101
|
Wang Y, Yella J, Chen J, McCormack FX, Madala SK, Jegga AG. Unsupervised gene expression analyses identify IPF-severity correlated signatures, associated genes and biomarkers. BMC Pulm Med 2017; 17:133. [PMID: 29058630 PMCID: PMC5649521 DOI: 10.1186/s12890-017-0472-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/01/2017] [Indexed: 12/30/2022] Open
Abstract
Background Idiopathic Pulmonary Fibrosis (IPF) is a fatal fibrotic lung disease occurring predominantly in middle-aged and older adults. The traditional diagnostic classification of IPF is based on clinical, radiological, and histopathological features. However, the considerable heterogeneity in IPF presentation suggests that differences in gene expression profiles can help to characterize and distinguish disease severity. Methods We used data-driven unsupervised clustering analysis, combined with a knowledge-based approach to identify and characterize IPF subgroups. Results Using transcriptional profiles on lung tissue from 131 patients with IPF/UIP and 12 non-diseased controls, we identified six subgroups of IPF that generally correlated with the disease severity and lung function decline. Network-informed clustering identified the most severe subgroup of IPF that was enriched with genes regulating inflammatory processes, blood pressure and branching morphogenesis of the lung. The differentially expressed genes in six subgroups of IPF compared to healthy control include transcripts of extracellular matrix, epithelial-mesenchymal cell cross-talk, calcium ion homeostasis, and oxygen transport. Further, we compiled differentially expressed gene signatures to identify unique gene clusters that can segregate IPF from normal, and severe from mild IPF. Additional validations of these signatures were carried out in three independent cohorts of IPF/UIP. Finally, using knowledge-based approaches, we identified several novel candidate genes which may also serve as potential biomarkers of IPF. Conclusions Discovery of unique and redundant gene signatures for subgroups in IPF can be greatly facilitated through unsupervised clustering. Findings derived from such gene signatures may provide insights into pathogenesis of IPF and facilitate the development of clinically useful biomarkers. Electronic supplementary material The online version of this article (10.1186/s12890-017-0472-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunguan Wang
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jaswanth Yella
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH, USA.
| |
Collapse
|
102
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by progressive lung scarring and the histological picture of usual interstitial pneumonia (UIP). It is associated with increasing cough and dyspnoea and impaired quality of life. IPF affects ∼3 million people worldwide, with incidence increasing dramatically with age. The diagnostic approach includes the exclusion of other interstitial lung diseases or overlapping conditions and depends on the identification of the UIP pattern, usually with high-resolution CT; lung biopsy might be required in some patients. The UIP pattern is predominantly bilateral, peripheral and with a basal distribution of reticular changes associated with traction bronchiectasis and clusters of subpleural cystic airspaces. The biological processes underlying IPF are thought to reflect an aberrant reparative response to repetitive alveolar epithelial injury in a genetically susceptible ageing individual, although many questions remain on how to define susceptibility. Substantial progress has been made in the understanding of the clinical management of IPF, with the availability of two pharmacotherapeutic agents, pirfenidone and nintedanib, that decrease physiological progression and likely improve progression-free survival. Current efforts are directed at identifying IPF early, potentially relying on combinations of biomarkers that include circulating factors, demographics and imaging data.
Collapse
|
103
|
Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung. Cell 2017; 170:1134-1148.e10. [PMID: 28886382 DOI: 10.1016/j.cell.2017.07.034] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
The lung is an architecturally complex organ comprising a heterogeneous mixture of various epithelial and mesenchymal lineages. We use single-cell RNA sequencing and signaling lineage reporters to generate a spatial and transcriptional map of the lung mesenchyme. We find that each mesenchymal lineage has a distinct spatial address and transcriptional profile leading to unique niche regulatory functions. The mesenchymal alveolar niche cell is Wnt responsive, expresses Pdgfrα, and is critical for alveolar epithelial cell growth and self-renewal. In contrast, the Axin2+ myofibrogenic progenitor cell preferentially generates pathologically deleterious myofibroblasts after injury. Analysis of the secretome and receptome of the alveolar niche reveals functional pathways that mediate growth and self-renewal of alveolar type 2 progenitor cells, including IL-6/Stat3, Bmp, and Fgf signaling. These studies define the cellular and molecular framework of lung mesenchymal niches and reveal the functional importance of developmental pathways in promoting self-renewal versus a pathological response to tissue injury.
Collapse
|
104
|
Herrmann FE, Wollin L, Wirth J, Gantner F, Lämmle B, Wex E. Olodaterol shows anti-fibrotic efficacy in in vitro and in vivo models of pulmonary fibrosis. Br J Pharmacol 2017; 174:3848-3864. [PMID: 28810065 DOI: 10.1111/bph.13982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by excessive fibroblast activation ultimately leading to scarring of the lungs. Although, the activation of β2 -adrenoceptors (β2 -AR) has been shown to inhibit pro-fibrotic events primarily in cell lines, the role of β2 -adrenoceptor agonists has not yet been fully characterized. The aim of our study was to explore the anti-fibrotic activity of the long-acting β2 -adrenoceptor agonist olodaterol in primary human lung fibroblasts (HLF) and in murine models of pulmonary fibrosis. EXPERIMENTAL APPROACH We assessed the activity of olodaterol to inhibit various pro-fibrotic mechanisms, induced by different pro-fibrotic mediators, in primary HLF from control donors and patients with IPF (IPF-LF). The in vivo anti-fibrotic activity of olodaterol, given once daily by inhalation in either a preventive or therapeutic treatment regimen, was explored in murine models of lung fibrosis induced by either bleomycin or the overexpression of TGF-β1. KEY RESULTS In both HLF and IPF-LF, olodaterol attenuated TGF-β-induced expression of α-smooth muscle actin, fibronectin and endothelin-1 (ET-1), FGF- and PDGF-induced motility and proliferation and TGF-β/ET-1-induced contraction. In vivo olodaterol significantly attenuated the bleomycin-induced increase in lung weight, reduced bronchoalveolar lavage cell counts and inhibited release of pro-fibrotic mediators (TGF-ß, MMP-9 and tissue inhibitor of metalloproteinase-1). Forced vital capacity was increased only with the preventive treatment regimen. In the TGF-β-overexpressing model, olodaterol additionally reduced the Col3A1 mRNA expression. CONCLUSION AND IMPLICATIONS Olodaterol showed anti-fibrotic properties in primary HLF from control and IPF patients and in murine models of lung fibrosis.
