101
|
Egusa H, Iida K, Kobayashi M, Lin TY, Zhu M, Zuk PA, Wang CJ, Thakor DK, Hedrick MH, Nishimura I. Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells. ACTA ACUST UNITED AC 2007; 13:2589-600. [PMID: 17666000 DOI: 10.1089/ten.2007.0080] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone marrow- and adipose tissue-derived stromal cells (BMSCs and ASCs, respectively) exhibit a similar capacity for osteogenic differentiation in vitro, but it is unclear whether they share a common differentiation process, because they originate from different tissues. The aim of this study was to explore BMSC and ASC osteogenic differentiation by focusing on the expression of extracellular matrix-related genes (ECMGs), which play a crucial role in osteogenesis and bone tissue regeneration in vivo. We characterized the gene expression profiles of BMSCs and ASCs using a custom complementary deoxyribonucleic acid microarray containing 55 ECMGs. Undifferentiated BMSCs and ASCs actively expressed a wide range of ECMGs. Once BMSCs and ASCs were placed in an osteogenic differentiation medium, 24 and 17 ECMGs, respectively, underwent considerable downregulation over the course of the culture period. The remaining genes were maintained at a similar expression level to corresponding uninduced cell cultures. Although the suppression phenomenon was consistent irrespective of stromal cell origin, collagen (COL)2A1, COL6A1, COL9A1, parathyroid hormone receptor, integrin (INT)-beta3, and TenascinX genes were only downregulated in osteogenic BMSCs, whereas COL1A2, COL3A1, COL4A1, COL5A2, COL15A1, osteopontin, osteonectin, and INT-beta1 genes were only downregulated in osteogenic ASCs. During this time period, cell viability was sustained, suggesting that the observed downregulation did not occur by selection and elimination of unfit cells from the whole cell population. These data suggest that osteogenically differentiating BMSCs and ASCs transition away from a diverse gene expression pattern, reflecting their multipotency toward a configuration specifically meeting the requirements of the target lineage. This change may serve to normalize gene expression in mixed populations of stem cells derived from different tissues.
Collapse
Affiliation(s)
- Hiroshi Egusa
- Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Aghaloo TL, Amantea CM, Cowan CM, Richardson JA, Wu BM, Parhami F, Tetradis S. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo. J Orthop Res 2007; 25:1488-97. [PMID: 17568450 DOI: 10.1002/jor.20437] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxysterols, naturally occurring cholesterol oxidation products, can induce osteoblast differentiation. Here, we investigated short-term 22(S)-hydroxycholesterol + 20(S)-hydroxycholesterol (SS) exposure on osteoblastic differentiation of marrow stromal cells. We further explored oxysterol ability to promote bone healing in vivo. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, osteocalcin (OCN) mRNA expression, mineralization, and Runx2 DNA binding activity. To explore the effects of osteogenic oxysterols in vivo, we utilized the critical-sized rat calvarial defect model. Poly(lactic-co-glycolic acid) (PLGA) scaffolds alone or coated with 140 ng (low dose) or 1400 ng (high dose) oxysterol cocktail were implanted into the defects. Rats were sacrificed at 6 weeks and examined by three-dimensional (3D) microcomputed tomography (microCT). Bone volume (BV), total volume (TV), and BV/TV ratio were measured. Culture exposure to SS for 10 min significantly increased ALP activity after 4 days, while 2 h exposure significantly increased mineralization after 14 days. Four-hour SS treatment increased OCN mRNA measured after 8 days and nuclear protein binding to an OSE2 site measured after 4 days. The calvarial defects showed slight bone healing in the control group. However, scaffolds adsorbed with low or high-dose oxysterol cocktail significantly enhanced bone formation. Histologic examination confirmed bone formation in the defect sites grafted with oxysterol-adsorbed scaffolds, compared to mostly fibrous tissue in control sites. Our results suggest that brief exposure to osteogenic oxysterols triggered events leading to osteoblastic cell differentiation and function in vitro and bone formation in vivo. These results identify oxysterols as potential agents in local and systemic enhancement of bone formation.
Collapse
Affiliation(s)
- Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California at Los Angeles School of Dentistry, Room 53-068 CHS, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Franke A, Hampe J, Rosenstiel P, Becker C, Wagner F, Häsler R, Little RD, Huse K, Ruether A, Balschun T, Wittig M, ElSharawy A, Mayr G, Albrecht M, Prescott NJ, Onnie CM, Fournier H, Keith T, Radelof U, Platzer M, Mathew CG, Stoll M, Krawczak M, Nürnberg P, Schreiber S. Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS One 2007; 2:e691. [PMID: 17684544 PMCID: PMC1933598 DOI: 10.1371/journal.pone.0000691] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 12/14/2022] Open
Abstract
Crohn disease (CD), a sub-entity of inflammatory bowel disease (IBD), is a complex polygenic disorder. Although recent studies have successfully identified CD-associated genetic variants, these susceptibility loci explain only a fraction of the heritability of the disease. Here, we report on a multi-stage genome-wide scan of 393 German CD cases and 399 controls. Among the 116,161 single-nucleotide polymorphisms tested, an association with the known CD susceptibility gene NOD2, the 5q31 haplotype, and the recently reported CD locus at 5p13.1 was confirmed. In addition, SNP rs1793004 in the gene encoding nel-like 1 precursor (NELL1, chromosome 11p15.1) showed a consistent disease-association in independent German population- and family-based samples (942 cases, 1082 controls, 375 trios). Subsequent fine mapping and replication in an independent sample of 454 French/Canadian CD trios supported the authenticity of the NELL1 association. Further confirmation in a large German ulcerative colitis (UC) sample indicated that NELL1 is a ubiquitous IBD susceptibility locus (combined p<10−6; OR = 1.66, 95% CI: 1.30–2.11). The novel 5p13.1 locus was also replicated in the French/Canadian sample and in an independent UK CD patient panel (453 cases, 521 controls, combined p<10−6 for SNP rs1992660). Several associations were replicated in at least one independent sample, point to an involvement of ITGB6 (upstream), GRM8 (downstream), OR5V1 (downstream), PPP3R2 (downstream), NM_152575 (upstream) and HNF4G (intron).
