutralization studies in both animal models of autoimmune diseases as well as in human clinical trials. This review highlights the current knowledge of the clinical aspects of the Th17 cytokines as well as therapeutic antibodies against IL-17, IL-17F, IL-17 receptor, IL-22, IL-26 and granulocyte macrophage colony-stimulating factor for the future treatment of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
| | - Jill Skepner
- Tempero, GlaxoSmithKline, Cambridge, MA, 02139, USA
| | - Jianfei Yang
- Tempero, GlaxoSmithKline, Cambridge, MA, 02139, USA.
| |
Collapse
|
111
|
Roos AB, Sethi S, Nikota J, Wrona CT, Dorrington MG, Sandén C, Bauer CMT, Shen P, Bowdish D, Stevenson CS, Erjefält JS, Stampfli MR. IL-17A and the Promotion of Neutrophilia in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 192:428-37. [PMID: 26039632 DOI: 10.1164/rccm.201409-1689oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Nontypeable Haemophilus influenzae (NTHi) causes acute exacerbation of chronic obstructive pulmonary disease (AECOPD). IL-17A is central for neutrophilic inflammation and has been linked to COPD pathogenesis. OBJECTIVES We investigated whether IL-17A is elevated in NTHi-associated AECOPD and required for NTHi-exacerbated pulmonary neutrophilia induced by cigarette smoke. METHODS Experimental studies with cigarette smoke and NTHi infection were pursued in gene-targeted mice and using antibody intervention. IL-17A was measured in sputum collected from patients with COPD at baseline, during, and after AECOPD. MEASUREMENTS AND MAIN RESULTS Exacerbated airway neutrophilia in cigarette smoke-exposed mice infected with NTHi was associated with an induction of IL-17A. In agreement, elevated IL-17A was observed in sputum collected during NTHi-associated AECOPD, compared with samples collected before or after the event. NTHi-exacerbated neutrophilia and induction of neutrophil chemoattractants over the background of cigarette smoke, as observed in wild-type mice, was absent in Il17a(-/-) mice and in mice treated with a neutralizing anti-IL-17A antibody. Further studies revealed that IL-1 receptor (R)1 signaling was required for IL-17A-dependent neutrophilia. Moreover, deficiency or therapeutic neutralization of IL-17A did not increase bacterial burden or delay bacterial clearance. CONCLUSIONS IL-17A is induced during NTHi-associated AECOPD. Functionally, IL-1R1-dependent IL-17A is required for NTHi-exacerbated pulmonary neutrophilia induced by cigarette smoke. Targeting IL-17A in AECOPD may thus be beneficial to reduce neutrophil recruitment to the airways.
Collapse
Affiliation(s)
- Abraham B Roos
- 1 Department of Experimental Medical Science, Lund University, Lund, Sweden.,2 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Sanjay Sethi
- 3 Pulmonary Medicine Division, Department of Veterans Affairs Western New York Healthcare System, University at Buffalo, State University of New York, Buffalo, New York; and
| | | | - Catherine T Wrona
- 3 Pulmonary Medicine Division, Department of Veterans Affairs Western New York Healthcare System, University at Buffalo, State University of New York, Buffalo, New York; and
| | | | - Caroline Sandén
- 1 Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Carla M T Bauer
- 5 Hoffmann-La Roche, pRED, Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Pamela Shen
- 3 Pulmonary Medicine Division, Department of Veterans Affairs Western New York Healthcare System, University at Buffalo, State University of New York, Buffalo, New York; and
| | - Dawn Bowdish
- 2 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Christopher S Stevenson
- 5 Hoffmann-La Roche, pRED, Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Jonas S Erjefält
- 1 Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin R Stampfli
- 2 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,6 Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
112
|
Abstract
The HIV epidemic has clearly demonstrated the critical role CD4(+) T cells play in preventing opportunistic infections in the lung. The types of CD4(+) effector T-cell populations in the lung have significantly expanded over the last 8-10 years with the discovery of helper T type 17 cells, and this review summarizes the field and discusses how these effector cells may be exploited to augment mucosal immunity in the lung.
Collapse
|
113
|
TIR Domain-Containing Adapter-Inducing Beta Interferon (TRIF) Mediates Immunological Memory against Bacterial Pathogens. Infect Immun 2015; 83:4404-15. [PMID: 26351279 DOI: 10.1128/iai.00674-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023] Open
Abstract
Induction of adaptive immunity leads to the establishment of immunological memory; however, how innate immunity regulates memory T cell function remains obscure. Here we show a previously undefined mechanism in which innate and adaptive immunity are linked by TIR domain-containing adapter-inducing beta interferon (TRIF) during establishment and reactivation of memory T cells against Gram-negative enteropathogens. Absence of TRIF in macrophages (Mϕs) but not dendritic cells led to a predominant generation of CD4(+) central memory T cells that express IL-17 during enteric bacterial infection in mice. TRIF-dependent type I interferon (IFN) signaling in T cells was essential to Th1 lineage differentiation and reactivation of memory T cells. TRIF activated memory T cells to facilitate local neutrophil influx and enhance bacterial elimination. These results highlight the importance of TRIF as a mediator of the innate and adaptive immune interactions in achieving the protective properties of memory immunity against Gram-negative bacteria and suggest TRIF as a potential therapeutic target.