Collapse
Affiliation(s)
- Franziska Elena Herrmann
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Lutz Wollin
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Johannes Wirth
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Florian Gantner
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Bärbel Lämmle
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Eva Wex
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
105
|
Murray LA, Habiel DM, Hohmann M, Camelo A, Shang H, Zhou Y, Coelho AL, Peng X, Gulati M, Crestani B, Sleeman MA, Mustelin T, Moore MW, Ryu C, Osafo-Addo AD, Elias JA, Lee CG, Hu B, Herazo-Maya JD, Knight DA, Hogaboam CM, Herzog EL. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight 2017; 2:92192. [PMID: 28814671 PMCID: PMC5621899 DOI: 10.1172/jci.insight.92192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/06/2017] [Indexed: 01/07/2023] Open
Abstract
The chronic progressive decline in lung function observed in idiopathic pulmonary fibrosis (IPF) appears to result from persistent nonresolving injury to the epithelium, impaired restitution of the epithelial barrier in the lung, and enhanced fibroblast activation. Thus, understanding these key mechanisms and pathways modulating both is essential to greater understanding of IPF pathogenesis. We examined the association of VEGF with the IPF disease state and preclinical models in vivo and in vitro. Tissue and circulating levels of VEGF were significantly reduced in patients with IPF, particularly in those with a rapidly progressive phenotype, compared with healthy controls. Lung-specific overexpression of VEGF significantly protected mice following intratracheal bleomycin challenge, with a decrease in fibrosis and bleomycin-induced cell death observed in the VEGF transgenic mice. In vitro, apoptotic endothelial cell–derived mediators enhanced epithelial cell injury and reduced epithelial wound closure. This process was rescued by VEGF pretreatment of the endothelial cells via a mechanism involving thrombospondin-1 (TSP1). Taken together, these data indicate beneficial roles for VEGF during lung fibrosis via modulating epithelial homeostasis through a previously unrecognized mechanism involving the endothelium. Elevated VEGF is associated with less severe disease in IPF patients, and VEGF overexpression ameliorates bleomycin-induced lung fibrosis in a murine model.
Collapse
Affiliation(s)
| | - David M Habiel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Miriam Hohmann
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ana Camelo
- MedImmune Ltd., Cambridge, England, United Kingdom
| | - Huilan Shang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yang Zhou
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ana Lucia Coelho
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xueyan Peng
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mridu Gulati
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bruno Crestani
- APHP, Hôpital Bichat, Service de Pneumologie A, Centre de Compétences des Maladies Pulmonaires Rares, Paris, France Université Paris Diderot, Sorbonne Paris Cité, INSERM Unité 1152, Paris
| | | | | | - Meagan W Moore
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jack A Elias
- Warren Alpert School of Medicine, Providence, Rhode Island, USA
| | - Chun G Lee
- Warren Alpert School of Medicine, Providence, Rhode Island, USA
| | - Buqu Hu
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Darryl A Knight
- Viva program, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Cory M Hogaboam
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erica L Herzog
- Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
106
|
Tzouvelekis A, Yu G, Lino Cardenas CL, Herazo-Maya JD, Wang R, Woolard T, Zhang Y, Sakamoto K, Lee H, Yi JS, DeIuliis G, Xylourgidis N, Ahangari F, Lee PJ, Aidinis V, Herzog EL, Homer R, Bennett AM, Kaminski N. SH2 Domain-Containing Phosphatase-2 Is a Novel Antifibrotic Regulator in Pulmonary Fibrosis. Am J Respir Crit Care Med 2017; 195:500-514. [PMID: 27736153 DOI: 10.1164/rccm.201602-0329oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease with dismal prognosis and no cure. The potential role of the ubiquitously expressed SH2 domain-containing tyrosine phosphatase-2 (SHP2) as a therapeutic target has not been studied in IPF. OBJECTIVES To determine the expression, mechanistic role, and potential therapeutic usefulness of SHP2 in pulmonary fibrosis. METHODS The effects of SHP2 overexpression and inhibition on fibroblast response to profibrotic stimuli were analyzed in vitro in primary human and mouse lung fibroblasts. In vivo therapeutic effects were assessed in the bleomycin model of lung fibrosis by SHP2-lentiviral administration and transgenic mice carrying a constitutively active SHP2 mutation. MEASUREMENTS AND MAIN RESULTS SHP2 was down-regulated in lungs and lung fibroblasts obtained from patients with IPF. Immunolocalization studies revealed that SHP2 was absent within fibroblastic foci. Loss of SHP2 expression or activity was sufficient to induce fibroblast-to-myofibroblast differentiation in primary human lung fibroblasts. Overexpression of constitutively active SHP2 reduced the responsiveness of fibroblasts to profibrotic stimuli, including significant reductions in cell survival and myofibroblast differentiation. SHP2 effects were mediated through deactivation of fibrosis-relevant tyrosine kinase and serine/threonine kinase signaling pathways. Mice carrying the Noonan syndrome-associated gain-of-function SHP2 mutation (SHP2D61G/+) were resistant to bleomycin-induced pulmonary fibrosis. Restoration of SHP2 levels in vivo through lentiviral delivery blunted bleomycin-induced pulmonary fibrosis. CONCLUSIONS Our data suggest that SHP2 is an important regulator of fibroblast differentiation, and its loss as observed in IPF facilitates profibrotic phenotypic changes. Augmentation of SHP2 activity or expression should be investigated as a novel therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Guoying Yu
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Christian L Lino Cardenas
- 2 Thoracic Aortic Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jose D Herazo-Maya
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Rong Wang
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Tony Woolard
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Yi Zhang
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Koji Sakamoto
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Hojin Lee
- 3 Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
| | - Jae-Sung Yi
- 3 Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
| | - Giuseppe DeIuliis
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Nikolaos Xylourgidis
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Farida Ahangari
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Vassilis Aidinis
- 4 Biomedical Sciences Research Center "Alexander Fleming," Vari, Athens, Greece; and
| | - Erica L Herzog
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Robert Homer
- 5 Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Anton M Bennett
- 3 Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
| | - Naftali Kaminski
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
107
|
Tan J, Tedrow JR, Dutta JA, Juan-Guardela B, Nouraie M, Chu Y, Trejo Bittar H, Ramani K, Biswas PS, Veraldi KL, Kaminski N, Zhang Y, Kass DJ. Expression of RXFP1 Is Decreased in Idiopathic Pulmonary Fibrosis. Implications for Relaxin-based Therapies. Am J Respir Crit Care Med 2017; 194:1392-1402. [PMID: 27310652 DOI: 10.1164/rccm.201509-1865oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Relaxin is a hormone that has been considered as a potential therapy for patients with fibrotic diseases. OBJECTIVES To gauge the potential efficacy of relaxin-based therapies in idiopathic pulmonary fibrosis (IPF), we studied gene expression for relaxin/insulin-like family peptide receptor 1 (RXFP1) in IPF lungs and controls. METHODS We analyzed gene expression data obtained from the Lung Tissue Research Consortium and correlated RXFP1 gene expression data with cross-sectional clinical and demographic data. We also employed ex vivo donor and IPF lung fibroblasts to test RXFP1 expression in vitro. We tested CGEN25009, a relaxin-like peptide, in lung fibroblasts and in bleomycin injury. MEASUREMENTS AND MAIN RESULTS We found that RXFP1 is significantly decreased in IPF. In patients with IPF, the magnitude of RXFP1 gene expression correlated directly with diffusing capacity of the lung for carbon monoxide (P < 0.0001). Significantly less RXFP1 was detected in vitro in IPF fibroblasts than in donor controls. Transforming growth factor-β decreased RXFP1 in both donor and IPF lung fibroblasts. CGEN25009 was effective at decreasing bleomycin-induced, acid-soluble collagen deposition in vivo. The relaxin-like actions of CGEN25009 were abrogated by RXFP1 silencing in vitro, and, in comparison with donor lung fibroblasts, IPF lung fibroblasts exhibited decreased sensitivity to the relaxin-like effects of CGEN25009. CONCLUSIONS IPF is characterized by the loss of RXFP1 expression. RXFP1 expression is directly associated with pulmonary function in patients with IPF. The relaxin-like effects of CGEN25009 in vitro are dependent on expression of RXFP1. Our data suggest that patients with IPF with the highest RXFP1 expression would be predicted to be most sensitive to relaxin-based therapies.
