101
|
Sluch VM, Chamling X, Liu MM, Berlinicke CA, Cheng J, Mitchell KL, Welsbie DS, Zack DJ. Enhanced Stem Cell Differentiation and Immunopurification of Genome Engineered Human Retinal Ganglion Cells. Stem Cells Transl Med 2017; 6:1972-1986. [PMID: 29024560 PMCID: PMC6430043 DOI: 10.1002/sctm.17-0059] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells have the potential to promote biological studies and accelerate drug discovery efforts by making possible direct experimentation on a variety of human cell types of interest. However, stem cell cultures are generally heterogeneous and efficient differentiation and purification protocols are often lacking. Here, we describe the generation of clustered regularly‐interspaced short palindromic repeats(CRISPR)‐Cas9 engineered reporter knock‐in embryonic stem cell lines in which tdTomato and a unique cell‐surface protein, THY1.2, are expressed under the control of the retinal ganglion cell (RGC)‐enriched gene BRN3B. Using these reporter cell lines, we greatly improved adherent stem cell differentiation to the RGC lineage by optimizing a novel combination of small molecules and established an anti‐THY1.2‐based protocol that allows for large‐scale RGC immunopurification. RNA‐sequencing confirmed the similarity of the stem cell‐derived RGCs to their endogenous human counterparts. Additionally, we developed an in vitro axonal injury model suitable for studying signaling pathways and mechanisms of human RGC cell death and for high‐throughput screening for neuroprotective compounds. Using this system in combination with RNAi‐based knockdown, we show that knockdown of dual leucine kinase (DLK) promotes survival of human RGCs, expanding to the human system prior reports that DLK inhibition is neuroprotective for murine RGCs. These improvements will facilitate the development and use of large‐scale experimental paradigms that require numbers of pure RGCs that were not previously obtainable. Stem Cells Translational Medicine2017;6:1972–1986
Collapse
Affiliation(s)
- Valentin M Sluch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa M Liu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine L Mitchell
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Derek S Welsbie
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Shiley Eye Institute, University of California, San Diego, La Jolla, California, USA
| | - Donald J Zack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
102
|
Chandra AJ, Lee SCS, Grünert U. Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. J Comp Neurol 2017; 525:3962-3974. [PMID: 28875500 DOI: 10.1002/cne.24319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Accepted: 08/26/2017] [Indexed: 11/06/2022]
Abstract
In primates, over 17 morphological types of retinal ganglion cell have been distinguished by their dendritic morphology and stratification, but reliable markers for specific ganglion cell populations are still rare. The calcium binding protein calretinin is known to be expressed in the inner nuclear and the ganglion cell layer of marmoset retina, however, the specific cell type(s) expressing calretinin in the ganglion cell layer are yet to be determined. Here, we identified calretinin positive retinal ganglion cells in the common marmoset Callithrix jacchus. Double labeling with the ganglion cell marker RBPMS demonstrated that the large majority (80%) of the calretinin positive cells in the ganglion cell layer are ganglion cells, and 20% are displaced amacrine cells. The calretinin positive ganglion cells made up on average 12% of the total ganglion cell population outside of the foveal region and their proportion increased with eccentricity. Prelabeling with antibodies against calretinin and subsequent intracellular injection with DiI revealed that the large majority of the injected cells (n = 74) were either narrow thorny or broad thorny ganglion cells, 14 cells were displaced amacrine cells. Narrow thorny cells were further distinguished into outer and inner stratifying cells. In addition, weakly labeled cells with a large soma were identified as parasol ganglion cells. Our results show that three types of thorny ganglion cells in marmoset retina can be identified with antibodies against calretinin. Our findings are also consistent with the idea that the proportion of wide-field ganglion cell types increases in peripheral retina.
Collapse
Affiliation(s)
- Ashleigh J Chandra
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Sammy C S Lee
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Ulrike Grünert
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
103
|
KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS. J Neurosci 2017; 37:9632-9644. [PMID: 28871032 DOI: 10.1523/jneurosci.0643-16.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Neurons in the adult mammalian CNS decrease in intrinsic axon growth capacity during development in concert with changes in Krüppel-like transcription factors (KLFs). KLFs regulate axon growth in CNS neurons including retinal ganglion cells (RGCs). Here, we found that knock-down of KLF9, an axon growth suppressor that is normally upregulated 250-fold in RGC development, promotes long-distance optic nerve regeneration in adult rats of both sexes. We identified a novel binding partner, MAPK10/JNK3 kinase, and found that JNK3 (c-Jun N-terminal kinase 3) is critical for KLF9's axon-growth-suppressive activity. Interfering with a JNK3-binding domain or mutating two newly discovered serine phosphorylation acceptor sites, Ser106 and Ser110, effectively abolished KLF9's neurite growth suppression in vitro and promoted axon regeneration in vivo These findings demonstrate a novel, physiologic role for the interaction of KLF9 and JNK3 in regenerative failure in the optic nerve and suggest new therapeutic strategies to promote axon regeneration in the adult CNS.SIGNIFICANCE STATEMENT Injured CNS nerves fail to regenerate spontaneously. Promoting intrinsic axon growth capacity has been a major challenge in the field. Here, we demonstrate that knocking down Krüppel-like transcription factor 9 (KLF9) via shRNA promotes long-distance axon regeneration after optic nerve injury and uncover a novel and important KLF9-JNK3 interaction that contributes to axon growth suppression in vitro and regenerative failure in vivo These studies suggest potential therapeutic approaches to promote axon regeneration in injury and other degenerative diseases in the adult CNS.
Collapse
|
104
|
Chiasseu M, Alarcon-Martinez L, Belforte N, Quintero H, Dotigny F, Destroismaisons L, Vande Velde C, Panayi F, Louis C, Di Polo A. Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:58. [PMID: 28774322 PMCID: PMC5543446 DOI: 10.1186/s13024-017-0199-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Background Tau is an axon-enriched protein that binds to and stabilizes microtubules, and hence plays a crucial role in neuronal function. In Alzheimer’s disease (AD), pathological tau accumulation correlates with cognitive decline. Substantial visual deficits are found in individuals affected by AD including a preferential loss of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. At present, however, the mechanisms that underlie vision changes in these patients are poorly understood. Here, we asked whether tau plays a role in early retinal pathology and neuronal dysfunction in AD. Methods Alterations in tau protein and gene expression, phosphorylation, and localization were investigated by western blots, qPCR, and immunohistochemistry in the retina and visual pathways of triple transgenic mice (3xTg) harboring mutations in the genes encoding presenilin 1 (PS1M146 V), amyloid precursor protein (APPSwe), and tau (MAPTP301L). Anterograde axonal transport was assessed by intraocular injection of the cholera toxin beta subunit followed by quantification of tracer accumulation in the contralateral superior colliculus. RGC survival was analyzed on whole-mounted retinas using cell-specific markers. Reduction of tau expression was achieved following intravitreal injection of targeted siRNA. Results Our data demonstrate an age-related increase in endogenous retinal tau characterized by epitope-specific hypo- and hyper-phosphorylation in 3xTg mice. Retinal tau accumulation was observed as early as three months of age, prior to the reported onset of behavioral deficits, and preceded tau aggregation in the brain. Intriguingly, tau build up occurred in RGC soma and dendrites, while tau in RGC axons in the optic nerve was depleted. Tau phosphorylation changes and missorting correlated with substantial defects in anterograde axonal transport that preceded RGC death. Importantly, targeted siRNA-mediated knockdown of endogenous tau improved anterograde transport along RGC axons. Conclusions Our study reveals profound tau pathology in the visual system leading to early retinal neuron damage in a mouse model of AD. Importantly, we show that tau accumulation promotes anterograde axonal transport impairment in vivo, and identify this response as an early feature of neuronal dysfunction that precedes cell death in the AD retina. These findings provide the first proof-of-concept that a global strategy to reduce tau accumulation is beneficial to improve axonal transport and mitigate functional deficits in AD and tauopathies.