Collapse
|
114
|
Li JT, Melton AC, Su G, Hamm DE, LaFemina M, Howard J, Fang X, Bhat S, Huynh KM, O'Kane CM, Ingram RJ, Muir RR, McAuley DF, Matthay MA, Sheppard D. Unexpected Role for Adaptive αβTh17 Cells in Acute Respiratory Distress Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:87-95. [PMID: 26002979 PMCID: PMC4475475 DOI: 10.4049/jimmunol.1500054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. In this study, we report that expansion of Ag-specific αβTh17 cells contributes to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in Ag-specific αβTh17 cells were protected from experimental ARDS induced by a single dose of endotracheal LPS. Loss of IL-17 receptor C or Ab blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTh17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the TCR. Our findings could be relevant to ARDS in humans, because we found significant elevation of IL-17A in bronchoalveolar lavage fluid from patients with ARDS, and rIL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTh17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies/pharmacology
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/immunology
- Epithelial Cells/drug effects
- Epithelial Cells/immunology
- Epithelial Cells/pathology
- Humans
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/genetics
- Interleukin-17/immunology
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Transgenic
- Permeability
- Primary Cell Culture
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/immunology
- Pulmonary Alveoli/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/immunology
- Respiratory Distress Syndrome/genetics
- Respiratory Distress Syndrome/immunology
- Respiratory Distress Syndrome/pathology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
Collapse
Affiliation(s)
- John T Li
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110
| | - Andrew C Melton
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - George Su
- Department of Medicine, San Francisco General Hospital, San Francisco, CA 94110
| | | | - Michael LaFemina
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121
| | - James Howard
- Department of Pediatrics, UCSF Benioff Children's Hospital Oakland, Oakland, CA 94609
| | - Xiaohui Fang
- Department of Anesthesia, Cardiovascular Research Institute, San Francisco, CA 94158; Department of Medicine, Cardiovascular Research Institute, San Francisco, CA 94158
| | - Sudarshan Bhat
- University of California, Berkeley, Berkeley, CA 94720; and
| | - Kieu-My Huynh
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Cecilia M O'Kane
- Center for Infection and Immunity, Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
| | - Rebecca J Ingram
- Center for Infection and Immunity, Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
| | - Roshell R Muir
- Center for Infection and Immunity, Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
| | - Daniel F McAuley
- Center for Infection and Immunity, Queen's University of Belfast, Belfast BT7 1NN, United Kingdom
| | - Michael A Matthay
- Department of Anesthesia, Cardiovascular Research Institute, San Francisco, CA 94158; Department of Medicine, Cardiovascular Research Institute, San Francisco, CA 94158
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143;
| |
Collapse
|
115
|
Konya C, Paz Z, Apostolidis SA, Tsokos GC. Update on the role of Interleukin 17 in rheumatologic autoimmune diseases. Cytokine 2015; 75:207-15. [PMID: 26028353 DOI: 10.1016/j.cyto.2015.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/02/2015] [Accepted: 01/09/2015] [Indexed: 12/14/2022]
Abstract
Interleukin 17 is a proinflammatory cytokine produced by CD4+ T cells when in the presence of a distinct set of cytokines and other cells. Preclinical and clinical studies have assigned a role to IL-17 in tissue inflammation and damage in patients with rheumatoid arthritis, psoriasis and psoriatic arthritis, ankylosing spondylitis and systemic lupus erythematosus. Antibodies blocking the action of IL-17 have already been approved to treat patients with psoriasis and it is expected that they may also benefit patients with other rheumatic diseases.
Collapse
Affiliation(s)
- Christine Konya
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Ziv Paz
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Sokratis A Apostolidis
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - George C Tsokos
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| |
Collapse
|
116
|
Neutrophils play an important role in protective immunity against Coxiella burnetii infection. Infect Immun 2015; 83:3104-13. [PMID: 26015476 DOI: 10.1128/iai.00042-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes the zoonotic disease Q fever. Although Q fever is mainly transmitted by aerosol infection, study of the immune responses in the lung following pulmonary C. burnetii infection is lacking. Neutrophils are considered the first immune cell to migrate into the lung and play an important role in host defense against aerosol infection with microbial pathogens. However, the role of neutrophils in the host defense against C. burnetii infection remains unclear. To determine the role of neutrophils in protective immunity against C. burnetii infection, the RB6-8C5 antibody was used to deplete neutrophils in mice before intranasal infection with C. burnetii. The results indicated that neutrophil-depleted mice developed more severe disease than their wild-type counterparts, suggesting that neutrophils play an important role in host defense against C. burnetii pulmonary infection. We also found that neither CXC chemokine receptor 2 (CXCR2) nor interleukin-17 (IL-17) receptor (IL-17R) deficiency changed the severity of disease following intranasal C. burnetii challenge, suggesting that keratinocyte-derived chemokine and IL-17 may not play essential roles in the response to C. burnetii infection. However, significantly higher C. burnetii genome copy numbers were detected in the lungs of IL-1R(-/-) mice at 14 days postinfection. This indicates that IL-1 may be important for the clearance of C. burnetii from the lungs following intranasal infection. Our results also suggest that neutrophils are involved in protecting vaccinated mice from C. burnetii challenge-induced disease. This is the first study to demonstrate an important role for neutrophils in protective immunity against C. burnetii infection.
Collapse
|
117
|
Lee B, Robinson KM, McHugh KJ, Scheller EV, Mandalapu S, Chen C, Di YP, Clay ME, Enelow RI, Dubin PJ, Alcorn JF. Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L158-67. [PMID: 26001778 DOI: 10.1152/ajplung.00338.2014] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/16/2015] [Indexed: 11/22/2022] Open
Abstract
Suppression of type 17 immunity by type I interferon (IFN) during influenza A infection has been shown to enhance susceptibility to secondary bacterial pneumonia. Although this mechanism has been described in coinfection with gram-positive bacteria, it is unclear whether similar mechanisms may impair lung defense against gram-negative infections. Furthermore, precise delineation of the duration of type I IFN-associated susceptibility to bacterial infection remains underexplored. Therefore, we investigated the effects of preceding influenza A virus infection on subsequent challenge with the gram-negative bacteria Escherichia coli or Pseudomonas aeruginosa and the temporal association between IFN expression with susceptibility to Staphylococcus aureus challenge in a mouse model of influenza and bacterial coinfection. Here we demonstrate that preceding influenza A virus led to increased lung E. coli and P. aeruginosa bacterial burden, which was associated with suppression of type 17 immunity and attenuation of antimicrobial peptide expression. Enhanced susceptibility to S. aureus coinfection ceased at day 14 of influenza infection, when influenza-associated type I IFN levels had returned to baseline levels, further suggesting a key role for type I IFN in coinfection pathogenesis. These findings further implicate type I IFN-associated suppression of type 17 immunity and antimicrobial peptide production as a conserved mechanism for enhanced susceptibility to both gram-positive and gram-negative bacterial coinfection during influenza infection.
Collapse
Affiliation(s)
- Benjamin Lee
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Keven M Robinson
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kevin J McHugh
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Erich V Scheller
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Sivanarayana Mandalapu
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Chen Chen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Michelle E Clay
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Richard I Enelow
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Patricia J Dubin
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania;
| |
Collapse
|
118
|
Toledo R, Muñoz-Antoli C, Esteban JG. Strongyloidiasis with emphasis on human infections and its different clinical forms. ADVANCES IN PARASITOLOGY 2015; 88:165-241. [PMID: 25911368 DOI: 10.1016/bs.apar.2015.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strongyloidiasis (caused by Strongyloides stercoralis, and to a lesser extent by Strongyloides fuelleborni) is one of the most neglected tropical diseases with endemic areas and affecting more than 100 million people worldwide. Chronic infections in endemic areas can be maintained for decades through the autoinfective cycle with the L3 filariform larvae. In these endemic areas, misdiagnosis, inadequate treatment and the facilitation of the hyperinfection syndrome by immunosuppression are frequent and contribute to a high mortality rate. Despite the serious health impact of strongyloidiasis, it is a neglected disease and very little is known about this parasite and the disease when compared to other helminth infections. Control of the disease is difficult because of the many gaps in our knowledge of strongyloidiasis. We examine the recent literature on different aspects of strongyloidiasis with emphasis in those aspects that need further research.