Collapse
Affiliation(s)
- Jiangning Tan
- 1 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease.,2 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - John R Tedrow
- 1 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease.,2 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Justin A Dutta
- 1 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease.,2 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Brenda Juan-Guardela
- 3 Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Mehdi Nouraie
- 1 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease.,2 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Yanxia Chu
- 1 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease.,2 Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Kritika Ramani
- 5 Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Partha S Biswas
- 5 Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Kristen L Veraldi
- 1 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease.,2 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Naftali Kaminski
- 3 Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Yingze Zhang
- 1 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease.,2 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Daniel J Kass
- 1 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease.,2 Division of Pulmonary, Allergy, and Critical Care Medicine
| |
Collapse
|
108
|
Walsh SLF. Multidisciplinary evaluation of interstitial lung diseases: current insights: Number 1 in the Series "Radiology" Edited by Nicola Sverzellati and Sujal Desai. Eur Respir Rev 2017; 26:26/144/170002. [PMID: 28515041 DOI: 10.1183/16000617.0002-2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/18/2017] [Indexed: 11/05/2022] Open
Abstract
Multidisciplinary team (MDT) diagnosis is regarded as the diagnostic reference standard for interstitial lung disease (ILD). Several studies have reported that MDT diagnosis is associated with higher levels of diagnostic confidence and better interobserver agreement when compared to the individual components of the MDT in isolation. Although this recommendation is widely accepted, no guideline statement specifies what constitutes an MDT meeting and how its participants should govern it. Furthermore, the precise role of an MDT meeting in the setting of ILD may vary from one group to another. For example, in some cases, the meeting will confine its discussion to characterising the disease and formulating diagnosis. In others, management decisions may also be part of the discussion. Surprisingly, there is no consensus on how MDT diagnosis is validated. As multidisciplinary evaluation contains all the available clinical information on an individual patient, there is no reference standard against which the veracity of MDT diagnosis can be tested. Finally, many of these uncertainties surrounding MDT meeting practice are unlikely to be answered by traditional evidence-based studies, which create difficulties when generating guideline recommendations. There is clearly a need for expert consensus on what constitutes acceptable MDT meeting practice. This consensus will need to be flexible to accommodate the variability in resources available to fledgling MDT groups and the variable nature of patients requiring discussion.
Collapse
|
109
|
Tan J, Tedrow JR, Nouraie M, Dutta JA, Miller DT, Li X, Yu S, Chu Y, Juan-Guardela B, Kaminski N, Ramani K, Biswas PS, Zhang Y, Kass DJ. Loss of Twist1 in the Mesenchymal Compartment Promotes Increased Fibrosis in Experimental Lung Injury by Enhanced Expression of CXCL12. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2269-2285. [PMID: 28179498 PMCID: PMC5337810 DOI: 10.4049/jimmunol.1600610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/12/2017] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow-derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury.
Collapse
Affiliation(s)
- Jiangning Tan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - John R Tedrow
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Justin A Dutta
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - David T Miller
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Shibing Yu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yanxia Chu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brenda Juan-Guardela
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Kritika Ramani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213;
| |
Collapse
|
110
|
Jumper N, Hodgkinson T, Paus R, Bayat A. Site-specific gene expression profiling as a novel strategy for unravelling keloid disease pathobiology. PLoS One 2017; 12:e0172955. [PMID: 28257480 PMCID: PMC5336271 DOI: 10.1371/journal.pone.0172955] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Keloid disease (KD) is a fibroproliferative cutaneous tumour characterised by heterogeneity, excess collagen deposition and aggressive local invasion. Lack of a validated animal model and resistance to a multitude of current therapies has resulted in unsatisfactory clinical outcomes of KD management. In order to address KD from a new perspective, we applied for the first time a site-specific in situ microdissection and gene expression profiling approach, through combined laser capture microdissection and transcriptomic array. The aim here was to analyse the utility of this approach compared with established methods of investigation, including whole tissue biopsy and monolayer cell culture techniques. This study was designed to approach KD from a hypothesis-free and compartment-specific angle, using state-of-the-art microdissection and gene expression profiling technology. We sought to characterise expression differences between specific keloid lesional sites and elucidate potential contributions of significantly dysregulated genes to mechanisms underlying keloid pathobiology, thus informing future explorative research into KD. Here, we highlight the advantages of our in situ microdissection strategy in generating expression data with improved sensitivity and accuracy over traditional methods. This methodological approach supports an active role for the epidermis in the pathogenesis of KD through identification of genes and upstream regulators implicated in epithelial-mesenchymal transition, inflammation and immune modulation. We describe dermal expression patterns crucial to collagen deposition that are associated with TGFβ-mediated signalling, which have not previously been examined in KD. Additionally, this study supports the previously proposed presence of a cancer-like stem cell population in KD and explores the possible contribution of gene dysregulation to the resistance of KD to conventional therapy. Through this innovative in situ microdissection gene profiling approach, we provide better-defined gene signatures of distinct KD regions, thereby addressing KD heterogeneity, facilitating differential diagnosis with other cutaneous fibroses via transcriptional fingerprinting, and highlighting key areas for future KD research.
Collapse
Affiliation(s)
- N. Jumper
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
| | - T. Hodgkinson
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
- Centre for Tissue Injury and Repair, University of Manchester, and MAHSC, Manchester, United Kingdom
| | - R. Paus
- Centre for Dermatology Research, University of Manchester, and MAHSC, Manchester, United Kingdom
| | - A. Bayat
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
- Centre for Dermatology Research, University of Manchester, and MAHSC, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
111
|
Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice. Acta Pharmacol Sin 2017; 38:331-341. [PMID: 28112175 DOI: 10.1038/aps.2016.142] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
Myocardial injury and ensuing fibrotic alterations impair normal heart architecture and cause cardiac dysfunction. Oxidative stress has been recognized as a key player in the pathogenesis of cardiac injury and progression of cardiac dysfunction, and promoting fibrosis. In the current study we investigated whether luteolin-7-diglucuronide (L7DG), a naturally occurring antioxidant found in edible plants, could attenuate isoproterenol (ISO)-induced myocardial injury and fibrosis in mice and the underlying mechanisms. Myocardial injury and fibrosis were induced in mice via injection of ISO (5 mg·kg-1·d-1, ip) for 5 or 10 d. Two treatment regimens (pretreatment and posttreatment) were employed to administer L7DG (5-40 mg·kg-1·d-1, ip) into the mice. After the mice were euthanized, morphological examinations of heart sections revealed that both L7DG pretreatment and posttreatment regimens significantly attenuated ISO-induced myocardial injury and fibrosis. But the pretreatment regimen caused better protection against ISO-induced myocardial fibrosis than the posttreatment regimen. Furthermore, L7DG pretreatment blocked ISO-stimulated expression of the genes (Cyba, Cybb, Ncf1, Ncf4 and Rac2) encoding the enzymatic subunits of NADPH oxidase, which was the primary source of oxidant production in mammalian cells. Moreover, L7DG pretreatment significantly suppressed ISO-stimulated expression of collagen genes Col1a1, Col1a2, Col3a1, and Col12a1 and non-collagen extracellular matrix genes fibrillin-1, elastin, collagen triple helix repeat containing 1 and connective tissue growth factor. In addition, L7DG pretreatment almost reversed ISO-altered expression of microRNAs that were crosstalking with TGFβ-mediated fibrosis, including miR-29c-3p, miR-29c-5p, miR-30c-3p, miR-30c-5p and miR-21. The current study demonstrated for the first time that L7DG is pharmacologically effective in protecting the heart against developing ISO-induced injury and fibrosis, justifying further evaluation of L7DG as a cardioprotective agent to treat related cardiovascular diseases.