Collapse
Affiliation(s)
- Andre Franke
- Institute for Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jochen Hampe
- First Department of Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, Köln, Germany
- RZPD German Resource Center for Genome Research, Berlin, Germany
| | - Florian Wagner
- RZPD German Resource Center for Genome Research, Berlin, Germany
| | - Robert Häsler
- Institute for Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | | | - Klaus Huse
- Genome Analysis Group, Leibniz Institute for Age Research, Jena, Germany
| | - Andreas Ruether
- PopGen Biobank, Christian-Albrechts University Kiel, Kiel, Germany
| | - Tobias Balschun
- Institute for Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Michael Wittig
- PopGen Biobank, Christian-Albrechts University Kiel, Kiel, Germany
| | - Abdou ElSharawy
- Institute for Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Gabriele Mayr
- Max-Planck Institute for Informatics, Saarbrücken, Germany
| | - Mario Albrecht
- Max-Planck Institute for Informatics, Saarbrücken, Germany
| | - Natalie J. Prescott
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, United Kingdom
| | - Clive M. Onnie
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, United Kingdom
| | | | - Tim Keith
- Genizon BioSciences5, Québec, Canada
| | - Uwe Radelof
- RZPD German Resource Center for Genome Research, Berlin, Germany
| | - Matthias Platzer
- Genome Analysis Group, Leibniz Institute for Age Research, Jena, Germany
| | - Christopher G. Mathew
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, United Kingdom
| | - Monika Stoll
- Leibniz-Institute for Arteriosclerosis Research, University Münster, Münster, Germany
| | - Michael Krawczak
- PopGen Biobank, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Medical Statistics and Informatics, Christian-Albrechts University Kiel, Kiel, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Köln, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany
| | - Stefan Schreiber
- Institute for Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
- First Department of Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
- PopGen Biobank, Christian-Albrechts University Kiel, Kiel, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
104
|
Aghaloo T, Jiang X, Soo C, Zhang Z, Zhang X, Hu J, Pan H, Hsu T, Wu B, Ting K, Zhang X. A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther 2007; 15:1872-80. [PMID: 17653100 PMCID: PMC2705762 DOI: 10.1038/sj.mt.6300270] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nell-1 is a recently discovered secreted protein with the capacity to promote osteoblastic calvarial cell differentiation and mineralization and induce calvarial bone overgrowth and regeneration in various rodent models. However, the extent of Nell-1 osteoinductivity in large animal cells remains unknown. The objective of the study was to evaluate the feasibility of adenoviral encoding Nell-1 (AdNell-1) gene transfer into primary adult goat bone marrow stromal cells (BMSCs) in vitro and in vivo and to compare the osteoinductive effects with those produced by bone morphogenetic protein-2 (BMP-2), a well established osteoinductive molecule currently utilized for regional gene therapy. AdNell-1-transduced BMSCs expressed Nell-1 protein and underwent osteoblastic differentiation within 2 weeks in vitro, which is comparable to AdBMP-2. After intramuscular injection of nude mice, the AdNell-1- and AdBMP-2-transduced BMSCs revealed new bone formation, while untransduced or AdLacZ-transduced BMSCs showed mainly fibrotic tissue proliferation. At 4 weeks, BMP-2 induced significantly larger bone mass with a mature bone margin and central cavity filled with primarily fatty marrow tissue. Nell-1 samples had significantly less bone mass but were histologically similar to newly formed trabecular bone mixed with chondroid bone-like areas verified by type X collagen (ColX) immunohistochemistry. This distinct difference in histomorphology from the bone mass induced by BMP-2 suggests that there is a potential clinical role/advantage for Nell-1 in skeletal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Tara Aghaloo
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California, USA
- Weintraub Center for Reconstructive Biotechnology, University of California Los Angeles, Los Angeles, California, USA
| | - Xinquan Jiang
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California, USA
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Chia Soo
- Department of Plastic and Reconstructive Surgery, University of Southern California, Los Angeles, California, USA
| | - Zhiyuan Zhang
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Xiuli Zhang
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jingzhou Hu
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Hongya Pan
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Tiffany Hsu
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Benjamin Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Material Science, University of California Los Angeles, Los Angeles, California, USA
| | - Kang Ting
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California, USA
- Weintraub Center for Reconstructive Biotechnology, University of California Los Angeles, Los Angeles, California, USA
- Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California, USA
- Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
105
|
Cowan CM, Jiang X, Hsu T, Soo C, Zhang B, Wang JZ, Kuroda S, Wu B, Zhang Z, Zhang X, Ting K. Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. J Bone Miner Res 2007; 22:918-30. [PMID: 17352654 PMCID: PMC2866074 DOI: 10.1359/jbmr.070312] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Osteogenesis is synergistically enhanced by the combined effect of complimentary factors. This study showed that Nell-1 and BMP-2 synergistically enhanced osteogenic differentiation of myoblasts and phosphorylated the JNK MAPK pathway. The findings are important because of the osteochondral specificity of Nell-1 signaling and the potential therapeutic effects of coordinated BMP-2 and Nell-1 delivery. INTRODUCTION BMPs play an important role in the migration and proliferation of mesenchymal cells and have a unique ability to alter the differentiation of mesenchymal cells toward chondrogenic and osteogenic lineages. Signaling upstream of Cbfa1/Runx2, BMPs effects are not limited to cells of the osteoblast lineage. Thus, additional osteoblast-specific factors that could synergize with BMP-2 would be advantageous for bone regeneration procedures. NELL-1 (NEL-like molecule-1; NEL [a protein strongly expressed in neural tissue encoding epidermal growth factor like domain]) is a novel growth factor believed to preferentially