Collapse
Affiliation(s)
- Rafael Toledo
- Departamento de Parasitología, Universidad de Valencia, Valencia, Spain
| | | | | |
Collapse
|
119
|
Zheng S, Ren L, Li H, Shen X, Yang X, Li N, Wang X, Guo X, Wang X, Huang N. High-mobility group nucleosome-binding domain 2 protein inhibits the invasion of Klebsiella pneumoniae into mouse lungs in vivo. Mol Med Rep 2015; 12:1279-85. [PMID: 25760831 DOI: 10.3892/mmr.2015.3464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/29/2015] [Indexed: 11/05/2022] Open
Abstract
Since bacterial invasion into host cells is a critical step in the infection process and the predominance of multiple-antibiotic-resistant Klebsiella (K.) pneumoniae strains, using molecular agents to interfere with K. pneumoniae invasion is an attractive approach for the prevention of infection and suppress the immune inflammatory response. In previous studies by our group, high-mobility group nucleosome-binding domain 2 (HMGN2) protein was shown to exhibit anti-bacterial activity in vitro. The objective of the present study was to investigate the effects of HMGN2 protein on the invasion of K. pneumoniae 03183 in vivo. The results showed that pre-treatment with 128 µg/ml HMGN2 significantly reduced K. pneumoniae 03183 invasion into mouse lungs and increased the mRNA expression of CXCL1 and LCN2 within 2 h. Immunohistochemical staining showed that F-actin expression was significantly decreased, and fluorescence microscopy and western blot analysis further demonstrated that HMGN2 significantly blocked K. pneumoniae 03183-induced actin polymerization. These changes implied that HMGN2 may provide protection against K. pneumoniae 03183 infection in vivo.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Laibin Ren
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Heng Li
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaofei Shen
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaolong Yang
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Na Li
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xinyuan Wang
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojuan Guo
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoying Wang
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ning Huang
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
120
|
Ravichandran J, Jackson RJ, Trivedi S, Ranasinghe C. IL-17A expression in HIV-specific CD8 T cells is regulated by IL-4/IL-13 following HIV-1 prime-boost immunization. J Interferon Cytokine Res 2015; 35:176-85. [PMID: 25493691 PMCID: PMC4350450 DOI: 10.1089/jir.2014.0078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/22/2014] [Indexed: 01/25/2023] Open
Abstract
Although Th1 and Th2 cytokines can inhibit interleukin (IL)-17-secreting T cells, how these cells are regulated under different infectious conditions is still debated. Our previous studies have shown that vaccination of IL-4 and IL-13 gene knockout (KO) mice can induce high-avidity HIV K(d)Gag197-205-specific CD8 T cells with better protective efficacy. In this study, when IL-13, IL-4, STAT6 KO, and wild-type BALB/c mice were prime-boost immunized with an HIV poxviral modality, elevated numbers of IL-17A(+) splenic K(d)Gag197-205-specific CD8 T cells were observed in all the KO mice compared with the wt BALB/c control. Similarly, when wt BALB/c mice were immunized with IL-13Rα2-adjuvanted HIV vaccines (that transiently inhibited IL-13 activity and induced high-avidity CD8 T cells with enhanced protective efficacy), elevated IL-17A(+) K(d)Gag197-205-specific CD8 T cells were detected both in the lung and the spleen. However, at the transcriptional level, elevated TGF-β, IL-6, ROR-γt, and IL-17A mRNA copy numbers were mainly detected in IL-4 KO, but not the IL-13 KO mice. These data suggested that TGF-β, IL-6, ROR-γt, but not IL-23a, played a role in IL-17A regulation in K(d)Gag197-205-specific CD8 T cells. Collectively, our findings suggest that IL-4 and IL-13 differentially regulate the expression of IL-17A in K(d)Gag197-205-specific CD8 T cells at the transcriptional and translational level, respectively, implicating IL-17A as an indirect modulator of CD8 T cell avidity and protective immunity.
Collapse
Affiliation(s)
- Jayashree Ravichandran
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University , Canberra, Australia
| | | | | | | |
Collapse
|
121
|
Tan S, Gan C, Li R, Ye Y, Zhang S, Wu X, Yang YY, Fan W, Wu M. A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model. Int J Nanomedicine 2015; 10:1045-59. [PMID: 25709431 PMCID: PMC4330034 DOI: 10.2147/ijn.s73303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is increasingly becoming multiple drug resistant. However, the molecular pathogenesis of Kp in causing tissue injury and dysregulated host defense remains elusive, further dampening the development of novel therapeutic measures. We have previously screened a series of synthetic antimicrobial beta-sheet forming peptides and identified a peptide (IRIKIRIK; ie, IK8L) with a broad range of bactericidal activity and low cytotoxicity in vitro. Here, employing an animal model, we investigated the antibacterial effects of IK8L in acute infection and demonstrated that peritoneal injection of IK8L to mice down-regulated inflammatory cytokines, alleviated lung injury, and importantly, decreased mortality compared to sham-injected controls. In addition, a math model was used to evaluate in vivo imaging data and predict infection progression in infected live animals. Mechanistically, IK8L can kill Kp by inhibiting biofilm formation and modulating production of inflammatory cytokines through the STAT3/JAK signaling both in vitro and in vivo. Collectively, these findings reveal that IK8L may have potential for preventing or treating Kp infection.
Collapse
Affiliation(s)
- Shirui Tan
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA ; Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Changpei Gan
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA ; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Rongpeng Li
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA
| | - Yan Ye
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA
| | - Shuang Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA ; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xu Wu
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Min Wu
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
122
|
Suryawanshi A, Cao Z, Sampson JF, Panjwani N. IL-17A-mediated protection against Acanthamoeba keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:650-63. [PMID: 25505284 PMCID: PMC4282964 DOI: 10.4049/jimmunol.1302707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acanthamoeba keratitis (AK) is a very painful and vision-impairing infection of the cornea that is difficult to treat. Although past studies have indicated a critical role of neutrophils and macrophages in AK, the relative contribution of the proinflammatory cytokine, IL-17A, that is essential for migration, activation, and function of these cells into the cornea is poorly defined. Moreover, the role of the adaptive immune response, particularly the contribution of CD4(+) T cell subsets, Th17 and regulatory T cells , in AK is yet to be understood. In this report, using a mouse corneal intrastromal injection-induced AK model, we show that Acanthamoeba infection induces a strong CD4(+) T effector and regulatory T cell response in the cornea and local draining lymph nodes. We also demonstrate that corneal Acanthamoeba infection induces IL-17A expression and that IL-17A is critical for host protection against severe AK pathology. Accordingly, IL-17A neutralization in Acanthamoeba-infected wild-type mice or Acanthamoeba infection of mice lacking IL-17A resulted in a significantly increased corneal AK pathology, increased migration of inflammatory cells at the site of inflammation, and a significant increase in the effector CD4(+) T cell response in draining lymph nodes. Thus, in sharp contrast with other corneal infections such as herpes and Pseudomonas aeruginosa keratitis where IL-17A exacerbates corneal pathology and inflammation, the findings presented in this article suggest that IL-17A production after Acanthamoeba infection plays an important role in host protection against invading parasites.