Collapse
|
112
|
Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017; 8:14532. [PMID: 28230051 PMCID: PMC5331226 DOI: 10.1038/ncomms14532] [Citation(s) in RCA: 968] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function.
Collapse
|
113
|
Baranek T, Morello E, Valayer A, Aimar RF, Bréa D, Henry C, Besnard AG, Dalloneau E, Guillon A, Dequin PF, Narni-Mancinelli E, Vivier E, Laurent F, Wei Y, Paget C, Si-Tahar M. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol 2017; 8:123. [PMID: 28243234 PMCID: PMC5303898 DOI: 10.3389/fimmu.2017.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2−/− mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2−/− mice were infected with Streptococcus pneumoniae. FHL2−/− mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2−/− mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection.
Collapse
Affiliation(s)
- Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Eric Morello
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Alexandre Valayer
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Rose-France Aimar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Déborah Bréa
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Clemence Henry
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Anne-Gaelle Besnard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Emilie Dalloneau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Pierre-François Dequin
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS , Marseille , France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France; Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | - Yu Wei
- Hépacivirus et immunité innée, Institut Pasteur , Paris , France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| |
Collapse
|
114
|
Barreto-Luis A, Corrales A, Acosta-Herrera M, Gonzalez-Colino C, Cumplido J, Martinez-Tadeo J, Carracedo A, Villar J, Carrillo T, Pino-Yanes M, Flores C. A pathway-based association study reveals variants from Wnt signalling genes contributing to asthma susceptibility. Clin Exp Allergy 2017; 47:618-626. [PMID: 28079285 DOI: 10.1111/cea.12883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/07/2016] [Accepted: 11/30/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Genetic susceptibility to asthma is currently linked to a handful of genes which have a limited ability to predict the overall disease risk, suggesting the existence of many other genes involved in disease development. Accumulated evidence from association studies in genes related by biological pathways could reveal novel asthma genes. OBJECTIVE To reveal novel asthma susceptibility genes by means of a pathway-based association study. METHODS Based on summary data from a previous a genomewide association study (GWAS) of asthma, we first identified significant biological pathways using a gene-set enrichment analysis. We then mapped all tested single nucleotide polymorphisms (SNPs) on the genes contributing to significant pathways and prioritized those with a disproportionate number of nominal significant associations for further studies. For those prioritized genes, association studies were performed for selected SNPs in independent case-control samples (n = 1765) using logistic regression models, and results were meta-analysed with those from the GWAS. RESULTS Two biological processes were significantly enriched: the cytokine-cytokine receptor interaction (P = 0.002) and the Wnt signalling (P = 0.012). From the 417 genes interacting in these two pathways, 10 showed an excess of nominal associations, including a known asthma susceptibility locus (encoding SMAD family member 3) and other novel candidate genes. From the latter, association studies of 14 selected SNPs evidenced replication in a locus near the frizzled class receptor 6 (FZD6) gene (P = 9.90 × 10-4 ), which had a consistent direction of effects with the GWAS findings (meta-analysed odds ratio = 1.49; P = 5.87 × 10-6 ) and was in high linkage disequilibrium with expression quantitative trait loci in lung tissues. CONCLUSIONS AND CLINICAL RELEVANCE This study revealed the importance of two biological pathways in asthma pathogenesis and identified a novel susceptibility locus near Wnt signalling genes.
Collapse
Affiliation(s)
- A Barreto-Luis
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - A Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - M Acosta-Herrera
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - C Gonzalez-Colino
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - J Cumplido
- Allergy Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - J Martinez-Tadeo
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, CIBERER-Universidade de Santiago de Compostela-Fundación Galega de Medicina Xenómica (SERGAS), Santiago de Compostela, Spain
| | - J Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - T Carrillo
- Allergy Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - M Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - C Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
115
|
Kim S, Jhong JH, Lee J, Koo JY. Meta-analytic support vector machine for integrating multiple omics data. BioData Min 2017; 10:2. [PMID: 28149325 PMCID: PMC5270233 DOI: 10.1186/s13040-017-0126-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Of late, high-throughput microarray and sequencing data have been extensively used to monitor biomarkers and biological processes related to many diseases. Under this circumstance, the support vector machine (SVM) has been popularly used and been successful for gene selection in many applications. Despite surpassing benefits of the SVMs, single data analysis using small- and mid-size of data inevitably runs into the problem of low reproducibility and statistical power. To address this problem, we propose a meta-analytic support vector machine (Meta-SVM) that can accommodate multiple omics data, making it possible to detect consensus genes associated with diseases across studies. RESULTS Experimental studies show that the Meta-SVM is superior to the existing meta-analysis method in detecting true signal genes. In real data applications, diverse omics data of breast cancer (TCGA) and mRNA expression data of lung disease (idiopathic pulmonary fibrosis; IPF) were applied. As a result, we identified gene sets consistently associated with the diseases across studies. In particular, the ascertained gene set of TCGA omics data was found to be significantly enriched in the ABC transporters pathways well known as critical for the breast cancer mechanism. CONCLUSION The Meta-SVM effectively achieves the purpose of meta-analysis as jointly leveraging multiple omics data, and facilitates identifying potential biomarkers and elucidating the disease process.
