101
|
Torrence D, Antonescu CR. The genetics of vascular tumours: an update. Histopathology 2022; 80:19-32. [PMID: 34958509 PMCID: PMC8950088 DOI: 10.1111/his.14458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Recent molecular advances have shed significant light on the classification of vascular tumours. Except for haemangiomas, vascular lesions remain difficult to diagnose, owing to their rarity and overlapping clinical, radiographic and histological features across malignancies. In particular, challenges still remain in the differential diagnosis of epithelioid vascular tumours, including epithelioid haemangioma and epithelioid haemangioendothelioma at the benign/low-grade end of the spectrum, and epithelioid angiosarcoma at the high-grade end. Historically, the classification of vascular tumours has been heavily dependent on the clinical setting and histological features, as traditional immunohistochemical markers across the group have often been non-discriminatory. The increased application of next-generation sequencing in clinical practice, in particular targeted RNA sequencing (such as Archer, Illumina), has led to numerous novel discoveries, mainly recurrent gene fusions (e.g. those involving FOS, FOSB, YAP1, and WWTR1), which have resulted in refined tumour classification and improved diagnostic reproducibility for vascular tumours. However, other molecular alterations besides fusions have been discovered in vascular tumours, including somatic mutations (e.g. involving GNA family and IDH genes) in a variety of haemangiomas, as well as copy number alterations in high-grade angiosarcomas (e.g. MYC amplifications). Moreover, the translation of these novel molecular abnormalities into diagnostic ancillary markers, either fluorescence in-situ hybridisation probes or surrogate immunohistochemical markers (FOSB, CAMTA1, YAP1, and MYC), has been remarkable. This review will focus on the latest molecular discoveries covering both benign and malignant vascular tumours, and will provide practical diagnostic algorithms, highlighting frequently encountered pitfalls and challenges in the diagnosis of vascular lesions.
Collapse
Affiliation(s)
- Dianne Torrence
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY,Corresponding author: Cristina R Antonescu, MD, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065,
| |
Collapse
|
102
|
Papke DJ, Hornick JL. Recent advances in the diagnosis, classification and molecular pathogenesis of cutaneous mesenchymal neoplasms. Histopathology 2021; 80:216-232. [DOI: 10.1111/his.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Affiliation(s)
- D J Papke
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| | - J L Hornick
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
103
|
Folpe AL. ‘I Can’t Keep Up!’: an update on advances in soft tissue pathology occurring after the publication of the 2020 World Health Organization classification of soft tissue and bone tumours. Histopathology 2021; 80:54-75. [DOI: 10.1111/his.14460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew L Folpe
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN USA
| |
Collapse
|
104
|
Primary Eccrine Porocarcinoma of the Thumb With Metastasis: A Rare Case Report and Literature Review. Am J Dermatopathol 2021; 43:e285-e289. [PMID: 34797810 DOI: 10.1097/dad.0000000000002051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Eccrine porocarcinoma (EPC) is a rare malignant sweat gland tumor that accounts for approximately 0.005% of all cutaneous carcinomas. It favors the lower extremities. Only 3% of EPCs are on the hand, and only 6 cases occurring specifically on fingers have been previously documented. However, we met a patient with EPC presenting the primary lesion on the left thumb and an extensive cutaneous metastasis on the left forearm. Pathologic findings of axillary lymph nodes confirmed lymphatic metastasis.
Collapse
|
105
|
NUTM1-Rearranged Neoplasms-A Heterogeneous Group of Primitive Tumors with Expanding Spectrum of Histology and Molecular Alterations-An Updated Review. Curr Oncol 2021; 28:4485-4503. [PMID: 34898574 PMCID: PMC8628659 DOI: 10.3390/curroncol28060381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear protein of testis (NUT), a protein product of the NUTM1 gene (located on the long arm of chromosome 15) with highly restricted physiologic expression in post-meiotic spermatids, is the oncogenic driver of a group of emerging neoplasms when fused with genes involved in transcription regulation. Although initially identified in a group of lethal midline carcinomas in which NUT forms fusion proteins with bromodomain proteins, NUTM1-rearrangement has since been identified in tumors at non-midline locations, with non-bromodomain partners and with varied morphology. The histologic features of these tumors have also expanded to include sarcoma, skin adnexal tumors, and hematologic malignancies that harbor various fusion partners and are associated with markedly different clinical courses varying from benign to malignant. Most of these tumors have nondescript primitive morphology and therefore should be routinely considered in any undifferentiated neoplasm. The diagnosis is facilitated by the immunohistochemical use of the monoclonal C52 antibody, fluorescence in situ hybridization (FISH), and, recently, RNA-sequencing. The pathogenesis is believed to be altered expression of oncogenes or tumor suppressor genes by NUT-mediated genome-wide histone modification. NUTM1-rearranged neoplasms respond poorly to classical chemotherapy and radiation therapy. Targeted therapies such as bromodomain and extraterminal domain inhibitor (BETi) therapy are being developed. This current review provides an update on NUTM1-rearranged neoplasms, focusing on the correlation between basic sciences and clinical aspects.
Collapse
|
106
|
Anderson WJ, Fletcher CDM, Hornick JL. Loss of expression of YAP1 C-terminus as an ancillary marker for epithelioid hemangioendothelioma variant with YAP1-TFE3 fusion and other YAP1-related vascular neoplasms. Mod Pathol 2021; 34:2036-2042. [PMID: 34148063 DOI: 10.1038/s41379-021-00854-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022]
Abstract
Epithelioid hemangioendothelioma (EHE) with YAP1-TFE3 fusion is a recently characterized distinctive variant of EHE that accounts for a small subset (<5%) of cases. It is composed of nests of epithelioid cells with voluminous pale cytoplasm and often shows focally vasoformative architecture. TFE3 immunohistochemistry (IHC) can be used to support the diagnosis; however, studies have questioned its specificity. Yes-associated protein 1 (YAP1), part of the Hippo signaling pathway, is expressed in normal endothelial cells, but becomes disrupted in EHE variant with YAP1-TFE3, such that only a small N-terminal region of YAP1 is expressed in the fusion protein. A recent study also reported YAP1 rearrangements in a subset of retiform and composite hemangioendotheliomas (RHE and CHE). In this study, we evaluated the diagnostic utility of an antibody directed against the C-terminus of YAP1 (YAP1-CT) for EHE with YAP1-TFE3, RHE, and CHE. In total, 78 tumors were included in the study: EHE variant with YAP1-TFE3 (n = 13), conventional (CAMTA1-positive) EHE (n = 20), pseudomyogenic hemangioendothelioma (n = 10), epithelioid hemangioma (n = 19), epithelioid angiosarcoma (n = 10), RHE (n = 4), and CHE (n = 2). IHC was performed using a rabbit monoclonal anti-YAP1 C-terminus antibody. EHE variant showed complete loss of YAP1-CT expression in 10 of 13 (77%) cases. All cases of RHE and CHE, with previously confirmed YAP1 rearrangements, also showed loss of YAP1-CT expression. Loss of YAP1-CT was seen in one conventional EHE (1/20; 5%). All other epithelioid vascular tumors showed retained YAP1-CT expression. Loss of expression of YAP1-CT appears to be associated with good sensitivity and specificity for EHE variant with YAP1-TFE3 fusion and may provide additional support along with TFE3 and CAMTA1 IHC in challenging cases. This marker may also be useful in the diagnosis of RHE and CHE.