Collapse
Affiliation(s)
- Marius Chiasseu
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Heberto Quintero
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Laurie Destroismaisons
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Christine Vande Velde
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada
| | - Fany Panayi
- Institut de Recherches Servier, 78290, Croissy-sur-Seine, France
| | - Caroline Louis
- Institut de Recherches Servier, 78290, Croissy-sur-Seine, France
| | - Adriana Di Polo
- Department of Neuroscience and Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900 Rue Saint-Denis, Tour Viger, Room R09.720, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
105
|
Maekawa S, Sato K, Fujita K, Daigaku R, Tawarayama H, Murayama N, Moritoh S, Yabana T, Shiga Y, Omodaka K, Maruyama K, Nishiguchi KM, Nakazawa T. The neuroprotective effect of hesperidin in NMDA-induced retinal injury acts by suppressing oxidative stress and excessive calpain activation. Sci Rep 2017; 7:6885. [PMID: 28761134 PMCID: PMC5537259 DOI: 10.1038/s41598-017-06969-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
We found that hesperidin, a plant-derived bioflavonoid, may be a candidate agent for neuroprotective treatment in the retina, after screening 41 materials for anti-oxidative properties in a primary retinal cell culture under oxidative stress. We found that the intravitreal injection of hesperidin in mice prevented reductions in markers of the retinal ganglion cells (RGCs) and RGC death after N-methyl-D-aspartate (NMDA)-induced excitotoxicity. Hesperidin treatment also reduced calpain activation, reactive oxygen species generation and TNF-α gene expression. Finally, hesperidin treatment improved electrophysiological function, measured with visual evoked potential, and visual function, measured with optomotry. Thus, we found that hesperidin suppressed a number of cytotoxic factors associated with NMDA-induced cell death signaling, such as oxidative stress, over-activation of calpain, and inflammation, thereby protecting the RGCs in mice. Therefore, hesperidin may have potential as a therapeutic supplement for protecting the retina against the damage associated with excitotoxic injury, such as occurs in glaucoma and diabetic retinopathy.
Collapse
Affiliation(s)
- Shigeto Maekawa
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kota Sato
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Reiko Daigaku
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Tawarayama
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Namie Murayama
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Satoru Moritoh
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takeshi Yabana
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
106
|
Chintalapudi SR, Patel NN, Goldsmith ZK, Djenderedjian L, Wang XD, Marion TN, Jablonski MM, Morales-Tirado VM. Isolation of Primary Murine Retinal Ganglion Cells (RGCs) by Flow Cytometry. J Vis Exp 2017. [PMID: 28715391 DOI: 10.3791/55785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurodegenerative diseases often have a devastating impact on those affected. Retinal ganglion cell (RGC) loss is implicated in an array of diseases, including diabetic retinopathy and glaucoma, in addition to normal aging. Despite their importance, RGCs have been extremely difficult to study until now due in part to the fact that they comprise only a small percentage of the wide variety of cells in the retina. In addition, current isolation methods use intracellular markers to identify RGCs, which produce non-viable cells. These techniques also involve lengthy isolation protocols, so there is a lack of practical, standardized, and dependable methods to obtain and isolate RGCs. This work describes an efficient, comprehensive, and reliable method to isolate primary RGCs from mice retinae using a protocol based on both positive and negative selection criteria. The presented methods allow for the future study of RGCs, with the goal of better understanding the major decline in visual acuity that results from the loss of functional RGCs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sumana R Chintalapudi
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center
| | - Need N Patel
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center
| | - Zachary K Goldsmith
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center
| | - Levon Djenderedjian
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center
| | - Xiang Di Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center
| | - Tony N Marion
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center
| | - Monica M Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center
| | - Vanessa M Morales-Tirado
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center;
| |
Collapse
|
107
|
Wang W, Nan Y, Pan ZH, Pu M. Morphological evaluation of retinal ganglion cells expressing the L132C/T159C ChR2 mutant transgene in young adult cynomolgus monkeys. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1157-1167. [PMID: 28550523 DOI: 10.1007/s11427-017-9055-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 11/24/2022]
Abstract
To characterize recombinant AAV2 (rAAV2)-mediated expression of L132C/T159C ChR2 mutant in retinal ganglion cells (RGCs) of young adult cynomolgus monkeys. rAAV2 vectors carrying a fusion construct of the ChR2 mutant and GFP (ChR2-GFP) were delivered to the vitreous chamber by intravitreal injection. Expression patterns of the ChR2 mutant in RGCs were examined by immunohistochemical methods three months after injection. The RNA-binding protein with multiple splicing (RBPMS) was used as an RGC specific marker to differentiate RGCs from other retinal neurons and non-neuronal cells. The numbers of RBPMS+ and GFP+ double-labeled RGCs in the central foveal varied with the eccentricity. The expression peaked within 100 μm from the edge of the foveola and drastically decreased to a single superficial RGC layer approximately 300 μm from the edge. On average, the ratio of the double-labeled RGCs versus RBPMS+ RGCs approached 0.32±0.15 (n=14 fields) at the central foveal region (0.1 to 0.53 mm). We observed that the ratio reached 0.78±0.16 (n=21 fields) at peripheral retinal locations (eccentricity >7 mm). This investigation demonstrates that RBPMS could serve as a valuable RGC specific marker for future investigations in this field.
Collapse
Affiliation(s)
- Wenyao Wang
- Department of Embryology/Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yan Nan
- Department of Embryology/Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo-Hua Pan
- Department of Ophthalmology and Anatomy/Cell Biology, Wayne State University School of Medicine, Detroit Michigan, 48201, USA.
| | - Mingliang Pu
- Department of Embryology/Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
108
|
Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Sci Rep 2017; 7:45329. [PMID: 28361998 PMCID: PMC5374486 DOI: 10.1038/srep45329] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Widespread gene transfer to the retina is challenging as it requires vector systems to overcome physical and biochemical barriers to enter and diffuse throughout retinal tissue. We investigated whether exosome-associated adeno-associated virus, (exo-AAV) enabled broad retinal targeting following intravitreal (IVT) injection, as exosomes have been shown to traverse biological barriers and mediate widespread distribution upon systemic injection. We packaged an AAV genome encoding green fluorescent protein (GFP) into conventional AAV2 and exo-AAV2 vectors. Vectors were IVT injected into the eyes of adult mice. GFP expression was noninvasively monitored by fundus imaging and retinal expression was analyzed 4 weeks post-injection by qRT-PCR and histology. Exo-AAV2 outperformed conventional AAV2 in GFP expression based on fundus image analysis and qRT-PCR. Exo-AAV2 demonstrated deeper penetration in the retina, efficiently reaching the inner nuclear and outer plexiform, and to a lesser extent the outer nuclear layer. Cell targets were ganglion cells, bipolar cells, Müller cells, and photoreceptors. Exo-AAV2 serves as a robust gene delivery tool for murine retina, and the simplicity of production and isolation should make it widely applicable to basic research of the eye.
Collapse
|
109
|
Soufari H, Mackereth CD. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family. RNA (NEW YORK, N.Y.) 2017; 23:308-316. [PMID: 28003515 PMCID: PMC5311487 DOI: 10.1261/rna.059733.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 05/16/2023]
Abstract
Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets.
Collapse
Affiliation(s)
- Heddy Soufari
- University of Bordeaux, Institut Européen de Chimie et Biologie, F-33607 Pessac, France
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, F-33076 Bordeaux, France
| | - Cameron D Mackereth
- University of Bordeaux, Institut Européen de Chimie et Biologie, F-33607 Pessac, France
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, F-33076 Bordeaux, France
| |
Collapse
|
110
|
Joly S, Lamoureux S, Pernet V. Nonamyloidogenic processing of amyloid beta precursor protein is associated with retinal function improvement in aging male APP swe/PS1ΔE9 mice. Neurobiol Aging 2017; 53:181-191. [PMID: 28262325 DOI: 10.1016/j.neurobiolaging.2017.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/18/2023]
Abstract
Vision declines during normal aging and in Alzheimer's disease (AD). Although the toxic role of amyloid beta (Aβ) has been established in AD pathogenesis, its influence on the aging retina is unclear. Using APPswe/PS1ΔE9 transgenic (TG) mice, a classical AD model, the retinal cell function and survival was assessed by electroretinogram (ERG) recordings and immunofluorescent stainings. Strikingly, photopic ERG measurements revealed that the retinal response mediated by cones was preserved in aging TG mice relative to WT controls. In contrast to the cortex, the expression of mutated APPswe and PS1ΔE9 did not allow to detect Aβ or amyloid plaques in 13-month-old male TG retinae. In addition, the CTFβ/CTFα ratio was significantly lower in retinal samples than that in cortical extracts, suggesting that the nonamyloidogenic pathway may endogenously limit Aβ formation in the retina of male mice. Collectively, our data suggest that retinal-specific processing of amyloid may confer protection against AD and selectively preserve cone-dependent vision during aging.