Collapse
Affiliation(s)
- Amol Suryawanshi
- New England Eye Center, Boston, MA 02111; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111; and
| | - Zhiyi Cao
- New England Eye Center, Boston, MA 02111; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111; and
| | - James F Sampson
- New England Eye Center, Boston, MA 02111; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111; and
| | - Noorjahan Panjwani
- New England Eye Center, Boston, MA 02111; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111; and Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
123
|
|
124
|
Che KF, Tengvall S, Levänen B, Silverpil E, Smith ME, Awad M, Vikström M, Palmberg L, Qvarfordt I, Sköld M, Lindén A. Interleukin-26 in antibacterial host defense of human lungs. Effects on neutrophil mobilization. Am J Respir Crit Care Med 2014; 190:1022-31. [PMID: 25291379 DOI: 10.1164/rccm.201404-0689oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE The role of the presumed Th17 cytokine IL-26 in antibacterial host defense of the lungs is not known. OBJECTIVES To characterize the role of IL-26 in antibacterial host defense of human lungs. METHODS Intrabronchial exposure of healthy volunteers to endotoxin and vehicle was performed during bronchoscopy and bronchoalveolar lavage (BAL) samples were harvested. Intracellular IL-26 was detected using immunocytochemistry and immunocytofluorescence. This IL-26 was also detected using flow cytometry, as was its receptor complex. Cytokines and phosphorylated signal transducer and activator of transcription (STAT) 1 plus STAT3 were quantified using ELISA. Gene expression was analyzed by real-time polymerase chain reaction and neutrophil migration was assessed in vitro. MEASUREMENTS AND MAIN RESULTS Extracellular IL-26 was detected in BAL samples without prior exposure in vivo and was markedly increased after endotoxin exposure. Alveolar macrophages displayed gene expression for, contained, and released IL-26. Th and cytotoxic T cells also contained IL-26. In the BAL samples, IL-26 concentrations and innate effector cells displayed a correlation. Recombinant IL-26 potentiated neutrophil chemotaxis induced by IL-8 and fMLP but decreased chemokinesis for neutrophils. Myeloperoxidase in conditioned media from neutrophils was decreased. The IL-26 receptor complex was detected in neutrophils and IL-26 decreased phosphorylated STAT3 in these cells. In BAL and bronchial epithelial cells, IL-26 increased gene expression of the IL-26 receptor complex and STAT1 plus STAT3. Finally, IL-26 increased the release of neutrophil-mobilizing cytokines in BAL but not in epithelial cells. CONCLUSIONS This study implies that alveolar macrophages produce IL-26, which stimulates receptors on neutrophils and focuses their mobilization toward bacteria and accumulated immune cells in human lungs.
Collapse
Affiliation(s)
- Karlhans F Che
- 1 Unit for Lung and Airway Research, Institute of Environmental Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Eriksson P, Andersson C, Cassel P, Nyström S, Ernerudh J. Increase in Th17-associated CCL20 and decrease in Th2-associated CCL22 plasma chemokines in active ANCA-associated vasculitis. Scand J Rheumatol 2014; 44:80-3. [PMID: 25352172 DOI: 10.3109/03009742.2014.952332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- P Eriksson
- Rheumatology, Department of Clinical and Experimental Medicine, Linköping University and Department of Rheumatology, County Council of Östergötland , Sweden
| | | | | | | | | |
Collapse
|
126
|
Mortaz E, Adcock IM, Tabarsi P, Masjedi MR, Mansouri D, Velayati AA, Casanova JL, Barnes PJ. Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis. J Clin Immunol 2014; 35:1-10. [PMID: 25312698 PMCID: PMC4306732 DOI: 10.1007/s10875-014-0103-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Division of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands.,Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.,Clinical Tuberculosis and Epidemiology Research Center, National Research and Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research and Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Masjedi
- Clinical Tuberculosis and Epidemiology Research Center, National Research and Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Clinical Tuberculosis and Epidemiology Research Center, National Research and Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, 10065, NY, USA.,Paris Descartes Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Peter J Barnes
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| |
Collapse
|
127
|
Li C, McClellan SA, Barrett R, Hazlett LD. Interleukin 17 regulates Mer tyrosine kinase-positive cells in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2014; 55:6886-900. [PMID: 25298414 DOI: 10.1167/iovs.14-14522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine if IL-17 regulates Mer tyrosine kinase-positive (MerTK+) cells in Pseudomonas aeruginosa keratitis. METHODS Interleukin 17 was tested in normal and infected cornea of susceptible C57BL/6 and resistant BALB/c mice. The latter were treated with recombinant mouse (rm) IL-17; both groups were treated with IL-17 neutralizing antibody. Mice were infected, and clinical score, PCR, ELISA, and myeloperoxidase (MPO) assays tested expression of proinflammatory and anti-inflammatory mediators and polymorphonuclear neutrophilic leukocyte (PMN) infiltrate. Fas and Fas ligand (FasL) protein levels were assessed in both mouse strains, while MerTK+ cells were examined by immunostaining and cell sorting before and after IL-17 neutralization. RESULTS The IL-17 mRNA and protein were higher in C57BL/6 versus BALB/c cornea after infection. The rmIL-17 treatment of BALB/c mice modified proinflammatory and anti-inflammatory mediators, but clinical score and MPO assay revealed no differences. However, only BALB/c mice treated with IL-17 neutralizing antibody showed increased disease, macrophage inflammatory protein (MIP) 2, and MPO levels. Fas and FasL protein levels, elevated earlier in BALB/c versus C57BL/6 mice, correlated with significantly more MerTK+ cells in BALB/c cornea at 3 days after infection. Neutralization of IL-17 in C57BL/6 mice elevated MerTK+ cells, while similar treatment of BALB/c mice significantly decreased them. CONCLUSIONS These data provide evidence that IL-17 expression is higher in C57BL/6 versus BALB/c cornea after infection and that the latter group has more MerTK+ cells. Exogenous rmIL-17 failed to shift the disease response in resistant mice, but its neutralization resulted in worsened disease and reduced MerTK+ cells. Neutralization of IL-17 in C57BL/6 mice increased MerTK+ cells but did not dramatically shift the disease response.
