101
|
Sarangdhar M, Kushwaha A, Dahlquist J, Jegga A, Aronow B. Using Systems Biology-based Analysis Approaches to Identify Mechanistically Significant Adverse Drug Reactions: Pulmonary Complications from Combined Use of Anti-TNFα Agents and Corticosteroids. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2013; 2013:151-5. [PMID: 24303326 PMCID: PMC3814486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anti-TNF drugs are frequently associated with serious Adverse Events (AEs), which necessitates an improved understanding of individual factors that determine efficacy and safety of anti-TNF agents. We mined the US FDA's Adverse Event Reporting System (AERS) for anti-TNF-associated AEs to identify and stratify patient subgroups and drug combinations that exhibit specifically correlated complications. We demonstrate the existence of patient subgroup and anti-TNF agent-specific associations for relative risks of developing known and novel AEs including infections, edema, and organ damage associated processes. Concomitant use of anti-TNFs with corticosteroids significantly increased risk of AEs (p < 0.001) including pulmonary fibrosis and pulmonary edema. Using these tightly correlated phenotypes, we mined mouse phenotype data to identify the molecular basis of these AEs. Multiple pathways and networks that regulate injury response, fluid regulation, and wound healing were implicated suggesting modification of anti-TNF-based therapeutic strategies to minimize corticosteroid-based combinatorial risk of severe AEs.
Collapse
Affiliation(s)
| | - Akash Kushwaha
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Anil Jegga
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Bruce Aronow
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
102
|
Craig VJ, Quintero PA, Fyfe SE, Patel AS, Knolle MD, Kobzik L, Owen CA. Profibrotic activities for matrix metalloproteinase-8 during bleomycin-mediated lung injury. THE JOURNAL OF IMMUNOLOGY 2013; 190:4283-96. [PMID: 23487425 DOI: 10.4049/jimmunol.1201043] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinase-8 (MMP-8) is a potent interstitial collagenase thought to be expressed mainly by polymorphonuclear neutrophils. To determine whether MMP-8 regulates lung inflammatory or fibrotic responses to bleomycin, we delivered bleomycin by the intratracheal route to wild-type (WT) versus Mmp-8(-/-) mice and quantified MMP-8 expression, and inflammation and fibrosis in the lung samples. Mmp-8 steady state mRNA and protein levels increase in whole lung and bronchoalveolar lavage samples when WT mice are treated with bleomycin. Activated murine lung fibroblasts express Mmp-8 in vitro. MMP-8 expression is increased in leukocytes in the lungs of patients with idiopathic pulmonary fibrosis compared with control lung samples. Compared with bleomycin-treated WT mice, bleomycin-treated Mmp-8(-/-) mice have greater lung inflammation, but reduced lung fibrosis. Whereas bleomycin-treated Mmp-8(-/-) and WT mice have similar lung levels of several pro- and antifibrotic mediators (TGF-β, IL-13, JE, and IFN-γ), Mmp-8(-/-) mice have higher lung levels of IFN-γ-inducible protein-10 (IP-10) and MIP-1α. Genetically deleting either Ip-10 or Mip-1α in Mmp-8(-/-) mice abrogates their lung inflammatory response to bleomycin, but reconstitutes their lung fibrotic response to bleomycin. Studies of bleomycin-treated Mmp-8 bone marrow chimeric mice show that both leukocytes and lung parenchymal cells are sources of profibrotic MMP-8 during bleomycin-mediated lung fibrosis. Thus, during bleomycin-mediated lung injury, MMP-8 dampens the lung acute inflammatory response, but promotes lung fibrosis by reducing lung levels of IP-10 and MIP-1α. These data indicate therapeutic strategies to reduce lung levels of MMP-8 may limit fibroproliferative responses to injury in the human lung.
Collapse
Affiliation(s)
- Vanessa J Craig
- Pulmonary Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Wang Z, Zhao Q, Han Y, Zhang D, Zhang L, Luo D. PAI-1 and IFN-γ in the regulation of innate immune homeostasis during sublethal yersiniosis. Blood Cells Mol Dis 2013; 50:196-201. [DOI: 10.1016/j.bcmd.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/02/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
|
104
|
Macrophage heterogeneity in respiratory diseases. Mediators Inflamm 2013; 2013:769214. [PMID: 23533311 PMCID: PMC3600198 DOI: 10.1155/2013/769214] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/15/2013] [Indexed: 12/23/2022] Open
Abstract
Macrophages are among the most abundant cells in the respiratory tract, and they can have strikingly different phenotypes within this environment. Our knowledge of the different phenotypes and their functions in the lung is sketchy at best, but they appear to be linked to the protection of gas exchange against microbial threats and excessive tissue responses. Phenotypical changes of macrophages within the lung are found in many respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. This paper will give an overview of what macrophage phenotypes have been described, what their known functions are, what is known about their presence in the different obstructive and restrictive respiratory diseases (asthma, COPD, pulmonary fibrosis), and how they are thought to contribute to the etiology and resolution of these diseases.
Collapse
|
105
|
Hofstra JJ, Cornet AD, Declerck PJ, Dixon B, Aslami H, Vlaar APJ, Roelofs JJ, van der Poll T, Levi M, Schultz MJ. Nebulized fibrinolytic agents improve pulmonary fibrinolysis but not inflammation in rat models of direct and indirect acute lung injury. PLoS One 2013; 8:e55262. [PMID: 23408962 PMCID: PMC3567078 DOI: 10.1371/journal.pone.0055262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/20/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Critically ill patients frequently develop acute lung injury (ALI). Disturbed alveolar fibrin turnover, a characteristic feature of ALI, is the result of both activation of coagulation and inhibition of fibrinolysis. Nebulized fibrinolytic agents could exert lung-protective effects, via promotion of fibrinolysis as well as anti-inflammation. METHODS Rats were challenged intratracheally with Pseudomonas aeruginosa, resulting in pneumonia as a model for direct ALI, or received an intravenous bolus infusion of lipopolysaccharide, as a model for indirect ALI. Rats were randomized to nebulization of normal saline (placebo), recombinant tissue plasminogen activator (rtPA), or monoclonal antibodies against plasminogen activator inhibitor-type 1 (anti-PAI-1). RESULTS Nebulized rtPA or anti-PA1-1 enhanced the bronchoalveolar fibrinolytic system, as reflected by a significant reduction of PAI-1 activity levels in bronchoalveolar lavage fluid, and a consequent increase in plasminogen activator activity (PAA) levels to supranormal values. Both treatments also significantly affected systemic fibrinolysis as reflected by a significant increase in PAA levels in plasma to supranormal levels. Neither nebulized rtPA nor anti-PA1-1 affected pulmonary inflammation. Neither treatment affected bacterial clearance of P. aeruginosa from the lungs in case of pneumonia. CONCLUSIONS Local treatment with rtPA or anti-PA1-1 affects pulmonary fibrinolysis but not inflammation in models of direct or indirect ALI in rats.