target cells committed to the osteochondral lineage. MATERIALS AND METHODS C2C12 myoblasts were transduced with AdLacZ, AdNell-1, AdBMP-2, or AdNell-1+AdBMP-2 overexpression viruses. Effects were studied by cell morphology, alkaline phosphatase activity, osteopontin production, and MAPK signaling. Additionally, in a nude mouse model, viruses were injected into leg muscles, and new bone formation was examined after 2 and 8 wk. RESULTS C2C12 myoblasts co-transduced with AdNell-1+AdBMP-2 showed a synergistic effect on osteogenic differentiation as detected by alkaline phosphatase activity and osteopontin production. Nell-1 stimulation on AdNell-1 + AdBMP-2 preconditioned C2C12 cells revealed significant activation of the non-BMP-2 associated c-Jun N-terminal kinase (JNK) MAPK signaling pathway, but not the p38 or extracellular signal-regulated kinase (ERK1/2) MAPK pathways. Importantly Nell-1 alone did not induce osteogenic differentiation of myoblasts. In a nude mouse model, injection of AdNell-1 alone stimulated no bone formation within muscle; however, injection of AdNell-1+AdBMP-2 stimulated a synergistic increase in bone formation compared with AdBMP-2 alone. CONCLUSIONS These findings are important because of the confirmed osteochondral specificity of Nell-1 signaling and the potential therapeutic effects of enhanced BMP-2 action with coordinated Nell-1 delivery.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Xinquan Jiang
- Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, Ninth People’s Hospital affiliated to Shanghai Jiaotong University Medical School, Shanghai, China
| | - Tiffany Hsu
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Chia Soo
- Department of Plastic and Reconstructive Surgery, University of Southern California, Los Angeles, California, USA
| | - Beiji Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Joyce Z Wang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Shun’ichi Kuroda
- Department of Structural Molecular Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Benjamin Wu
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
- Department of Material Science, University of California, Los Angeles, California, USA
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial Surgery, Ninth People’s Hospital affiliated to Shanghai Jiaotong University Medical School, Shanghai, China
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Kang Ting
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
- Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| |
Collapse
|
106
|
Jin Z, Mori Y, Yang J, Sato F, Ito T, Cheng Y, Paun B, Hamilton JP, Kan T, Olaru A, David S, Agarwal R, Abraham JM, Beer D, Montgomery E, Meltzer SJ. Hypermethylation of the nel-like 1 gene is a common and early event and is associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene 2007; 26:6332-40. [PMID: 17452981 DOI: 10.1038/sj.onc.1210461] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nel-like1 (NELL1) gene maps to chromosome 11p15, which frequently undergoes loss of heterozygosity in esophageal adenocarcinoma (EAC). NELL1 promoter hypermethylation was examined by real-time methylation-specific polymerase chain reaction in 259 human esophageal tissues. Hypermethylation of this promoter showed highly discriminative receiver-operator characteristic curve profiles, clearly distinguishing esophageal squamous cell carcinoma (ESCC) and EAC from normal esophagus (NE) (P<0.001). NELL1 normalized methylation values were significantly higher in Barrett's metaplasia (BE), dysplastic Barrett's (D) and EAC than in NE (P<0.0000001). NELL1 hypermethylation frequency was zero in NE but increased early during neoplastic progression, to 41.7% in BE from patients with Barrett's alone, 52.5% in D and 47.8% in EAC. There was a significant correlation between NELL1 hypermethylation and BE segment length. Three (11.5%) of 26 ESCCs exhibited NELL1 hypermethylation. Survival correlated inversely with NELL1 hypermethylation in patients with stages I-II (P=0.0264) but not in stages III-IV (P=0.68) EAC. Treatment of KYSE220 ESCC and BIC EAC cells with 5-aza-2'-deoxycytidine reduced NELL1 methylation and increased NELL1 mRNA expression. NELL1 mRNA levels in EACs with an unmethylated NELL1 promoter were significantly higher than those in EACs with a methylated promoter (P=0.02). Promoter hypermethylation of NELL1 is a common, tissue-specific event in human EAC, occurs early during Barrett's-associated esophageal neoplastic progression, and is a potential biomarker of poor prognosis in early-stage EAC.
Collapse
Affiliation(s)
- Z Jin
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Resel E, Martínez-Sanz E, González I, Trinidad E, Garcillán B, Amorós M, Alonso-Bañuelos C, González-Meli B, Lagarón E, Murillo J, Del Río A, Barrio C, López M, Martínez-Alvarez C. In Vitro Manipulation of Cleft Palate Connective Tissue: Setting the Bases of a Proposed New Treatment. J Surg Res 2007; 138:111-20. [PMID: 17173932 DOI: 10.1016/j.jss.2006.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Palatoplasty has the undesired side effect of impaired mid-facial growth. To avoid this problem, we propose an alternative to palatoplasty. We hypothesize that if BMP-2 is injected together with a carrier into the periosteum of the cleft palate borders, border volume will increase and connective tissue cells will be activated to produce extra bone. Once these borders supported by bone reach the midline, extraction of their covering epithelia with trypsin will permit adhesion of the underlying tissues. We investigated in vitro the ability of cleft palate connective tissue cells to produce extra bone in the presence of BMP-2 and the possibility of using trypsin to remove the epithelium covering the cleft palate borders without impairing the underlying tissues' ability to adhere. MATERIALS AND METHODS We used the cleft palate presented by tgf-beta(3) null mice and small fragments of human cleft palate mucoperiosteum as models. Immunolabeling BMP-2-treated or untreated cultures with TUNEL and anti-osteocalcin or PCNA antibodies was performed. The epithelium of the cleft palate borders was removed with a trypsin solution, and the de-epithelialized tissues were cultured in apposition. RESULTS BMP-2 induces differentiation toward bone on cleft palate connective tissue cells without producing cell death or proliferation. Trypsin removal of the cleft palate margins' epithelium does not impair the underlying tissues' adhesion. CONCLUSION It is possible to generate extra bone at the cleft palate margins and to chemically eliminate their covering epithelia without damaging the underlying tissues, which allows further investigation in vivo of this new approach for cleft palate closure.