Collapse
Affiliation(s)
- William J Anderson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
107
|
Nishimura Y, Ryo E, Yamazaki N, Yatabe Y, Mori T. Cutaneous Primary NUT Carcinoma With BRD3-NUTM1 Fusion. Am J Surg Pathol 2021; 45:1582-1584. [PMID: 34482332 DOI: 10.1097/pas.0000000000001801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Yasushi Yatabe
- Departments of Diagnostic Pathology
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Taisuke Mori
- Departments of Diagnostic Pathology
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
108
|
Kervarrec T, Amatore F, Pissaloux D, Paindavoine S, Legrand E, Lehmann-Che J, Battistella M, Macagno N. Reply to: Expanding the Spectrum of Primary Cutaneous Carcinoma With BRD3-NUTM1 Fusion. Am J Surg Pathol 2021; 45:1584-1586. [PMID: 34469332 DOI: 10.1097/pas.0000000000001796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Thibault Kervarrec
- CARADERM, French Network of Rare Cutaneous Cancer
- Department of Pathology, Trousseau University Hospital
- INSERM U1282, Tours University Tours
| | - Florent Amatore
- Department of Dermatology, APHM Nord University Hospital
- CNRS U7258, INSERM U1068 CRCM
| | - Daniel Pissaloux
- Department of Pathology, Center Léon Bérard
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Lyon University Lyon
| | | | | | | | - Maxime Battistella
- CARADERM, French Network of Rare Cutaneous Cancer
- INSERM U976, HIPI, Paris University
- Department of Pathology, Hospital Saint-Louis, Paris, France
| | - Nicolas Macagno
- CARADERM, French Network of Rare Cutaneous Cancer
- INSERM U1251, MMG, Aix-Marseille University
- Department of Pathology, APHM Timone University Hospital, Marseille
- Department of Pathology, Center Léon Bérard
| |
Collapse
|
109
|
Goto K, Ishikawa M, Hamada K, Muramatsu K, Naka M, Honma K, Sugino T. Comparison of Immunohistochemical Expression of Cytokeratin 19, c-KIT, BerEP4, GATA3, and NUTM1 Between Porocarcinoma and Squamous Cell Carcinoma. Am J Dermatopathol 2021; 43:781-787. [PMID: 33767067 DOI: 10.1097/dad.0000000000001901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Distinguishing porocarcinoma from squamous cell carcinoma (SCC) is clinically significant; however, differential diagnosis can often be challenging. This study sought to confirm the diagnostic utility of cytokeratin 19, c-KIT, BerEP4, GATA3, and NUTM1 immunohistochemistry in distinguishing porocarcinoma from SCC. Immunohistochemical analysis of cytokeratin 19, c-KIT, BerEP4, GATA3, and NUTM1 in 14 porocarcinomas and 22 SCCs was performed; the extents and intensities of expression of these markers were recorded. The statistical associations of the immunoexpression between porocarcinoma and SCC were analyzed using the Pearson χ2 test. Cytokeratin 19 was positive in 13 (92.9%) of 14 porocarcinomas, and for all the positive cases, staining was strong and evident in >20% of the tumor cells. By contrast, 9 (40.9%) of 22 SCCs expressed cytokeratin 19 (P = 0.0018), of which 6 showed extremely focal (≤10% of the tumor cells) expression. Of the 14 porocarcinomas, 11 (78.6%) cases showed c-KIT positivity, whereas only 3 of 22 SCCs (13.6%) expressed c-KIT focally (P = 0.0001). In addition, BerEP4 immunostaining differed between porocarcinomas and SCCs (57.1% vs. 9.1%, respectively; P = 0.0017). However, no significant difference between the groups was reported in terms of GATA3 expression (57.1% vs. 72.7%, respectively; P = 0.3336). NUTM1 was expressed in 4/14 (28.6%) porocarcinomas but not in the SCCs. Immunohistochemistry for cytokeratin 19, c-KIT, and BerEP4 could be helpful in distinguishing porocarcinomas from SCCs. In addition, NUTM1 immunoexpression is highly specific, although not sensitive, to porocarcinomas. GATA3 immunohistochemistry has no meaningful implications in the differential diagnosis of porocarcinoma and SCC.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
- Department of Pathology, Itabashi Central Clinical Laboratory, Tokyo, Japan
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
- Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Misawo Ishikawa
- Department of Diagnostic Pathology, Kainan Hospital, Yatomi, Japan
| | - Kengo Hamada
- Department of Dermatology, Shizuoka Cancer Center Hospital, Sunto, Japan; and
- Department of Dermatology, Nara Medical University Hospital, Kashihara, Japan
| | - Koji Muramatsu
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
| | - Miho Naka
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Takashi Sugino
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
| |
Collapse
|
110
|
Clear Cell Proliferations of the Skin: A Histopathologic Review. Am J Dermatopathol 2021; 43:607-636. [PMID: 34411018 DOI: 10.1097/dad.0000000000001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Cutaneous clear cell proliferations encompass a heterogenous group of several primary cutaneous neoplasms and metastatic tumors with different histogenesis. Many of these clear cell proliferations may seem strikingly similar under the microscope resulting in challenging diagnosis. In many of these clear cell lesions, the reason for the clear or pale appearance of proliferating cells is unknown, whereas in other ones, this clear cell appearance is due to intracytoplasmic accumulation of glycogen, mucin, or lipid. Artifacts of tissue processing and degenerative phenomenon may also be responsible for the clear cell appearance of proliferating cells. Awareness of the histopathologic findings as well as histochemical and immunohistochemical techniques are crucial to the accurate diagnosis. This review details the histopathologic features of clear cell cutaneous proliferations, classifying them according their type of differentiation and paying special attention to the histopathologic differential diagnosis among them.
Collapse
|
111
|
Patel SA, Singer B, Shen C, Zanation AM, Yarbrough WG, Weiss J. A case of metastatic NUT carcinoma with prolonged response on gemcitabine and nab-paclitaxel. Clin Case Rep 2021; 9:e04616. [PMID: 34429997 PMCID: PMC8365542 DOI: 10.1002/ccr3.4616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND NUT carcinoma is an aggressive malignancy characterized by translocations in the NUTM1 gene. There are currently no consensus treatment recommendations for NUT carcinomas. METHODS Here, we describe the case of a previously healthy male diagnosed with NUT carcinoma after presenting with sinus pressure, found to have a sinonasal mass and distant metastatic disease in the lungs. While pathologic evaluation and immunohistochemistry were consistent with NUT carcinoma, initial genomic profiling did not demonstrate a NUTM1 translocation. RESULTS Whole transcriptomic RNA sequencing of the tumor revealed a YAP1-NUTM1 fusion. Based on an in vitro drug sensitivity screen, the patient was treated with gemcitabine and nab-paclitaxel, achieving a partial response that persisted for 9 months. CONCLUSIONS Unbiased transcriptomic sequencing may identify previously uncharacterized NUTM1 fusion partners. Gemcitabine and nab-paclitaxel is a well-tolerated combination chemotherapy regimen and could offer a novel treatment approach for NUT carcinoma.
Collapse
Affiliation(s)
- Shetal A. Patel
- Division of OncologyLineberger Comprehensive Cancer Center at the University of North CarolinaChapel HillNorth CarolinaUSA
| | - Bart Singer
- Department of Pathology and Laboratory MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Colette Shen
- Department of Radiation OncologyLineberger Comprehensive Cancer Center at the University of North CarolinaChapel HillNorth CarolinaUSA
| | - Adam M. Zanation
- Department of Otolaryngology/Head and Neck SurgeryLineberger Comprehensive Cancer Center at the University of North CarolinaChapel HillNorth CarolinaUSA
| | - Wendell G. Yarbrough
- Department of Otolaryngology/Head and Neck SurgeryLineberger Comprehensive Cancer Center at the University of North CarolinaChapel HillNorth CarolinaUSA
| | - Jared Weiss
- Division of OncologyLineberger Comprehensive Cancer Center at the University of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
112
|
Van Treeck BJ, Thangaiah JJ, Torres-Mora J, Stevens TM, Rothermundt C, Fassan M, Loupakis F, Diebold J, Hornick JL, Halling KC, Folpe AL. NUTM1-rearranged colorectal sarcoma: a clinicopathologically and genetically distinctive malignant neoplasm with a poor prognosis. Mod Pathol 2021; 34:1547-1557. [PMID: 33714983 DOI: 10.1038/s41379-021-00792-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023]
Abstract
NUTM1 gene rearrangements were originally identified in NUT carcinoma. Recently, NUTM1 has been discovered to rearrange with a variety of gene partners in malignancies of diverse location and type. Only one NUTM1-rearranged tumor occurring in the colon has been reported. Herein we report five such tumors. The five tumors occurred in four females and one male, ranging from 38 to 67 years of age (median 51 years). The masses occurred in the colon (cecum, descending, sigmoid) and ileocecal valve region, measuring 2.5-20 cm in size (median 7 cm). Four patients had metastases at presentation (liver, n = 4; lymph nodes, n = 3). Histologically, the lesions arose in the submucosa, infiltrating into the mucosa and muscularis propria, and grew in fibrosarcoma-like fascicles and sheets of epithelioid or rhabdoid cells, with foci of hyalinized to vaguely osteoid-like matrix. The tumors were composed of relatively monomorphic, spindled to epithelioid cells with focal rhabdoid morphology, hyperchromatic nuclei, and small nucleoli. Mitotic activity was usually low (range 1-14/10 HPF; median 5/10 HPF); necrosis was present in two cases. Variable keratin expression and uniform nuclear NUT expression was present; KIT/DOG1 were negative and SMARCB1/SMARCA4 were retained. Next-generation sequencing identified MXD4-NUTM1 rearrangement in all cases (breakpoints: MXD4 exon 5, NUTM1 exons 2 or 3). Follow-up showed one of the four patients who presented with metastases to be dead of disease at 30 months; the other three patients were alive with metastatic disease. The final patient is disease-free, 5 months after diagnosis. NUTM1-rearranged colorectal sarcomas have characteristic morphologic, immunohistochemical, and molecular genetic features, suggesting that they represent a distinct entity within the family of NUTM1-rearranged neoplasia. A NUTM1-rearranged tumor should be considered for any difficult-to-classify submucosal spindle cell neoplasm of the gastrointestinal tract, in particular keratin-positive tumors showing an unusual combination of fibrosarcomatous, epithelioid to rhabdoid and hyalinized morphologies. Recognition of MXD4-NUTM1 rearranged sarcomas may be therapeutically important, even though best treatment is currently elusive/unknown.
Collapse
Affiliation(s)
| | | | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Todd M Stevens
- Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christian Rothermundt
- Department of Oncology and Hematology, St. Gallen Cantonal Hospital, St. Gallen, Switzerland
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Fotios Loupakis
- Unit of Medical Oncology 1, Department of Oncology, Veneto Institute of Oncology IRCCS, Padua, Italy
| | - Joachim Diebold
- Department of Pathology, Cantonal Hospital, Lucerne, Switzerland
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
113
|
Rubio Gonzalez B, Ortiz MV, Ross DS, Busam KJ. Skin adnexal carcinoma with BRD3-NUTM2B fusion. J Cutan Pathol 2021; 48:1508-1513. [PMID: 34296453 PMCID: PMC10392614 DOI: 10.1111/cup.14107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
NUT carcinomas are genetically defined epithelial neoplasms. Most tumors harbor fusions of NUTM1 with BRD4 or BRD3. Their histopathologic features have been predominantly reported as undifferentiated or poorly differentiated squamous cell carcinoma, and clinically they tend to be aggressive cancers. However, recent studies have revealed a broader spectrum of NUTM1-rearranged neoplasms with several new fusion partners and associated variable histopathologic phenotypes and clinical behaviors, including benign and malignant cutaneous poroid tumors. We report herein a primary invasive carcinoma of skin adnexal origin with a previously undescribed fusion between BRD3 and NUTM2B. The tumor occurred on the shoulder of a 7-year-old girl and was excised with negative margins. A sentinel lymph node was positive. After follow-up of 23 months, and without systemic treatment, the child remains free of tumor. This case expands the spectrum of NUT carcinomas by including a skin adnexal variant with follicular infundibular differentiation, a novel genomic aberration, and preliminary evidence of a less aggressive clinical course.