Collapse
Affiliation(s)
- Jorrit J Hofstra
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Kanno Y, Kawashita E, Kokado A, Okada K, Ueshima S, Matsuo O, Matsuno H. Alpha2-antiplasmin regulates the development of dermal fibrosis in mice by prostaglandin F2αsynthesis through adipose triglyceride lipase/calcium-independent phospholipase A2. ACTA ACUST UNITED AC 2013; 65:492-502. [DOI: 10.1002/art.37767] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 10/18/2012] [Indexed: 11/09/2022]
|
107
|
Coagulation and coagulation signalling in fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1018-27. [PMID: 23298546 DOI: 10.1016/j.bbadis.2012.12.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 12/29/2022]
Abstract
Following tissue injury, a complex and coordinated wound healing response comprising coagulation, inflammation, fibroproliferation and tissue remodelling has evolved to nullify the impact of the original insult and reinstate the normal physiological function of the affected organ. Tissue fibrosis is thought to result from a dysregulated wound healing response as a result of continual local injury or impaired control mechanisms. Although the initial insult is highly variable for different organs, in most cases, uncontrolled or sustained activation of mesenchymal cells into highly synthetic myofibroblasts leads to the excessive deposition of extracellular matrix proteins and eventually loss of tissue function. Coagulation was originally thought to be an acute and transient response to tissue injury, responsible primarily for promoting haemostasis by initiating the formation of fibrin plugs to enmesh activated platelets within the walls of damaged blood vessels. However, the last 20years has seen a major re-evaluation of the role of the coagulation cascade following tissue injury and there is now mounting evidence that coagulation plays a critical role in orchestrating subsequent inflammatory and fibroproliferative responses during normal wound healing, as well as in a range of pathological contexts across all major organ systems. This review summarises our current understanding of the role of coagulation and coagulation initiated signalling in the response to tissue injury, as well as the contribution of uncontrolled coagulation to fibrosis of the lung, liver, kidney and heart. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
108
|
Zhang YP, Wang WL, Liu J, Li WB, Bai LL, Yuan YD, Song SX. Plasminogen activator inhibitor-1 promotes the proliferation and inhibits the apoptosis of pulmonary fibroblasts by Ca2+ signaling. Thromb Res 2013; 131:64-71. [DOI: 10.1016/j.thromres.2012.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/18/2012] [Accepted: 09/03/2012] [Indexed: 01/21/2023]
|
109
|
Abstract
The primary function of the coagulation cascade is to promote hemostasis and limit blood loss in response to tissue injury. In addition, there is now considerable evidence that coagulation plays pivotal roles in orchestrating inflammatory and tissue repair responses via both the generation of fibrin and activation of the family of proteinase-activated receptors (PARs). Consequently, uncontrolled coagulation and PAR signaling responses have been shown to contribute to excessive inflammatory and fibroproliferative responses in the context of a broad range of conditions, including acute lung injury and fibrotic lung disease. In terms of the cellular origin of excessive coagulation activity in the context of lung injury, coagulation zymogens are principally thought to be derived from the circulation and locally activated via the extrinsic tissue factor-dependent coagulation pathway within the intraalveolar compartment. More recently, we have provided compelling evidence that several key coagulation zymogens are locally synthesized by the hyperplastic alveolar epithelium in pulmonary fibrosis. In terms of signaling receptors activated in response to the coagulation cascade, current evidence suggests a major role for PAR1 in influencing endothelial-epithelial barrier disruption, inflammatory cell recruitment, and collagen deposition in response to lung injury, whereas PAR2 signaling has been implicated mainly in mediating lung inflammatory responses. This article reviews current understanding of coagulation pathways in acute and fibrotic lung injury and expands on the scientific rationale for strategies that specifically target intraalveolar coagulation or PAR signaling responses.
Collapse
|
110
|
Naik PK, Bozyk PD, Bentley JK, Popova AP, Birch CM, Wilke CA, Fry CD, White ES, Sisson TH, Tayob N, Carnemolla B, Orecchia P, Flaherty KR, Hershenson MB, Murray S, Martinez FJ, Moore BB. Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1046-56. [PMID: 23043074 DOI: 10.1152/ajplung.00139.2012] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective therapeutics. Periostin has been reported to be elevated in IPF patients relative to controls, but its sources and mechanisms of action remain unclear. We confirm excess periostin in lungs of IPF patients and show that IPF fibroblasts produce periostin. Blood was obtained from 54 IPF patients (all but 1 with 48 wk of follow-up). We show that periostin levels predict clinical progression at 48 wk (hazard ratio = 1.47, 95% confidence interval = 1.03-2.10, P < 0.05). Monocytes and fibrocytes are sources of periostin in circulation in IPF patients. Previous studies suggest that periostin may regulate the inflammatory phase of bleomycin-induced lung injury, but periostin effects during the fibroproliferative phase of the disease are unknown. Wild-type and periostin-deficient (periostin(-/-)) mice were anesthetized and challenged with bleomycin. Wild-type mice were injected with bleomycin and then treated with OC-20 Ab (which blocks periostin and integrin interactions) or control Ab during the fibroproliferative phase of disease, and fibrosis and survival were assessed. Periostin expression was upregulated quickly after treatment with bleomycin and remained elevated. Periostin(-/-) mice were protected from bleomycin-induced fibrosis. Instillation of OC-20 during the fibroproliferative phase improved survival and limited collagen deposition. Chimeric mouse studies suggest that hematopoietic and structural sources of periostin contribute to lung fibrogenesis. Periostin was upregulated by transforming growth factor-β in lung mesenchymal cells, and periostin promoted extracellular matrix deposition, mesenchymal cell proliferation, and wound closure. Thus periostin plays a vital role in late stages of pulmonary fibrosis and is a potential biomarker for disease progression and a target for therapeutic intervention.
Collapse
Affiliation(s)
- Payal K Naik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Långström S, Peltola V, Petäjä J, Ruuskanen O, Heikinheimo M. Enhanced thrombin generation and depressed anticoagulant function in children with pneumonia. Acta Paediatr 2012; 101:919-23. [PMID: 22646857 DOI: 10.1111/j.1651-2227.2012.02746.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS To clarify the status of the coagulation system in children with community-acquired pneumonia. METHODS Coagulation activation markers (prothrombin fragment F1 + 2, thrombin-antithrombin complexes, D-dimer), the natural anticoagulants (antithrombin, protein C and S) and tissue factor were measured in 28 consecutive children with pneumonia on admission to the hospital. Patients were divided into those with either bacterial-type pneumonia (at least two of the following three criteria: plasma C-reactive protein (CRP) >80 mg/L, white blood cell count >15 × 10(9) /L and alveolar infiltrates on the chest radiograph) or viral-type pneumonia. RESULTS The majority of the patients (79%) showed elevation of at least one of the three coagulation activation markers. Plasma CRP concentration correlated with F1 + 2 (R = 0.44, p < 0.05) and D-dimer (R = 0.71, p < 0.0001). Patients with bacterial-type pneumonia (n = 17) had higher D-dimer levels (p < 0.05) and lower levels of antithrombin (p = 0.005) and protein C (p = 0.08) than the patients with viral-type pneumonia. CONCLUSIONS Children with community-acquired bacterial-type pneumonia show distinctive changes in their coagulation system. The finding of coagulation system activation and depressed function of natural anticoagulants in uncomplicated pneumonia helps to understand the rapid and unpredictable changes observed in the coagulation status in patients with more severe forms of disease.
Collapse
|
112
|
Fra-1/AP-1 transcription factor negatively regulates pulmonary fibrosis in vivo. PLoS One 2012; 7:e41611. [PMID: 22911824 PMCID: PMC3404039 DOI: 10.1371/journal.pone.0041611] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/22/2012] [Indexed: 11/23/2022] Open
Abstract
The Fra-1/AP-1 transcription factor plays a key role in tumor epithelial cell progression; however, its role in pathogenic lung fibrosis remains unclear. In the present study, using a genetic approach (Fra-1 deficient mice), we have demonstrated a novel regulatory (protective) role for Fra-1 in lung fibrosis. We found greater levels of progressive interstitial fibrosis, characterized by increased levels of inflammation, collagen accumulation, and profibrotic and fibrotic gene expression in the lungs of Fra-1Δ/Δ mice than in those of Fra-1+/+ mice following bleomycin treatment. Fra-1 knockdown in human lung epithelial cells caused the upregulation of mesenchymal marker N-cadherin, concomitant with a downregulation of the epithelial phenotype marker E-cadherin, under basal conditions and in response to bleomycin and TGF-β1. Furthermore, Fra-1 knockdown caused an enhanced expression of type 1 collagen and the downregulation of collagenase (MMP-1 and MMP-13) gene expression in human lung epithelial cells. Collectively, our findings demonstrate that Fra-1 mediates anti-fibrotic effects in the lung through the modulation of proinflammatory, profibrotic and fibrotic gene expression, and suggests that the Fra-1 transcription factor may be a potential target for pulmonary fibrosis, a progressive disorder with poor prognosis and treatment.