Collapse
Affiliation(s)
- Sandrine Joly
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Simon Lamoureux
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
111
|
Zalis MC, Johansson S, Englund-Johansson U. Immunocytochemical Profiling of Cultured Mouse Primary Retinal Cells. J Histochem Cytochem 2017; 65:223-239. [PMID: 28151698 PMCID: PMC5407564 DOI: 10.1369/0022155416689675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary retinal cell cultures and immunocytochemistry are important experimental platforms in ophthalmic research. Translation of retinal cells from their native environment to the in vitro milieu leads to cellular stress, jeopardizing their in vivo phenotype features. Moreover, the specificity and stability of many retinal immunochemical markers are poorly evaluated in retinal cell cultures. Hence, we here evaluated the expression profile of 17 retinal markers, that is, recoverin, rhodopsin, arrestin, Chx10, PKC, DCX, CRALBP, GS, vimentin, TPRV4, RBPMS, Brn3a, β-tubulin III, NeuN, MAP2, GFAP, and synaptophysin. At 7 and 18 days of culture, the marker expression profiles of mouse postnatal retinal cells were compared with their age-matched in vivo retinas. We demonstrate stable in vitro expression of all markers, except for arrestin and CRALBP. Differences in cellular expression and location of some markers were observed, both over time in culture and compared with the age-matched retina. We hypothesize that these differences are likely culture condition dependent. Taken together, we suggest a thorough evaluation of the antibodies in specific culture settings, before extrapolating the in vitro results to an in vivo setting. Moreover, the identification of specific cell types may require a combination of different genes expressed or markers with structural information.
Collapse
Affiliation(s)
- Marina C Zalis
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| | - Sebastian Johansson
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| | - Ulrica Englund-Johansson
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| |
Collapse
|
112
|
Aparicio JG, Hopp H, Choi A, Mandayam Comar J, Liao VC, Harutyunyan N, Lee TC. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina. Exp Eye Res 2017; 154:177-189. [PMID: 27867005 PMCID: PMC5359064 DOI: 10.1016/j.exer.2016.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022]
Abstract
Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development.
Collapse
Affiliation(s)
- J G Aparicio
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - H Hopp
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - A Choi
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - V C Liao
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - N Harutyunyan
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - T C Lee
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Ophthalmology and USC Eye Institute, University of Southern California, USA
| |
Collapse
|
113
|
A mouse retinal explant model for use in studying neuroprotection in glaucoma. Exp Eye Res 2016; 151:38-44. [DOI: 10.1016/j.exer.2016.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 11/17/2022]
|
114
|
Chen L, Gage PJ. Heterozygous Pitx2 Null Mice Accurately Recapitulate the Ocular Features of Axenfeld-Rieger Syndrome and Congenital Glaucoma. Invest Ophthalmol Vis Sci 2016; 57:5023-5030. [PMID: 27654429 PMCID: PMC5040192 DOI: 10.1167/iovs.16-19700] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The purpose of this analysis was to assess the utility of Pitx2+/- mice as a model for the ocular features of Axenfeld-Rieger Syndrome and for congenital glaucoma. Methods Eyes of Pitx2+/- and wild-type littermates were examined clinically using optical coherence tomography (OCT) and fundus photography. Intraocular pressures were measured using a TonoLab rebound tonometer. Eyes were examined histologically to assess PITX2 expression, structural integrity, and optic nerve and ganglion cell content. Results PITX2 is present postnatally in the corneal endothelium and stroma, iris stroma, trabecular meshwork, and Schlemm's canal. Reduced central corneal thickness, iris defects, and iridicorneal adhesions are all prevalent in Pitx2+/- eyes. Although optic nerve heads appear normal at postnatal day 7, IOP is elevated and optic nerve head cupping is fully penetrant in Pitx2+/- eyes by 3 weeks of age. Neurodegeneration is present in a significant percentage of optic nerves from Pitx2+/- mice by 3 weeks of age, and is fully penetrant by 2 months of age. Pitx2+/- eyes show significant reductions in specifically ganglion cell density in all four quadrants by 2 months of age. Conclusions Pitx2+/- mice model the major ocular features of Axenfeld-Rieger Syndrome and will be an important resource for understanding the molecular mechanisms leading to anterior segment dysgenesis and a high prevalence of glaucoma in this disease. In addition, these mice may provide an efficient new model for assessing the molecular events in glaucoma more generally, and for developing and testing new treatment paradigms for this disease.
Collapse
Affiliation(s)
- Lisheng Chen
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Philip J Gage
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States 2Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
115
|
Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dysfunction. Exp Eye Res 2016; 151:96-106. [PMID: 27523467 DOI: 10.1016/j.exer.2016.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Retinal ganglion cells (RGC) bear the sole responsibility of propagating visual stimuli to the brain. Their axons, which make up the optic nerve, project from the retina to the brain through the lamina cribrosa and in rodents, decussate almost entirely at the optic chiasm before synapsing at the superior colliculus. For many traumatic and degenerative ocular conditions, the dysfunction and/or loss of RGC is the primary determinant of visual loss and are the measurable endpoints in current research into experimental therapies. To actually measure these endpoints in rodent models, techniques must ascertain both the quantity of surviving RGC and their functional capacity. Quantification techniques include phenotypic markers of RGC, retrogradely transported fluorophores and morphological measurements of retinal thickness whereas functional assessments include electroretinography (flash and pattern) and visual evoked potential. The importance of the accuracy and reliability of these techniques cannot be understated, nor can the relationship between RGC death and dysfunction. The existence of up to 30 types of RGC complicates the measuring process, particularly as these may respond differently to disease and treatment. Since the above techniques may selectively identify and ignore particular subpopulations, their appropriateness as measures of RGC survival and function may be further limited. This review discusses the above techniques in the context of their subtype specificity.
Collapse
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
116
|
Wang Y, Wang W, Liu J, Huang X, Liu R, Xia H, Brecha NC, Pu M, Gao J. Protective Effect of ALA in Crushed Optic Nerve Cat Retinal Ganglion Cells Using a New Marker RBPMS. PLoS One 2016; 11:e0160309. [PMID: 27504635 PMCID: PMC4978478 DOI: 10.1371/journal.pone.0160309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023] Open
Abstract
In this study we first sought to determine whether RNA-binding protein with multiple splicing (RBPMS) can serve as a specific marker for cat retina ganglion cells (RGCs) using retrograde labeling and immunohistochemistry staining. RBPM was then used as an RGC marker to study RGC survival after optic nerve crush (ONC) and alpha-lipoic acid (ALA) treatment in cats. ALA treatment yielded a peak density of RBPMS-alpha cells within the peak isodensity zone (>60/mm2) which did not differ from ONC retinas. The area within the zone was significantly enlarged (control: 2.3%, ONC: 0.06%, ONC+ALA: 0.1%). As for the 10-21/mm2 zone, ALA treatment resulted in a significant increase in area (control: 34.5%, ONC: 12.1%, ONC+ALA: 35.9%). ALA can alleviate crush-induced RGC injury.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Wenyao Wang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Jessica Liu
- Department of Neurobiology and Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, California, United States of America
- Jules Stein Eye Institute, UCLA, Los Angeles, California, United States of America
- UCLA College of Life Sciences, University of California, Los Angeles, CA, United States of America
| | - Xin Huang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Ruixing Liu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Huika Xia
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Nicholas C. Brecha
- Department of Neurobiology and Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, California, United States of America
- Jules Stein Eye Institute, UCLA, Los Angeles, California, United States of America
- UCLA College of Life Sciences, University of California, Los Angeles, CA, United States of America
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Jie Gao
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
117
|
Funke S, Perumal N, Beck S, Gabel-Scheurich S, Schmelter C, Teister J, Gerbig C, Gramlich OW, Pfeiffer N, Grus FH. Glaucoma related Proteomic Alterations in Human Retina Samples. Sci Rep 2016; 6:29759. [PMID: 27425789 PMCID: PMC4947915 DOI: 10.1038/srep29759] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/24/2016] [Indexed: 01/23/2023] Open
Abstract
Glaucoma related proteomic changes have been documented in cell and animal models. However, proteomic studies investigating on human retina samples are still rare. In the present work, retina samples of glaucoma and non-glaucoma control donors have been examined by a state-of-the-art mass spectrometry (MS) workflow to uncover glaucoma related proteomic changes. More than 600 proteins could be identified with high confidence (FDR < 1%) in human retina samples. Distinct proteomic changes have been observed in 10% of proteins encircling mitochondrial and nucleus species. Numerous proteins showed a significant glaucoma related level change (p < 0.05) or distinct tendency of alteration (p < 0.1). Candidates were documented to be involved in cellular development, stress and cell death. Increase of stress related proteins and decrease of new glaucoma related candidates, ADP/ATP translocase 3 (ANT3), PC4 and SRFS1-interacting protein 1 (DFS70) and methyl-CpG-binding protein 2 (MeCp2) could be documented by MS. Moreover, candidates could be validated by Accurate Inclusion Mass Screening (AIMS) and immunostaining and supported for the retinal ganglion cell layer (GCL) by laser capture microdissection (LCM) in porcine and human eye cryosections. The workflow allowed a detailed view into the human retina proteome highlighting new molecular players ANT3, DFS70 and MeCp2 associated to glaucoma.