Collapse
Affiliation(s)
- Belen Rubio Gonzalez
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
114
|
Zhao J, Zhao R, Xiang C, Shao J, Guo L, Han Y. YAP1-MAML2 Fusion as a Diagnostic Biomarker for Metaplastic Thymoma. Front Oncol 2021; 11:692283. [PMID: 34354947 PMCID: PMC8329546 DOI: 10.3389/fonc.2021.692283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Metaplastic thymoma is a very rare tumor with only a few case reports documented in literature. Hence, its molecular features have not been well explored. MATERIAL AND METHODS Seventeen specimens of metaplastic thymoma were sequenced and retrospectively analyzed by fluorescence in situ hybridization (FISH) and immunohistochemistry in the study. In addition, seven cases of micronodular thymoma with lymphoid stroma and nine cases of type A thymoma were also investigated. RESULTS Among these metaplastic thymomas, fifteen cases showed classical histological features, and two cases displayed characteristic micronodular-like growth patterns. DNA and RNA based next-generation sequencing identified and confirmed highly recurrent Yes Associated Protein 1 (YAP1) - Mastermind Like Transcriptional Coactivator 2 (MAML2) translocation (13/17, 76.5%) in metaplastic thymoma but not in micronodular thymoma with lymphoid stroma (0/7, 0%) and type A thymoma (0/9, 0%). In addition, six nonsense mutations were also detected in the metaplastic thymoma. FISH in microdissection specimens indicated that both epithelioid and spindle cell components harbored YAP1-MAML2 gene rearrangements. CONCLUSIONS Our study explored the genetic alterations in epithelioid and spindle cell components in metaplastic thymoma. Furthermore, YAP1-MAML2 gene rearrangements emerged as a potential diagnostic biomarker helpful for distinguishing metaplastic thymoma from type A and micronodular thymoma with lymphoid stroma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
115
|
Dermawan JK, Azzato EM, McKenney JK, Liegl-Atzwanger B, Rubin BP. YAP1-TFE3 gene fusion variant in clear cell stromal tumour of lung: report of two cases in support of a distinct entity. Histopathology 2021; 79:940-946. [PMID: 34156713 DOI: 10.1111/his.14437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
AIMS Clear cell (haemangioblastoma-like) stromal tumour of the lung is a newly described, rare pulmonary neoplasm. Recurrent YAP1-TFE3 gene fusions have recently been reported in three cases. We describe two additional cases and confirm the characteristic YAP1-TFE3 gene fusion. METHODS AND RESULTS Two mesenchymal tumours of lung were identified from our soft tissue pathology consultation services and RNA sequencing was performed. Both cases were in male patients, aged 35 and 77 years. Both presented as solitary lung nodules measuring 3.9 and 7.5 cm in greatest dimension. Histopathologically, the tumours were composed of epithelioid to plump spindle cells arranged in packets and solid sheets. The cells showed fusiform to ovoid nuclei with open chromatin, variably prominent nucleoli and scant to moderate, clear to eosinophilic cytoplasm. Cytological atypia and significant mitotic activity were minimal. None of the tumours expressed lineage-specific immunophenotypical markers. Both cases were diffusely positive for nuclear TFE3. Unlike YAP1-TFE3-fused epithelioid haemangioendothelioma, for which the fusion breakpoint occurs in YAP1 exon 1 and TFE3 exons 4 or 6, the fusion breakpoints of these tumours were located in YAP1 exon 4 and TFE3 exon 7. Following complete surgical resection, neither of the tumours has recurred or metastasised (follow-up period 6-7 months). CONCLUSIONS We validate the presence of YAP1-TFE3 gene fusion in a unique primary mesenchymal tumour of lung, adding additional support for clear cell stromal tumour of the lung as a distinct entity.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elizabeth M Azzato
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Translational Sarcoma Pathology, Medical University of Graz, Graz, Austria
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
116
|
He Z, Li R, Jiang H. Mutations and Copy Number Abnormalities of Hippo Pathway Components in Human Cancers. Front Cell Dev Biol 2021; 9:661718. [PMID: 34150758 PMCID: PMC8209335 DOI: 10.3389/fcell.2021.661718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway is highly conserved from Drosophila to mammals. As a key regulator of cell proliferation, the Hippo pathway controls tissue homeostasis and has a major impact on tumorigenesis. The originally defined core components of the Hippo pathway in mammals include STK3/4, LATS1/2, YAP1/TAZ, TEAD, VGLL4, and NF2. However, for most of these genes, mutations and copy number variations are relatively uncommon in human cancer. Several other recently identified upstream and downstream regulators of Hippo signaling, including FAT1, SHANK2, Gq/11, and SWI/SNF complex, are more commonly dysregulated in human cancer at the genomic level. This review will discuss major genomic events in human cancer that enable cancer cells to escape the tumor-suppressive effects of Hippo signaling.
Collapse
Affiliation(s)
- Zhengjin He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruihan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hai Jiang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
117
|
Hile G, Harms PW. Update on Molecular Genetic Alterations of Cutaneous Adnexal Neoplasms. Surg Pathol Clin 2021; 14:251-272. [PMID: 34023104 DOI: 10.1016/j.path.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cutaneous adnexal tumors recapitulate follicular, sweat gland, and/or sebaceous epithelia, and range from benign tumors to aggressive carcinomas. Adnexal tumors can be hallmarks for inherited tumor syndromes. Oncogenic drivers of adnexal neoplasms modulate intracellular pathways including mitogen-activated protein kinase, phosphoinositide-3-kinase, Wnt/β-catenin, Hedgehog, nuclear factor κB, and Hippo intracellular signaling pathways, representing potential therapeutic targets. Malignant progression can be associated with tumor suppressor loss, especially TP53. Molecular alterations drive expression of specific diagnostic markers, such as CDX2 and LEF1 in pilomatricomas/pilomatrical carcinomas, and NUT in poromas/porocarcinomas. In these ways, improved understanding of molecular alterations promises to advance diagnostic, prognostic, and therapeutic possibilities for adnexal tumors.
Collapse
Affiliation(s)
- Grace Hile
- Department of Dermatology, University of Michigan, 1910 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5314, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, 1910 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5314, USA; Department of Pathology, University of Michigan, 2800 Plymouth Road, Building 35, Ann Arbor, MI 48109 - 2800, USA.
| |
Collapse
|
118
|
Wang Y, Liu M, Zheng Y, Feng Y. Eccrine poroma presented as spindle-shaped plaque: A case report. Medicine (Baltimore) 2021; 100:e25971. [PMID: 34011082 PMCID: PMC8137075 DOI: 10.1097/md.0000000000025971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Eccrine poroma, a benign cutaneous neoplasm originating from the intraepidermal portion of the eccrine sweat duct, is relatively common in clinical practice. Nevertheless, the 1 presenting as spindle-shaped plaque is extremely rare and easily misdiagnosed as seborrheic keratosis or other dermatoses. Thus, the current study demonstrates a case of eccrine poroma with unique clinical manifestation. PATIENTS CONCERNS A 47-year-old man presented with a spindle-shaped plaque on his left sole for 6 years. DIAGNOSES Based on the clinical and histopathological manifestations, diagnosis of eccrine poroma was established. INTERVENTIONS Surgical excision under local anesthesia was performed. OUTCOMES No recurrence or malignant transformation occurred within 6-month follow-up. LESSONS Eccrine poroma typically presents as a dome-shaped nodule on palm or sole. But this case reminded us the lesion presenting as a spindle-shaped plaque on sole can not rule out the possibility of eccrine poroma.
Collapse
|
119
|
Spindle cell/sclerosing rhabdomyosarcoma with a novel YAP1-MAML2 fusion in a 1-year-old: not all strongly TRK-expressing spindle cell sarcomas in infants are infantile fibrosarcomas! Pathology 2021; 53:936-939. [PMID: 33994171 DOI: 10.1016/j.pathol.2021.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
|
120
|
Current Diagnosis and Treatment Options for Cutaneous Adnexal Neoplasms with Apocrine and Eccrine Differentiation. Int J Mol Sci 2021; 22:ijms22105077. [PMID: 34064849 PMCID: PMC8151110 DOI: 10.3390/ijms22105077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022] Open
Abstract
Adnexal tumors of the skin are a rare group of benign and malignant neoplasms that exhibit morphological differentiation toward one or more of the adnexal epithelium types present in normal skin. Tumors deriving from apocrine or eccrine glands are highly heterogeneous and represent various histological entities. Macroscopic and dermatoscopic features of these tumors are unspecific; therefore, a specialized pathological examination is required to correctly diagnose patients. Limited treatment guidelines of adnexal tumor cases are available; thus, therapy is still challenging. Patients should be referred to high-volume skin cancer centers to receive an appropriate multidisciplinary treatment, affecting their outcome. The purpose of this review is to summarize currently available data on pathogenesis, diagnosis, and treatment approach for apocrine and eccrine tumors.
Collapse
|
121
|
Minowa T, Kamiya T, Hida T, Okura M, Kato J, Idogawa M, Tange S, Hirano T, Tokino T, Uhara H. Genetic analyses of a secondary poroma and trichoblastoma in a HRAS-mutated sebaceous nevus. J Dermatol 2021; 48:1268-1272. [PMID: 33908086 DOI: 10.1111/1346-8138.15919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
A sebaceous nevus is a congenital skin hamartoma caused by postzygotic HRAS or KRAS mosaic mutations. With age, affected individuals may develop secondary tumors within a sebaceous nevus. RAS mutations are harbored from the onset of sebaceous nevus, and further mutations can be expected to be required in order to explain the initiation of secondary tumors. However, genetic analyses of the secondary tumors have not been conducted. Herein, we describe the rare coexistence of a poroma and a trichoblastoma arising in a sebaceous nevus. This is the first report of an investigation of multiple genes in a secondary tumor in an SN. First, HRAS c.37G>C, which is the common mutation in sebaceous nevus, was detected in all three lesions (sebaceous nevus, poroma, and trichoblastoma). Next, to elucidate the potential second-hit mutations in the secondary poroma and trichoblastoma, we applied a panel sequencing for skin cancers that was newly developed in our institution. Our comparison of the mutational profile of 95 skin cancer-related genes in each of the three lesions newly revealed TP53 p.R158P in the poroma and NOTCH2 p.G329S in the trichoblastoma. TP53 p.R158P has been determined as a pathogenic mutation in other tumors, and NOTCH2 p.G329S was a novel mutation. We identified two novel mutations that may have contributed to the pathogenesis of the secondary tumor's development. The roles of the mutations remain unclear.