Collapse
|
113
|
Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:11. [PMID: 22824096 PMCID: PMC3443459 DOI: 10.1186/1755-1536-5-11] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
114
|
Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z. Fasudil, a Rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci 2012; 13:8293-8307. [PMID: 22942703 PMCID: PMC3430234 DOI: 10.3390/ijms13078293] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 11/16/2022] Open
Abstract
The mechanisms underlying the pathogenesis of idiopathic pulmonary fibrosis (IPF) involve multiple pathways, such as inflammation, epithelial mesenchymal transition, coagulation, oxidative stress, and developmental processes. The small GTPase, RhoA, and its target protein, Rho-kinase (ROCK), may interact with other signaling pathways known to contribute to pulmonary fibrosis. This study aimed to determine the beneficial effects and mechanisms of fasudil, a selective ROCK inhibitor, on bleomycin-induced pulmonary fibrosis in mice. Our results showed that the Aschcroft score and hydroxyproline content of the bleomycin-treated mouse lung decreased in response to fasudil treatment. The number of infiltrated inflammatory cells in the bronchoalveolar lavage fluid (BALF) was attenuated by fasudil. In addition, fasudil reduced the production of transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA), and plasminogen activator inhibitor-1 (PAI-1) mRNA and protein expression in bleomycin-induced pulmonary fibrosis. These findings suggest that fasudil may be a potential therapeutic candidate for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chunguo Jiang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
| | - Jia Liu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
| | - Yanxun Wang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
| | - Zhiwei Lu
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China; E-Mail:
| | - Zuojun Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-69155039; Fax: +86-10-69155039
| |
Collapse
|
115
|
Shea BS, Tager AM. Role of the lysophospholipid mediators lysophosphatidic acid and sphingosine 1-phosphate in lung fibrosis. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2012; 9:102-10. [PMID: 22802282 PMCID: PMC5455616 DOI: 10.1513/pats.201201-005aw] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/02/2012] [Indexed: 12/14/2022]
Abstract
Aberrant wound healing responses to lung injury are believed to contribute to fibrotic lung diseases, such as idiopathic pulmonary fibrosis (IPF). The lysophospholipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), by virtue of their ability to mediate many basic cellular functions, including survival, proliferation, migration, and contraction, can influence many of the biological processes involved in wound healing. Accordingly, recent investigations indicate that LPA and S1P may play critical roles in regulating the development of lung fibrosis. Here we review the evidence indicating that LPA and S1P regulate pulmonary fibrosis and the potential mechanisms through which these lysophospholipids may influence fibrogenesis induced by lung injury.
Collapse
Affiliation(s)
- Barry S Shea
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
116
|
siRNA against plasminogen activator inhibitor-1 ameliorates bleomycin-induced lung fibrosis in rats. Acta Pharmacol Sin 2012; 33:897-908. [PMID: 22659625 DOI: 10.1038/aps.2012.39] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM Plasminogen activator inhibitor-1 (PAI-1) is involved in the progression of pulmonary fibrosis. The present study was undertaken to examine the effects on pulmonary fibrosis of silencing PAI-1 expression with small interfering RNA (siRNA) and to assess the possible underlying mechanisms. METHODS Male Wistar rats were subjected to intratracheal injection of bleomycin (BLM, 5 mg/kg, 0.2 mL) to induce pulmonary fibrosis. Histopathological changes of lung tissue were examined with HE or Masson's trichrome staining. The expression levels of α-smooth muscle actin (α-SMA), collagen type-I and type-III, caspase-3, as well as p-ERK1/2 and PI3K/Akt in the lung tissue were evaluated using imunohistochemistry and Western blot analyses. The fibroblasts isolated from BLM-induced fibrotic lung tissue were cultured and transfected with pcDNA-PAI-1 or PAI-1siRNA. The expression level of PAI-1 in the fibroblasts was measured using real time RT-PCR and Western blot analysis. The fibroblast proliferation was evaluated using MTT assay. RESULTS Intratracheal injection of PAI-1-siRNA (7.5 nmoL/0.2 mL) significantly alleviated alveolitis and collagen deposition, reduced the expression of PAI-1, α-SMA, collagen type-I and collagen type-III, and increased the expression of caspase-3 in BLM-induced fibrotic lung tissue. In consistence with the in vivo results, the proliferation of the cultured fibroblasts from BLM-induced fibrotic lung tissue was inhibited by transfection with PAI-1-siRNA, and accelerated by overexpression of PAI-1 by transfection with pcDNA-PAI-1. The expression of caspase-3 was increased as a result of PAI-1 siRNA transfection, and decreased after transfection with pcDNA-PAI-1. In addition, the levels of p-ERK1/2 and PI3K/Akt in the fibrogenic lung tissue were reduced after treatment with PAI-1siRNA. CONCLUSION The data demonstrate that PAI-1 siRNA inhibits alveolitis and pulmonary fibrosis in BLM-treated rats via inhibiting the proliferation and promoting the apoptosis of fibroblasts. Suppression ERK and AKT signalling pathways might have at least partly contributed to this process. Targeting PAI-1 is a promising therapeutic strategy for pulmonary fibrosis.
Collapse
|
117
|
Shea BS, Tager AM. Sphingolipid regulation of tissue fibrosis. Open Rheumatol J 2012; 6:123-9. [PMID: 22802910 PMCID: PMC3395890 DOI: 10.2174/1874312901206010123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023] Open
Abstract
Bioactive sphingolipids, such as sphingosine 1-phosphate (S1P), dihydrosphingosine 1-phosphate (dhS1P) and ceramide, regulate a diverse array of cellular processes. Many of these processes are important components of wound-healing responses to tissue injury, including cellular apoptosis, vascular leak, fibroblast migration, and TGF-β signaling. Since over-exuberant or aberrant wound-healing responses to repetitive injury have been implicated in the pathogenesis of tissue fibrosis, these signaling sphingolipids have the potential to influence the development and progression of fibrotic diseases. Here we review accumulating in vitro and in vivo data indicating that these lipid mediators can in fact influence fibrogenesis in numerous organ systems, including the lungs, skin, liver, heart, and eye. Targeting these lipids, their receptors, or the enzymes involved in their metabolism consequently now appears to hold great promise for the development of novel therapies for fibrotic diseases.
Collapse
Affiliation(s)
- Barry S Shea
- Pulmonary and Critical Care Unit, and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
118
|
Osterholzer JJ, Christensen PJ, Lama V, Horowitz JC, Hattori N, Subbotina N, Cunningham A, Lin Y, Murdock BJ, Morey RE, Olszewski MA, Lawrence DA, Simon RH, Sisson TH. PAI-1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury. J Pathol 2012; 228:170-80. [PMID: 22262246 DOI: 10.1002/path.3992] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/12/2011] [Accepted: 01/12/2012] [Indexed: 01/16/2023]
Abstract
Fibrotic disorders of the lung are associated with perturbations in the plasminogen activation system. Specifically, plasminogen activator inhibitor-1 (PAI-1) expression is increased relative to the plasminogen activators. A direct role for this imbalance in modulating the severity of lung scarring following injury has been substantiated in the bleomycin model of pulmonary fibrosis. However, it remains unclear whether derangements in the plasminogen activation system contribute more generally to the pathogenesis of lung fibrosis beyond bleomycin injury. To answer this question, we employed an alternative model of lung scarring, in which type II alveolar epithelial cells (AECs) are specifically injured by administering diphtheria toxin (DT) to mice genetically engineered to express the human DT receptor (DTR) off the surfactant protein C promoter. This targeted AEC injury results in the diffuse accumulation of interstitial collagen. In the present study, we found that this targeted type II cell insult also increases PAI-1 expression in the alveolar compartment. We identified AECs and lung macrophages to be sources of PAI-1 production. To determine whether this elevated PAI-1 concentration was directly related to the severity of fibrosis, DTR(+) mice were crossed into a PAI-1-deficient background (DTR(+) : PAI-1(-/-) ). DT administration to DTR(+) : PAI-1(-/-) animals caused significantly less fibrosis than was measured in DTR(+) mice with intact PAI-1 production. PAI-1 deficiency also abrogated the accumulation of CD11b(+) exudate macrophages that were found to express PAI-1 and type-1 collagen. These observations substantiate the critical function of PAI-1 in pulmonary fibrosis pathogenesis and provide new insight into a potential mechanism by which this pro-fibrotic molecule influences collagen accumulation. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Sebag SC, Bastarache JA, Ware LB. Therapeutic modulation of coagulation and fibrinolysis in acute lung injury and the acute respiratory distress syndrome. Curr Pharm Biotechnol 2012; 12:1481-96. [PMID: 21401517 DOI: 10.2174/138920111798281171] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 01/01/2023]
Abstract
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are characterized by excessive intraalveolar fibrin deposition, driven, at least in part by inflammation. The imbalance between activation of coagulation and inhibition of fibrinolysis in patients with ALI/ARDS favors fibrin formation and appears to occur both systemically and in the lung and airspace. Tissue factor (TF), a key mediator of the activation of coagulation in the lung, has been implicated in the pathogenesis of ALI/ARDS. As such, there have been numerous investigations modulating TF activity in a variety of experimental systems in order to develop new therapeutic strategies for ALI/ARDS. This review will summarize current understanding of the role of TF and other proteins of the coagulation cascade as well the fibrinolysis pathway in the development of ALI/ARDS with an emphasis on the pathways that are potential therapeutic targets. These include the TF inhibitor pathway, the protein C pathway, antithrombin, heparin, and modulation of fibrinolysis through plasminogen activator- 1 (PAI-1) or plasminogen activators (PA). Although experimental studies show promising results, clinical trials to date have proven unsuccessful in improving patient outcomes. Modulation of coagulation and fibrinolysis has complex effects on both hemostasis and inflammatory pathways and further studies are needed to develop new treatment strategies for patients with ALI/ARDS.