Collapse
Affiliation(s)
- Cui Li
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sharon A McClellan
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ronald Barrett
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Linda D Hazlett
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
128
|
Mathew M, Waugh C, Beagley KW, Timms P, Polkinghorne A. Interleukin 17A is an immune marker for chlamydial disease severity and pathogenesis in the koala (Phascolarctos cinereus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:423-429. [PMID: 24915607 DOI: 10.1016/j.dci.2014.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
The koala (Phascolarctos cinereus) is an iconic Australian marsupial species that is facing many threats to its survival. Chlamydia pecorum infections are a significant contributor to this ongoing decline. A major limiting factor in our ability to manage and control chlamydial disease in koalas is a limited understanding of the koala's cell-mediated immune response to infections by this bacterial pathogen. To identify immunological markers associated with chlamydial infection and disease in koalas, we used koala-specific Quantitative Real Time PCR (qrtPCR) assays to profile the cytokine responses of Peripheral Blood Mononuclear Cells (PBMCs) collected from 41 koalas with different stages of chlamydial disease. Target cytokines included the principal Th1 (Interferon gamma; IFNγ), Th2 (Interleukin 10; IL10), and pro-inflammatory cytokines (Tumor Necrosis Factor alpha; TNFα). A novel koala-specific IL17A qrtPCR assay was also developed as part of this study to quantitate the gene expression of this Th17 cytokine in koalas. A statistically significant higher IL17A gene expression was observed in animals with current chlamydial disease compared to animals with asymptomatic chlamydial infection. A modest up-regulation of pro-inflammatory cytokines, such as TNFα and IFNγ, was also observed in these animals with signs of current chlamydial disease. IL10 gene expression was not evident in the majority of animals from both groups. Future longitudinal studies are now required to confirm the role played by cytokines in pathology and/or protection against C. pecorum infection in the koala.
Collapse
Affiliation(s)
- Marina Mathew
- Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia
| | - Courtney Waugh
- Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs 4558, QLD, Australia
| | - Kenneth W Beagley
- Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia
| | - Peter Timms
- Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs 4558, QLD, Australia
| | - Adam Polkinghorne
- Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs 4558, QLD, Australia.
| |
Collapse
|
129
|
Warfel JM, Merkel TJ. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Rev Vaccines 2014; 13:1241-52. [DOI: 10.1586/14760584.2014.946016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
130
|
Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong DTW, Hahn BH, Hossain A. Th17 cells in inflammation and autoimmunity. Autoimmun Rev 2014; 13:1174-81. [PMID: 25151974 DOI: 10.1016/j.autrev.2014.08.019] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/05/2014] [Indexed: 02/06/2023]
Abstract
T helper 17 (Th17), a distinct subset of CD4(+) T cells with IL-17 as their major cytokine, orchestrate the pathogenesis of inflammatory and autoimmune diseases. Dysregulated Th17 cells contribute to inflammatory and autoimmune diseases. Candidate biologics are in development for targeting IL-17, IL-17 receptors or IL-17 pathways. Several drugs that impact the IL-17 pathway are already in clinical trials for the treatment of autoimmune diseases. In this review we provide evidence for the role of Th17 cells in immune-mediated diseases. An understanding of the role of Th17 in these conditions will provide important insights and unravel novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ram Pyare Singh
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA; Research Service, Veterans Affairs Greater Los Angeles Health Care System, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA.
| | - Sascha Hasan
- Sanguine Biosciences Inc, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Sherven Sharma
- Research Service, Veterans Affairs Greater Los Angeles Health Care System, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Saranpreet Nagra
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Dean T Yamaguchi
- Research Service, Veterans Affairs Greater Los Angeles Health Care System, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - David T W Wong
- UCLA School of Dentistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Bevra H Hahn
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Awlad Hossain
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| |
Collapse
|
131
|
The effect of proinflammatory cytokines on IL-17RA expression in NSCLC. Med Oncol 2014; 31:144. [PMID: 25112467 DOI: 10.1007/s12032-014-0144-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/26/2014] [Indexed: 01/08/2023]
Abstract
Interleukin-17 receptor (IL-17RA) is essential for proinflammatory cytokine IL-17-mediated pathogenesis of various tumors. IL-17RA is upregulated by some proinflammatory cytokines such as IL-21 and IL-15 and downregulated by IL-2, while the effect of IL-1β, IL-6, IL-8, TNF-α on IL-17RA expression in non-small cell lung caner (NSCLC) remains unknown. Our findings revealed that IL-17RA mRNA was increased in NSCLC tissues compared with the corresponding peritumor tissues (P = 0.0039) and high expression of IL-17RA protein in human NSCLC tissues was significantly associated with histological subtype, primary tumor size and clinical stages (P = 0.033, 0.033 and 0.011, respectively). IL-17RA mRNA expression was positively related to IL-1β, IL-6, IL-8, TNF-α mRNA expression (P = 0.013, 0.0001, 0.002 and 0.010 respectively) in NSCLC tissues. Furthermore, IL-1β, IL-6, IL-8, TNF-α upregulated IL-17RA mRNA and protein in A549 and H460 cells (all P < 0.05). It is suggested that IL-1β, IL-6, IL-8, TNF-α promoted IL-17RA expression in NSCLC and they may involve in IL-17RA signaling in NSCLC.
Collapse
|
132
|
Tang L, Bai J, Chung CS, Lomas-Neira J, Chen Y, Huang X, Ayala A. Active players in resolution of shock/sepsis induced indirect lung injury: immunomodulatory effects of Tregs and PD-1. J Leukoc Biol 2014; 96:809-20. [PMID: 25082151 DOI: 10.1189/jlb.4ma1213-647rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The immunomodulatory effects of PD-1 and CD4(+)CD25(+) Tregs in the resolution of ALI are still poorly understood. Accordingly, 1 million Tregs were isolated from spleens of WT C57BL/6 or PD-1(-/-) mice (magnetical bead purification and subsequent labeling with/without Vybrant dye) and then AT into mice subjected to Hem shock during their resuscitation period, which were subsequently subjected to CLP/septic challenge (24 h post-Hem) to induce iALI. Initially, we demonstrated that Vybrant-labeled AT Tregs appear in the lungs of iALI mice. Subsequently, we found that AT of WT Tregs induced a significant repression of the indices of lung injury: a reduction of neutrophil influx to the lung tissue and a decrease of lung apoptosis compared with vehicle-treated iALI mice. In addition, these mice had substantially higher concentrations of BALF and lung-tissue IL-10 but significantly decreased levels of lung KC. However, these beneficial effects of the AT of Tregs were lost with the administration of PD-1(-/-) mouse Tregs to the recipient WT mice. ALI was exacerbated in these recipient mice receiving AT PD-1(-/-) Tregs to the same extent as iALI mice that did not receive Tregs. These data imply that Tregs can act directly to modify the innate immune response induced by experimental iALI, and this is mediated, in part, by PD-1. Hence, the manipulation of Tregs may represent a plausible target for treating iALI.