Collapse
Affiliation(s)
- Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Silke Gabel-Scheurich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Claudia Gerbig
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Oliver W Gramlich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa, USA
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
118
|
Lim JHA, Stafford BK, Nguyen PL, Lien BV, Wang C, Zukor K, He Z, Huberman AD. Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nat Neurosci 2016; 19:1073-84. [PMID: 27399843 PMCID: PMC5708130 DOI: 10.1038/nn.4340] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022]
Abstract
Axons in the mammalian central nervous system (CNS) fail to regenerate after injury. Here we show that if retinal ganglion cell (RGC) activity is increased by visual stimulation or using chemogenetics, their axons regenerate. We also show that if enhancement of neural activity is combined with elevation of the cell growth-promoting pathway involving mammalian target of rapamycin (mTOR), RGC axons regenerate the long distances necessary to re-innervate the brain. Analysis of genetically-labeled RGCs revealed this regrowth can be target specific: RGC axons navigated back to their correct visual targets and avoided targets incorrect for their function. Moreover, these regenerated connections were successful in partially rescuing a subset of visual behaviors. Our findings indicate that combining neural activity with activation of mTOR can serve as powerful tool for enhancing axon regeneration and they highlight the remarkable capacity of CNS neurons to re-establish accurate circuit connections in the adult brain.
Collapse
Affiliation(s)
- Jung-Hwan A Lim
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Benjamin K Stafford
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Phong L Nguyen
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Brian V Lien
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Chen Wang
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine Zukor
- Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan, Utah, USA
| | - Zhigang He
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, USA.,Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
119
|
Chintalapudi SR, Djenderedjian L, Stiemke AB, Steinle JJ, Jablonski MM, Morales-Tirado VM. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas. Front Aging Neurosci 2016; 8:93. [PMID: 27242509 PMCID: PMC4870266 DOI: 10.3389/fnagi.2016.00093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022] Open
Abstract
Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2(hi)CD48(neg)CD15(neg)CD57(neg) surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes associated with retinal cells; (2) intracellular labeling of homogeneous sorted cells for the intracellular RGC-markers SNCG, brain-specific homeobox/POU domain protein 3A (BRN3A), TUJ1, and RNA-binding protein with multiple splicing (RBPMS); and (3) by applying the methodology on RGC from a mouse model with elevated intraocular pressure (IOP) and optic nerve damage. Use of primary RGC cultures will allow for future careful assessment of important cell specific pathways in RGC to provide mechanistic insights into the declining of visual acuity in aged populations and those suffering from retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Sumana R. Chintalapudi
- Department of Ophthalmology, The University of Tennessee Health Science CenterMemphis, TN, USA
| | - Levon Djenderedjian
- Department of Ophthalmology, The University of Tennessee Health Science CenterMemphis, TN, USA
| | - Andrew B. Stiemke
- Department of Ophthalmology, The University of Tennessee Health Science CenterMemphis, TN, USA
| | - Jena J. Steinle
- Department of Anatomy and Cell Biology, Wayne State UniversityDetroit, MI, USA
- Department of Ophthalmology, Wayne State UniversityDetroit, MI, USA
| | - Monica M. Jablonski
- Department of Ophthalmology, The University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science CenterMemphis, TN, USA
| | - Vanessa M. Morales-Tirado
- Department of Ophthalmology, The University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
120
|
Dash S, Siddam AD, Barnum CE, Janga SC, Lachke SA. RNA-binding proteins in eye development and disease: implication of conserved RNA granule components. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:527-57. [PMID: 27133484 DOI: 10.1002/wrna.1355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
Abstract
The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1, and Bmp4 are commonly required for their development. In contrast, our understanding of posttranscriptional regulation in eye development and disease, particularly regarding the function of RNA-binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila as well as several vertebrate models such as fish, frog, chicken, and mouse. Interestingly, of the 42 RBPs that have been investigated for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as processing bodies, stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate posttranscriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2, and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly, and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving posttranscriptional regulatory networks in eye development and disease. WIREs RNA 2016, 7:527-557. doi: 10.1002/wrna.1355 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University & Purdue University Indianapolis, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| |
Collapse
|
121
|
Piri N, Kwong JMK, Gu L, Caprioli J. Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res 2016; 52:22-46. [PMID: 27017896 PMCID: PMC4842330 DOI: 10.1016/j.preteyeres.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' anti-apoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies.
Collapse
Affiliation(s)
- Natik Piri
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | - Jacky M K Kwong
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Gu
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Joseph Caprioli
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
122
|
In vivo cellular imaging of various stress/response pathways using AAV following axonal injury in mice. Sci Rep 2015; 5:18141. [PMID: 26670005 PMCID: PMC4680972 DOI: 10.1038/srep18141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022] Open
Abstract
Glaucoma, a leading cause of blindness worldwide, is instigated by various factors, including axonal injury, which eventually leads to a progressive loss of retinal ganglion cells (RGCs). To study various pathways reportedly involved in the pathogenesis of RGC death caused by axonal injury, seven pathways were investigated. Pathway-specific fluorescent protein-coded reporters were each packaged into an adeno-associated virus (AAV). After producing axonal injury in the eye, injected with AAV to induce RGC death, the temporal activity of each stress-related pathway was monitored in vivo through the detection of fluorescent RGCs using confocal ophthalmoscopy. We identified the activation of ATF6 and MCP-1 pathways involved in endoplasmic reticulum stress and macrophage recruitment, respectively, as early markers of RGC stress that precede neuronal death. Conversely, inflammatory responses probed by NF-κB and cell-death-related pathway p53 were most prominent in the later phases, when RGC death was already ongoing. AAV-mediated delivery of stress/response reporters followed by in vivo cellular imaging is a powerful strategy to characterize the temporal aspects of complex molecular pathways involved in retinal diseases. The identification of promoter elements that are activated before the death of RGCs enables the development of pre-emptive gene therapy, exclusively targeting the early phases of diseased cells.
Collapse
|
123
|
Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation. J Neurosci 2015; 35:12088-102. [PMID: 26338321 DOI: 10.1523/jneurosci.1273-15.2015] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. SIGNIFICANCE STATEMENT Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma.