Collapse
Affiliation(s)
- SungHwan Kim
- Department of Statistics, Korea University, Anam-dong, Seoul, 136-701 South Korea.,Department of Statistics, Keimyung University, Dalseoku, Daegu, 42601 South Korea
| | - Jae-Hwan Jhong
- Department of Statistics, Korea University, Anam-dong, Seoul, 136-701 South Korea
| | - JungJun Lee
- Department of Statistics, Korea University, Anam-dong, Seoul, 136-701 South Korea
| | - Ja-Yong Koo
- Department of Statistics, Korea University, Anam-dong, Seoul, 136-701 South Korea
| |
Collapse
|
116
|
Fujiwara A, Shintani Y, Funaki S, Kawamura T, Kimura T, Minami M, Okumura M. Pirfenidone plays a biphasic role in inhibition of epithelial-mesenchymal transition in non-small cell lung cancer. Lung Cancer 2017; 106:8-16. [PMID: 28285699 DOI: 10.1016/j.lungcan.2017.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Epithelial to mesenchymal transition (EMT) relates to both organ fibrosis and malignant behavior of cancer. Pirfenidone (PFD) is an anti-fibrotic agent for idiopathic pulmonary fibrosis and one of its functions may be to inhibit fibrotic EMT. This study aimed to investigate the possibility that PFD might exert an anti-tumor effect through inhibition of EMT in non-small cell lung cancer (NSCLC) cell lines in vitro and in vivo. METHODS NSCLC cells (A549, NCI-H358) were used to evaluate PFD effects on TGF-β1 induced phenotypic changes. Possible TGF-β1 signaling pathways modulated by PFD were evaluated. The effects of PFD on EMT induced by an anti-cancer drug was also analyzed. The impact of PFD on tumor growth in nude mice as well as on EMT change in vivo was also determined. RESULTS PFD significantly inhibited TGF-β1-induced EMT. Smad2 phosphorylation and TGF-β1 receptor I expression were also inhibited as was translocation of Smad2 from the cytoplasm into the nucleus. Carboplatin induced elevation of TGF-β1 production from cancer cells together with induction of EMT, which were suppressed by co-treatment with PFD. In in vivo examination, PFD alone did not inhibit tumor progression whereas its combination with carboplatin significantly decreased tumor growth. Immunohistological analysis showed that PFD suppressed EMT change induced by carboplatin. CONCLUSIONS PFD could attenuate the EMT process induced not only by exogenous TGF-β1 but also by paracrine TGF-β produced from NSCLC cells. PFD may be a promising new therapeutic agent for the treatment of NSCLC through the regulation of EMT.
Collapse
Affiliation(s)
- Ayako Fujiwara
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Kawamura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
117
|
Vukmirovic M, Herazo-Maya JD, Blackmon J, Skodric-Trifunovic V, Jovanovic D, Pavlovic S, Stojsic J, Zeljkovic V, Yan X, Homer R, Stefanovic B, Kaminski N. Identification and validation of differentially expressed transcripts by RNA-sequencing of formalin-fixed, paraffin-embedded (FFPE) lung tissue from patients with Idiopathic Pulmonary Fibrosis. BMC Pulm Med 2017; 17:15. [PMID: 28081703 PMCID: PMC5228096 DOI: 10.1186/s12890-016-0356-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
Background Idiopathic Pulmonary Fibrosis (IPF) is a lethal lung disease of unknown etiology. A major limitation in transcriptomic profiling of lung tissue in IPF has been a dependence on snap-frozen fresh tissues (FF). In this project we sought to determine whether genome scale transcript profiling using RNA Sequencing (RNA-Seq) could be applied to archived Formalin-Fixed Paraffin-Embedded (FFPE) IPF tissues. Results We isolated total RNA from 7 IPF and 5 control FFPE lung tissues and performed 50 base pair paired-end sequencing on Illumina 2000 HiSeq. TopHat2 was used to map sequencing reads to the human genome. On average ~62 million reads (53.4% of ~116 million reads) were mapped per sample. 4,131 genes were differentially expressed between IPF and controls (1,920 increased and 2,211 decreased (FDR < 0.05). We compared our results to differentially expressed genes calculated from a previously published dataset generated from FF tissues analyzed on Agilent microarrays (GSE47460). The overlap of differentially expressed genes was very high (760 increased and 1,413 decreased, FDR < 0.05). Only 92 differentially expressed genes changed in opposite directions. Pathway enrichment analysis performed using MetaCore confirmed numerous IPF relevant genes and pathways including extracellular remodeling, TGF-beta, and WNT. Gene network analysis of MMP7, a highly differentially expressed gene in both datasets, revealed the same canonical pathways and gene network candidates in RNA-Seq and microarray data. For validation by NanoString nCounter® we selected 35 genes that had a fold change of 2 in at least one dataset (10 discordant, 10 significantly differentially expressed in one dataset only and 15 concordant genes). High concordance of fold change and FDR was observed for each type of the samples (FF vs FFPE) with both microarrays (r = 0.92) and RNA-Seq (r = 0.90) and the number of discordant genes was reduced to four. Conclusions Our results demonstrate that RNA sequencing of RNA obtained from archived FFPE lung tissues is feasible. The results obtained from FFPE tissue are highly comparable to FF tissues. The ability to perform RNA-Seq on archived FFPE IPF tissues should greatly enhance the availability of tissue biopsies for research in IPF. Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0356-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jose D Herazo-Maya
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John Blackmon
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Vesna Skodric-Trifunovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic for Pulmonology, Clinical Center of Serbia, Belgrade, Serbia
| | - Dragana Jovanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic for Pulmonology, Clinical Center of Serbia, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Stojsic
- Departement of Thoracopulmonary Pathology, Service of Pathology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Vesna Zeljkovic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Robert Homer
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Pathology and Laboratory Medicine Service, VA CT Healthcare System, West Haven, CT, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
118
|
Clarke DL, Murray LA, Crestani B, Sleeman MA. Is personalised medicine the key to heterogeneity in idiopathic pulmonary fibrosis? Pharmacol Ther 2017; 169:35-46. [DOI: 10.1016/j.pharmthera.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
119
|
Abstract
Interstitial lung disease (ILD) comprises a large number of chronic lung disease characterized by varying degrees of inflammation and fibrosis. Mostly they are idiopathic including idiopathic pulmonary fibrosis (IPF), which is a specific disorder characterized by progressive fibrosis leading commonly to end-stage lung disease, respiratory failure, and fatal outcome. IPF and many of these fibrotic ILDs lack effective therapy despite recent approval of two drugs to slow progression in certain IPF patients. Because there are no natural models for IPF, the use of animal models that reproduce key known features of the disease is warranted. Thus, different animal models have been developed to investigate key mechanisms underlying pathogenesis of pulmonary fibrosis and identify potential therapeutic targets for IPF. While no animal model can recapitulate all features of human disease, several are available to address select features of IPF and other fibrotic ILDs. Historically, among the first to be developed and used widely is the bleomycin model, which is the best-characterized and currently most extensively used animal model due to its ability to reproduce many aspects of IPF and other fibrotic ILDs, good reproducibility, and ease of induction. Studies using the bleomycin model have identified many of the cellular and molecular mechanisms now recognized as being important in pathogenesis of IPF and other fibrotic ILDs, as well as novel therapies for these diseases, including two recent drugs approved for treatment of IPF. This chapter will describe commonly used techniques for induction of the model by endotracheal administration of bleomycin through surgical and nonsurgical (transoral instillation).