Collapse
Affiliation(s)
- Lunxian Tang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai, China; and
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai, China; and
| | - Chun-Shiang Chung
- Department of Surgery, Division of Surgical Research, Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Joanne Lomas-Neira
- Department of Surgery, Division of Surgical Research, Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Yaping Chen
- Department of Surgery, Division of Surgical Research, Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Xin Huang
- Department of Surgery, Division of Surgical Research, Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Alfred Ayala
- Department of Surgery, Division of Surgical Research, Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
133
|
Abstract
Respiratory infections and diseases are among the leading causes of death worldwide, and effective treatments probably require manipulating the inflammatory response to pathogenic microbes or allergens. Here, we review mechanisms controlling the production and functions of interleukin-17 (IL-17) and IL-22, cytokines that direct several aspects of lung immunity. Innate lymphocytes (γδ T cells, natural killer cells, innate lymphoid cells) are the major source of IL-17 and IL-22 during acute infections, while CD4(+) T-helper 17 (Th17) cells contribute to vaccine-induced immunity. The characterization of dendritic cell (DC) subsets has revealed their central roles in T-cell activation. CD11b(+) DCs stimulated with bacteria or fungi secrete IL-1β and IL-23, potent inducers of IL-17 and IL-22. On the other hand, recognition of viruses by plasmacytoid DCs inhibits IL-1β and IL-23 release, increasing susceptibility to bacterial superinfections. IL-17 and IL-22 primarily act on the lung epithelium, inducing antimicrobial proteins and neutrophil chemoattractants. Recent studies found that stimulation of macrophages and DCs with IL-17 also contributes to antibacterial immunity, while IL-22 promotes epithelial proliferation and repair following injury. Chronic diseases such as asthma and chronic obstructive pulmonary disease have been associated with IL-17 and IL-22 responses directed against innocuous antigens. Future studies will evaluate the therapeutic efficacy of targeting the IL-17/IL-22 pathway in pulmonary inflammation.
Collapse
Affiliation(s)
- Jeremy P. McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| |
Collapse
|
134
|
Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner. Infect Immun 2014; 82:3723-39. [PMID: 24958709 DOI: 10.1128/iai.00035-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.
Collapse
|
135
|
Lery LMS, Frangeul L, Tomas A, Passet V, Almeida AS, Bialek-Davenet S, Barbe V, Bengoechea JA, Sansonetti P, Brisse S, Tournebize R. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol 2014; 12:41. [PMID: 24885329 PMCID: PMC4068068 DOI: 10.1186/1741-7007-12-41] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
Background Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044. Results In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The pld1 mutant was avirulent in a pneumonia model in mouse. The pld1 mRNA was expressed in vivo and the pld1 gene was associated with K. pneumoniae isolates from severe infections. Analysis of lipid composition of a defective E. coli strain complemented with pld1 suggests an involvement of PLD1 in cardiolipin metabolism. Conclusions Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of K. pneumoniae.
Collapse
Affiliation(s)
- Letícia M S Lery
- Institut Pasteur - Pathogénie Microbienne Moléculaire, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Zhang B, Liu C, Qian W, Han Y, Li X, Deng J. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1476-83. [PMID: 24816115 PMCID: PMC4014126 DOI: 10.1107/s1399004714005227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/06/2014] [Indexed: 11/10/2022]
Abstract
Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein-protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC'ins) and a flexible loop (CC'). The DD' loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC'ins helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR-SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Caini Liu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Wen Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Yue Han
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
137
|
Murphy AG, O'Keeffe KM, Lalor SJ, Maher BM, Mills KHG, McLoughlin RM. Staphylococcus aureus infection of mice expands a population of memory γδ T cells that are protective against subsequent infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:3697-708. [PMID: 24623128 PMCID: PMC3979672 DOI: 10.4049/jimmunol.1303420] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of vaccines against Staphylococcus aureus has consistently failed in clinical trials, likely due to inefficient induction of cellular immunity. T cell-derived IL-17 is one of the few known correlates of antistaphylococcoal immunity, conferring protection against S. aureus infections through its ability to promote phagocytic cell effector functions. A comprehensive understanding of the discrete T cell subsets critical for site-specific IL-17-mediated bacterial clearance will therefore be necessary to inform the development of vaccines that efficiently target cellular immunity. In this study, we have identified a population of CD44+ CD27- memory γδ T cells, expanded upon infection of C57BL/6 mice with S. aureus, which produce high levels of IL-17 and mediate enhanced bacterial clearance upon reinfection with the bacterium. These cells are comprised largely of the Vγ4+ subset and accumulate at the site of infection subsequent to an initial Vγ1.1+ and Vγ2+ T cell response. Moreover, these Vγ4+ T cells are retained in the peritoneum and draining mediastinal lymph nodes for a prolonged period following bacterial clearance. In contrast to its critical requirement for γδ T cell activation during the primary infection, IL-1 signaling was dispensable for activation and expansion of memory γδ T cells upon re-exposure to S. aureus. Our findings demonstrate that a γδ T cell memory response can be induced upon exposure to S. aureus, in a fashion analogous to that associated with classical αβ T cells, and suggest that induction of IL-17-expressing γδ T cells may be an important property of a protective vaccine against S. aureus.
Collapse
Affiliation(s)
- Alison G Murphy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
138
|
Campfield B, Chen K, Kolls JK. Vaccine approaches for multidrug resistant Gram negative infections. Curr Opin Immunol 2014; 28:84-9. [PMID: 24637162 DOI: 10.1016/j.coi.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/04/2014] [Indexed: 01/24/2023]
Abstract
Multidrug resistant (MDR) Gram negative bacterial infections are increasing in frequency and are associated with significant financial costs, morbidity and mortality. Current antibiotic therapies are associated with unacceptably poor clinical outcomes and toxicity. Unfortunately, the development of novel antimicrobials is stagnant leaving a significant clinical need for alternative treatments of MDR Gram negative rod infections. Recent preclinical studies have identified Th17 cells as critical mediators of broadly protective adaptive immunity, including protection against MDR infections. Studies of Th17 eliciting antigens, adjuvants and routes of immunization have identified potential vaccine strategies that may confer long-lived adaptive immunity against MDR Gram negative bacterial infections.