Collapse
Affiliation(s)
- Tomoyuki Minowa
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masae Okura
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junji Kato
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomomi Hirano
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
122
|
Merritt N, Garcia K, Rajendran D, Lin ZY, Zhang X, Mitchell KA, Borcherding N, Fullenkamp C, Chimenti MS, Gingras AC, Harvey KF, Tanas MR. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. eLife 2021; 10:62857. [PMID: 33913810 PMCID: PMC8143797 DOI: 10.7554/elife.62857] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next-generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers. The proliferation of human cells is tightly regulated to ensure that enough cells are made to build and repair organs and tissues, while at the same time stopping cells from dividing uncontrollably and damaging the body. To get the right balance, cells rely on physical and chemical cues from their environment that trigger the biochemical signals that regulate two proteins called TAZ and YAP. These proteins control gene activity by regulating the rate at which genes are copied to produce proteins. If this process becomes dysregulated, cells can grow uncontrollably, causing cancer. In cancer cells, it is common to find TAZ and YAP fused to other proteins. In epithelioid hemangioendothelioma, a rare cancer that grows in the blood vessels, cancerous growth can be driven by a version of TAZ fused to the protein CAMTA1, or a version of YAP fused to the protein TFE3. While the role of TAZ and YAP in promoting gene activity is known, it is unclear how CAMTA1 and TFE3 contribute to cell growth becoming dysregulated. Merritt, Garcia et al. studied sarcoma cell lines to show that these two fusion proteins, TAZ-CAMTA1 and YAP-TFE3, change the pattern of gene activity seen in the cells compared to TAZ or YAP alone. An analysis of molecules that interact with the two fusion proteins identified a complex called ATAC as the cause of these changes. This complex adds chemical markers to DNA-packaging proteins, which control which genes are available for activation. The fusion proteins combine the ability of TAZ and YAP to control gene activity and the ability of CAMTA1 and TFE3 to make DNA more accessible, allowing the fusion proteins to drive uncontrolled cancerous growth. Similar TAZ and YAP fusion proteins have been found in other cancers, which can activate genes and potentially alter DNA packaging. Targeting drug development efforts at the proteins that complex with TAZ and YAP fusion proteins may lead to new therapies.
Collapse
Affiliation(s)
- Nicole Merritt
- Department of Pathology, University of Iowa, Iowa City, United States
| | - Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States
| | - Dushyandi Rajendran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | | | - Katrina A Mitchell
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, United States
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States.,Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States
| |
Collapse
|
123
|
Seavey CN, Pobbati AV, Hallett A, Ma S, Reynolds JP, Kanai R, Lamar JM, Rubin BP. WWTR1(TAZ)- CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev 2021; 35:512-527. [PMID: 33766982 PMCID: PMC8015722 DOI: 10.1101/gad.348220.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Epithelioid hemangioendothelioma (EHE) is a genetically homogenous vascular sarcoma that is a paradigm for TAZ dysregulation in cancer. EHE harbors a WWTR1(TAZ)-CAMTA1 gene fusion in >90% of cases, 45% of which have no other genetic alterations. In this study, we used a first of its kind approach to target the Wwtr1-Camta1 gene fusion to the Wwtr1 locus, to develop a conditional EHE mouse model whereby Wwtr1-Camta1 is controlled by the endogenous transcriptional regulators upon Cre activation. These mice develop EHE tumors that are indistinguishable from human EHE clinically, histologically, immunohistochemically, and genetically. Overall, these results demonstrate unequivocally that TAZ-CAMTA1 is sufficient to drive EHE formation with exquisite specificity, as no other tumor types were observed. Furthermore, we fully credential this unique EHE mouse model as a valid preclinical model for understanding the role of TAZ dysregulation in cancer formation and for testing therapies directed at TAZ-CAMTA1, TAZ, and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Caleb N Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, PRISM Program, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Andrea Hallett
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Jordan P Reynolds
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Ryan Kanai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
124
|
Cho YS, Jiang J. Hippo-Independent Regulation of Yki/Yap/Taz: A Non-canonical View. Front Cell Dev Biol 2021; 9:658481. [PMID: 33869224 PMCID: PMC8047194 DOI: 10.3389/fcell.2021.658481] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Initially identified in Drosophila, the Hippo signaling pathway has emerged as an evolutionarily conserved tumor suppressor pathway that controls tissue growth and organ size by simultaneously inhibiting cell proliferation and promoting cell death. Deregulation of Hippo pathway activity has been implicated in a wide range of human cancers. The core Hippo pathway consists of a kinase cascade: an upstream kinase Hippo (Hpo)/MST1/2 phosphorylates and activates a downstream kinase Warts (Wts)/Lats1/2, leading to phosphorylation and inactivation of a transcriptional coactivator Yki/YAP/Taz. Many upstream signals, including cell adhesion, polarity, mechanical stress, and soluble factors, regulate Hippo signaling through the kinase cascade, leading to change in the cytoplasmic/nuclear localization of Yki/YAP/Taz. However, recent studies have uncovered other mechanisms that regulate Yki/YAP/Taz subcellular localization, stability, and activity independent of the Hpo kinase cascade. These mechanisms provide additional layers of pathway regulation, nodes for pathway crosstalk, and opportunities for pathway intervention in cancer treatment and regenerative medicine.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
125
|
Driskill JH, Zheng Y, Wu BK, Wang L, Cai J, Rakheja D, Dellinger M, Pan D. WWTR1(TAZ)-CAMTA1 reprograms endothelial cells to drive epithelioid hemangioendothelioma. Genes Dev 2021; 35:495-511. [PMID: 33766984 PMCID: PMC8015719 DOI: 10.1101/gad.348221.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
In this study, Driskill et al. studied whether the TAZ-CAMTA1 gene fusion is a driver of epithelioid hemangioendothelioma (EHE), a poorly understood and devastating vascular cancer. They show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors, and their findings provide the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE. Epithelioid hemangioendothelioma (EHE) is a poorly understood and devastating vascular cancer. Sequencing of EHE has revealed a unique gene fusion between the Hippo pathway nuclear effector TAZ (WWTR1) and the brain-enriched transcription factor CAMTA1 in ∼90% of cases. However, it remains unclear whether the TAZ-CAMTA1 gene fusion is a driver of EHE, and potential targeted therapies are unknown. Here, we show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors. We further show that activated TAZ resembles TAZ-CAMTA1 in driving the formation of EHE-like vascular tumors, suggesting that constitutive activation of TAZ underlies the pathological features of EHE. We show that TAZ-CAMTA1 initiates an angiogenic and regenerative-like transcriptional program in endothelial cells, and disruption of the TAZ-CAMTA1-TEAD interaction or ectopic expression of a dominant negative TEAD in vivo inhibits TAZ-CAMTA1-mediated transformation. Our study provides the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bo-Kuan Wu
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jing Cai
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Pathology and Laboratory Medicine, Children's Health, Dallas, Texas 75235, USA
| | - Michael Dellinger
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
126
|
Prieto-Granada C, Morlote D, Pavlidakey P, Rodriguez-Waitkus P, Ramirez C, Florento E, Swensen J, Gatalica Z, Stevens TM. Poroid adnexal skin tumors with YAP1 fusions exhibit similar histopathologic features: A series of six YAP1-rearranged adnexal skin tumors. J Cutan Pathol 2021; 48:1139-1149. [PMID: 33704800 DOI: 10.1111/cup.14008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Adnexal skin tumors are diagnostically challenging with few known molecular signatures. Recently, however, YAP1-MAML2 and YAP1-NUTM1 fusions were identified in poroid adnexal skin tumors. METHODS Herein, we subjected eight poroid adnexal skin tumors (three poromas and five porocarcinomas) to fusion gene analysis by whole transcriptome sequencing and next-generation DNA sequencing analysis. RESULTS YAP1 fusions were identified in six cases. YAP1-NUTM1 fusions were identified in two poromas and three porocarcinomas. A single case of porocarcinoma harbored a YAP1-MAML2 fusion. Two cases were negative for gene fusion. All cases that harbored YAP1-NUTM1 fusions showed nuclear protein in testis (NUT) expression by immunohistochemistry, with NUT being negative in the YAP1-MAML2-positive case. In this case series, we provide a detailed histopathologic description of six YAP1-fused poroid skin tumors, which we show harbor reproducible histopathologic features, to include broad, bulbous tumor tongues with admixtures of basaloid, poroid cells punctuated by squamatized cuticles and ductules, with uniform tumor nuclei featuring frequent grooves and pseudonuclear inclusions. CONCLUSIONS Awareness of the characteristic histopathologic features of YAP1-fused poroid adnexal skin tumor is a step toward a more reproducible classification of adnexal skin tumors as well as a step toward targeted therapy for metastatic and/or unresectable examples of this poroid group of neoplasms.
Collapse
Affiliation(s)
- Carlos Prieto-Granada
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Diana Morlote
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter Pavlidakey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul Rodriguez-Waitkus
- Department of Dermatology and Cutaneous Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | | | | | | - Zoran Gatalica
- The Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Todd M Stevens
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
127
|
Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia 2021; 69:2059-2076. [PMID: 33638562 PMCID: PMC8591561 DOI: 10.1002/glia.23984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.