Collapse
Affiliation(s)
- Sara C Sebag
- Department of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st Avenue S. Nashville, TN 37232-2650, USA
| | | | | |
Collapse
|
120
|
Huang WT, Vayalil PK, Miyata T, Hagood J, Liu RM. Therapeutic value of small molecule inhibitor to plasminogen activator inhibitor-1 for lung fibrosis. Am J Respir Cell Mol Biol 2012; 46:87-95. [PMID: 21852684 DOI: 10.1165/rcmb.2011-0139oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibrosis is a final stage of many lung diseases, with no effective treatment. Plasminogen activator inhibitor-1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators (tPA and uPA, respectively), plays a critical role in the development of fibrosis. In this study, we explored the therapeutic potential of an orally effective small molecule PAI-1 inhibitor, TM5275, in a model of lung fibrosis induced by transforming growth factor-β1 (TGF-β1), the most potent and ubiquitous profibrogenic cytokine, and in human lung fibroblasts (CCL-210 cells). The results show that an intranasal instillation of AdTGF-β1(223/225), an adenovirus expressing constitutively active TGF-β1, increased the expression of PAI-1 and induced fibrosis in murine lung tissue. On the other hand, treating mice with 40 mg/kg of TM5275 for 10 days, starting 4 days after the instillation of AdTGF-β1(223/225), restored the activities of uPA and tPA and almost completely blocked TGF-β1-induced lung fibrosis, as shown by collagen staining, Western blotting, and the measurement of hydroxyproline. No loss of body weight was evident under these treatment conditions with TM5275. Furthermore, we show that TM5275 induced apoptosis in both myofibroblasts (TGF-β1-treated) and naive (TGF-β1-untreated) human lung fibroblasts, and this apoptosis was associated with the activation of caspase-3/7, the induction of p53, and the inhibition of α-smooth muscle actin, fibronectin, and PAI-1 expression. Such an inhibition of fibrotic responses by TM5275 occurred even in cells pretreated with TGF-β1 for 6 hours. Together, the results suggest that TM5275 is a relatively safe and potent antifibrotic agent, with therapeutic potential in fibrotic lung disease.
Collapse
Affiliation(s)
- Wen-Tan Huang
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, 35294-0022, USA
| | | | | | | | | |
Collapse
|
121
|
PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury. PLoS One 2012; 7:e35740. [PMID: 22563394 PMCID: PMC3338537 DOI: 10.1371/journal.pone.0035740] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/20/2012] [Indexed: 01/18/2023] Open
Abstract
Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 −/− mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 −/− compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 −/− mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 −/− mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury.
Collapse
|
122
|
Chung CL, Sheu JR, Chen WL, Chou YC, Hsiao CJ, Hsiao SH, Hsu MJ, Cheng YW, Hsiao G. Histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide attenuates plasminogen activator inhibitor-1 expression in human pleural mesothelial cells. Am J Respir Cell Mol Biol 2012; 46:437-45. [PMID: 22033265 DOI: 10.1165/rcmb.2011-0118oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), primarily up-regulated by transforming growth factor (TGF)-β, is essential in the development of fibrosis. Histone deacetylase (HDAC) was shown to modulate gene expression and fibrogenesis in various tissues. However, the implications of HDAC in terms of PAI-1 expression and pleural fibrosis remain unclear. In this study, we examined the effects of m-carboxycinnamic acid bis-hydroxamide (CBHA), a hybrid-polar HDAC inhibitor, on the TGF-β1-induced expression of PAI-1 in a human pleural mesothelial cell line (MeT-5A). MeT-5A cells were treated with TGF-β1 in the presence or absence of CBHA. We assayed the expression and stability of PAI-1 mRNA and protein, PAI-1 promoter activity, the activation of Smad signaling, the protein-protein interactions of Smads with transcriptional cofactors Sp1 and coactivator p300, and the expression of the mRNA-stabilizing protein nucleolin. The results indicate that CBHA significantly inhibited TGF-β1-induced PAI-1 mRNA and protein expression, and attenuated PAI-1 promoter activity in MeT-5A cells. CBHA abrogated TGF-β1-induced Smad4 nuclear translocation, but not Smad2/3 activation. Furthermore, the association of Smad4 with p300, but not with Sp1, was disrupted by CBHA. Alternatively, CBHA suppressed TGF-β1-induced nucleolin expression, and thereby destabilized PAI-1 mRNA and decreased PAI-1 protein concentrations. These findings suggest that the inhibition of HDAC activity by CBHA may attenuate PAI-1 expression through the modulation of cellular signaling at multiple levels. Given the down-regulating effect of CBHA on PAI-1 expression, HDAC inhibitors should be tested further in animal models as potential therapeutic agents for pleural fibrosis.
Collapse
Affiliation(s)
- Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Kager LM, van der Windt GJW, Wieland CW, Florquin S, van 't Veer C, van der Poll T. Plasminogen activator inhibitor type I may contribute to transient, non-specific changes in immunity in the subacute phase of murine tuberculosis. Microbes Infect 2012; 14:748-55. [PMID: 22484384 DOI: 10.1016/j.micinf.2012.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Tuberculosis, caused by Mycobacterium (M.) tuberculosis, is a devastating infectious disease causing many deaths worldwide. Non-specific host defense mechanisms such as the coagulation and fibrinolytic system may give insight in possible new therapeutic targets. Plasminogen activator inhibitor type-1 (PAI-1), an important regulator of inflammation and fibrinolysis, might be of interest as tuberculosis patients have elevated plasma levels of PAI-1. In this study we set out to investigate the role of PAI-1 during tuberculosis in vivo. Wildtype (WT) and PAI-1 deficient (PAI-1⁻/⁻) mice were intranasally infected with M. tuberculosis H37rv and sacrificed after 2, 5 and 29 weeks. Five weeks post-infection, bacterial loads in lungs of PAI-1⁻/⁻ mice were significantly higher compared to WT mice, while no differences were seen 2 and 29 weeks post-infection. At two weeks post-infection increased influx of macrophages and lymphocytes was observed. PAI-1 deficiency was associated with a reduced cytokine response in the lungs; however, upon stimulation with tuberculin purified protein derivative (PPD), PAI-1⁻/⁻ splenocytes released increased levels of IFN-γ compared to WT. No clear differences were found between PAI-1⁻/⁻ and WT mice at 29 weeks after infection. In conclusion, these data suggest that PAI-1 contributes to transient, non-specific changes in immunity during the early phase of murine tuberculosis.
Collapse
Affiliation(s)
- Liesbeth M Kager
- Center for Infection and Immunity Amsterdam-CINIMA, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.
Collapse
Affiliation(s)
- Asish K. Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Douglas E. Vaughan
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
125
|
Genetic variants in TGFβ-1 and PAI-1 as possible risk factors for cardiovascular disease after radiotherapy for breast cancer. Radiother Oncol 2012; 102:115-21. [DOI: 10.1016/j.radonc.2011.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 01/18/2023]
|
126
|
Maher TM. Idiopathic pulmonary fibrosis: pathobiology of novel approaches to treatment. Clin Chest Med 2011; 33:69-83. [PMID: 22365247 DOI: 10.1016/j.ccm.2011.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of unknown cause that conveys a dismal prognosis. In the United States there are currently no licensed therapies for treatment of IPF. The development of effective IPF clinical trials networks across the United States and Europe, however, has led to key developments in the treatment of IPF. Advances in understanding of the pathogenetic processes involved in the development of pulmonary fibrosis have led to novel therapeutic targets. These developments offer hope that there may, in the near future, be therapeutic options available for treatment of this devastating disease.
Collapse
Affiliation(s)
- Toby M Maher
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK.
| |
Collapse
|
127
|
Baron RM, Choi AJS, Owen CA, Choi AMK. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol 2011; 302:L485-97. [PMID: 22198907 DOI: 10.1152/ajplung.00085.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators.