Collapse
|
124
|
Sluch VM, Davis CHO, Ranganathan V, Kerr JM, Krick K, Martin R, Berlinicke CA, Marsh-Armstrong N, Diamond JS, Mao HQ, Zack DJ. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep 2015; 5:16595. [PMID: 26563826 PMCID: PMC4643248 DOI: 10.1038/srep16595] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Retinal ganglion cell (RGC) injury and cell death from glaucoma and other forms of optic nerve disease is a major cause of irreversible vision loss and blindness. Human pluripotent stem cell (hPSC)-derived RGCs could provide a source of cells for the development of novel therapeutic molecules as well as for potential cell-based therapies. In addition, such cells could provide insights into human RGC development, gene regulation, and neuronal biology. Here, we report a simple, adherent cell culture protocol for differentiation of hPSCs to RGCs using a CRISPR-engineered RGC fluorescent reporter stem cell line. Fluorescence-activated cell sorting of the differentiated cultures yields a highly purified population of cells that express a range of RGC-enriched markers and exhibit morphological and physiological properties typical of RGCs. Additionally, we demonstrate that aligned nanofiber matrices can be used to guide the axonal outgrowth of hPSC-derived RGCs for in vitro optic nerve-like modeling. Lastly, using this protocol we identified forskolin as a potent promoter of RGC differentiation.
Collapse
Affiliation(s)
- Valentin M Sluch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine Baltimore, MD 21287
| | - Chung-ha O Davis
- Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, 21205
| | - Vinod Ranganathan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Justin M Kerr
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kellin Krick
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Russ Martin
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Department of Materials Science and Engineering, Whiting School of Engineering, and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Nicholas Marsh-Armstrong
- Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, 21205.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,Department of Materials Science and Engineering, Whiting School of Engineering, and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Donald J Zack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine Baltimore, MD 21287.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205.,Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
125
|
Osborne A, Hopes M, Wright P, Broadway DC, Sanderson J. Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration. Exp Eye Res 2015; 143:28-38. [PMID: 26432917 DOI: 10.1016/j.exer.2015.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/30/2022]
Abstract
There is a growing need for models of human diseases that utilise native, donated human tissue in order to model disease processes and develop novel therapeutic strategies. In this paper we assessed the suitability of adult human retinal explants as a potential model of chronic retinal ganglion cell (RGC) degeneration. Our results confirmed that RGC markers commonly used in rodent studies (NeuN, βIII Tubulin and Thy-1) were appropriate for labelling human RGCs and followed the expected differential expression patterns across, as well as throughout, the macular and para-macular regions of the retina. Furthermore, we showed that neither donor age nor post-mortem time (within 24 h) significantly affected the initial expression levels of RGC markers. In addition, the feasibility of using human post mortem donor tissue as a long-term model of RGC degeneration was determined with RGC protein being detectable up to 4 weeks in culture with an associated decline in RGC mRNA and significant, progressive, apoptotic labelling of NeuN(+) cells. Differences in RGC apoptosis might have been influenced by medium compositions indicating that media constituents could play a role in supporting axotomised RGCs. We propose that using ex vivo human explants may prove to be a useful model for testing the effectiveness of neuroprotective strategies.
Collapse
Affiliation(s)
- Andrew Osborne
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Marina Hopes
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK; Department of Ophthalmology, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK
| | - Phillip Wright
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - David C Broadway
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK; Department of Ophthalmology, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK; School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Julie Sanderson
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
126
|
Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proc Natl Acad Sci U S A 2015; 112:13093-8. [PMID: 26392540 DOI: 10.1073/pnas.1516259112] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The molecular circadian clocks in the mammalian retina are locally synchronized by environmental light cycles independent of the suprachiasmatic nuclei (SCN) in the brain. Unexpectedly, this entrainment does not require rods, cones, or melanopsin (OPN4), possibly suggesting the involvement of another retinal photopigment. Here, we show that the ex vivo mouse retinal rhythm is most sensitive to short-wavelength light but that this photoentrainment requires neither the short-wavelength-sensitive cone pigment [S-pigment or cone opsin (OPN1SW)] nor encephalopsin (OPN3). However, retinas lacking neuropsin (OPN5) fail to photoentrain, even though other visual functions appear largely normal. Initial evidence suggests that OPN5 is expressed in select retinal ganglion cells. Remarkably, the mouse corneal circadian rhythm is also photoentrainable ex vivo, and this photoentrainment likewise requires OPN5. Our findings reveal a light-sensing function for mammalian OPN5, until now an orphan opsin.
Collapse
|
127
|
Nuschke AC, Farrell SR, Levesque JM, Chauhan BC. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss. Exp Eye Res 2015; 141:111-24. [PMID: 26070986 DOI: 10.1016/j.exer.2015.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/01/2015] [Accepted: 06/06/2015] [Indexed: 02/07/2023]
Abstract
Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GON) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GON provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GON, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GON. Axonal pathology in GON includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GON can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GON. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models that express fluorescent proteins under the Thy-1 promoter have been examined for their potential to provide specific and selective labeling of RGCs for the study of GON. While these methods represent important advances in assessing the structural and functional integrity of RGCs, each has its advantages and disadvantages; together they provide an extensive toolbox for the study of GON.
Collapse
Affiliation(s)
- Andrea C Nuschke
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Spring R Farrell
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Capital District Health Authority, Halifax, Nova Scotia, Canada
| | - Julie M Levesque
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Balwantray C Chauhan
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada; Capital District Health Authority, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
128
|
Kyung H, Kwong JMK, Bekerman V, Gu L, Yadegari D, Caprioli J, Piri N. Celastrol supports survival of retinal ganglion cells injured by optic nerve crush. Brain Res 2015; 1609:21-30. [PMID: 25813825 DOI: 10.1016/j.brainres.2015.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
The present study evaluates the effect of celastrol on the survival of retinal ganglion cells (RGCs) injured by optic nerve crush (ONC). Celastrol, a quinine methide triterpene extracted from the perennial vine Tripterygium wilfordii (Celastraceae), has been identified as a potential neuroprotective candidate in a comprehensive drug screen against various neurodegenerative diseases. Two weeks after ONC, the average density of remaining RGCs in retinas of animals treated with daily intraperitoneal (i.p.) injections of celastrol (1mg/kg) was approximately 1332 cells/mm(2), or 40.8% of the Celastrol/Control group. In retinas of the Vehicle/ONC group about 381 RGCs/mm(2) were counted, which is 9.6% of the total number of RGCs in the DMSO/Control group. This corresponds to approximately a 250% increase in RGC survival mediated by celastrol treatment compared to Vehicle/ONC group. Furthermore, the average RGC number in retinas of ONC animals treated with a single intravitreal injection of 1mg/kg or 5mg/kg of celastrol was increased by approximately 80% (760 RGCs/mm(2)) and 78% (753 RGCs/mm(2)), respectively, compared to Vehicle/ONC controls (422 cells/mm(2)). Injection of 0.2mg/kg of celastrol had no significant effect on cell survival, with the average number of RGCs being 514 cells/mm(2) in celastrol-treated animals versus 422 cells/mm(2) in controls. The expression levels of Hsp70, Hsf1, Hsf2, HO-1 and TNF-alpha in the retina were analyzed to evaluate the roles of these proteins in the celastrol-mediated protection of injured RGCs. No statistically significant change in HO-1, Hsf1 and Hsp70 levels was seen in animals with ONC. An approximately 2 fold increase in Hsf2 level was observed in celastrol-treated animals with or without injury. Hsf2 level was also increased 1.8 fold in DMSO-treated animals with ONC injury compared to DMSO-treated animals with no injury suggesting that Hsf2 induction has an injury-induced component. Expression of TNF-alpha in retinas of celastrol-treated uninjured and ONC animals was reduced by approximately 2 and 1.5 fold compared to vehicle treated animals, respectively. The observed results suggest that mechanisms underlying celastrol׳s RGC protective effect are associated with inhibition of TNF-alpha-mediated cell death.