Collapse
Affiliation(s)
- Eva Resel
- Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Cowan CM, Aghaloo T, Chou YF, Walder B, Zhang X, Soo C, Ting K, Wu B. MicroCT Evaluation of Three-Dimensional Mineralization in Response to BMP-2 DosesIn Vitroand in Critical Sized Rat Calvarial Defects. ACTA ACUST UNITED AC 2007; 13:501-12. [PMID: 17319794 DOI: 10.1089/ten.2006.0141] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerous growth factors, peptides, and small molecules are being developed for bone tissue engineering. The optimal dosing, stability, and bioactivity of these biological molecules are likely influenced by the carrier biomaterial. Efficient evaluation of various formulations will require objective evaluation of in vitro culture systems and in vivo regeneration models. The objective of this paper is to examine the utility of microcomputed tomography (microCT) over conventional techniques in the evaluation of the bone morphogenetic protein-2 (BMP-2) dose response effect in a three-dimensional (3D) in vitro culture system and in an established calvarial defect model. Cultured MC3T3-E1 osteoblasts displayed increased cellular density, extracellular matrix (ECM) production, and mineralization on 3D poly(lactic-co-glycolic acid) (PLGA) scaffolds in a BMP-2 dose dependent manner. MicroCT revealed differences in shape and spatial organization of mineralized areas, which would not have been possible through conventional alizarin red staining alone. Additionally, BMP-2 (doses of 30 to 240 ng/mm(3)) was grafted into 5 mm critical sized rat calvarial defects, where increased bone regeneration was observed in a dose dependent manner, with higher doses of BMP-2 inducing greater bone area, volume, and density. The data revealed the utility of microCT analysis as a beneficial addition to existing techniques for objective evaluation of bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K, Wang JC. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J 2007; 7:50-60. [PMID: 17197333 DOI: 10.1016/j.spinee.2006.04.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/23/2006] [Accepted: 04/07/2006] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recombinant growth factors bone morphogenetic protein-2 (BMP-2) and BMP-7 are currently approved for human use but are associated with various adverse effects including ectopic bone formation and local inflammatory reaction. The development of alternative growth factors may help minimize the adverse effects of current osteoinductive therapeutics. Nell-1 (Nel-like molecule-1; Nel [a protein strongly expressed in neural tissue encoding epidermal growth factor like domain]) is a novel secretory molecule that appears to act more specifically on osteoblasts than the BMPs, which can act on multiple cell types. From a molecular point of view, Nell-1 is directly regulated by runt-related transcription factor 2 (Runx2/Cbfa1), a master regulatory gene controlling bone formation. Previous studies showed that Nell-1 accelerates osteogenic differentiation in vitro and calvarial bone formation in vivo. We hypothesize that Nell-1 may also effectively form bone in spinal fusion. PURPOSE Our primary aim was to assess if direct adenoviral gene delivery with Nell-1 in a demineralized bone matrix (DBM) carrier can improve spinal fusion in a rat model. Because adenoviral vectors allow for sustained growth factor delivery, they were used for initial feasibility testing before protein studies. STUDY DESIGN/SETTING Two groups of 20 athymic rats underwent posterolateral intertransverse process spinal fusion at L4-L5 with implanted DBM carrier containing either adenovirus coding for Nell-1 (AdNell-1) or control, Lac Z (AdLacZ). No cells were implanted. The 20 rats were sacrificed at 6 weeks for evaluation of spinal fusion. METHODS All animals underwent Faxitron radiographs at 2, 4, and 6 weeks, manual spine palpation at 6 weeks, and high-resolution micro computerized tomography (microCT) at 6 weeks. Spinal fusion rate was assessed by: 1) 6-week Faxitron images; 2) manual palpation by three independent observers; 3) microCT; and 4) histology. New bone formation was assessed by hematoxylin-eosin and Masson trichrome staining on decalcified, coronally sectioned spine segments. RESULTS All differences achieved statistical significance. After 6 weeks, direct application of adenoviral Nell-1 in a DBM carrier achieved significantly higher rates of spinal fusion over Lac Z controls: 60% Nell-1 versus 20% Lac Z by manual palpation and 70% Nell-1 versus 20% Lac Z by microCT and histology. Histological assessment of bone quality and maturity revealed more mature, higher quality bone in all the Nell-1 treated specimens relative to Lac Z at 6 weeks. CONCLUSIONS Spinal fusion is more accurately assessed by microCT and histology than manual palpation. Direct application of adenoviral Nell-1 in a DBM carrier achieved significantly higher rates of spinal fusion over Lac Z controls at 6 weeks. Direct application of adenoviral Nell-1 in a DBM carrier also achieved significantly higher rates of spinal fusion over other reports in the literature using direct adenoviral BMP application. Direct application of adenoviral BMP in an allograft carrier achieved 8% fusion for BMP-2 and 16% fusion for BMP-7 at 8 weeks. These results indicate that Nell-1 may be a potent osteoinductive molecule. In addition, the regulation of Nell-1 by the master bone regulatory gene, Runx2 suggests that Nell-1 may exert its effects more specifically in osteoblastic cells than BMPs which affect multiple cell types. Overall, Nell-1 may fulfil a current need for an osteoinductive factor.