Collapse
Affiliation(s)
- Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
128
|
Bhandary YP, Shetty SK, Marudamuthu AS, Gyetko MR, Idell S, Gharaee-Kermani M, Shetty RS, Starcher BC, Shetty S. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. Am J Physiol Lung Cell Mol Physiol 2011; 302:L463-73. [PMID: 22140072 DOI: 10.1152/ajplung.00099.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar type II (ATII) cell apoptosis and depressed fibrinolysis that promotes alveolar fibrin deposition are associated with acute lung injury (ALI) and the development of pulmonary fibrosis (PF). We therefore sought to determine whether p53-mediated inhibition of urokinase-type plasminogen activator (uPA) and induction of plasminogen activator inhibitor-1 (PAI-1) contribute to ATII cell apoptosis that precedes the development of PF. We also sought to determine whether caveolin-1 scaffolding domain peptide (CSP) reverses these changes to protect against ALI and PF. Tissues as well as isolated ATII cells from the lungs of wild-type (WT) mice with BLM injury show increased apoptosis, p53, and PAI-1, and reciprocal suppression of uPA and uPA receptor (uPAR) protein expression. Treatment of WT mice with CSP reverses these effects and protects ATII cells against bleomycin (BLM)-induced apoptosis whereas CSP fails to attenuate ATII cell apoptosis or decrease p53 or PAI-1 in uPA-deficient mice. These mice demonstrate more severe PF. Thus p53 is increased and inhibits expression of uPA and uPAR while increasing PAI-1, changes that promote ATII cell apoptosis in mice with BLM-induced ALI. We show that CSP, an intervention targeting this pathway, protects the lung epithelium from apoptosis and prevents PF in BLM-induced lung injury via uPA-mediated inhibition of p53 and PAI-1.
Collapse
Affiliation(s)
- Yashodhar P Bhandary
- Texas Lung Injury Institute, Department of Medicine, The University of Texas Health Science Center, Tyler, Texas 75708, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Katre A, Ballinger C, Akhter H, Fanucchi M, Kim DK, Postlethwait E, Liu RM. Increased transforming growth factor beta 1 expression mediates ozone-induced airway fibrosis in mice. Inhal Toxicol 2011; 23:486-94. [PMID: 21689010 DOI: 10.3109/08958378.2011.584919] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ozone (O₃), a commonly encountered environmental pollutant, has been shown to induce pulmonary fibrosis in different animal models; the underlying mechanism, however, remains elusive. To investigate the molecular mechanism underlying O₃-induced pulmonary fibrosis, 6- to 8-week-old C57BL/6 male mice were exposed to a cyclic O₃ exposure protocol consisting of 2 days of filtered air and 5 days of O₃ exposure (0.5 ppm, 8 h/day) for 5 and 10 cycles with or without intraperitoneal injection of IN-1233, a specific inhibitor of the type 1 receptor of transforming growth factor beta (TGF-β), the most potent profibrogenic cytokine. The results showed that O₃ exposure for 5 or 10 cycles increased the TGF-β protein level in the epithelial lining fluid (ELF), associated with an increase in the expression of plasminogen activator inhibitor 1 (PAI-1), a TGF-β-responsive gene that plays a critical role in the development of fibrosis under various pathological conditions. Cyclic O₃ exposure also increased the deposition of collagens and alpha smooth muscle actin (α-SMA) in airway walls. However, these fibrotic changes were not overt until after 10 cycles of O₃ exposure. Importantly, blockage of the TGF-β signaling pathway with IN-1233 suppressed O₃-induced Smad2/3 phosphorylation, PAI-1 expression, as well as collagens and α-SMA deposition in the lung. Our data demonstrate for the first time that O₃ exposure increases TGF-β expression and activates TGF-β signaling pathways, which mediates O₃-induced lung fibrotic responses in vivo.
Collapse
Affiliation(s)
- Ashwini Katre
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Miyamoto S, Hattori N, Senoo T, Onari Y, Iwamoto H, Kanehara M, Ishikawa N, Fujitaka K, Haruta Y, Murai H, Yokoyama A, Kohno N. Intra-airway administration of small interfering RNA targeting plasminogen activator inhibitor-1 attenuates allergic asthma in mice. Am J Physiol Lung Cell Mol Physiol 2011; 301:L908-16. [PMID: 21926267 DOI: 10.1152/ajplung.00115.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest that plasminogen activator inhibitor-1 (PAI-1), a major inhibitor of the fibrinolytic system, may promote the development of asthma. To further investigate the significance of PAI-1 in the pathogenesis of asthma and determine the possibility that PAI-1 could be a therapeutic target for asthma, this study was conducted. First, PAI-1 levels in induced sputum (IS) from asthmatic subjects and healthy controls were measured. In asthmatic subjects, IS PAI-1 levels were elevated, compared with that of healthy controls, and were significantly higher in patients with long-duration asthma compared with short-duration asthma. PAI-1 levels were also found to correlate with IS transforming growth factor-β levels. Then, acute and chronic asthma models induced by ovalbumin were established in PAI-1-deficient mice and wild-type mice that received intra-airway administrations of small interfering RNA against PAI-1 (PAI-1-siRNA). We could demonstrate that eosinophilic airway inflammation and airway hyperresponsiveness were reduced in an acute asthma model, and airway remodeling was suppressed in a chronic asthma model in both PAI-1-deficient mice and wild-type mice that received intra-airway administration of PAI-1-siRNA. These results indicate that PAI-1 is strongly involved in the pathogenesis of asthma, and intra-airway administration of PAI-1-siRNA may be able to become a new therapeutic approach for asthma.
Collapse
Affiliation(s)
- Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Concentrations of plasminogen activator inhibitor-1 (PAI-1) and urokinase plasminogen activator (uPA) in induced sputum of asthma patients after allergen challenge. Folia Histochem Cytobiol 2011; 48:518-23. [PMID: 21478092 DOI: 10.2478/v10042-010-0075-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urokinase plasminogen activator (uPA) and its inhibitor (PAI-1) are involved in tiisue remodeling and repair processes associated with acute and chronic inflammation. The aim of the study was to evaluate the effect of allergen challenge on concentration of uPA and PAI-1 in induced sputum of house dust mite allergic asthmatics (HDM-AAs). Thirty HDM-AAs and ten healthy persons (HCs)were recruited for the study. In 24 HDM-AAs bronchial challenge with Dermatophagoides pteronyssinus (Dp) and in 6 HDM-AAs sham challenege with saline were performed. In HDM-AAs sputum was induced 24 hours before (T0) and 24 hours (T24) after the challenge. Concentration of uPA and PAI-1 in induced sputum were determined using immunoenzymatic assays. At T0 in HDM-AAs mean sputum uPA (151 ± 96 pg/ml) and PAI-1 (4341 ± 1262 pg/ml) concentrations were higher than in HC (18.8 ± 6.7 pg/ml; p=0.0002 and 596 ± 180 pg/ml; p<0.0001; for uPA and PAI-1 respectively). After allergen challenge further increase in sputum uPA (187 ± 144 pg/ml; p=0.03) and PAI-1 (6252 ± 2323 pg/ml; p<0.0001) concentrations were observed. Moreover, in Dp challenged, but not in saline challenged HDM-AAs the mean uPA/PAI-1 ratio decreased significantly at T24. No significant increase in the studied parameters were found in sham challenged patients. In HDM-AAs allergen exposure leads to activation of the plasmin system in the airways. Greater increase of the PAI-1 concentration than uPA concentration after allergen challenge may promote airway remodeling and play an important role in the development of bronchial hyperreactivity.
Collapse
|
132
|
Okunishi K, Sisson TH, Huang SK, Hogaboam CM, Simon RH, Peters-Golden M. Plasmin overcomes resistance to prostaglandin E2 in fibrotic lung fibroblasts by reorganizing protein kinase A signaling. J Biol Chem 2011; 286:32231-43. [PMID: 21795691 DOI: 10.1074/jbc.m111.235606] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Collagen deposition by fibroblasts contributes to scarring in fibrotic diseases. Activation of protein kinase A (PKA) by cAMP represents a pivotal brake on fibroblast activation, and the lipid mediator prostaglandin E(2) (PGE(2)) exerts its well known anti-fibrotic actions through cAMP signaling. However, fibrotic fibroblasts from the lungs of patients with idiopathic pulmonary fibrosis, or of mice with bleomycin-induced fibrosis, are resistant to the normal collagen-inhibiting action of PGE(2). In this study, we demonstrate that plasminogen activation to plasmin restores PGE(2) sensitivity in fibrotic lung fibroblasts from human and mouse. This involves amplified PKA signaling resulting from the promotion of new interactions between AKAP9 and PKA regulatory subunit II in the perinuclear region as well as from the inhibition of protein phosphatase 2A. This is the first report to show that an extracellular mediator can dramatically reorganize and amplify the intracellular PKA-A-kinase anchoring protein signaling network and suggests a new strategy to control collagen deposition by fibrotic fibroblasts.