Collapse
Affiliation(s)
- Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adarsha P Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather M Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
128
|
Kesper C, Busse C, Wickenhauser C, Bethmann D, Viestenz A, Heichel J. [Periocular poroma-a rare differential diagnosis to basal cell carcinoma]. Ophthalmologe 2021; 119:292-295. [PMID: 33638009 DOI: 10.1007/s00347-021-01345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/26/2022]
Affiliation(s)
- C Kesper
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland
| | - C Busse
- Institut für Pathologie, Universitätsklinikum Halle (Saale), Magdeburger Straße 14, 06112, Halle (Saale), Deutschland
| | - C Wickenhauser
- Institut für Pathologie, Universitätsklinikum Halle (Saale), Magdeburger Straße 14, 06112, Halle (Saale), Deutschland
| | - D Bethmann
- Institut für Pathologie, Universitätsklinikum Halle (Saale), Magdeburger Straße 14, 06112, Halle (Saale), Deutschland
| | - A Viestenz
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland
| | - J Heichel
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland.
| |
Collapse
|
129
|
Ji J, Kaneva K, Hiemenz MC, Dhall G, Davidson TB, Erdreich-Epstein A, Hawes D, Hurth K, Margol AS, Mathew AJ, Robison NJ, Schmidt RJ, Tran HN, Judkins AR, Cotter JA, Biegel JA. Clinical utility of comprehensive genomic profiling in central nervous system tumors of children and young adults. Neurooncol Adv 2021; 3:vdab037. [PMID: 33948563 PMCID: PMC8080244 DOI: 10.1093/noajnl/vdab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Recent large-scale genomic studies have revealed a spectrum of genetic variants associated with specific subtypes of central nervous system (CNS) tumors. The aim of this study was to determine the clinical utility of comprehensive genomic profiling of pediatric, adolescent and young adult (AYA) CNS tumors in a prospective setting, including detection of DNA sequence variants, gene fusions, copy number alterations (CNAs), and loss of heterozygosity. Methods OncoKids, a comprehensive DNA- and RNA-based next-generation sequencing (NGS) panel, in conjunction with chromosomal microarray analysis (CMA) was employed to detect diagnostic, prognostic, and therapeutic markers. NGS was performed on 222 specimens from 212 patients. Clinical CMA data were analyzed in parallel for 66% (146/222) of cases. Results NGS demonstrated clinically significant alterations in 66% (147/222) of cases. Diagnostic markers were identified in 62% (138/222) of cases. Prognostic information and targetable genomic alterations were identified in 22% (49/222) and 18% (41/222) of cases, respectively. Diagnostic or prognostic CNAs were revealed by CMA in 69% (101/146) of cases. Importantly, clinically significant CNAs were detected in 57% (34/60) of cases with noncontributory NGS results. Germline cancer predisposition testing was indicated for 27% (57/212) of patients. Follow-up germline testing was performed for 20 patients which confirmed a germline pathogenic/likely pathogenic variant in 9 cases: TP53 (2), NF1 (2), SMARCB1 (1), NF2 (1), MSH6 (1), PMS2 (1), and a patient with 47,XXY Klinefelter syndrome. Conclusions Our results demonstrate the significant clinical utility of integrating genomic profiling into routine clinical testing for pediatric and AYA patients with CNS tumors.
Collapse
Affiliation(s)
- Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Kristiyana Kaneva
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Matthew C Hiemenz
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Girish Dhall
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA.,Division of Pediatric Hematology-Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tom Belle Davidson
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Anat Erdreich-Epstein
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA.,Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Kyle Hurth
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Ashley S Margol
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anna J Mathew
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Nathan J Robison
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Hung N Tran
- Kaiser Permanente Los Angeles Medical Center, Los Angeles, California, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
130
|
NUT Is a Specific Immunohistochemical Marker for the Diagnosis of YAP1-NUTM1-rearranged Cutaneous Poroid Neoplasms. Am J Surg Pathol 2021; 45:1221-1227. [PMID: 33739783 DOI: 10.1097/pas.0000000000001693] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
YAP1-NUTM1 fusion transcripts have been recently reported in poroma and porocarcinoma. NUTM1 translocation can be screened by nuclear protein in testis (NUT) immunohistochemistry in various malignancies, but its diagnostic performance has not been thoroughly validated on a large cohort of cutaneous epithelial neoplasms. We have evaluated NUT immunohistochemical expression in a large cohort encompassing 835 cases of various cutaneous epidermal or adnexal epithelial neoplasms. NUT expression was specific to eccrine poromas and porocarcinoma, with 32% of cases showing NUT expression. All other cutaneous tumors tested lacked NUT expression, including mimickers such as seborrheic keratosis, Bowen disease, basal cell carcinoma, squamous cell carcinoma, Merkel cell carcinoma, nodular hidradenoma, and all other adnexal tumors tested. Remarkably, NUT expression was more frequent in a distinct morphologic subgroup. Indeed, 93% of poroid hidradenoma (dermal/subcutaneous nodular poroma, 13/14) and 80% of poroid hidradenocarcinoma cases (malignant poroid hidradenoma, 4/5) showed NUT expression, in contrast to 17% and 11% of classic poroma (4/23) and porocarcinoma cases (4/35), respectively. RNA sequencing of 12 NUT-positive neoplasms further confirmed the presence of a YAP1-NUTM1 fusion transcript in all cases, and also an EMC7-NUTM1 gene fusion in a single case. In the setting of a cutaneous adnexal neoplasm, nuclear expression of NUT accurately and specifically diagnosed a specific subgroup of benign and malignant poroid tumors, all associated with a NUTM1 fusion, which frequently harbored a poroid hidradenoma morphology.
Collapse
|
131
|
Recurrent YAP1 and MAML2 Gene Rearrangements in Retiform and Composite Hemangioendothelioma. Am J Surg Pathol 2021; 44:1677-1684. [PMID: 32991341 DOI: 10.1097/pas.0000000000001575] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retiform and composite hemangioendotheliomas (CHEs) are both locally aggressive, rarely metastasizing vascular neoplasms characterized by arborizing vascular channels lined by endothelial cells with a hobnail morphology. CHE displays additional cytologic and architectural components, including often vacuolated epithelioid cells, solid areas, or features reminiscent of well-differentiated angiosarcoma. Triggered by an index case of a soft tissue retiform hemangioendothelioma (RHE) which revealed a YAP1-MAML2 gene fusion by targeted RNA sequencing, we sought to investigate additional cases in this morphologic spectrum for this genetic abnormality. A total of 24 cases, 13 RHE and 11 CHE involving skin and soft tissue were tested by fluorescence in situ hybridization using custom BAC probes for rearrangements involving these genes. An additional visceral CHE with neuroendocrine differentiation was tested by targeted RNA sequencing. Among the soft tissue cohort, 5/13 (38%) RHE and 3/11 (27%) CHE showed YAP1 gene rearrangements, with 5 cases showing a YAP1-MAML2 fusion, including all 3 CHE. The single neuroendocrine CHE showed the presence of a PTBP1-MAML2 fusion. All YAP1-positive CHE lesions occurred in female children at acral sites, compared with fusion-negative cases which occurred in adults, with a wide anatomic distribution. YAP1-positive RHE occurred preferentially in males and lower limb, compared with negative cases. These results suggest that RHE and CHE represent a morphologic continuum, sharing abnormalities in YAP1 and MAML2 genes. In contrast, the neuroendocrine CHE occurring in a 37-year-old male harbored a distinct PTBP1-MAML2 fusion and showed aggressive clinical behavior (pancreatic mass with multiple liver and lung metastases). These preliminary findings raise the possibility that neuroendocrine CHE may be genetically distinct from the conventional RHE/CHE spectrum. Further studies are needed to investigate the pathogenetic relationship of fusion-negative cases with this subset and, less likely, with other members of the HE family of tumors.
Collapse
|
132
|
Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 2021; 475:205-221. [PMID: 33428889 DOI: 10.1016/j.ydbio.2020.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
YAP1 is a transcriptional co-activator whose activity is controlled by the Hippo signaling pathway. In addition to important functions in normal tissue homeostasis and regeneration, YAP1 has also prominent functions in cancer initiation, aggressiveness, metastasis, and therapy resistance. In this review we are discussing the molecular functions of YAP1 and its roles in cancer, with a focus on the different mechanisms of de-regulation of YAP1 activity in human cancers, including inactivation of upstream Hippo pathway tumor suppressors, regulation by intersecting pathways, miRNAs, and viral oncogenes. We are also discussing new findings on the function and biology of the recently identified family of YAP1 gene fusions, that constitute a new type of activating mutation of YAP1 and that are the likely oncogenic drivers in several subtypes of human cancers. Lastly, we also discuss different strategies of therapeutic inhibition of YAP1 functions.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| |
Collapse
|
133
|
Zema S, Pelullo M, Nardozza F, Felli MP, Screpanti I, Bellavia D. A Dynamic Role of Mastermind-Like 1: A Journey Through the Main (Path)ways Between Development and Cancer. Front Cell Dev Biol 2020; 8:613557. [PMID: 33425921 PMCID: PMC7787167 DOI: 10.3389/fcell.2020.613557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Major signaling pathways, such as Notch, Hedgehog (Hh), Wnt/β-catenin and Hippo, are targeted by a plethora of physiological and pathological stimuli, ultimately resulting in the modulation of genes that act coordinately to establish specific biological processes. Many biological programs are strictly controlled by the assembly of multiprotein complexes into the nucleus, where a regulated recruitment of specific transcription factors and coactivators on gene promoter region leads to different transcriptional outcomes. MAML1 results to be a versatile coactivator, able to set up synergistic interlinking with pivotal signaling cascades and able to coordinate the network of cross-talking pathways. Accordingly, despite its original identification as a component of the Notch signaling pathway, several recent reports suggest a more articulated role for MAML1 protein, showing that it is able to sustain/empower Wnt/β-catenin, Hh and Hippo pathways, in a Notch-independent manner. For this reason, MAML1 may be associated to a molecular “switch”, with the function to control the activation of major signaling pathways, triggering in this way critical biological processes during embryonic and post-natal life. In this review, we summarize the current knowledge about the pleiotropic role played by MAML proteins, in particular MAML1, and we recapitulate how it takes part actively in physiological and pathological signaling networks. On this point, we also discuss the contribution of MAML proteins to malignant transformation. Accordingly, genetic alterations or impaired expression of MAML proteins may lead to a deregulated crosstalk among the pathways, culminating in a series of pathological disorders, including cancer development. Given their central role, a better knowledge of the molecular mechanisms that regulate the interplay of MAML proteins with several signaling pathways involved in tumorigenesis may open up novel opportunities for an attractive molecular targeted anticancer therapy.