Collapse
Affiliation(s)
- Brian Campfield
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
139
|
Li X, Zhou X, Li Y, Li J, Privratsky B, Ye Y, Wu E, Gao H, Huang C, Wu M. Lyn regulates inflammatory responses in Klebsiella pneumoniae infection via the p38/NF-κB pathway. Eur J Immunol 2014; 44:763-773. [PMID: 24338528 PMCID: PMC4103995 DOI: 10.1002/eji.201343972] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/07/2013] [Accepted: 11/11/2013] [Indexed: 02/05/2023]
Abstract
Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is becoming increasingly multidrug resistant. However, the underlying molecular pathogenesis of this bacterium remains elusive, limiting the therapeutic options. Understanding the mechanism of its pathogenesis may facilitate the development of anti-bacterial therapeutics. Here, we show that Lyn, a pleiotropic Src tyrosine kinase, is involved in host defense against Kp by regulating phagocytosis process and simultaneously downregulating inflammatory responses. Using acute infection mouse models, we observed that lyn(-/-) mice were more susceptible to Kp with increased mortality and severe lung injury compared with WT mice. Kp infected-lyn(-/-) mice exhibited elevated inflammatory cytokines (IL-6 and TNF-α), and increased superoxide in the lung and other organs. In addition, the phosphorylation of p38 and NF-κB p65 subunit increased markedly in response to Kp infection in lyn(-/-) mice. We also demonstrated that the translocation of p65 from cytoplasm to nuclei increased in cultured murine lung epithelial cells by Lyn siRNA knockdown. Furthermore, lipid rafts clustered with activated Lyn and accumulated in the site of Kp invasion. Taken together, these findings revealed that Lyn may participate in host defense against Kp infection through the negative modulation of inflammatory cytokines.
Collapse
Affiliation(s)
- Xuefeng Li
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Xikun Zhou
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yi Li
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Jiaxin Li
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Breanna Privratsky
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yan Ye
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Hongwei Gao
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Canhua Huang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| |
Collapse
|
140
|
Priebe GP, Goldberg JB. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev Vaccines 2014; 13:507-19. [PMID: 24575895 DOI: 10.1586/14760584.2014.890053] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.
Collapse
|
141
|
Xu X, Weiss ID, Zhang H, Singh SP, Wynn TA, Wilson MS, Farber JM. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1778-86. [PMID: 24442439 PMCID: PMC3995347 DOI: 10.4049/jimmunol.1300039] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It was reported that host defense against pulmonary Klebsiella pneumoniae infection requires IL-22, which was proposed to be of T cell origin. Supporting a role for IL-22, we found that Il22(-/-) mice had decreased survival compared with wild-type mice after intratracheal infection with K. pneumoniae. Surprisingly, however, Rag2(-/-) mice did not differ from wild-type mice in survival or levels of IL-22 in the lungs postinfection with K. pneumoniae. In contrast, K. pneumoniae-infected Rag2(-/-)Il2rg(-/-) mice failed to produce IL-22. These data suggested a possible role for NK cells or other innate lymphoid cells in host defense and production of IL-22. Unlike NK cell-like innate lymphoid cells that produce IL-22 and display a surface phenotype of NK1.1(-)NKp46(+)CCR6(+), lung NK cells showed the conventional phenotype, NK1.1(+)NKp46(+)CCR6(-). Mice depleted of NK cells using anti-asialo GM1 showed decreased survival and higher lung bacterial counts, as well as increased dissemination of K. pneumoniae to blood and liver, compared with control-treated mice. NK cell depletion also led to decreased production of IL-22 in the lung. Within 1 d postinfection, although there was no increase in the number of lung NK cells, a subset of lung NK cells became competent to produce IL-22, and such cells were found in both wild-type and Rag2(-/-) mice. Our data suggest that, during pulmonary infection of mice with K. pneumoniae, conventional NK cells are required for optimal host defense, which includes the production of IL-22.
Collapse
Affiliation(s)
- Xin Xu
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ido D. Weiss
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongwei Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satya P. Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A. Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark S. Wilson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
142
|
Conte E, Iemmolo M, Fagone E, Gili E, Fruciano M, Genovese T, Esposito E, Cuzzocrea S, Vancheri C. Thymosin β4 reduces IL-17-producing cells and IL-17 expression, and protects lungs from damage in bleomycin-treated mice. Immunobiology 2014; 219:425-31. [PMID: 24613476 DOI: 10.1016/j.imbio.2014.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/28/2013] [Accepted: 02/04/2014] [Indexed: 11/16/2022]
Abstract
Thymosin β4 (Tβ4) is a highly conserved peptide with immunomodulatory properties. In this research we investigated the effects of Tβ4 on the bleomycin-induced lung damage in CD-1 mice and the changes in the number of IL-17-producing cells as well as the IL-17 expression in the lung. Male CD-1 mice were treated with bleomycin (1mg/kg) in the absence or the presence of Tβ4 (6mg/kg delivered intra-peritoneally on the day of bleomycin treatment and for 2 additional doses). After sacrifice one week later, lung histology, measurement of collagen content of the lung, Broncho Alveolar Lavage Fluid (BALF) analysis, evaluation of IL17-producing cells in the blood as well as RT-PCR and IHC in the lung tissue were performed. As expected, bleomycin-induced inflammation and lung damage were substantially reduced by Tβ4 treatment in CD-1 mice, as shown by the significant reduction of (i) leukocytes in BALF, (ii) histological evidence of the lung damage, and (iii) total collagen content in the lung. Importantly, the bleomycin-induced increase in the number of IL17-producing cells in the blood was significantly blocked by Tβ4. Accordingly, IHC and RT-PCR results demonstrated that Tβ4 substantially inhibited bleomycin-induced IL-17 over-expression in the lung tissue. This is the first report showing that a decreased amount of IL17-producing cells and inhibited IL-17 expression in the lung with Tβ4 treatment correlate with its anti-inflammatory and anti-fibrotic effects.
Collapse
Affiliation(s)
- Enrico Conte
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy.
| | - Maria Iemmolo
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - Evelina Fagone
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - Elisa Gili
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| | - Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Carlo Vancheri
- Department of Clinical and Molecular Biomedicine, University of Catania, Italy
| |
Collapse
|
143
|
Clinical consequences of targeting IL-17 and TH17 in autoimmune and allergic disorders. Curr Allergy Asthma Rep 2014; 13:587-95. [PMID: 23760974 DOI: 10.1007/s11882-013-0361-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The TH17 lineage of T cells and its canonical cytokine IL-17 have been the focus of many recent studies in autoimmune, allergic, and infectious disease. In this review, we will briefly discuss the current knowledge about the role of these cells and IL-17 in a spectrum of disorders. It is clear that IL-17 plays pathogenic roles in certain conditions while the same pathway is critically important to immunity in others. Targeting of TH17 cells or IL-17 therapeutically may impart many benefits, but this approach is not without potentially serious implications regarding host defense. These issues will be discussed herein as we evaluate pharmacological approaches targeting this pathway that are just beginning to be fully tested in human disease.