Collapse
Affiliation(s)
- Katsuhide Okunishi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
133
|
Chua KN, Poon KL, Lim J, Sim WJ, Huang RYJ, Thiery JP. Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. Adv Drug Deliv Rev 2011; 63:558-67. [PMID: 21335038 DOI: 10.1016/j.addr.2011.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 01/04/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental mechanism in development driving body plan formation. EMT describes a transition process wherein polarized epithelial cells lose their characteristics and acquire a mesenchymal phenotype. The apico-basal polarity of epithelial cells is replaced by a front-rear polarity in mesenchymal cells which favor cell-extracellular matrix than intercellular adhesion. These events serve as a prerequisite to the context-dependent migratory and invasive functions of mesenchymal cells. In solid tumors, carcinoma cells undergoing EMT not only invade and metastasize but also exhibit cancer stem cell-like properties, providing resistance to conventional and targeted therapies. In cardiovascular systems, epicardial cells engaged in EMT contribute to myocardial regeneration. Conversely, cardiovascular endothelial cells undergoing EMT cause cardiac fibrosis. Growing evidence has shed light on the potential development of novel therapeutics that target cell movement by applying the EMT concept, and this may provide new therapeutic strategies for the treatment of cancer and heart diseases.
Collapse
Affiliation(s)
- Kian-Ngiap Chua
- Institute of Molecular Cell Biology, Experimental Therapeutic Centre, Biopolis A*STAR, Cancer Science Institute National University of Singapore and Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
134
|
Plasminogen activator inhibitor-type I gene deficient mice show reduced influx of neutrophils in ventilator-induced lung injury. Crit Care Res Pract 2011; 2011:217896. [PMID: 21789277 PMCID: PMC3140778 DOI: 10.1155/2011/217896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/15/2011] [Accepted: 05/17/2011] [Indexed: 01/11/2023] Open
Abstract
Ventilator-induced lung injury (VILI) is associated with inhibition of the fibrinolytic system secondary to increased production of plasminogen activator inhibitor- (PAI-)1. To determine the role of PAI-1 on pulmonary coagulopathy and inflammation during mechanical ventilation, PAI-1 gene-deficient mice and their wild-type littermates were anesthetized (control), or anesthetized, tracheotomized and subsequently ventilated for 5 hours with either low tidal volumes (LVT) or high tidal volumes (HVT). VILI was assessed by pulmonary coagulopathy, lung wet-to-dry ratios, total protein level in bronchoalveolar lavage fluid, neutrophil influx, histopathology, and pulmonary and plasma cytokine levels. Ventilation resulted in pulmonary coagulopathy and inflammation, with more injury following ventilation with HVT as compared to LVT. In PAI-1 gene-deficient mice, the influx of neutrophils in the pulmonary compartment was attenuated, while increased levels of pulmonary cytokines were found. Other endpoints of VILI were not different between PAI-1 gene-deficient and wild-type mice. These data indicate that a defect fibrinolytic response attenuates recruitment of neutrophils in VILI.
Collapse
|
135
|
Yim HE, Ha KS, Bae IS, Yoo KH, Hong YS, Lee JW. Postnatal early overnutrition dysregulates the intrarenal renin-angiotensin system and extracellular matrix-linked molecules in juvenile male rats. J Nutr Biochem 2011; 23:937-45. [PMID: 21752621 DOI: 10.1016/j.jnutbio.2011.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/17/2011] [Accepted: 04/20/2011] [Indexed: 12/22/2022]
Abstract
Overnutrition during the perinatal period has been associated with susceptibility to obesity and related comorbidities. We examined the effects of postnatal early overnutrition on the development of juvenile obesity and the associated renal pathophysiological changes. Three or 10 pups per mother from rat pup litters were assigned to either the overnutrition or control groups during the first 21 days of life. The effects of overfeeding were measured at 28 days. The smaller male litter pups were heavier than the controls between 4 and 28 days after birth (P<.05). By 28 days of age, the kidney weight per body weight ratio decreased in the small litter group (P<.05). Circulating leptin levels increased in the small litter rats (P<.05). Overnutrition had no effect on renal cell proliferation, apoptosis, macrophages and glomerulosclerosis. In the immunoblots and immunohistochemistry, renin and angiotensin II type (AT) 2 receptor expression increased in the overfed rats (P<.05). By contrast, the plasminogen activator inhibitor (PAI)-1 and matrix metalloproteinase (MMP)-9 expression decreased in the overnutrition group (P<.05). The AT 1 receptor, tissue inhibitor of MMP-1, monocyte chemoattractant protein-1, tumor necrosis factor-α, osteopontin and adiponectin expression was not changed. Our data showed that postnatal early overfeeding led to hyperleptinemia, juvenile obesity and the acquired reset of renal maturation. Up-regulation of renin and AT2 and down-regulation of PAI-1 and MMP-9 might contribute to abnormal programming of renal growth in rats exposed to postnatal early overnutrition.
Collapse
Affiliation(s)
- Hyung Eun Yim
- Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
136
|
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is increased in the lungs of patients with pulmonary fibrosis, and animal studies have shown that experimental manipulations of PAI-1 levels directly influence the extent of scarring that follows lung injury. PAI-1 has 2 known properties that could potentiate fibrosis, namely an antiprotease activity that inhibits the generation of plasmin, and a vitronectin-binding function that interferes with cell adhesion to this extracellular matrix protein. To determine the relative importance of each PAI-1 function in lung fibrogenesis, we administered mutant PAI-1 proteins that possessed either intact antiprotease or vitronectin-binding activity to bleomycin-injured mice genetically deficient in PAI-1. We found that the vitronectin-binding capacity of PAI-1 was the primary determinant required for its ability to exacerbate lung scarring induced by intratracheal bleomycin administration. The critical role of the vitronectin-binding function of PAI-1 in fibrosis was confirmed in the bleomycin model using mice genetically modified to express the mutant PAI-1 proteins. We conclude that the vitronectin-binding function of PAI-1 is necessary and sufficient in its ability to exacerbate fibrotic processes in the lung.
Collapse
|
137
|
Makarova AM, Lebedeva TV, Nassar T, Higazi AAR, Xue J, Carinato ME, Bdeir K, Cines DB, Stepanova V. Urokinase-type plasminogen activator (uPA) induces pulmonary microvascular endothelial permeability through low density lipoprotein receptor-related protein (LRP)-dependent activation of endothelial nitric-oxide synthase. J Biol Chem 2011; 286:23044-53. [PMID: 21540184 PMCID: PMC3123072 DOI: 10.1074/jbc.m110.210195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 04/19/2011] [Indexed: 01/11/2023] Open
Abstract
Urokinase plasminogen activator (uPA) and PA inhibitor type 1 (PAI-1) are elevated in acute lung injury, which is characterized by a loss of endothelial barrier function and the development of pulmonary edema. Two-chain uPA and uPA-PAI-1 complexes (1-20 nM) increased the permeability of monolayers of human pulmonary microvascular endothelial cells (PMVECs) in vitro and lung permeability in vivo. The effects of uPA-PAI-1 were abrogated by the nitric-oxide synthase (NOS) inhibitor L-NAME (N(D)-nitro-L-arginine methyl ester). Two-chain uPA (1-20 nM) and uPA-PAI-1 induced phosphorylation of endothelial NOS-Ser(1177) in PMVECs, which was followed by generation of NO and the nitrosylation and dissociation of β-catenin from VE-cadherin. uPA-induced phosphorylation of eNOS was decreased by anti-low density lipoprotein receptor-related protein-1 (LRP) antibody and an LRP antagonist, receptor-associated protein (RAP), and when binding to the uPA receptor was blocked by the isolated growth factor-like domain of uPA. uPA-induced phosphorylation of eNOS was also inhibited by the protein kinase A (PKA) inhibitor, myristoylated PKI, but was not dependent on PI3K-Akt signaling. LRP blockade and inhibition of PKA prevented uPA- and uPA-PAI-1-induced permeability of PMVEC monolayers in vitro and uPA-induced lung permeability in vivo. These studies identify a novel pathway involved in regulating PMVEC permeability and suggest the utility of uPA-based approaches that attenuate untoward permeability following acute lung injury while preserving its salutary effects on fibrinolysis and airway remodeling.
Collapse
Affiliation(s)
- Anastasia M. Makarova
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tatiana V. Lebedeva
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Taher Nassar
- the Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel, and
| | - Abd Al-Roof Higazi
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- the Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel, and
| | - Jing Xue
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- the Department of Laboratory Medicine, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Maria E. Carinato
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Khalil Bdeir
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Douglas B. Cines
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Victoria Stepanova
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
138
|
Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells. Cell Tissue Res 2011; 347:225-43. [PMID: 21626291 PMCID: PMC3250618 DOI: 10.1007/s00441-011-1178-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/15/2011] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis.