Collapse
Affiliation(s)
- Sabrina Zema
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina, Italy
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
134
|
Russell-Goldman E, Hornick JL, Hanna J. Utility of YAP1 and NUT immunohistochemistry in the diagnosis of porocarcinoma. J Cutan Pathol 2020; 48:403-410. [PMID: 33222286 DOI: 10.1111/cup.13924] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Porocarcinoma is the malignant counterpart of poroma, a benign tumor derived from the eccrine or apocrine units. In contrast to poroma, porocarcinoma is rare and its diagnosis may be challenging. Recent work has identified YAP1-associated gene fusions in most poromas, and a subset of porocarcinomas. These included YAP1-MAML2 and YAP1-NUTM1, the latter being enriched in porocarcinomas over poromas. METHODS We studied YAP1 C-terminus and NUT immunohistochemistry in a cohort of 12 porocarcinomas, 10 poromas, 10 squamous cell carcinomas, and 6 hidradenocarcinomas. RESULTS Seven of 12 (58%) porocarcinomas showed loss of YAP1 C-terminus expression, consistent with a YAP1 fusion. Of these seven, five showed NUT positivity, implying the presence of the YAP1-NUTM1 fusion. One of 12 (8%) cases showed NUT positivity, but retention of YAP1 C-terminus expression, consistent with a non-YAP1 NUT-associated fusion. Eight of 10 (80%) poromas showed loss of YAP1 C-terminus expression and negative NUT staining, consistent with non-NUT YAP1 fusions. All squamous cell carcinomas and hidradenocarcinomas retained YAP1 C-terminus expression and were negative for NUT. CONCLUSION YAP1 C-terminus and NUT immunohistochemistry may be helpful in the diagnosis of porocarcinoma, with the combination of YAP1 C-terminus loss and NUT positivity being particularly informative.
Collapse
Affiliation(s)
- Eleanor Russell-Goldman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
135
|
Parra O, Kerr DA, Bridge JA, Loehrer AP, Linos K. A case of YAP1 and NUTM1 rearranged porocarcinoma with corresponding immunohistochemical expression: Review of recent advances in poroma and porocarcinoma pathogenesis with potential diagnostic utility. J Cutan Pathol 2020; 48:95-101. [PMID: 32757412 DOI: 10.1111/cup.13832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Porocarcinoma is a rare malignant adnexal tumor with predilection for the lower extremities and the head and neck region of older adults. This entity may arise de novo or in association with a benign poroma. Porocarcinoma's non-specific clinical appearance, immunohistochemical profile, and divergent differentiation may occasionally be diagnostically challenging. Recently, highly recurrent YAP1 and NUTM1 gene rearrangements have been described in cases of poroma and porocarcinoma. In this report, we present a case of porocarcinoma with squamous differentiation in an 81-year-old woman which harbored rearrangement of the YAP1 and NUTM1 loci and was diffusely immunoreactive for NUTM1. We discuss the recent advancements in the pathogenesis of poromas and porocarcinomas with emphasis on the clinical utility of the NUTM1 antibody.
Collapse
Affiliation(s)
- Ourania Parra
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Julia A Bridge
- Division of Molecular Pathology, The Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrew P Loehrer
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
136
|
Hasan A, Nafie K, Monazea K, Othman A, Salem A, Ismail A. A rare case of recurrent eccrine poroma underlying gluteal abscess. Int J Surg Case Rep 2020; 75:29-31. [PMID: 32911185 PMCID: PMC7490443 DOI: 10.1016/j.ijscr.2020.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Eccrine poroma is a benign adnexal neoplasm originating from epidermal sweat ducts mainly affecting the palmoplantar skin, buttock as a location of origin of poroma has rarely been reported, it is the first reported case of recurrent poroma in this site. PRESENTATION OF CASE We report an unusual case of eccrine poroma in the gluteal region of a 62 years old female associated with gluteal abscess, surgically excised with histologically clear margins, then recurred after one and half year with a given history of mild trauma. DISCUSSION Given the uncommonness of these neoplasms, there stays a general lack of data on pathogenesis, atypical presentation, atypical sites, recurrence and risk of malignant transformation into porocarcinoma. CONCLUSION Gluteal skin is an unusual location for a benign poroma. Early recognition and appropriate treatment at the initial presentation by complete resection with histopathology confirmation and follow-up are crucial to ruling out other diagnoses, such as lesions of malignant transformation.
Collapse
Affiliation(s)
- Abdulkarim Hasan
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt.
| | - Khalid Nafie
- Prince Mishari Bin Saud Hospital, Baljurashi, 65888, Saudi Arabia
| | - Khaled Monazea
- Department of Surgery, Faculty of Medicine, Al-Azhar University, Assiut, 71524, Egypt
| | - Alsayed Othman
- Department of Surgery, Faculty of Medicine, Al-Azhar University, Assiut, 71524, Egypt
| | - Abdoh Salem
- Department of Surgery, Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Amal Ismail
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, Saudi Arabia
| |
Collapse
|
137
|
Shin E, Kim J. The potential role of YAP in head and neck squamous cell carcinoma. Exp Mol Med 2020; 52:1264-1274. [PMID: 32859951 PMCID: PMC8080831 DOI: 10.1038/s12276-020-00492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023] Open
Abstract
The transcriptional cofactor YAP and its inhibitory regulators, Hippo kinases and adapter proteins, constitute an evolutionarily conserved signaling pathway that controls organ size and cell fate. The activity of the Hippo-YAP pathway is determined by a variety of intracellular and intercellular cues, such as cell polarity, junctions, density, mechanical stress, energy status, and growth factor signaling. Recent studies have demonstrated that YAP can induce the expression of a set of genes that allow cancer cells to gain a survival advantage and aggressive behavior. Comprehensive genomic studies have revealed frequent focal amplifications of the YAP locus in human carcinomas, including head and neck squamous cell carcinoma (HNSCC). Moreover, FAT1, which encodes an upstream component of Hippo signaling, is one of the most commonly altered genes in HNSCC. In this review, we discuss the causes and functional consequences of YAP dysregulation in HNSCC. We also address interactions between YAP and other oncogenic drivers of HNSCC. Abnormal activity of a protein involved in cell proliferation may influence the progression of head and neck cancers. Head and neck squamous cell carcinoma (HNSCC) affects the skin, throat, mouth and nose tissues. Disruption to the Hippo-YAP signaling pathway, which plays a key role in cell proliferation and differentiation, is implicated in multiple cancers. Joon Kim and Eunbie Shin at the Korea Advanced Institute of Science and Technology, Daejeon, South Korea, reviewed recent research into the role of YAP in HNSCC. Abnormal YAP protein activity triggers the expression of genes that encourage cancer cell proliferation. Mice with over-expressed YAP showed tissue overgrowth and tumor formation. High YAP levels have been found at the invasive front of HNSCC tumors, suggesting a role in metastasis. Further research is needed to verify whether YAP is a potential therapeutic target.
Collapse
Affiliation(s)
- Eunbie Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
138
|
Recurrent YAP1 and KMT2A Gene Rearrangements in a Subset of MUC4-negative Sclerosing Epithelioid Fibrosarcoma. Am J Surg Pathol 2020; 44:368-377. [PMID: 31592798 DOI: 10.1097/pas.0000000000001382] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sclerosing epithelioid fibrosarcoma (SEF) is an aggressive soft tissue sarcoma, characterized by a distinctive epithelioid phenotype in a densely sclerotic collagenous stroma, that shows frequent MUC4 immunoreactivity and recurrent gene fusions, often involving EWSR1 gene. A pathogenetic link with low-grade fibromyxoid sarcoma (LGFMS) has been suggested, due to cases with hybrid morphology as well as overlapping genetic signature. However, a small subset of SEF is negative for MUC4 and lacks the canonical EWSR1/FUS gene rearrangements. Triggered by the identification of recurrent YAP1-KMT2A gene fusions by RNA sequencing in 3 index cases of MUC4-negative, EWSR1/FUS fusion-negative SEF, we further investigated a cohort of 14 similar SEF cases (MUC4-negative, EWSR1/FUS fusion-negative) by fluorescence in situ hybridization (FISH), reverse transcription-polymerase chain reaction, and/or DNA-based massively parallel sequencing (MSK-IMPACT) for abnormalities in these genes. Three additional SEFs with KMT2A gene rearrangements and one additional case with YAP1 gene rearrangements were identified by FISH. In addition, one case with YAP1-KMT2A and one with KMT2A-YAP1 fusion were detected by reverse transcription-polymerase chain reaction and MSK-IMPACT, respectively. As a control group, 24 fibromyxoid spindle cell tumors, diagnosed or suspected as fusion-negative LGFMS, were also tested for YAP1 and KMT2A abnormalities by FISH, but none were positive. The YAP1/KMT2A-rearranged SEF group affected patients ranging from 10 to 86 years old (average and median: 45) of both sexes (4 females, 5 males). The tumors involved somatic soft tissues with a wide distribution, including extremities, trunk, neck, and dura. Histologically, the tumors showed variable cellularity, with monotonous ovoid to epithelioid tumor cells and hyalinized collagenous background typical of SEF. More than half of the cases showed infiltrative borders, within fat or skeletal muscle. No LGFMS component was identified. All tumors were negative for MUC4 and had an otherwise nonspecific immunophenotype. Of the 6 cases with available follow-up information, 2 had local recurrences, and 2 developed soft tissue and/or bone metastases, including 1 of them died of the disease.