Collapse
|
144
|
Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, McColl SR. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog 2014; 10:e1003905. [PMID: 24586147 PMCID: PMC3930558 DOI: 10.1371/journal.ppat.1003905] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Collapse
Affiliation(s)
- Ervin E. Kara
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Iain Comerford
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kevin A. Fenix
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cameron R. Bastow
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carly E. Gregor
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Duncan R. McKenzie
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R. McColl
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
145
|
Abstract
The Th17 pathway has recently been shown to play a critical role in host defense, allergic responses and autoimmune inflammation. Th17 cells predominantly produce IL-17 and IL-22, which are two cytokines with broad effects in the lung and other tissues. This review summarizes not only what is currently known about the molecular regulation of this pathway and Th17-related cytokine signaling, but also the roles of these cytokines in pathogen immunity and asthma. In the last 5 years, the Th17 field has rapidly grown and research has revealed that the Th17 pathway is essential in lung pathogenesis in response to exogenous stimuli. As work in the field continues, it is expected that many exciting therapeutic advances will be made for a broad range of diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| | - Keven M Robinson
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John F Alcorn
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
146
|
Normanton M, Marti LC. Current data on IL-17 and Th17 cells and implications for graft versus host disease. EINSTEIN-SAO PAULO 2014; 11:237-46. [PMID: 23843069 PMCID: PMC4872902 DOI: 10.1590/s1679-45082013000200019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 04/27/2013] [Indexed: 12/21/2022] Open
Abstract
Human interleukin 17 was first described in 1995 as a new cytokine produced primarily by activated T CD4+ cells that stimulate the secretion of IL-6 and IL-8 by human fibroblasts, besides increasing the expression of ICAM-1. Various authors have reported that IL-17A has a role in the protection of organisms against extracellular bacteria and fungi due to the capacity of IL-17A to recruit neutrophils to the areas of infection, evidencing a pathological role in various models of autoimmune diseases, such as experimental autoimmune encephalitis and arthritis. The participation of IL-17A has also been described in the acute rejection of organ transplants and graft versus host disease. However, the greatest revolution in research with IL-17 happened in 2000, when it was proposed that IL-17 cannot be classified as Th1 or Th2, but rather, simply as a new lineage of IL-17-producing T-cells. These findings modified the previously established Th1/Th2 paradigm, leading to the definition of the CD3+ CD4+ Th17 cellular subtype and establishment of a new model to explain the origin of various immune events, as well as its implication in the graft versus host disease that is discussed in depth in this article.
Collapse
|
147
|
Abstract
The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells.
Collapse
|
148
|
Abstract
Influenza A virus is a significant cause of morbidity and mortality worldwide, particularly among young children and the elderly. Current vaccines induce neutralizing antibody responses directed toward highly variable viral surface proteins, resulting in limited heterosubtypic protection to new viral serotypes. By contrast, memory CD4 T cells recognize conserved viral proteins and are cross-reactive to multiple influenza strains. In humans, virus-specific memory CD4 T cells were found to be the protective correlate in human influenza challenge studies, suggesting their key role in protective immunity. In mouse models, memory CD4 T cells can mediate protective responses to secondary influenza infection independent of B cells or CD8 T cells, and can influence innate immune responses. Importantly, a newly defined, tissue-resident CD4 memory population has been demonstrated to be retained in lung tissue and promote optimal protective responses to an influenza infection. Here, we review the current state of results regarding the generation of memory CD4 T cells following primary influenza infection, mechanisms for their enhanced efficacy in protection from secondary challenge including their phenotype, localization, and function in the context of both mouse models and human infection. We also discuss the generation of memory CD4 T cells in response to influenza vaccines and its future implications for vaccinology.
Collapse
|
149
|
Klebsiella pneumoniae induces an inflammatory response in an in vitro model of blood-retinal barrier. Infect Immun 2013; 82:851-63. [PMID: 24478098 DOI: 10.1128/iai.00843-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae has become an important pathogen in recent years. Although most cases of K. pneumoniae endogenous endophthalmitis occur via hematogenous spread, it is not yet clear which microbial and host factors are responsible for the ability of K. pneumoniae to cross the blood-retinal barrier (BRB). In the present study, we show that in an in vitro model of BRB based on coculturing primary bovine retinal endothelial cells (BREC) and primary bovine retinal pericytes (BRPC), K. pneumoniae infection determines changes of transendothelial electrical resistance (TEER) and permeability to sodium fluorescein. In the coculture model, bacteria are able to stimulate the enzyme activities of endothelial cytosolic and Ca(2+)-independent phospholipase A2s (cPLA2 and iPLA2). These results were confirmed by the incremental expression of cPLA2, iPLA2, cyclo-oxygenase-1 (COX1), and COX2 in BREC, as well as by cPLA2 phosphorylation. In supernatants of K. pneumoniae-stimulated cocultures, increases in prostaglandin E2 (PGE2), interleukin-6 (IL-6), IL-8, and vascular endothelial growth factor (VEGF) production were found. Incubation with K. pneumoniae in the presence of arachidonoyl trifluoromethyl ketone (AACOCF3) or bromoenol lactone (BEL) caused decreased PGE2 and VEGF release. Scanning electron microscopy and transmission electron microscopy images of BREC and BRPC showed adhesion of K. pneumoniae to the cells, but no invasion occurred. K. pneumoniae infection also produced reductions in pericyte numbers; transfection of BREC cocultured with BRPC and of human retinal endothelial cells (HREC) cocultured with human retinal pericytes (HRPC) with small interfering RNAs (siRNAs) targeted to cPLA2 and iPLA2 restored the pericyte numbers and the TEER and permeability values. Our results show the proinflammatory effect of K. pneumoniae on BREC, suggest a possible mechanism by which BREC and BRPC react to the K. pneumoniae infection, and may provide physicians and patients with new ways of fighting blinding diseases.
Collapse
|
150
|
Matsuzaki G, Umemura M. Interleukin-17 as an Effector Molecule of Innate and Acquired Immunity against Infections. Microbiol Immunol 2013; 51:1139-47. [DOI: 10.1111/j.1348-0421.2007.tb04008.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Goro Matsuzaki
- Molecular Microbiology Group, Center of Molecular Biosciences, and Division of Host Defense and Vaccinology; Graduate School of Medicine, University of the Ryukyus; Okinawa 903-0213 Japan
| | - Masayuki Umemura
- Molecular Microbiology Group, Center of Molecular Biosciences, and Division of Host Defense and Vaccinology; Graduate School of Medicine, University of the Ryukyus; Okinawa 903-0213 Japan
| |
Collapse
|