Collapse
|
139
|
Zmijewski JW, Bae HB, Deshane JS, Peterson CB, Chaplin DD, Abraham E. Inhibition of neutrophil apoptosis by PAI-1. Am J Physiol Lung Cell Mol Physiol 2011; 301:L247-54. [PMID: 21622848 DOI: 10.1152/ajplung.00075.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased circulating and tissue levels of plasminogen activator inhibitor 1 (PAI-1) are often present in severe inflammatory states associated with neutrophil activation and accumulation and correlate with poor clinical outcome from many of these conditions. The mechanisms by which PAI-1 contributes to inflammation have not been fully delineated. In the present experiments, we found that addition of PAI-1 to neutrophil cultures diminished the rate of spontaneous and TNF-related apoptosis-inducing ligand-induced apoptotic cell death. The effects of PAI-1 on cell viability were associated with activation of antiapoptotic signaling pathways, including upregulation of PKB/Akt, Mcl-1, and Bcl-x(L). Although urokinase-plasminogen activator receptor, lipoprotein receptor-related protein, and vitronectin are primary ligands for PAI-1, these molecules were not involved in mediating its antiapoptotic properties. In contrast, blocking pertussis toxin-sensitive G protein-coupled receptors and selective inhibition of phosphatidylinositide 3-kinase reversed the ability of PAI-1 to extend neutrophil viability. The antiapoptotic effects of PAI-1 were also evident under in vivo conditions during LPS-induced acute lung injury, where enhanced apoptosis was present among neutrophils accumulating in the lungs of PAI-1(-/-) compared with PAI-1(+/+) mice. These results demonstrate a novel antiapoptotic role for PAI-1 that may contribute to its participation in neutrophil-associated inflammatory responses.
Collapse
Affiliation(s)
- Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | | | | | | | | | | |
Collapse
|
140
|
Nassar T, Yarovoi S, Fanne RA, Waked O, Allen TC, Idell S, Cines DB, Higazi AAR. Urokinase plasminogen activator regulates pulmonary arterial contractility and vascular permeability in mice. Am J Respir Cell Mol Biol 2011; 45:1015-21. [PMID: 21617202 DOI: 10.1165/rcmb.2010-0302oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The concentration of urokinase plasminogen activator (uPA) is elevated in pathological settings such as acute lung injury, where pulmonary arterial contractility and permeability are disrupted. uPA limits the accretion of fibrin after injury. Here we investigated whether uPA also regulates pulmonary arterial contractility and permeability. Contractility was measured using isolated pulmonary arterial rings. Pulmonary blood flow was measured in vivo by Doppler and pulmonary vascular permeability, according to the extravasation of Evans blue. Our data show that uPA regulates the in vitro pulmonary arterial contractility induced by phenylephrine in a dose-dependent manner through two receptor-dependent pathways, and regulates vascular contractility and permeability in vivo. Physiological concentrations of uPA (≤1 nM) stimulate the contractility of pulmonary arterial rings induced by phenylephrine through the low-density lipoprotein receptor-related protein receptor. The procontractile effect of uPA is independent of its catalytic activity. At pathophysiological concentrations, uPA (20 nM) inhibits contractility and increases vascular permeability. The inhibition of vascular contractility and increase of vascular permeability is mediated through a two-step process that involves docking to N-methyl-d-aspartate receptor-1 (NMDA-R1) on pulmonary vascular smooth muscle cells, and requires catalytic activity. Peptides that specifically inhibit the docking of uPA to NMDA-R, or the uPA variant with a mutated receptor docking site, abolished both the effects of uPA on vascular contractility and permeability, without affecting its catalytic activity. These data show that uPA, at concentrations found under pathological conditions, reduces pulmonary arterial contractility and increases permeability though the activation of NMDA-R1. The selective inhibition of NMDAR-1 activation by uPA can be accomplished without a loss of fibrinolytic activity.
Collapse
Affiliation(s)
- Taher Nassar
- Department of Pathology, Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Cho S, Kang J, Lyttle C, Harris K, Daley B, Grammer L, Avila P, Kumar R, Schleimer R. Association of elevated plasminogen activator inhibitor 1 levels with diminished lung function in patients with asthma. Ann Allergy Asthma Immunol 2011; 106:371-7. [PMID: 21530867 PMCID: PMC3102247 DOI: 10.1016/j.anai.2010.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/13/2010] [Accepted: 12/29/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND We previously reported that plasminogen activator inhibitor 1 (PAI-1) was upregulated in human asthmatic airways and promotes airway fibrosis in an allergen-challenged murine model of asthma. OBJECTIVES To examine whether elevated plasma levels of PAI-1 are associated with poor lung function in asthmatic patients. METHODS Five hundred nineteen adults were eligible for the study, and ultimately 353 adults were enrolled and completed the baseline protocol between January 24, 2004, and July 30, 2005. Of these, 231 adults with asthma from the Chicago Initiative to Raise Asthma Health Equity study were randomly selected and the plasma levels of PAI-1 were measured by enzyme-linked immunosorbent assay. Asthma burden, medication, smoking status, and body mass index (BMI) were obtained by history and spirometry was performed. A multivariate regression analysis was performed to evaluate the association of PAI-1 levels and lung function and the potential determinant variables that were associated with PAI-1. RESULTS We found associations between PAI-1 and BMI (β = 0.606, P = .002), smoking (β = 7.526, P = .001), and African American race (β = -9.061, P = .01). Obese patients showed a significant increase in PAI-1, and current smokers demonstrated higher levels of PAI-1 compared with nonsmokers. When we evaluated the associations between lung function parameters and PAI-1, we found that PAI-1 was negatively associated with forced vital capacity (FVC) (β = -0.098, P = .011) but not with forced expiratory volume in 1 second (FEV(1)) or the FEV(1)/FVC ratio. There was a negative association between BMI and FVC, and PAI-1 may mediate some of this association. CONCLUSIONS This study suggests a significant association between PAI-1 and lung function in patients with asthma. The effect of obesity on FVC may in part be mediated by PAI-1.
Collapse
Affiliation(s)
- Seong Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Cardenas JC, Owens AP, Krishnamurthy J, Sharpless NE, Whinna HC, Church FC. Overexpression of the cell cycle inhibitor p16INK4a promotes a prothrombotic phenotype following vascular injury in mice. Arterioscler Thromb Vasc Biol 2011; 31:827-33. [PMID: 21233453 PMCID: PMC3086817 DOI: 10.1161/atvbaha.110.221721] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 01/03/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Age-associated cellular senescence is thought to promote vascular dysfunction. p16(INK4a) is a cell cycle inhibitor that promotes senescence and is upregulated during normal aging. In this study, we examine the contribution of p16(INK4a) overexpression to venous thrombosis. METHODS AND RESULTS Mice overexpressing p16(INK4a) were studied with 4 different vascular injury models: (1) ferric chloride (FeCl(3)) and (2) Rose Bengal to induce saphenous vein thrombus formation; (3) FeCl(3) and vascular ligation to examine thrombus resolution; and (4) lipopolysaccharide administration to initiate inflammation-induced vascular dysfunction. p16(INK4a) transgenic mice had accelerated occlusion times (13.1 ± 0.4 minutes) compared with normal controls (19.7 ± 1.1 minutes) in the FeCl(3) model and 12.7 ± 2.0 and 18.6 ± 1.9 minutes, respectively in the Rose Bengal model. Moreover, overexpression of p16(INK4a) delayed thrombus resolution compared with normal controls. In response to lipopolysaccharide treatment, the p16(INK4a) transgenic mice showed enhanced thrombin generation in plasma-based calibrated automated thrombography assays. Finally, bone marrow transplantation studies suggested increased p16(INK4a) expression in hematopoietic cells contributes to thrombosis, demonstrating a role for p16(INK4a) expression in venous thrombosis. CONCLUSIONS Venous thrombosis is augmented by overexpression of the cellular senescence protein p16(INK4a).