Collapse
Affiliation(s)
- Haksu Kyung
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA; National Medical Center, Seoul, Republic of Korea
| | - Jacky M K Kwong
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Vlad Bekerman
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Lei Gu
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel Yadegari
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph Caprioli
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Natik Piri
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
129
|
Pérez de Sevilla Müller L, Sargoy A, Fernández-Sánchez L, Rodriguez A, Liu J, Cuenca N, Brecha N. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol 2015; 523:1443-60. [PMID: 25631988 DOI: 10.1002/cne.23751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 12/11/2022]
Abstract
High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca(2+), neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α(1) pore-forming subunit, which is associated with an extracellular α(2)δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α(2)δ(3) subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼ 305 bp corresponding to the predicted size of the α(2)δ(3) subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α(2)δ(3) subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α(2)δ(3) immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α(2)δ(3) calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Allison Sargoy
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | | | - Allen Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Janelle Liu
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Nicolás Cuenca
- Physiology, Genetics and Microbiology, University of Alicante, 03690, Alicante, Spain
| | - Nicholas Brecha
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, 90073
| |
Collapse
|
130
|
Sharma TP, Liu Y, Wordinger RJ, Pang IH, Clark AF. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis 2015; 6:e1661. [PMID: 25719245 PMCID: PMC4669798 DOI: 10.1038/cddis.2015.22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 12/11/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6–7, P<0.01) and neurite outgrowth in RGCs by 141% compared to controls (n=15, P<0.05). RGC transduction with AAV2-CAG–hNRN1 prior to ONC promoted RGC survival (450%, n=3–7, P<0.05) and significantly preserved RGC function by 70% until 28 days post crush (dpc) (n=6, P<0.05) compared with the control AAV2-CAG–green fluorescent protein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5–8, P<0.001) and growth cone marker, growth-associated protein 43 (Gap43; 36%, n=3, P<0.01) were observed 28 dpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5–6, P<0.05) expression was observed within the optic nerves of the AAV2–hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- T P Sharma
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Y Liu
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - R J Wordinger
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - I-H Pang
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA
| | - A F Clark
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
131
|
Kwong JMK, Gu L, Nassiri N, Bekerman V, Kumar-Singh R, Rhee KD, Yang XJ, Hauswirth WW, Caprioli J, Piri N. AAV-mediated and pharmacological induction of Hsp70 expression stimulates survival of retinal ganglion cells following axonal injury. Gene Ther 2015; 22:138-45. [PMID: 25427613 PMCID: PMC4320032 DOI: 10.1038/gt.2014.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022]
Abstract
We evaluated the effect of AAV2- and 17-AAG (17-N-allylamino-17-demethoxygeldanamycin)-mediated upregulation of Hsp70 expression on the survival of retinal ganglion cells (RGCs) injured by optic nerve crush (ONC). AAV2-Hsp70 expression in the retina was primarily observed in the ganglion cell layer. Approximately 75% of all transfected cells were RGCs. RGC survival in AAV2-Hsp70-injected animals was increased by an average of 110% 2 weeks after the axonal injury compared with the control. The increase in cell numbers was not even across the retinas with a maximum effect of approximately 306% observed in the inferior quadrant. 17-AAG-mediated induction of Hsp70 expression has been associated with cell protection in various models of neurodegenerative diseases. We show here that a single intravitreal injection of 17-AAG (0.2 ug ul(-1)) results in an increased survival of ONC-injured RGCs by approximately 49% compared with the vehicle-treated animals. Expression of Hsp70 in retinas of 17-AAG-treated animals was upregulated approximately by twofold compared with control animals. Our data support the idea that the upregulation of Hsp70 has a beneficial effect on the survival of injured RGCs, and the induction of this protein could be viewed as a potential neuroprotective strategy for optic neuropathies.
Collapse
Affiliation(s)
| | - Lei Gu
- Jules Stein Eye Institute, UCLA, Los Angeles, CA
| | | | | | | | - Kun Do Rhee
- Jules Stein Eye Institute, UCLA, Los Angeles, CA
| | | | | | | | - Natik Piri
- Jules Stein Eye Institute, UCLA, Los Angeles, CA
| |
Collapse
|
132
|
Nashine S, Liu Y, Kim BJ, Clark AF, Pang IH. Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury. Invest Ophthalmol Vis Sci 2014; 56:221-31. [PMID: 25414185 DOI: 10.1167/iovs.14-15447] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To investigate the role of C/EBP homologous protein (CHOP), a proapoptotic protein, and the unfolded protein response (UPR) marker that is involved in endoplasmic reticulum (ER) stress-mediated apoptosis in mouse retinal ganglion cell (RGC) death following ischemia/reperfusion (I/R) injury. METHODS Retinal I/R injury was induced in adult C57BL/6J wild-type (WT) and CHOP knockout (Chop(-/-)) mice by raising IOP to 120 mm Hg for 60 minutes. Expression of CHOP and other UPR markers was studied by Western blot and immunohistochemistry. Retinal ganglion cell counts were performed in retinal flat mounts stained with an RGC marker. Retinal ganglion cell function was evaluated by scotopic threshold response (STR) electroretinography. RESULTS In WT mice, retinal CHOP was upregulated by 30% in I/R-injured eyes compared to uninjured eyes 3 days after injury (P < 0.05). Immunohistochemistry confirmed CHOP upregulation specifically in RGCs. CHOP knockout did not affect baseline RGC density or STR amplitude. Ischemia/reperfusion injury decreased RGC densities and STR amplitudes in both WT and Chop(-/-) mice. However, survival of RGCs in I/R-injured Chop(-/-) mouse was 48% higher (P < 0.05) than that in I/R-injured WT mouse 3 days after I/R injury. Similarly, RGC density was significantly higher in Chop(-/-) eyes at 7, 14, and 28 days after I/R injury. Scotopic threshold response amplitudes of Chop(-/-) mice were significantly higher at 3 and 7 days after I/R than those of WT mice. CONCLUSIONS Absence of CHOP partially protects against RGC loss and reduction in retinal function after I/R injury, indicating that CHOP and, thus, ER stress play an important role in RGC apoptosis in retinal I/R injury.
Collapse
Affiliation(s)
- Sonali Nashine
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
133
|
A profile of transcriptomic changes in the rd10 mouse model of retinitis pigmentosa. Mol Vis 2014; 20:1612-28. [PMID: 25489233 PMCID: PMC4235044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a photoreceptor disease that affects approximately 100,000 people in the United States. Treatment options are limited, and the prognosis for most patients is progressive vision loss. Unfortunately, understanding of the molecular underpinnings of RP initiation and progression is still limited. However, the development of animal models of RP, coupled with high-throughput sequencing, has provided an opportunity to study the underlying cellular and molecular changes in this disease. METHODS Using RNA-Seq, we present the first retinal transcriptome analysis of the rd10 murine model of retinal degeneration. RESULTS Our data confirm the loss of rod-specific transcripts and the increased relative expression of Müller-specific transcripts, emphasizing the important role of reactive gliosis and innate immune activation in RP. Moreover, we report substantial changes in relative isoform usage among neuronal differentiation and morphogenesis genes, including a marked shift to shorter transcripts. CONCLUSIONS Our analyses implicate remodeling of the inner retina and possible Müller cell dedifferentiation.
Collapse
|
134
|
Rodriguez AR, de Sevilla Müller LP, Brecha NC. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 2014; 522:1411-43. [PMID: 24318667 DOI: 10.1002/cne.23521] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity-purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On western blots these antibodies recognize a single band at 〜24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit, and monkey retina. RBPMS-immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semiquantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1)-immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at 3 weeks, and all Brn3a-, SMI-32-, and melanopsin-immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to cyan fluorescent protein (CFP)-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs.
Collapse
Affiliation(s)
- Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | | | | |
Collapse
|
135
|
Imaging retinal ganglion cells: enabling experimental technology for clinical application. Prog Retin Eye Res 2014; 44:1-14. [PMID: 25448921 DOI: 10.1016/j.preteyeres.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/04/2014] [Accepted: 10/18/2014] [Indexed: 11/21/2022]
Abstract
Recent advances in clinical ophthalmic imaging have enhanced patient care. However, the ability to differentiate retinal neurons, such as retinal ganglion cells (RGCs), would advance many areas within ophthalmology, including the screening and monitoring of glaucoma and other optic neuropathies. Imaging at the single cell level would take diagnostics to the next level. Experimental methods have provided techniques and insight into imaging RGCs, however no method has yet to be translated to clinical application. This review provides an overview of the importance of non-invasive imaging of RGCs and the clinically relevant capabilities. In addition, we report on experimental data from wild-type mice that received an in vivo intravitreal injection of a neuronal tracer that labelled RGCs, which in turn were monitored for up to 100 days post-injection with confocal scanning laser ophthalmoscopy. We were able to demonstrate efficient and consistent RGC labelling with this delivery method and discuss the issue of cell specificity. This type of experimental work is important in progressing towards clinically applicable methods for monitoring loss of RGCs in glaucoma and other optic neuropathies. We discuss the challenges to translating these findings to clinical application and how this method of tracking RGCs in vivo could provide valuable structural and functional information to clinicians.