Collapse
Affiliation(s)
- Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
120
|
Martinez FJ, Chisholm A, Collard HR, Flaherty KR, Myers J, Raghu G, Walsh SLF, White ES, Richeldi L. The diagnosis of idiopathic pulmonary fibrosis: current and future approaches. THE LANCET RESPIRATORY MEDICINE 2016; 5:61-71. [PMID: 27932290 DOI: 10.1016/s2213-2600(16)30325-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
With the recent development of two effective treatments for patients with idiopathic pulmonary fibrosis, an accurate diagnosis is crucial. The traditional approach to diagnosis emphasises the importance of thorough clinical and laboratory evaluations to exclude secondary causes of disease. High-resolution CT is a critical initial diagnostic test and acts as a tool to identify patients who should undergo surgical lung biopsy to secure a definitive histological diagnosis of usual interstitial pneumonia pattern. This diagnostic approach faces several challenges. Many patients with suspected idiopathic pulmonary fibrosis present with atypical high-resolution CT characteristics but are unfit for surgical lung biopsy, therefore preventing a confident diagnosis. The state of the art suggests an iterative, multidisciplinary process that incorporates available clinical, laboratory, imaging, and histological features. Recent research has explored genomic techniques to molecularly phenotype patients with interstitial lung disease. In the future, clinicians will probably use blood-specific or lung-specific molecular markers in combination with other clinical, physiological, and imaging features to enhance diagnostic efforts, refine prognostic recommendations, and influence the initial or subsequent treatment options. There is an urgent and increasing need for well designed, large, prospective studies measuring the effect of different diagnostic approaches. Ultimately, this will help to inform the development of guidelines and tailor clinical practice for the benefit of patients.
Collapse
Affiliation(s)
- Fernando J Martinez
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA.
| | | | - Harold R Collard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kevin R Flaherty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey Myers
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ganesh Raghu
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Simon L F Walsh
- Department of Radiology, Royal Brompton Hospital, London, UK
| | - Eric S White
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Luca Richeldi
- Catholic University of the Sacred Heart, A. Gemelli University Hospital, Rome, Italy; Academic Unit of Clinical and Experimental Sciences, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| |
Collapse
|
121
|
Peng X, Moore M, Mathur A, Zhou Y, Sun H, Gan Y, Herazo-Maya JD, Kaminski N, Hu X, Pan H, Ryu C, Osafo-Addo A, Homer RJ, Feghali-Bostwick C, Fares WH, Gulati M, Hu B, Lee CG, Elias JA, Herzog EL. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis. FASEB J 2016; 30:4056-4070. [PMID: 27609773 DOI: 10.1096/fj.201600373r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is a progressive and often fatal condition that is believed to be partially orchestrated by macrophages. Mechanisms that control migration of these cells into and within the lung remain undefined. We evaluated the contributions of the semaphorin receptor, plexin C1 (PLXNC1), and the exocytic calcium sensor, synaptotagmin 7 (Syt7), in these processes. We evaluated the role of PLXNC1 in macrophage migration by using Boyden chambers and scratch tests, characterized its contribution to experimentally induced lung fibrosis in mice, and defined the mechanism for our observations. Our findings reveal that relative to control participants, patients with idiopathic pulmonary fibrosis demonstrate excessive monocyte migration and underexpression of PLXNC1 in the lungs and circulation, a finding that is recapitulated in the setting of scleroderma-related interstitial lung disease. Relative to wild type, PLXNC1-/- mouse macrophages are excessively migratory, and PLXNC1-/- mice show exacerbated collagen accumulation in response to either inhaled bleomycin or inducible lung targeted TGF-β1 overexpression. These findings are ameliorated by replacement of PLXNC1 on bone marrow-derived cells or by genetic deletion of Syt7. These data demonstrate the previously unrecognized observation that PLXNC1 deficiency permits Syt7-mediated macrophage migration and enhances mammalian lung fibrosis.-Peng, X., Moore, M., Mathur, A., Zhou, Y., Sun, H., Gan, Y., Herazo-Maya, J. D., Kaminski, N., Hu, X., Pan, H., Ryu, C., Osafo-Addo, A., Homer, R. J., Feghali-Bostwick, C., Fares, W. H., Gulati, M., Hu, B., Lee, C.-G., Elias, J. A., Herzog, E. L. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis.
Collapse
Affiliation(s)
- Xueyan Peng
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Meagan Moore
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aditi Mathur
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Huanxing Sun
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ye Gan
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jose D Herazo-Maya
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xinyuan Hu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyi Pan
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Awo Osafo-Addo
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina School of Medicine, Charleston, South Carolina, USA
| | - Wassim H Fares
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mridu Gulati
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Buqu Hu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chun-Geun Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Erica L Herzog
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
122
|
Auerbach SS. In vivo Signatures of Genotoxic and Non-genotoxic Chemicals. TOXICOGENOMICS IN PREDICTIVE CARCINOGENICITY 2016. [DOI: 10.1039/9781782624059-00113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter reviews the findings from a broad array of in vivo genomic studies with the goal of identifying a general signature of genotoxicity (GSG) that is indicative of exposure to genotoxic agents (i.e. agents that are active in either the bacterial mutagenesis and/or the in vivo micronucleus test). While the GSG has largely emerged from systematic studies of rat and mouse liver, its response is evident across a broad collection of genotoxic treatments that cover a variety of tissues and species. Pathway-based characterization of the GSG indicates that it is enriched with genes that are regulated by p53. In addition to the GSG, another pan-tissue signature related to bone marrow suppression (a common effect of genotoxic agent exposure) is reviewed. Overall, these signatures are quite effective in identifying genotoxic agents; however, there are situations where false positive findings can occur, for example when necrotizing doses of non-genotoxic soft electrophiles (e.g. thioacetamide) are used. For this reason specific suggestions for best practices for generating for use in the creation and application of in vivo genomic signatures are reviewed.
Collapse
Affiliation(s)
- Scott S. Auerbach
- Toxicoinformatic Group, Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences PO Box 12233 MD K2-17 Research Triangle Park NC 27709 USA
| |
Collapse
|
123
|
Serotonin biosynthesis as a predictive marker of serotonin pharmacodynamics and disease-induced dysregulation. Sci Rep 2016; 6:30059. [PMID: 27444653 PMCID: PMC4956766 DOI: 10.1038/srep30059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022] Open
Abstract
The biogenic amine serotonin (5-HT) is a multi-faceted hormone that is synthesized from dietary tryptophan with the rate limiting step being catalyzed by the enzyme tryptophan hydroxylase (TPH). The therapeutic potential of peripheral 5-HT synthesis inhibitors has been demonstrated in a number of clinical and pre-clinical studies in diseases including carcinoid syndrome, lung fibrosis, ulcerative colitis and obesity. Due to the long half-life of 5-HT in blood and lung, changes in steady-state levels are slow to manifest themselves. Here, the administration of stable isotope labeled tryptophan (heavy “h-Trp”) and resultant in vivo conversion to h-5-HT is used to monitor 5-HT synthesis in rats. Dose responses for the blockade of h-5-HT appearance in blood with the TPH inhibitors L-para-chlorophenylalanine (30 and 100 mg/kg) and telotristat etiprate (6, 20 and 60 mg/kg), demonstrated that the method enables robust quantification of pharmacodynamic effects on a short time-scale, opening the possibility for rapid screening of TPH1 inhibitors in vivo. In the bleomycin-induced lung fibrosis rat model, the mechanism of lung 5-HT increase was investigated using a combination of synthesis and steady state 5-HT measurement. Elevated 5-HT synthesis measured in the injured lungs was an early predictor of disease induced increases in total 5-HT.