Collapse
|
139
|
Szulzewsky F, Arora S, Hoellerbauer P, King C, Nathan E, Chan M, Cimino PJ, Ozawa T, Kawauchi D, Pajtler KW, Gilbertson RJ, Paddison PJ, Vasioukhin V, Gujral TS, Holland EC. Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes Dev 2020; 34:1051-1064. [PMID: 32675324 PMCID: PMC7397849 DOI: 10.1101/gad.338681.120] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several YAP1 gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the YAP1 gene fusions YAP1-MAMLD1, YAP1-FAM118B, YAP1-TFE3, and YAP1-SS18 are oncogenic in mice. Using reporter assays, RNA-seq, ChIP-seq, and loss-of-function mutations, we can show that all of these YAP1 fusion proteins exert TEAD-dependent YAP activity, while some also exert activity of the C'-terminal fusion partner. The YAP activity of the different YAP1 fusions is resistant to negative Hippo pathway regulation due to constitutive nuclear localization and resistance to degradation of the YAP1 fusion proteins. Genetic disruption of the TEAD-binding domain of these oncogenic YAP1 fusions is sufficient to inhibit tumor formation in vivo, while pharmacological inhibition of the YAP1-TEAD interaction inhibits the growth of YAP1 fusion-expressing cell lines in vitro. These results highlight TEAD-dependent YAP activity found in these gene fusions as critical for oncogenesis and implicate these YAP functions as potential therapeutic targets in YAP1 fusion-positive tumors.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Claire King
- Department of Oncology, Cambridge Cancer Center, Cambridge CB2 0RE, England
| | - Erica Nathan
- Department of Oncology, Cambridge Cancer Center, Cambridge CB2 0RE, England
| | - Marina Chan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | - Tatsuya Ozawa
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | | | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
140
|
Agaimy A, Stoehr R, Tögel L, Hartmann A, Cramer T. YAP1-MAML2-Rearranged Poroid Squamous Cell Carcinoma (Squamoid Porocarcinoma) Presenting as a Primary Parotid Gland Tumor. Head Neck Pathol 2020; 15:361-367. [PMID: 32504288 PMCID: PMC8010054 DOI: 10.1007/s12105-020-01181-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Porocarcinoma (synonym: malignant eccrine poroma) is a rare aggressive carcinoma type with terminal sweat gland duct differentiation. The squamous variant of porocarcinoma is even less frequent and might be indistinguishable from conventional squamous cell carcinoma (SCC). We herein describe the first case of a carcinoma presenting as a primary parotid gland malignancy in a 24-year-old male without any other primary tumor. Total parotidectomy and neck dissection were performed followed by adjuvant chemoradiation. The patient remained alive and well 10 months after diagnosis. Histology showed keratinizing SCC infiltrating extensively the parotid gland with subtle poroid cell features. Oncogenic HPV infection was excluded by DNA-based testing. NGS analysis using the TruSight RNA fusion panel (Illumina) revealed a novel YAP1-MAML2 gene fusion. This gene fusion was reported recently in a subset of cutaneous porocarcinoma and poroma. This case of poroid SCC (or squamoid porocarcinoma) adds to the differential diagnosis of SCC presenting as parotid gland tumor and highlights the value of molecular testing in cases with unusual presentation.
Collapse
Affiliation(s)
- Abbas Agaimy
- grid.411668.c0000 0000 9935 6525Institute of Pathology, University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Robert Stoehr
- grid.411668.c0000 0000 9935 6525Institute of Pathology, University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Lars Tögel
- grid.411668.c0000 0000 9935 6525Institute of Pathology, University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Arndt Hartmann
- grid.411668.c0000 0000 9935 6525Institute of Pathology, University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Thomas Cramer
- Department of Otorhinolaryngology, Head and Neck Surgery, Bundeswehrkrankenhaus, Berlin, Germany
| |
Collapse
|
141
|
Abstract
The Hippo pathway plays a pivotal role in tissue homeostasis and tumor suppression. YAP and TAZ are downstream effectors of the Hippo pathway, and their activities are tightly suppressed by phosphorylation-dependent cytoplasmic retention. However, the molecular mechanisms governing YAP/TAZ nuclear localization have not been fully elucidated. Here, we report that Mastermind-like 1 and 2 (MAML1/2) are indispensable for YAP/TAZ nuclear localization and transcriptional activities. Ectopic expression or depletion of MAML1/2 induces nuclear translocation or cytoplasmic retention of YAP/TAZ, respectively. Additionally, mutation of the MAML nuclear localization signal, as well as its YAP/TAZ interacting region, both abolish nuclear localization and transcriptional activity of YAP/TAZ. Importantly, we demonstrate that the level of MAML1 messenger RNA (mRNA) is regulated by microRNA-30c (miR-30c) in a cell-density-dependent manner. In vivo and clinical results suggest that MAML potentiates YAP/TAZ oncogenic function and positively correlates with YAP/TAZ activation in human cancer patients, suggesting pathological relevance in the context of cancer development. Overall, our study not only provides mechanistic insight into the regulation of YAP/TAZ subcellular localization, but it also strongly suggests that the miR30c-MAML-YAP/TAZ axis is a potential therapeutic target for developing novel cancer treatments.
Collapse
|
142
|
Agaimy A, Tögel L, Haller F, Zenk J, Hornung J, Märkl B. YAP1-NUTM1 Gene Fusion in Porocarcinoma of the External Auditory Canal. Head Neck Pathol 2020; 14:982-990. [PMID: 32436169 PMCID: PMC7669971 DOI: 10.1007/s12105-020-01173-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
Gene fusions involving the NUTM1 gene (NUT) represent defining genetic markers of a highly aggressive carcinoma type with predilection for the midline structures of children and young adults, hence the original description as NUT midline carcinoma. Recent studies have increasingly documented involvement of the NUTM1 gene in the pathogenesis of other entities as well. We herein describe two cases of auditory canal carcinomas with features of porocarcinoma, both harboring a newly described YAP1-NUTM1 gene fusion. Patients were males aged 28 and 82 years who presented with slowly growing lesions in the external auditory canal. Histologic examination showed monomorphic basaloid and squamoid cells arranged into organoid solid aggregates, nests, ducts, small cysts, and focal pseudocribriform pattern with variable mitotic activity, infiltrative growth, and focal squamous differentiation, particularly in the most superficial part of the tumor. Immunohistochemistry revealed consistent reactivity for CK5, p63 and SOX10 and diffuse aberrant expression of TP53. CK7 expression was limited to a few luminal ductal cells. The androgen receptor and S100 were negative. Next generation sequencing (TruSight RNA fusion panel, Illumina) revealed the same YAP1-NUTM1 gene fusion in both tumors, which was subsequently confirmed by NUT-FISH and the monoclonal anti-NUT antibody. These cases represent a novel contribution to the spectrum of NUT-rearranged head and neck malignancies. This adnexal carcinoma variant should not be confused with the highly lethal NUT carcinoma based on NUT immunoreactivity alone.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, University Hospital, Erlangen, Germany
| | - Lars Tögel
- Institute of Pathology, University Hospital, Erlangen, Germany
| | - Florian Haller
- Institute of Pathology, University Hospital, Erlangen, Germany
| | - Johannes Zenk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Augsburg, Germany
| | - Joachim Hornung
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Erlangen, Germany
| | - Bruno Märkl
- Institute of Pathology and Molecular Diagnostics, University Hospital, Augsburg, Germany
| |
Collapse
|
143
|
The Hippo Pathway as a Driver of Select Human Cancers. Trends Cancer 2020; 6:781-796. [PMID: 32446746 DOI: 10.1016/j.trecan.2020.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The Hippo pathway regulates myriad biological processes in diverse species and is a key cancer signaling network in humans. Although Hippo has been linked to multiple aspects of cancer, its role in this disease is incompletely understood. Large-scale pan-cancer analyses of core Hippo pathway genes reveal that the pathway is mutated at a high frequency only in select human cancers, including malignant mesothelioma and meningioma. Hippo pathway deregulation is also enriched in squamous epithelial cancers. We discuss cancer-related functions of the Hippo pathway and potential explanations for the cancer-restricted mutation profile of core Hippo pathway genes. Greater understanding of Hippo pathway deregulation in cancers will be essential to guide the imminent use of Hippo-targeted therapies.
Collapse
|
144
|
Does a Biological Continuum Between Nodular (Apocrine) Hidradenoma and Adenomyoepithelioma Really Exist? Am J Dermatopathol 2020; 42:796-797. [DOI: 10.1097/dad.0000000000001650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
145
|
Metaplastic thymoma: a distinctive thymic neoplasm characterized by YAP1-MAML2 gene fusions. Mod Pathol 2020; 33:560-565. [PMID: 31641231 DOI: 10.1038/s41379-019-0382-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023]
Abstract
Metaplastic thymomas are rare biphasic thymic tumors that are characteristically well-circumscribed, confined to the thymus, and follow a benign to indolent clinical course. Their relationship to other thymic neoplasms remains unclear, and their molecular characteristics have not been defined. We report for the first time recurrent translocation events in metaplastic thymomas involving the Yes Associated Protein 1 (YAP1) and Mastermind Like Transcriptional Coactivator 2 (MAML2) genes. Eight metaplastic thymomas were retrieved from two institutions' archives over a 21-year period. Paraffin-embedded material from all cases underwent targeted DNA-based hybrid capture next-generation sequencing. Cases showing no somatic alterations subsequently underwent targeted RNA sequencing. Allele-specific real-time polymerase chain reaction was performed to detect GTF2I c.74146970T>A (p.L424H) mutations. All cases showed characteristic histologic features of metaplastic thymoma and demonstrated no local recurrence or distant metastatic disease at 1-22 years of follow-up. Six of eight cases were successfully sequenced, all showing YAP1-MAML2 fusions; in four cases the fusions were detected by DNA sequencing and in two cases by RNA sequencing. Two distinct products were identified: 5' YAP1 exon 1 fused to 3' MAML2 exons 2-5 or 5' YAP1 exons 1-5 fused to 3' MAML2 exons 2-5. All cases underwent allele-specific real-time polymerase chain reaction and demonstrated no GTF2I L424H mutations. Metaplastic thymoma is a distinct, clinically indolent thymic epithelial neoplasm characterized by YAP1-MAML2 fusion and lacking the GTF2I mutations found in Type A and AB thymomas.
Collapse
|
146
|
Suurmeijer AJH, Dickson BC, Swanson D, Sung YS, Zhang L, Antonescu CR. Variant WWTR1 gene fusions in epithelioid hemangioendothelioma-A genetic subset associated with cardiac involvement. Genes Chromosomes Cancer 2020; 59:389-395. [PMID: 32170768 DOI: 10.1002/gcc.22839] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
The genetic hallmark of epithelioid hemangioendothelioma (EHE) is a recurrent WWTR1-CAMTA1 fusion, which is present in most cases bearing a conventional histology. A subset of cases is characterized by a distinct morphology and harbors instead of YAP1-TFE3 fusion. Nevertheless, isolated cases lack these canonical fusions and remain difficult to classify. Triggered by an index case of a left atrial mass in a 76-year-old female with morphologic features typical of EHE, but which showed a WWTR1-MAML2 fusion by targeted RNA sequencing, we searched our files for similar cases displaying alternative WWTR1 fusions. A total of 6 EHE cases were identified with variant WWTR1 fusions, four of them presenting within the heart. There were three females and three males, with a wide age range at diagnosis (21-76 years, mean 62, median 69). The four cardiac cases occurred in older adults (mean age of 72, equal gender distribution); three involved the left atrium and one the right ventricle. One case presented in the vertebral bone and one in pelvic soft tissue. Microscopically, all tumors had morphologic features within the spectrum of classic EHE; two of the cases appeared overtly malignant. All cases were tested by FISH and four were investigated by targeted RNA sequencing. Two tumors harbored WWTR1-MAML2 fusions, one WWTR1-ACTL6A, and in three cases, no WWTR1 partner was identified. Of the four patients with follow-up, two died of disease, one was alive with lung metastases, and the only patient free of disease was s/p resection of a T11 vertebral mass. Our findings report on additional genetic variants involving WWTR1 rearrangements, with WWTR1-MAML2 being a recurrent event, in a small subset of EHE, which appears to have predilection for the heart.