Collapse
Affiliation(s)
- Jessica C Cardenas
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, NC 27599-7035, USA
| | | | | | | | | | | |
Collapse
|
143
|
Landmark-Høyvik H, Dumeaux V, Reinertsen KV, Edvardsen H, Fosså SD, Børresen-Dale AL. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis. Int J Radiat Oncol Biol Phys 2011; 79:875-83. [DOI: 10.1016/j.ijrobp.2010.09.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 10/18/2022]
|
144
|
Niemantsverdriet M, de Jong E, Langendijk JA, Kampinga HH, Coppes RP. Synergistic induction of profibrotic PAI-1 by TGF-β and radiation depends on p53. Radiother Oncol 2011; 97:33-5. [PMID: 20435362 DOI: 10.1016/j.radonc.2010.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/16/2022]
Abstract
Radiation-induced fibrosis is a severe side effect of radiotherapy. TGF-β and radiation synergistically induce expression of the profibrotic PAI-1 gene and this cooperation potentially involves p53. Here, we demonstrate that p53 is both indispensable and sufficient for the radiation effect inducing synergistic activation of PAI-1 by radiation and TGF-β.
Collapse
Affiliation(s)
- Maarten Niemantsverdriet
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
145
|
Ueno M, Maeno T, Nomura M, Aoyagi-Ikeda K, Matsui H, Hara K, Tanaka T, Iso T, Suga T, Kurabayashi M. Hypoxia-inducible factor-1α mediates TGF-β-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 300:L740-52. [PMID: 21239537 DOI: 10.1152/ajplung.00146.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α), a transcription factor that functions as a master regulator of oxygen homeostasis, has been implicated in fibrinogenesis. Here, we explore the role of HIF-1α in transforming growth factor-β (TGF-β) signaling by examining the effects of TGF-β(1) on the expression of plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of lung tissue from a mouse bleomycin (BLM)-induced pulmonary fibrosis model revealed that expression of HIF-1α and PAI-1 was predominantly induced in alveolar macrophages. Real-time RT-PCR and ELISA analysis showed that PAI-1 mRNA and activated PAI-1 protein level were strongly induced 7 days after BLM instillation. Stimulation of cultured mouse alveolar macrophages (MH-S cells) with TGF-β(1) induced PAI-1 production, which was associated with HIF-1α protein accumulation. This accumulation of HIF-1α protein was inhibited by SB431542 (type I TGF-β receptor/ALK receptor inhibitor) but not by PD98059 (MEK1 inhibitor) and SB203580 (p38 MAP kinase inhibitor). Expression of prolyl-hydroxylase domain (PHD)-2, which is essential for HIF-1α degradation, was inhibited by TGF-β(1), and this decrease was abolished by SB431542. TGF-β(1) induction of PAI-1 mRNA and its protein expression were significantly attenuated by HIF-1α silencing. Transcriptome analysis by cDNA microarray of MH-S cells after HIF-1α silencing uncovered several pro-fibrotic genes whose regulation by TGF-β(1) required HIF-1α, including platelet-derived growth factor-A. Taken together, these findings expand our concept of the role of HIF-1α in pulmonary fibrosis in mediating the effects of TGF-β(1) on the expression of the pro-fibrotic genes in activated alveolar macrophages.
Collapse
Affiliation(s)
- Manabu Ueno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Vaughan DE. PAI-1 antagonists: the promise and the peril. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2011; 122:312-25. [PMID: 21686234 PMCID: PMC3116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The plasminogen activator (i.e., fibrinolytic) system is one of the key endogenous defense mechanisms against intravascular thrombosis. Thrombolytic agents represent the only direct way of augmenting fibrinolytic activity in humans, and have proven to be of value in the treatment of acute myocardial infarction and stroke. Although these agents are efficacious in the acute setting, they are not a viable option for long-term use. Net fibrinolytic activity is plasma is largely determined by the balance between tissue-type plasminogen activator (t-PA) and its natural, fast-acting inhibitor, plasminogen activator inhibitor-1 (PAI-1). The recent development of specific PAI-1 antagonists promises to expand the limits of understanding of the role of the fibrinolytic system in human disease, and to break through the current confines of therapeutic options that can effectively restore and augment the activity of the fibrinolytic system.
Collapse
Affiliation(s)
- Douglas E Vaughan
- Northwestern University Feinberg School of Medicine, Department of Medicine, 201 E. Huron Street, Galter Pavilion, 3rd Floor, Suite 3-150, Chicago, Illinois 60611, USA.
| |
Collapse
|
147
|
Song JS, Kang CM. Inhibition of Plasminogen Activator Inhibitor-1 Expression in Smoke-Exposed Alveolar Type II Epithelial Cells Attenuates Epithelial-Mesenchymal Transition. Tuberc Respir Dis (Seoul) 2011. [DOI: 10.4046/trd.2011.70.6.462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jeong Sup Song
- Department of Internal Medicine, Yeouido St Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Chun Mi Kang
- Department of Internal Medicine, Yeouido St Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
148
|
Brown NJ. This is not Dr. Conn's aldosterone anymore. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2011; 122:229-243. [PMID: 21686229 PMCID: PMC3116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In 1955, Dr. Jerome Conn described a patient with severe hypertension and hypokalemia and an aldosterone-secreting adenoma. The prevalence of hyperaldosteronism is increased among patients with obesity or resistant hypertension. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers reduce the secretion of aldosterone, but with chronic treatment aldosterone concentrations "escape" back to baseline values. Mineralocorticoid receptor (MR) antagonism reduces mortality in patients with heart disease who are already taking an ACE inhibitor and diuretic. In addition to affecting sodium and potassium homeostasis via classical MR-dependent pathways, aldosterone induces inflammation and causes cardiovascular remodeling and renal injury. Some of these effects involve MR-independent pathways. At the same time, ligands other than aldosterone can activate the MR. This paper reviews mechanism(s) for the proinflammatory and profibrotic effects of aldosterone and presents data indicating that endogenous aldosterone, acting at the MR, contributes to many of the pro-inflammatory and pro-fibrotic effects of angiotensin II in vivo.
Collapse
Affiliation(s)
- Nancy J Brown
- Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
149
|
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) and therefore plays an important role in the plasminogen/plasmin system. PAI-1 is involved in a variety of cardiovascular diseases (mainly through inhibition of t-PA) as well as in cell migration and tumor development (mainly through inhibition of u-PA and interaction with vitronectin). PAI-1 is a unique member of the serpin superfamily, exhibiting particular unique conformational and functional properties. Since its involvement in various biological and pathophysiological processes PAI-1 has been the subject of many in vivo studies in mouse models. We briefly discuss structural and physiological differences between human and mouse PAI-1 that should be taken into account prior to extrapolation of data obtained in mouse models to the human situation. The current review provides an overview of the various models, with a focus on cardiovascular disease and cancer, using wild-type mice or genetically modified mice, either deficient in PAI-1 or overexpressing different variants of PAI-1.
Collapse
|
150
|
Liu X, Lü L, Tao BB, Zhou AL, Zhu YC. Amelioration of glomerulosclerosis with all-trans retinoic acid is linked to decreased plasminogen activator inhibitor-1 and α-smooth muscle actin. Acta Pharmacol Sin 2011; 32:70-8. [PMID: 21206504 PMCID: PMC4003321 DOI: 10.1038/aps.2010.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/01/2010] [Indexed: 12/17/2022]
Abstract
AIM To examine the effects of all-trans retinoic acid (atRA) on renal morphology and function as well as on renal plasminogen activator inhibitor-1 (PAI-1) expression and plasmin activity in rats with 5/6 nephrectomy. METHODS Adult male Sprague Dawley rats were given 5/6 nephrectomy or sham operation. Renal function was measured 2 weeks later. The nephrectomized rats were assigned to groups matched for proteinuria and treated with vehicle or atRA (5 or 10 mg/kg by gastric gavage once daily) for the next 12 weeks. Rats with sham operation were treated with vehicle. At the end of the treatments, kidneys were collected for histological examination, Western blot analysis, and enzymatic activity measurements. RESULTS The 5/6 nephrectomy promoted hypertension, renal dysfunction, and glomerulosclerosis. These changes were significantly reduced in the atRA-treated group. The expressions of PAI-1 and α-smooth muscle actin (α-SMA) were significantly increased in the vehicle-treated nephrectomized rats. Treatment with atRA significantly reduced the expressions of PAI-1 and α-SMA. However, plasmin activity remained unchanged following atRA treatment. CONCLUSION Treatment with atRA ameliorates glomerulosclerosis and improves renal function in rats with 5/6 nephrectomy. This is associated with a decrease in PAI-1 and α-SMA, but not with a change in plasmin activity.
Collapse
Affiliation(s)
- Xia Liu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
- Department of Pathophysiology, Nantong University Nantong Medical College, Nantong 226001, China
| | - Lei Lü
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Bei-bei Tao
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ai-ling Zhou
- Department of Pathophysiology, Nantong University Nantong Medical College, Nantong 226001, China
| | - Yi-chun Zhu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|