Collapse
|
124
|
Aoudjehane L, Boelle PY, Bisch G, Delelo R, Paye F, Scatton O, Housset C, Becquart J, Calmus Y, Conti F. Development of an in vitro model to test antifibrotic drugs on primary human liver myofibroblasts. J Transl Med 2016; 96:672-9. [PMID: 26950484 DOI: 10.1038/labinvest.2016.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/28/2015] [Accepted: 01/11/2016] [Indexed: 02/08/2023] Open
Abstract
We have developed a culture model to assess antifibrotic drugs using normal human liver myofibroblasts (HLMFs) obtained from 31 subjects. Activation was evaluated in terms of α-smooth muscle actin (α-SMA) and collagen 1 (Coll1) expression using RT-PCR, and proliferation as the uptake of 5-ethynil-2'-deoxyuridine. Under analysis of variance, between-subject differences accounted for 70% of all variability and inter-experiment differences for 30%. The sensitivity of the model was determined by quantifying the effects in terms of relative expression, which were 0.74±0.03 for cyclosporine A (CsA) and 2.4±0.10 for transforming growth factor-beta (TGF-β) (P<0.0001 vs no treatment) for α-SMA expression. Inter-subject variations in α-SMA and Coll1 expression enabled the classification of subjects as potentially low or high fibrosers. Finally, we observed that pirfenidone (which has beneficial effects in vivo) significantly reduced the expressions of α-SMA and Coll1, whereas the angiotensin-converting enzyme inhibitor losartan (which has no effect in vivo) had no significant effect. Our model may thus detect the antifibrotic properties of drugs. Antifibrotic drugs with promising clinical relevance could possibly be selected using a bank of HLMFs from high fibrosers.
Collapse
Affiliation(s)
- Lynda Aoudjehane
- Human HepCell, Faculté de Médecine Pierre et Marie Curie, Site Saint-Antoine, Paris, France.,Sorbonne Universités, UPMC University Paris 06, Paris, France.,INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France
| | | | - Grégoire Bisch
- Human HepCell, Faculté de Médecine Pierre et Marie Curie, Site Saint-Antoine, Paris, France
| | - Rolland Delelo
- Sorbonne Universités, UPMC University Paris 06, Paris, France.,INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - François Paye
- Sorbonne Universités, UPMC University Paris 06, Paris, France.,AP-HP, Hôpital Saint Antoine, Service de Chirurgie Digestive, Paris, France
| | - Olivier Scatton
- Sorbonne Universités, UPMC University Paris 06, Paris, France.,INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Servie de Chirurgie Digestive et Transplantation Hépatique, Paris, France
| | - Chantal Housset
- Sorbonne Universités, UPMC University Paris 06, Paris, France.,INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Jérôme Becquart
- Human HepCell, Faculté de Médecine Pierre et Marie Curie, Site Saint-Antoine, Paris, France
| | - Yvon Calmus
- Sorbonne Universités, UPMC University Paris 06, Paris, France.,INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Unité de Transplantation Hépatique, Paris, France
| | - Filomena Conti
- Sorbonne Universités, UPMC University Paris 06, Paris, France.,INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Unité de Transplantation Hépatique, Paris, France
| |
Collapse
|
125
|
Fernandez IE, Amarie OV, Mutze K, Königshoff M, Yildirim AÖ, Eickelberg O. Systematic phenotyping and correlation of biomarkers with lung function and histology in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2016; 310:L919-27. [PMID: 26993522 DOI: 10.1152/ajplung.00183.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 03/15/2016] [Indexed: 11/22/2022] Open
Abstract
To date, phenotyping and disease course prediction in idiopathic pulmonary fibrosis (IPF) primarily relies on lung function measures. Blood biomarkers were recently proposed for diagnostic and outcome prediction in IPF, yet their correlation with lung function and histology remains unclear. Here, we comprehensively assessed biomarkers in liquid biopsies and correlated their abundance with lung function and histology during the onset, progression, and resolution of lung fibrosis, with the aim to more precisely evaluate disease progression in the preclinical model of bleomycin-induced pulmonary fibrosis in vivo. Importantly, the strongest correlation of lung function with histological extent of fibrosis was observed at day 14, whereas lung function was unchanged at days 28 and 56, even when histological assessment showed marked fibrotic lesions. Although matrix metalloproteinase-7 (MMP-7), MMP-9, and PAI-1 were significantly elevated in broncheoalveolar lavage of fibrotic mice, only soluble ICAM-1 (sICAM-1) was elevated in the peripheral blood of fibrotic mice and was strongly correlated with the extent of fibrosis. Importantly, tissue-bound ICAM-1 was also elevated in lung homogenates, with prominent staining in hyperplastic type II alveolar epithelial and endothelial cells. In summary, we show that lung function decline is not a prerequisite for histologically evident fibrosis, particularly during the onset or resolution thereof. Plasma levels of sICAM-1 strongly correlate with the extent of lung fibrosis, and may thus be considered for the assessment of intraindividual therapeutic studies in preclinical studies of pulmonary fibrosis.
Collapse
Affiliation(s)
- Isis E Fernandez
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Oana V Amarie
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Kathrin Mutze
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig Maximilians University and Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
126
|
Liu T, Yu H, Ding L, Wu Z, Gonzalez De Los Santos F, Liu J, Ullenbruch M, Hu B, Martins V, Phan SH. Conditional Knockout of Telomerase Reverse Transcriptase in Mesenchymal Cells Impairs Mouse Pulmonary Fibrosis. PLoS One 2015; 10:e0142547. [PMID: 26555817 PMCID: PMC4640706 DOI: 10.1371/journal.pone.0142547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/25/2015] [Indexed: 12/31/2022] Open
Abstract
Telomerase is typically expressed in cellular populations capable of extended replication, such as germ cells, tumor cells, and stem cells, but is also induced in tissue injury, repair and fibrosis. Its catalytic component, telomerase reverse transcriptase (TERT) is induced in lung fibroblasts from patients with fibrotic interstitial lung disease and in rodents with bleomycin-induced pulmonary fibrosis. To evaluate the fibroblast specific role of TERT in pulmonary fibrosis, transgenic mice bearing a floxed TERT allele were generated, and then crossed with an inducible collagen α2(I)-Cre mouse line to generate fibroblast specific TERT conditional knockout mice. TERT-specific deficiency in mesenchymal cells caused attenuation of pulmonary fibrosis as manifested by reduced lung hydroxyproline content, type I collagen and α-smooth muscle actin mRNA levels. The TERT-deficient mouse lung fibroblasts displayed decreased cell proliferative capacity and higher susceptibility to induced apoptosis compared with control cells. Additionally TERT deficiency was associated with heightened α-smooth muscle actin expression indicative of myofibroblast differentiation. However the impairment of cell proliferation and increased susceptibility to apoptosis would cause a reduction in the myofibroblast progenitor population necessary to mount a successful myofibroblast-dependent fibrotic response. These findings identified a key role for TERT in fibroblast proliferation and survival essential for pulmonary fibrosis.