Collapse
|
136
|
Sargoy A, Barnes S, Brecha NC, Pérez De Sevilla Müller L. Immunohistochemical and calcium imaging methods in wholemount rat retina. J Vis Exp 2014:e51396. [PMID: 25349920 DOI: 10.3791/51396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this paper we describe the tools, reagents, and the practical steps that are needed for: 1) successful preparation of wholemount retinas for immunohistochemistry and, 2) calcium imaging for the study of voltage gated calcium channel (VGCC) mediated calcium signaling in retinal ganglion cells. The calcium imaging method we describe circumvents issues concerning non-specific loading of displaced amacrine cells in the ganglion cell layer.
Collapse
Affiliation(s)
- Allison Sargoy
- Department of Neurobiology, University of California, Los Angeles
| | - Steven Barnes
- Department of Neurobiology, University of California, Los Angeles; Veterans Administration Greater Los Angeles Healthcare System; Departments of Physiology & Biophysics and Ophthalmology & Visual Sciences, Dalhousie University
| | - Nicholas C Brecha
- Department of Neurobiology, University of California, Los Angeles; Veterans Administration Greater Los Angeles Healthcare System; Departments of Neurobiology and Medicine, Jules Stein Eye Institute, CURE-Digestive Diseases Research Center, David Geffen School of Medicine, University of California, Los Angeles
| | | |
Collapse
|
137
|
Fu J, Cheng L, Wang Y, Yuan P, Xu X, Ding L, Zhang H, Jiang K, Song H, Chen Z, Ye Q. The RNA-binding protein RBPMS1 represses AP-1 signaling and regulates breast cancer cell proliferation and migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1-13. [PMID: 25281386 DOI: 10.1016/j.bbamcr.2014.09.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/14/2014] [Accepted: 09/23/2014] [Indexed: 12/01/2022]
Abstract
The activator protein-1 (AP-1) transcription factor complex plays a crucial role in tumor growth and progression. However, how AP-1 transcriptional activity is repressed is not fully understood. Here, we show that RNA-binding protein with multiple splicing 1 (RBPMS1) physically and functionally interacts with AP-1 in vitro and in vivo. The RNA-recognition motif (RRM) and C-terminus of the RBPMS1 isoforms RBPMS1A and RBPMS1C, but not RBPMS1B, interacted with cFos, a member of the AP-1 family that dimerizes with cJun to stimulate AP-1 transcriptional activity. RBPMS1 did not associate with Jun proteins. RBPMS1A and RBPMS1C bound to the basic leucine zipper (bZIP) domain of cFos that mediates dimerization of AP-1 proteins. In addition, RBPMS1A-C interacted with the transcription factor Smad3, which was shown to interact with cJun and increase AP-1 transcriptional activity. RBPMS1 inhibited c-Fos or Smad3-mediated AP-1 transactivation and the expression of AP-1 target genes known to be the key regulators of cancer growth and progression, including vascular endothelial growth factor (VEGF) and cyclin D1. Mechanistically, RBPMS1 blocks the formation of the cFos/cJun or Smad3/cJun complex as well as the recruitment of cFos or Smad3 to the promoters of AP-1 target genes. In cultured cells and a mouse xenograft model, RBPMS1 inhibited the growth and migration of breast cancer cells through c-Fos or Smad3. These data suggest that RBPMS1 is a critical repressor of AP-1 signaling and RBPMS1 activation may be a useful strategy for cancer treatment.
Collapse
Affiliation(s)
- Jie Fu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Yu Wang
- School of Life Sciences, Shandong University, Shandong, China
| | - Ping Yuan
- Fujian Center for Disease Control and Prevention, Fujian, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Hao Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Kai Jiang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Haifeng Song
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhongwu Chen
- Department of Interventional Radiology, The Affiliated First Hospital, Fujian Medical University, Fujian, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
138
|
Farazi TA, Leonhardt CS, Mukherjee N, Mihailovic A, Li S, Max KE, Meyer C, Yamaji M, Cekan P, Jacobs NC, Gerstberger S, Bognanni C, Larsson E, Ohler U, Tuschl T. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA (NEW YORK, N.Y.) 2014; 20:1090-102. [PMID: 24860013 PMCID: PMC4114688 DOI: 10.1261/rna.045005.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed.
Collapse
Affiliation(s)
- Thalia A. Farazi
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Carl S. Leonhardt
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Neelanjan Mukherjee
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Aleksandra Mihailovic
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Song Li
- Biology Department, Duke University, Durham, North Carolina 27708, USA
| | - Klaas E.A. Max
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Masashi Yamaji
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Pavol Cekan
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Nicholas C. Jacobs
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Stefanie Gerstberger
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Claudia Bognanni
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Erik Larsson
- Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
- Corresponding authorE-mail
| |
Collapse
|
139
|
Wilson AM, Chiodo VA, Boye SL, Brecha NC, Hauswirth WW, Di Polo A. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is required for neuronal survival after axonal injury. PLoS One 2014; 9:e94175. [PMID: 24714389 PMCID: PMC3979759 DOI: 10.1371/journal.pone.0094175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
The transcription factor p53 mediates the apoptosis of post-mitotic neurons exposed to a wide range of stress stimuli. The apoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1, ASPP2 and iASPP. We previously showed that the pro-apoptotic members ASPP1 and ASPP2 contribute to p53-dependent death of retinal ganglion cells (RGCs). However, the role of the p53 inhibitor iASPP in the central nervous system (CNS) remains to be elucidated. To address this, we asked whether iASPP contributes to the survival of RGCs in an in vivo model of acute optic nerve damage. We demonstrate that iASPP is expressed by injured RGCs and that iASPP phosphorylation at serine residues, which increase iASPP affinity towards p53, is significantly reduced following axotomy. We show that short interference RNA (siRNA)-induced iASPP knockdown exacerbates RGC death, whereas adeno-associated virus (AAV)-mediated iASPP expression promotes RGC survival. Importantly, our data also demonstrate that increasing iASPP expression in RGCs downregulates p53 activity and blocks the expression of pro-apoptotic targets PUMA and Fas/CD95. This study demonstrates a novel role for iASPP in the survival of RGCs, and provides further evidence of the importance of the ASPP family in the regulation of neuronal loss after axonal injury.
Collapse
Affiliation(s)
- Ariel M Wilson
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central, University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Vince A Chiodo
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Nicholas C Brecha
- Departments of Neurobiology and Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Adriana Di Polo
- Department of Neuroscience and Groupe de Recherche sur le Système Nerveux Central, University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
140
|
Pérez de Sevilla Müller L, Sargoy A, Rodriguez AR, Brecha NC. Melanopsin ganglion cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. PLoS One 2014; 9:e93274. [PMID: 24671191 PMCID: PMC3966869 DOI: 10.1371/journal.pone.0093274] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/28/2014] [Indexed: 12/25/2022] Open
Abstract
We report that the most common retinal ganglion cell type that remains after optic nerve transection is the M1 melanopsin ganglion cell. M1 ganglion cells are members of the intrinsically photosensitive retinal ganglion cell population that mediates non-image-forming vision, comprising ∼2.5% of all ganglion cells in the rat retina. In the present study, M1 ganglion cells comprised 1.7±1%, 28±14%, 55±13% and 82±8% of the surviving ganglion cells 7, 14, 21 and 60 days after optic nerve transection, respectively. Average M1 ganglion cell somal diameter and overall morphological appearance remained unchanged in non-injured and injured retinas, suggesting a lack of injury-induced degeneration. Average M1 dendritic field size increased at 7 and 60 days following optic nerve transection, while average dendritic field size remained similar in non-injured retinas and in retinas at 14 and 21 days after optic nerve transection. These findings demonstrate that M1 ganglion cells are more resistant to injury than other ganglion cell types following optic nerve injury, and provide an opportunity to develop pharmacological or genetic therapeutic approaches to mitigate ganglion cell death and save vision following optic nerve injury.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Allison Sargoy
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Allen R. Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- CURE Digestive Diseases Research Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Health System, Los Angeles, California, United States of America
| |
Collapse
|
141
|
RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo. J Neurosci 2013; 33:10384-95. [PMID: 23785151 DOI: 10.1523/jneurosci.5858-12.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The RNA-binding protein Hermes [RNA-binding protein with multiple splicing (RBPMS)] is expressed exclusively in retinal ganglion cells (RGCs) in the CNS, but its function in these cells is not known. Here we show that Hermes protein translocates in granules from RGC bodies down the growing axons. Hermes loss of function in both Xenopus laevis and zebrafish embryos leads to a significant reduction in retinal axon arbor complexity in the optic tectum, and expression of a dominant acting mutant Hermes protein, defective in RNA-granule localization, causes similar defects in arborization. Time-lapse analysis of branch dynamics reveals that the decrease in arbor complexity is caused by a reduction in new branches rather than a decrease in branch stability. Surprisingly, Hermes depletion also leads to enhanced early visual behavior and an increase in the density of presynaptic puncta, suggesting that reduced arborization is accompanied by increased synaptogenesis to maintain synapse number.