Collapse
Affiliation(s)
- Steven S Lu
- Dental and Craniofacial Research Institutes, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Truong T, Zhang X, Pathmanathan D, Soo C, Ting K. Craniosynostosis-associated gene nell-1 is regulated by runx2. J Bone Miner Res 2007; 22:7-18. [PMID: 17042739 DOI: 10.1359/jbmr.061012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We studied the transcriptional regulation of NELL-1, a craniosynostosis-related gene. We identitifed three OSE2 elements in the NELL-1 promoter that are directly bound and transactivated by Runx2. Forced expression of Runx2 induces NELL-1 expression in rat calvarial cells. INTRODUCTION We previously reported the upregulation of NELL-1 in human craniosynostosis and the overexpression of Nell-1 in transgenic animals that induced premature suture closure associated with increased osteoblast differentiation. To study the transcriptional regulation of NELL-1, we analyzed the 5' flanking region of the human NELL-1 gene. We identified three osteoblast specific binding elements 2 (OSE2) sites (A, B, and C) within 2.2 kb upstream of the transcription start site and further studied the functionality of these sites. MATERIALS AND METHODS An area of 2.2 kb and a truncated 325 bp, which lacked the three OSE sites, were cloned into a luciferase reporter gene, and co-transfected with Runx2 expression plasmid. The three OSE2 sites were individually mutated and co-transfected with Runx2 expression plasmid into Saos2 cells. Gel shifts and supershifts with Runx2 antibodies were used to determine specific binding to OSE2 sites. CHIP assays were used to study in vivo binding of Runx2 to the Nell-1 promoter. Runx2 expression plasmid was transfected into wildtype and Runx2(-/-) calvarial cells. Nell-1, osteocalcin, and Runx2 expression levels were measured using RT-PCR. RESULTS Addition of Runx2 dose-dependently increased the luciferase activity in the human NELL-1 promoter-luciferase p2213. The p325 truncated NELL-1 construct showed significantly lower basal level of activity. Nuclear extract from Saos2 cells formed complexes with site A, B, and C probes and were supershifted with Runx2 antibody. Mutation of sites A, B, and C significantly decreased basal promoter activity. Furthermore, mutation of sites B and C had a blunted response to Runx2, whereas mutation of site A had a lesser effect. Runx2 bound to NELL-1 promoter in vivo. Transfection of Runx2 in rat osteoblasts upregulated Nell-1 and Ocn expression, and in Runx2 null calvarial cells, both Nell-1 and Ocn expression were rescued. CONCLUSIONS Runx2 directly binds to the OSE2 elements and transactivates the human NELL-1 promoter. These results suggest that Nell-1 is likely a downstream target of Runx2. These findings may also extend our understanding of the molecular mechanisms governing the pathogenesis of craniosynostosis.
Collapse
Affiliation(s)
- Thien Truong
- Dental of Craniofacial Research Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
111
|
Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K, Soo C. Nell-1-induced bone regeneration in calvarial defects. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:903-15. [PMID: 16936265 PMCID: PMC1698834 DOI: 10.2353/ajpath.2006.051210] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many craniofacial birth defects contain skeletal components requiring bone grafting. We previously identified the novel secreted osteogenic molecule NELL-1, first noted to be overexpressed during premature bone formation in calvarial sutures of craniosynostosis patients. Nell-1 overexpression significantly increases differentiation and mineralization selectively in osteoblasts, while newborn Nell-1 transgenic mice significantly increase premature bone formation in calvarial sutures. In the current study, cultured calvarial explants isolated from Nell-1 transgenic newborn mice (with mild sagittal synostosis) demonstrated continuous bone growth and overlapping sagittal sutures. Further investigation into gene expression cascades revealed that fibroblast growth factor-2 and transforming growth factor-beta1 stimulated Nell-1 expression, whereas bone morphogenetic protein (BMP)-2 had no direct effect. Additionally, Nell-1-induced osteogenesis in MC3T3-E1 osteoblasts through reduction in the expression of early up-regulated osteogenic regulators (OSX and ALP) but induction of later markers (OPN and OCN). Grafting Nell-1 protein-coated PLGA scaffolds into rat calvarial defects revealed the osteogenic potential of Nell-1 to induce bone regeneration equivalent to BMP-2, whereas immunohistochemistry indicated that Nell-1 reduced osterix-producing cells and increased bone sialoprotein, osteocalcin, and BMP-7 expression. Insights into Nell-1-regulated osteogenesis coupled with its ability to stimulate bone regeneration revealed a potential therapeutic role and an alternative to the currently accepted techniques for bone regeneration.
Collapse
Affiliation(s)
- Tara Aghaloo
- Dental and Craniofacial Research Institute, Department of Bioengineering, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Ave., CHS 30-117, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Mori Y, Cai K, Cheng Y, Wang S, Paun B, Hamilton JP, Jin Z, Sato F, Berki AT, Kan T, Ito T, Mantzur C, Abraham JM, Meltzer SJ. A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology 2006; 131:797-808. [PMID: 16952549 DOI: 10.1053/j.gastro.2006.06.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/23/2006] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Gene silencing via promoter hypermethylation is a central event in the pathogenesis of cancers. To identify novel methylation targets in colon cancer, we conducted a genome-wide, microarray-based, in silico, and epigenetic search. METHODS Complementary DNA microarray experiments were first performed to identify genes down-regulated in primary colon cancers and up-regulated in colon cancer cell lines after global DNA demethylation by 5-aza-2'-deoxycitidine. Candidate methylation targets were then identified by combining these microarray data with in silico genetic and functional searches. Candidate genes recognized by these searches were further investigated for promoter hypermethylation in colon cancer using methylation-specific polymerase chain reaction. RESULTS We identified 51 novel and 3 known candidate methylation targets. Subsequent epigenetic analysis revealed that primary colon cancers demonstrated frequent methylation of somatostatin (SST, 30 of 34 cases, 88%) and the substance P precursor gene tachykinin-1 (TAC1; 16 of 34 cases, 47%). TAC1 methylation intensity was significantly higher in Dukes A/B than in Dukes C/D cancers (P = .01). SST methylation intensity was significantly higher in low-level microsatellite instability (MSI-L) than in non-MSI-L cancers (P = .02). Methylation was associated with messenger RNA down-regulation for both SST and TAC1. Furthermore, we isolated 5 additional novel promoter methylation targets: NELL1, AKAP12, caveolin-1, endoglin, and MAL. CONCLUSIONS These data strongly suggest that SST and TAC1 are involved in colon carcinogenesis. Further studies are now indicated to elucidate mechanisms underlying their involvement in colon cancer and their values as clinical biomarkers. NELL1, AKAP12, caveolin-1, endoglin, and MAL are also promising tumor suppressor gene candidates deserving of further study.