Collapse
Affiliation(s)
- Tianju Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Hongfeng Yu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Lin Ding
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Zhe Wu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | | | - Jianhua Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Matthew Ullenbruch
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Biao Hu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Vanessa Martins
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sem H. Phan
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
127
|
Meltzer EB. The Bleomycin Model: In Pursuit of Relevant Biomakers. Am J Respir Cell Mol Biol 2015; 53:748. [DOI: 10.1165/rcmb.2015-0162le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
128
|
Bauer Y, Nayler O, Kaminski N. Reply: the bleomycin model: in pursuit of relevant biomakers. Am J Respir Cell Mol Biol 2015; 53:748-9. [PMID: 26517754 DOI: 10.1165/rcmb.2015-0196le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yasmina Bauer
- 1 Actelion Pharmaceuticals Ltd. Allschwil, Switzerland
| | - Oliver Nayler
- 1 Actelion Pharmaceuticals Ltd. Allschwil, Switzerland
| | | |
Collapse
|
129
|
Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, Hatz R, Lindner M, Behr J, Kaminski N, Eickelberg O. FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2015; 192:455-67. [PMID: 26039104 DOI: 10.1164/rccm.201412-2233oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Increased abundance and stiffness of the extracellular matrix, in particular collagens, is a hallmark of idiopathic pulmonary fibrosis (IPF). FK506-binding protein 10 (FKBP10) is a collagen chaperone, mutations of which have been indicated in the reduction of extracellular matrix stiffness (e.g., in osteogenesis imperfecta). OBJECTIVES To assess the expression and function of FKBP10 in IPF. METHODS We assessed FKBP10 expression in bleomycin-induced lung fibrosis (using quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunofluorescence), analyzed microarray data from 99 patients with IPF and 43 control subjects from a U.S. cohort, and performed Western blot analysis from 6 patients with IPF and 5 control subjects from a German cohort. Subcellular localization of FKBP10 was assessed by immunofluorescent stainings. The expression and function of FKBP10, as well as its regulation by endoplasmic reticulum stress or transforming growth factor-β1, was analyzed by small interfering RNA-mediated loss-of-function experiments, quantitative reverse transcriptase-polymerase chain reaction, Western blot, and quantification of secreted collagens in the lung and in primary human lung fibroblasts (phLF). Effects on collagen secretion were compared with those of the drugs nintedanib and pirfenidone, recently approved for IPF. MEASUREMENTS AND MAIN RESULTS FKBP10 expression was up-regulated in bleomycin-induced lung fibrosis and IPF. Immunofluorescent stainings demonstrated localization to interstitial (myo)fibroblasts and CD68(+) macrophages. Transforming growth factor-β1, but not endoplasmic reticulum stress, induced FKBP10 expression in phLF. The small interfering RNA-mediated knockdown of FKBP10 attenuated expression of profibrotic mediators and effectors, including collagens I and V and α-smooth muscle actin, on the transcript and protein level. Importantly, loss of FKBP10 expression significantly suppressed collagen secretion by phLF. CONCLUSIONS FKBP10 might be a novel drug target for IPF.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Isis E Fernandez
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Larissa Knüppel
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia Maul
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Katharina Heinzelmann
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Brenda M Juan-Guardela
- 2 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Elisabeth Hennen
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Gerhard Preissler
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hauke Winter
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Claus Neurohr
- 4 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the German Center of Lung Research (DZL), Munich, Germany; and
| | - Rudolf Hatz
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany.,5 Asklepios Fachkliniken München-Gauting, Munich, Germany
| | | | - Jürgen Behr
- 4 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the German Center of Lung Research (DZL), Munich, Germany; and.,5 Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Naftali Kaminski
- 2 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Oliver Eickelberg
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
130
|
Reduced supply of monocyte-derived macrophages leads to a transition from nodular to diffuse lesions and tissue cell activation in silica-induced pulmonary fibrosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2923-38. [PMID: 26456580 DOI: 10.1016/j.ajpath.2015.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/16/2015] [Accepted: 07/09/2015] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis (PF) is an intractable disorder with a poor prognosis. Lung macrophages have been reported to regulate both progression and remission of bleomycin-induced diffuse PF. However, it remains unclear how macrophages contribute to silica-induced progressive nodular PF and the associated tissue cell responses in vivo. We found that lack of monocyte-derived macrophages results in the formation of diffuse PF after silica instillation. We found that the proportion and the number of monocyte-derived macrophages were persistently higher in silica-induced progressive PF compared with bleomycin-induced PF. Surprisingly, in Ccr2(-/-) mice, in which monocyte-derived macrophage infiltration is impaired, silica administration induced diffuse PF with loose nodule formation and greater activation of tissue cells. In the diffuse lesions, the distribution of epithelial cells, distribution of myofibroblasts, and architecture of the basement membrane were disrupted. Consistent with the development of diffuse lesions, genes that were differentially expressed in CD45(-) tissue cells from the lung of wild-type and Ccr2(-/-) mice were highly enriched in human diffuse, progressive PF. In gene ontology network analyses, many of these genes were associated with tissue remodeling and included genes not previously associated with PF, such as Mmp14, Thbs2, and Fgfr4. Overall, these results indicate that monocyte-derived macrophages prevent transition from nodular to diffuse silica-induced PF, potentially by regulating tissue cell responses.
Collapse
|
131
|
Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA, Schwarzmayr T, Strom TM, Eickelberg O, Mann M. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 2015; 11:819. [PMID: 26174933 PMCID: PMC4547847 DOI: 10.15252/msb.20156123] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis of proteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies.
Collapse
Affiliation(s)
- Herbert B Schiller
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christoph Schaab
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Richard A Scheltema
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
132
|
Campo I, Zorzetto M, Bonella F. Facts and promises on lung biomarkers in interstitial lung diseases. Expert Rev Respir Med 2015; 9:437-57. [DOI: 10.1586/17476348.2015.1062367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
133
|
Kim SY, Diggans J, Pankratz D, Huang J, Pagan M, Sindy N, Tom E, Anderson J, Choi Y, Lynch DA, Steele MP, Flaherty KR, Brown KK, Farah H, Bukstein MJ, Pardo A, Selman M, Wolters PJ, Nathan SD, Colby TV, Myers JL, Katzenstein ALA, Raghu G, Kennedy GC. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. THE LANCET RESPIRATORY MEDICINE 2015; 3:473-82. [DOI: 10.1016/s2213-2600(15)00140-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/18/2022]
|
134
|
|
135
|
Abstract
Ageing is the main risk factor for major non-communicable chronic lung diseases, including chronic obstructive pulmonary disease, most forms of lung cancer and idiopathic pulmonary fibrosis. While the prevalence of these diseases continually increases with age, their respective incidence peaks at different times during the lifespan, suggesting specific effects of ageing on the onset and/or pathogenesis of chronic obstructive pulmonary disease, lung cancer and idiopathic pulmonary fibrosis. Recently, the nine hallmarks of ageing have been defined as cell-autonomous and non-autonomous pathways involved in ageing. Here, we review the available evidence for the involvement of each of these hallmarks in the pathogenesis of chronic obstructive pulmonary disease, lung cancer, or idiopathic pulmonary fibrosis. Importantly, we propose an additional hallmark, “dysregulation of the extracellular matrix”, which we argue acts as a crucial modifier of cell-autonomous changes and functions, and as a key feature of the above-mentioned lung diseases.
Collapse
|