Collapse
|
142
|
Kwong JMK, Vo N, Quan A, Nam M, Kyung H, Yu F, Piri N, Caprioli J. The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma. Exp Eye Res 2013; 112:21-8. [PMID: 23603611 DOI: 10.1016/j.exer.2013.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
Intraocular pressure (IOP) elevation is considered as a major risk factor causing the progression of vision deterioration in glaucoma. Although it is known that the IOP level changes widely throughout the day and night, how the dark or light phase IOP elevation contributes to retinal ganglion cell (RGC) degeneration is still largely unclear. To examine the profile of IOP, modified laser photocoagulation was applied to the trabecular meshwork of Brown Norway rats and both light and dark phase IOPs were monitored approximately 1-2 times a week. The relationship between IOP elevation and RGC degeneration was investigated while RGC body loss was analyzed with Rbpms immunolabeling on retinal wholemount and axonal injury in the optic nerve was semi-quantified. The baseline awake dark and light IOPs were 30.4 ± 2.7 and 20.2 ± 2.1 mmHg respectively. The average dark IOP was increased to 38.2 ± 3.2 mmHg for five weeks after the laser treatment on 270° trabecular meshwork. However, there was no significant loss of RGC body and axonal injury. After laser treatment on 330° trabecular meshwork, the dark and light IOPs were significantly increased to 43.8 ± 4.6 and 23 ± 3.7 mmHg respectively for 5 weeks. The cumulative dark and light IOP elevations were 277 ± 86 and 113 ± 50 mmHg days respectively while the cumulative total (light and dark) IOP elevation was 213 ± 114 mmHg days. After 5 weeks, regional RGC body loss of 29.5 ± 15.5% and moderate axonal injury were observed. Axonal injury and loss of RGC body had a high correlation with the cumulative total IOP elevation (R(2) = 0.60 and 0.65 respectively). There was an association between the cumulative dark IOP elevation and RGC body loss (R(2) = 0.37) and axonal injury (R(2) = 0.51) whereas the associations between neuronal damages and the cumulative light IOP elevation were weak (for RGC body loss, R(2) = 0.01; for axonal injury, R(2) = 0.26). Simple linear regression model analysis showed statistical significance for the relationships between the total cumulative IOP elevation and RGC body loss (P = 0.009), and axonal injury (P = 0.016). To examine the role of light and dark IOP elevation in RGC body loss and axonal injury, analyses for the association between different light/dark IOP factors and percentage of RGC body loss/axonal injury grading were performed and only the association between the cumulative dark IOP elevation and axonal injury showed statistical significance (P = 0.033). The findings demonstrated that the cumulative total (light and dark) IOP elevation is a risk factor to RGC degeneration in a rat model of experimental glaucoma using modified partial laser photocoagulation at 330° trabecular meshwork. Further investigations are required to understand the role of longer term light and dark phase IOP elevation contributing to the progression of degeneration in different compartments of RGCs.
Collapse
Affiliation(s)
- Jacky M K Kwong
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, United States.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Nfonsam LE, Cano C, Mudge J, Schilkey FD, Curtiss J. Analysis of the transcriptomes downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch signaling pathways in Drosophila melanogaster. PLoS One 2012; 7:e44583. [PMID: 22952997 PMCID: PMC3432130 DOI: 10.1371/journal.pone.0044583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 08/09/2012] [Indexed: 01/22/2023] Open
Abstract
Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans.
Collapse
Affiliation(s)
- Landry E. Nfonsam
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Carlos Cano
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Jennifer Curtiss
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
144
|
Kwong JMK, Quan A, Kyung H, Piri N, Caprioli J. Quantitative analysis of retinal ganglion cell survival with Rbpms immunolabeling in animal models of optic neuropathies. Invest Ophthalmol Vis Sci 2011; 52:9694-702. [PMID: 22110060 DOI: 10.1167/iovs.11-7869] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate whether a recently described retinal ganglion cell (RGC) marker Rbpms (RNA binding protein with multiple splicing) could be used for RGC quantification in various models of RGC degeneration. METHODS Optic nerve crush, excitotoxicity, and elevated intraocular pressure (IOP) rat models were used. Topographic analysis of Rbpms immunolabeling was performed on retinal wholemounts. Retrograde labelings with Fluorogold (FG) and III β-tubulin immunohistochemistry were compared. RESULTS In the optic nerve crush model, 37%, 87%, and 93% of Rbpms-positive cells were lost 1, 2, and 4 weeks, respectively. Significant loss of Rbpms-positive cells was noted 1 week after intravitreal injection of 12, 30, and 120 nmol N-methyl-d-aspartate (NMDA), whereas coinjection of 120 nmol of NMDA along with MK-801 increased the cell number from 10% to 59%. Over 95% of Rbpms-positive cells were FG- and III β-tubulin-positive after injury caused by optic nerve crush and NMDA injection. In rats with elevated IOP, induced by trabecular laser photocoagulation, there was a significant loss of Rbpms-positive cells compared with that of contralateral controls (P = 0.0004), and cumulative IOP elevation showed a strong linear relationship with the quantification of RGCs by Rbpms immunolabeling and retrograde labeling with FG. More than 99% of the remaining Rbpms-positive cells were double-labeled with FG. CONCLUSIONS Rbpms can reliably be used as an RGC marker for quantitative evaluation in rat models of RGC degeneration, regardless of the nature and the location of the primary site of the injury and the extent of neurodegeneration.
Collapse
Affiliation(s)
- Jacky M K Kwong
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
145
|
Kao L, Kurtz LM, Shao X, Papadopoulos MC, Liu L, Bok D, Nusinowitz S, Chen B, Stella SL, Andre M, Weinreb J, Luong SS, Piri N, Kwong JMK, Newman D, Kurtz I. Severe neurologic impairment in mice with targeted disruption of the electrogenic sodium bicarbonate cotransporter NBCe2 (Slc4a5 gene). J Biol Chem 2011; 286:32563-74. [PMID: 21705333 DOI: 10.1074/jbc.m111.249961] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The choroid plexus lining the four ventricles in the brain is where the majority of cerebrospinal fluid (CSF) is produced. The secretory function of the choroid plexus is mediated by specific transport systems that allow the directional flux of nutrients and ions into the CSF and the removal of toxins. Normal CSF dynamics and chemistry ensure that the environment for neural function is optimal. Here, we report that targeted disruption of the Slc4a5 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe2 results in significant remodeling of choroid plexus epithelial cells, including abnormal mitochondrial distribution, cytoskeletal protein expression, and ion transporter polarity. These changes are accompanied by very significant abnormalities in intracerebral ventricle volume, intracranial pressure, and CSF electrolyte levels. The Slc4a5(-/-) mice are significantly more resistant to induction of seizure behavior than wild-type controls. In the retina of Slc4a5(-/-) mice, loss of photoreceptors, ganglion cells, and retinal detachment results in visual impairment assessed by abnormal electroretinogram waveforms. Our findings are the first demonstration of the fundamental importance of NBCe2 in the biology of the nervous system.
Collapse
Affiliation(s)
- Liyo Kao
- Department of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|