Collapse
Affiliation(s)
- Yuriko Mori
- Department of Medicine, Division of Gastroenterology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Zhang X, Cowan CM, Jiang X, Soo C, Miao S, Carpenter D, Wu B, Kuroda S, Ting K. Nell-1 induces acrania-like cranioskeletal deformities during mouse embryonic development. J Transl Med 2006; 86:633-44. [PMID: 16652108 DOI: 10.1038/labinvest.3700430] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We previously reported NELL-1 as a novel molecule overexpressed during premature cranial suture closure in patients with craniosynostosis (CS). Nell-1 overexpression also results in premature suture closure/craniosynostosis in newborn transgenic mice. On a cellular level, increased levels of Nell-1 induce osteoblast differentiation and apoptosis. In this report, mice over-expressing Nell-1 were examined during embryonic development as well as shortly after birth for further analysis of craniofacial defects including neural tube defects (NTDs). The results demonstrated that overexpression of Nell-1 could induce acrania at relatively late gestation stage (E15.5) in mouse embryos, through massive apoptosis in calvarial osteoblasts and neural cells. The induced apoptosis was associated with an increase in Fas and Fas-L production. In addition, transgenic E15.5 and newborn transgenic mice with the CS phenotype displayed distortion of the chondrocranium associated with premature hypertrophy and increased apoptosis of chondrocytes. These findings were also verified in vitro with primary chondrocytes transduced with AdNell-1. In conclusion, Nell-1 overexpression can induce craniofacial anomalies associated with neural tube defects during embryonic development and may involve mechanisms of massive apoptosis associated with the Fas/Fas-L signaling pathway. NELL-1: used when describing the human gene; NELL-1: used when describing the human protein; Nell-1: used when describing the rodent gene; Nell-1: used when describing the rodent protein.
Collapse
Affiliation(s)
- Xinli Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Cowan CM, Cheng S, Ting K, Soo C, Walder B, Wu B, Kuroda S, Zhang X. Nell-1 induced bone formation within the distracted intermaxillary suture. Bone 2006; 38:48-58. [PMID: 16243593 DOI: 10.1016/j.bone.2005.06.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/27/2005] [Accepted: 06/30/2005] [Indexed: 01/09/2023]
Abstract
Maxillary bone deficiencies, such as cleft palate and underdeveloped maxilla that require bone graft or regeneration after orthopedic or surgical expansion, pose a significant biomedical burden. Nell-1 is a secreted molecule that possesses chordin-like domains and induces cranial suture bone growth and osteoblast differentiation. To accelerate bone formation in acutely distracted palatal sutures, rat organ cultures were stimulated with Nell-1 or BMP-7 for 8 days in vitro. We hypothesized that Nell-1 stimulation to the distracted palatal suture would accelerate bone formation. Distracted palates of 4-week-old male rats were maintained in an organ culture system, and tissue was either unstimulated or stimulated with Nell-1 or BMP-7 for 8 days. MicroCT was conducted to quantitate bone formation, while alcian blue staining was conducted for cartilage localization. Immunohistochemistry of Sox9 for chondrocyte proliferation, type X collagen for hypertrophic cartilage in endochondral bone formation, and bone sialoprotein for bone formation was conducted to characterize the cellular mechanism of newly developed tissues. Distracted palates cultured in the presence of Nell-1 or BMP-7 produced statistically significantly (P < 0.05) more bone and cartilage within the intermaxillary suture, relative to unstimulated control samples. While both BMP-7 and Nell-1 induced similar bone formation in the distracted suture, BMP-7 induced both chondrocyte proliferation and differentiation, while Nell-1 accelerated chondrocyte hypertrophy and endochondral bone formation. While both Nell-1 and BMP-7 are effective in forming bone in the distracted palatal suture, they are suggested to have distinctively different mechanisms. The ability of Nell-1 to accelerate bone formation within the palate suture demonstrates the versatility of Nell-1 within the craniofacial complex as well as an exciting advance in palate suture defect healing.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Egusa H, Schweizer FE, Wang CC, Matsuka Y, Nishimura I. Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through gene silencing. J Biol Chem 2005; 280:23691-7. [PMID: 15855172 DOI: 10.1074/jbc.m413796200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering involves the construction of transplantable tissues in which bone marrow aspirates may serve as an accessible source of autogenous multipotential mesenchymal stem cells. Increasing reports indicate that the lineage restriction of adult mesenchymal stem cells may be less established than previously believed, and stem cell-based therapeutics await the establishment of an efficient protocol capable of achieving a prescribed phenotype differentiation. We have investigated how adult mouse bone marrow-derived stromal cells (BMSCs) are guided to neurogenic and osteogenic phenotypes. Naïve BMSCs were found surprisingly active in expression of a wide range of mRNAs and proteins, including those normally reported in terminally differentiated neuronal cells and osteoblasts. The naïve BMSCs were found to exhibit voltage-dependent membrane currents similar to the neuronally guided BMSCs, although with smaller amplitudes. Once BMSCs were exposed to the osteogenic culture condition, the neuronal characteristics quickly disappeared. Our data suggest that the loss of discordant phenotypes during BMSC differentiation cannot be explained by the selection and elimination of unfit cells from the whole BMSC population. The percent ratio of live to dead BMSCs examined did not change during the first 8-10 days in either neurogenic or osteogenic differentiation media, and cell detachment was estimated at <1%. However, during this period, bone-associated extracellular matrix genes were selectively down-regulated in neuronally guided BMSCs. These data indicate that the suppression of discordant phenotypes of differentiating adult stem cells is achieved, at least in part, by silencing of superfluous gene clusters.