Collapse
Affiliation(s)
- Albert J H Suurmeijer
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yun S Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
147
|
McEvoy CR, Fox SB, Prall OWJ. Emerging entities in NUTM1-rearranged neoplasms. Genes Chromosomes Cancer 2020; 59:375-385. [PMID: 32060986 DOI: 10.1002/gcc.22838] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Structural alterations of NUTM1 were originally thought to be restricted to poorly differentiated carcinomas with variable squamous differentiation originating in the midline organs of children and adolescents. Termed NUT carcinomas (NCs), they were defined by a t(15;19) chromosomal rearrangement that was found to result in a BRD4-NUTM1 gene fusion. However, the use of DNA and RNA-based next-generation sequencing has recently revealed a multitude of new NUTM1 fusion partners in a diverse array of neoplasms including sarcoma-like tumors, poromas, and acute lymphoblastic leukemias (ALLs) that we propose to call NUTM1-rearranged neoplasms (NRNs). Intriguingly, the nosology of NRNs often correlates with the functional classification of the fusion partner, suggesting different oncogenic mechanisms within each NRN division. Indeed, whereas NCs are characterized by their aggressiveness and intransigence to standard therapeutic measures, the more positive clinical outcomes seen in some sarcoma and ALL NRNs may reflect these mechanistic differences. Here we provide a broad overview of the molecular, nosological, and clinical features in these newly discovered neoplastic entities. We describe how aberrant expression of NUTM1 due to fusion with an N-terminal DNA/chromatin-binding protein can generate a potentially powerful chromatin modifier that can give rise to oncogenic transformation in numerous cellular contexts. We also conclude that classification, clinical behavior, and therapeutic options may be best defined by the NUTM1 fusion partner rather than by tumor morphology or immunohistochemical profile.
Collapse
Affiliation(s)
- Christopher R McEvoy
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Owen W J Prall
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
148
|
Massoth LR, Hung YP, Nardi V, Nielsen GP, Hasserjian RP, Louissaint A, Fisch AS, Deshpande V, Zukerberg LR, Lennerz JK, Selig M, Glomski K, Patel PJ, Williams KJ, Sokol ES, Alexander BM, Vergilio JA, Ross JS, Pavlick DC, Chebib I, Williams EA. Pan-sarcoma genomic analysis of KMT2A rearrangements reveals distinct subtypes defined by YAP1-KMT2A-YAP1 and VIM-KMT2A fusions. Mod Pathol 2020; 33:2307-2317. [PMID: 32461620 PMCID: PMC7581494 DOI: 10.1038/s41379-020-0582-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Sarcomas are driven by diverse pathogenic mechanisms, including gene rearrangements in a subset of cases. Rare soft tissue sarcomas containing KMT2A fusions have recently been reported, characterized by a predilection for young adults, sclerosing epithelioid fibrosarcoma-like morphology, and an often aggressive course. Nonetheless, clinicopathologic and molecular descriptions of KMT2A-rearranged sarcomas remain limited. In this study, we identified by targeted next-generation RNA sequencing an index patient with KMT2A fusion-positive soft tissue sarcoma. In addition, we systematically searched for KMT2A structural variants in a comprehensive genomic profiling database of 14,680 sarcomas interrogated by targeted next-generation DNA and/or RNA sequencing. We characterized the clinicopathologic and molecular features of KMT2A fusion-positive sarcomas, including KMT2A breakpoints, rearrangement partners, and concurrent genetic alterations. Collectively, we identified a cohort of 34 sarcomas with KMT2A fusions (0.2%), and YAP1 was the predominant partner (n = 16 [47%]). Notably, a complex rearrangement with YAP1 consistent with YAP1-KMT2A-YAP1 fusion was detected in most cases, with preservation of KMT2A CxxC-binding domain in the YAP1-KMT2A-YAP1 fusion and concurrent deletions of corresponding exons in KMT2A. The tumors often affected younger adults (age 20-66 [median 40] years) and histologically showed variably monomorphic epithelioid-to-spindle shaped cells embedded in a dense collagenous stroma. Ultrastructural evidence of fibroblastic differentiation was noted in one tumor examined. Our cohort also included two sarcomas with VIM-KMT2A fusions, each harboring concurrent mutations in CTNNB1, SMARCB1, and ARID1A and characterized histologically by sheets of spindle-to-round blue cells. The remaining 16 KMT2A-rearranged sarcomas in our cohort exhibited diverse histologic subtypes, each with unique novel fusion partners. In summary, KMT2A-fusion-positive sarcomas most commonly exhibit sclerosing epithelioid fibrosarcoma-like morphology and complex YAP1-KMT2A-YAP1 fusions. Cases also include rare spindle-to-round cell sarcomas with VIM-KMT2A fusions and tumors of diverse histologic subtypes with unique KMT2A fusions to non-YAP1 non-VIM partners.
Collapse
Affiliation(s)
- Lucas R. Massoth
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Yin P. Hung
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Valentina Nardi
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - G. Petur Nielsen
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Robert P. Hasserjian
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Abner Louissaint
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Adam S. Fisch
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Vikram Deshpande
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Lawrence R. Zukerberg
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jochen K. Lennerz
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Martin Selig
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Krzysztof Glomski
- grid.277313.30000 0001 0626 2712Department of Pathology and Laboratory Medicine, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102 USA
| | - Parth J. Patel
- grid.264727.20000 0001 2248 3398Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA
| | - Kevin Jon Williams
- grid.264727.20000 0001 2248 3398Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA ,grid.264727.20000 0001 2248 3398Department of Physiology and Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA
| | - Ethan S. Sokol
- grid.418158.10000 0004 0534 4718Foundation Medicine, Inc., 150 Second Street, Cambridge, MA 02141 USA
| | - Brian M. Alexander
- grid.418158.10000 0004 0534 4718Foundation Medicine, Inc., 150 Second Street, Cambridge, MA 02141 USA
| | - Jo-Anne Vergilio
- grid.418158.10000 0004 0534 4718Foundation Medicine, Inc., 150 Second Street, Cambridge, MA 02141 USA
| | - Jeffrey S. Ross
- grid.418158.10000 0004 0534 4718Foundation Medicine, Inc., 150 Second Street, Cambridge, MA 02141 USA ,grid.411023.50000 0000 9159 4457Department of Pathology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210 USA
| | - Dean C. Pavlick
- grid.418158.10000 0004 0534 4718Foundation Medicine, Inc., 150 Second Street, Cambridge, MA 02141 USA
| | - Ivan Chebib
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Erik A. Williams
- grid.418158.10000 0004 0534 4718Foundation Medicine, Inc., 150 Second Street, Cambridge, MA 02141 USA
| |
Collapse
|
149
|
Vougiouklakis T, Shen G, Feng X, Hoda ST, Jour G. Molecular Profiling of Atypical Tenosynovial Giant Cell Tumors Reveals Novel Non- CSF1 Fusions. Cancers (Basel) 2019; 12:cancers12010100. [PMID: 31906059 PMCID: PMC7016751 DOI: 10.3390/cancers12010100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022] Open
Abstract
Tenosynovial giant cell tumor (TGCT) is a benign neoplasm characterized by recurrent fusions involving the colony-stimulating factor 1 (CSF1) gene and translocation partners including collagen type VI alpha 3 chain (COL6A3) or S100 calcium-binding protein A10 (S100A10). Herein, we report three atypical TGCT cases with very unusual morphology comprising areas with increased cellular atypia, mitotic activity, and worrisome features that harbor unique non-CSF1 gene fusions. Anchored multiplex PCR (AMP) for next-generation sequencing utilizing a customized panel targeting 86 cancer-related genes was performed, and it identified novel non-CSF1-driven gene fusions: NIPBL-ERG, FN1-ROS1, and YAP1-MAML2. Screening of three control TGCTs with conventional morphology found translocations involving CSF1, with partner genes COL6A3, FN1, and newly identified KCNMA1. All novel fusions were further validated by reverse transcriptase-PCR (RT-PCR) and Sanger sequencing. Late and multiple local recurrences occurred in the atypical TGCTs, while no recurrences were reported in the conventional TGCTs. Our findings reveal that atypical TGCTs harbor gene fusions not implicating CSF1 and suggest that non-CSF1 fusions potentially confer greater propensity to recurrences and local aggressiveness while indicating the presence of alternate pathogenic mechanisms that warrant further investigation.
Collapse
Affiliation(s)
| | - Guomiao Shen
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
| | - Xiaojun Feng
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
| | - Syed T. Hoda
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
| | - George Jour
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
- Department of Dermatology, New York University Langone Health, New York, NY 10016, USA
- Correspondence: ; Tel.: +1-646-501-9202
| |
Collapse
|
150
|
Siegfried A, Masliah-Planchon J, Roux FE, Larrieu-Ciron D, Pierron G, Nicaise Y, Gambart M, Catalaa I, Péricart S, Dubucs C, Mohand-Oumoussa B, Tirode F, Bourdeaut F, Uro-Coste E. Brain tumor with an ATXN1-NUTM1 fusion gene expands the histologic spectrum of NUTM1-rearranged neoplasia. Acta Neuropathol Commun 2019; 7:220. [PMID: 31888756 PMCID: PMC6937844 DOI: 10.1186/s40478-019-0870-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
|