Collapse
Affiliation(s)
- Hiroshi Egusa
- Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
116
|
Affiliation(s)
- Kelly A Lenton
- Children's Surgical Research Program, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | | | |
Collapse
|
117
|
Abstract
The field of tissue engineering integrates the latest advances in molecular biology, biochemistry, engineering, material science, and medical transplantation. Researchers in the developing field of regenerative medicine have identified bone tissue engineering as an attractive translational target. Clinical problems requiring bone regeneration are diverse, and no single regeneration approach will likely resolve all defects. Recent advances in the field of tissue engineering have included the use of sophisticated biocompatible scaffolds, new postnatal multipotent cell populations, and the appropriate cellular stimulation. In particular, synthetic polymer scaffolds allow for fast and reproducible construction, while still retaining biocompatible characteristics. These criteria relate to the immediate goal of determining the ideal implant. The search is becoming a reality with widespread availability of biocompatible scaffolds; however, the desired parameters have not been clearly defined. Currently, most research focuses on the use of bone morphogenetic proteins (BMPs), specifically BMP-2 and BMP-7. These proteins induce osteogenic differentiation in vitro, as well as bone defect healing in vivo. Protein-scaffold interactions that enhance BMP binding are of the utmost importance, since prolonged BMP release creates the most osteogenic microenvironment. Transition into clinical studies has had only mild success and relies on large doses of BMPs for bone formation. Advances within the field of bone tissue engineering will likely overcome these challenges and lead to more clinically relevant therapies.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
118
|
Nelson BR, Claes K, Todd V, Chaverra M, Lefcort F. NELL2 promotes motor and sensory neuron differentiation and stimulates mitogenesis in DRG in vivo. Dev Biol 2004; 270:322-35. [PMID: 15183717 DOI: 10.1016/j.ydbio.2004.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2003] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
We previously identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a subtraction screen designed to identify molecules regulating sensory neurogenesis and differentiation in the chick dorsal root ganglion (DRG). Characterization of NELL2 expression during embryogenesis revealed that NELL2 was specifically expressed during the peak periods of both sensory and motor neuron differentiation, and within the neural crest was restricted to the sensory lineage. We now provide evidence for a function for NELL2 during neuronal development. We report here that NELL2 acts cell autonomously within CNS and PNS progenitors, in vivo, to promote their differentiation into neurons. Additionally, neuron-secreted NELL2 acts paracrinely to stimulate the mitogenesis of adjacent cells within the nascent DRG. These studies implicate dual functions for NELL2 in both the cell autonomous differentiation of neural progenitor cells while simultaneously exerting paracrine proliferative activity.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | |
Collapse
|
119
|
Vergnes L, Péterfy M, Bergo MO, Young SG, Reue K. Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 2004; 101:10428-33. [PMID: 15232008 PMCID: PMC478588 DOI: 10.1073/pnas.0401424101] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Indexed: 12/14/2022] Open
Abstract
Lamins are key structural components of the nuclear lamina, an intermediate filament meshwork that lies beneath the inner nuclear membrane. Lamins play a role in nuclear architecture, DNA replication, and gene expression. Mutations affecting A-type lamins have been associated with a variety of human diseases, including muscular dystrophy, cardiomyopathy, lipodystrophy, and progeria, but mutations in B-type lamins have never been identified in humans or in experimental animals. To investigate the in vivo function of lamin B1, the major B-type lamin, we generated mice with an insertional mutation in Lmnb1. The mutation resulted in the synthesis of a mutant lamin B1 protein lacking several key functional domains, including a portion of the rod domain, the nuclear localization signal, and the CAAX motif (the carboxyl-terminal signal for farnesylation). Homozygous Lmnb1 mutant mice survived embryonic development but died at birth with defects in lung and bone. Fibroblasts from mutant embryos grew under standard cell-culture conditions but displayed grossly misshapen nuclei, impaired differentiation, increased polyploidy, and premature senescence. Thus, the lamin B1 mutant mice provide evidence for a broad and nonredundant function of lamin B1 in mammalian development. These mutant mice and cell lines derived from them will be useful models for studying the role of the nuclear lamina in various cellular processes.
Collapse
Affiliation(s)
- Laurent Vergnes
- Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
120
|
Nelson DK, Williams T. Frontonasal process-specific disruption of AP-2alpha results in postnatal midfacial hypoplasia, vascular anomalies, and nasal cavity defects. Dev Biol 2004; 267:72-92. [PMID: 14975718 DOI: 10.1016/j.ydbio.2003.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 10/23/2003] [Accepted: 10/28/2003] [Indexed: 11/24/2022]
Abstract
A majority of the bones of the vertebrate cranial vault and craniofacial complex develop via intramembranous ossification, and are separated by fibrous sutures that undergo osteogenic differentiation in response to growth stimuli. Craniosynostosis is a common human birth defect that results from the premature bony fusion within skull sutures, and causes a myriad of complications including mental retardation and craniofacial anomalies. Synostosis of facial sutures has been reported to cause midfacial hypoplasia in some craniosynostosis cases, but most studies focus on cranial vault sutures. In this study, we have generated a mouse model of frontonasal suture synostosis and midfacial hypoplasia through the tissue-specific elimination of the AP-2alpha transcription factor. We report here the generation AP-2CRE, a frontonasal process (FNP)- and limb-specific CRE recombinase allele that is directed by human AP-2alpha promoter and enhancer elements. We used the AP-2CRE line in combination with the conditional AP-2alpha line to produce a new frontonasal knockout (FKO) mutant that lacks AP-2alpha in the FNP and limbs. FKO mice exhibit shortened snouts and wide-set eyes that become apparent at postnatal day 15. The most prominent defects in FKO snouts are (1) a lack of growth within the frontonasal sutures, and (2) a reduction in the snout vasculature. Additional defects are observed in the FKO nasal bones and sutures, the nasal cavity cartilage and bony projections, and the olfactory epithelium. The characteristics of the FKO mouse model are a unique combination of midfacial growth anomalies, and provide the first evidence that AP-2alpha is essential for appropriate postnatal craniofacial morphogenesis.
Collapse
Affiliation(s)
- D K Nelson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
121
|
Recinos RF, Hanger CC, Schaefer RB, Dawson CA, Gosain AK. Microfocal CT: a method for evaluating murine cranial sutures in situ. J Surg Res 2004; 116:322-9. [PMID: 15013372 DOI: 10.1016/j.jss.2003.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The murine model is a well-established surrogate for studying human cranial suture biology. In mice, all sutures with the exception of the posterior frontal (PF) suture remain patent throughout life. Histology is regarded as the gold standard for analyzing sutures. On this basis, PF suture fusion begins on day of life 25 and is complete by day 45. Cranial suture histology, however, requires sacrifice of the animal to obtain tissue for analysis. As a result, knowledge of the kinetics of cranial suture fusion is based on a patchwork analysis of many sutures from many different animals. The behavior of a single suture through time is unknown. Our goal is to develop a noninvasive means to repeatedly image mouse cranial sutures in vivo. As a first step, the present study was performed to evaluate microfocal computer tomography (micro-CT) technology for the use of capturing images of a mouse cranium in situ. METHODS The micro-CT system consists of a microfocal X-ray source and a large format CCD camera optically coupled to a high-resolution X-ray image intensifier, digitally linked to a computer. The PF and sagittal sutures lie in continuity along the midline of the skull. Holes were drilled in the calvaria on both sides of the PF and sagittal sutures of a 45-day-old euthanized mouse. A micro-CT scan of this animal was performed and hundreds of cross-sectional images were generated for the cranium. These images were used to reconstruct three-dimensional volumetric images of the entire cranium. Comparisons were made between (1). the gross specimen and the three dimensional reconstructions; (2). two-dimensional coronal images obtained by micro-CT and those obtained by histology. RESULTS Analysis of PF and sagittal sutures demonstrated the following: (1). The drilled holes were accurately rendered by micro-CT, when compared to both the gross specimen and the histology. (2). The sagittal suture was found to be patent by both micro-CT and histology. (3). The PF suture is fused by histology, but unexpectedly, the PF suture appears incompletely fused by micro-CT. By micro-CT, however, the anterior and endocranial regions appear more extensively fused than the remainder of the PF suture, a finding consistent with published histologic analysis. CONCLUSIONS We successfully imaged 45-day-old mouse cranial sutures in situ using micro-CT technology. Precise correlation between histologic sections and radiologic images is difficult, but convincing similarities exist between the gross specimen and images from micro-CT and histology. PF suture fusion in a 45-day-old animal appears different by micro-CT than by histology. One possible explanation for this apparent discrepancy is that suture fusion in histology is determined based on the appearance of bone morphology and not tissue density, as the specimens are necessarily decalcified to section the bone. Micro-CT, on the other hand, distinguishes tissues on the basis of density. Newly forming bone may require bone matrix formation prior to complete calcification; PF suture in 45-day-old mice may be morphologically complete but incompletely ossified. Studies correlating histologic and micro-CT assessment of suture development are underway. Micro-CT appears to be a promising method for noninvasive imaging of mouse cranial suture.
Collapse
Affiliation(s)
- René F Recinos
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
122
|
Zhang X, Carpenter D, Bokui N, Soo C, Miao S, Truong T, Wu B, Chen I, Vastardis H, Tanizawa K, Kuroda S, Ting K. Overexpression of Nell-1, a craniosynostosis-associated gene, induces apoptosis in osteoblasts during craniofacial development. J Bone Miner Res 2003; 18:2126-34. [PMID: 14672347 DOI: 10.1359/jbmr.2003.18.12.2126] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We studied the cellular function of Nell-1, a craniosynostosis-related gene, in craniofacial development. Nell-1 modulates calvarial osteoblast differentiation and apoptosis pathways. Nell-1 overexpression disrupts these pathways resulting in craniofacial anomalies such as premature suture closure. INTRODUCTION Craniosynostosis (CS), one of the most common congenital craniofacial deformities, is the premature closure of cranial sutures. Previously, we reported NELL-1 as a novel molecule overexpressed during premature cranial suture closure in patients with CS. Nell-1 overexpression induced calvarial overgrowth and resulted in premature suture closure in a rodent model. On a cellular level, Nell-1 is suggested to promote osteoblast differentiation. MATERIALS AND METHODS Different levels of Nell-1 were introduced into osteoblastic cells by viral infection and recombinant protein. Apoptosis and gene expression assays were performed. Mice overexpressing Nell-1 were examined for apoptosis. RESULTS In this report, we further showed that overexpression of Nell-1 induced apoptosis along with modulation of apoptosis-related genes. The induction of apoptosis by Nell-1 was observed only in osteoblastic cells and not in NIH3T3 or primary fibroblasts. The CS mouse model overexpressing Nell-1 showed increased levels of apoptosis in the calvaria. CONCLUSION We show that Nell-1 expression modulates calvarial osteoblast differentiation and apoptosis pathways. Nell-1 overexpression disrupts these pathways resulting in craniofacial anomalies such as premature suture closure.
Collapse
Affiliation(s)
- Xinli Zhang
- Dental and Craniofacial Research Institute, University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|