101
|
Bondebjerg J, Fuglsang H, Valeur KR, Pedersen J, Naerum L. Dipeptidyl nitriles as human dipeptidyl peptidase I inhibitors. Bioorg Med Chem Lett 2006; 16:3614-7. [PMID: 16647256 DOI: 10.1016/j.bmcl.2006.01.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 11/19/2022]
Abstract
Using a dipeptide nitrile scaffold we have identified a potent and selective inhibitor of human dipeptidyl peptidase I.
Collapse
Affiliation(s)
- Jon Bondebjerg
- Arpida A/S, Vesterbrogade 188, DK-1800 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
102
|
Abstract
In 1960, a trypsin-like activity was found in mast cells [Glenner GG & Cohen LA (1960) Nature 185, 846-847] and this activity is now commonly referred to as 'tryptase'. Over the years, much knowledge about mast cell tryptase has been gathered, and a recent (18 January 2006) PubMed search for the keywords 'tryptase + mast cell*' retrieved 1661 articles. However, still very little is known about its true biological function. For example, the true physiological substrate(s) for mast cell tryptase has not been identified, and the potential role of tryptase in mast cell-related disease is not understood. Mast cell tryptase has several unique features, with perhaps the most remarkable being its organization into a tetrameric state with all of the active sites oriented towards a narrow central pore and its consequent complete resistance towards endogenous macromolecular protease inhibitors. Much effort has been invested to elucidate these properties of tryptase. In this review we summarize the current knowledge of mast cell tryptase, including novel insights into its possible biological functions and mechanisms of regulation.
Collapse
Affiliation(s)
- Jenny Hallgren
- Department of Molecular Biosciences, The Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | |
Collapse
|
103
|
Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Silvestri C, Mocchegiani F, Licci A, Skerlavaj B, Rocchi M, Saba V, Zanetti M, Scalise G. LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother 2006; 50:1672-9. [PMID: 16641434 PMCID: PMC1472226 DOI: 10.1128/aac.50.5.1672-1679.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the efficacy of LL-37, the C-terminal part of the only cathelicidin in humans identified to date (termed human cationic antimicrobial protein), in three experimental rat models of gram-negative sepsis. Adult male Wistar rats (i) were given an intraperitoneal injection of 1 mg Escherichia coli 0111:B4 LPS, (ii) were given 2 x 10(10) CFU of Escherichia coli ATCC 25922, or (iii) had intra-abdominal sepsis induced via cecal ligation and puncture. For each model, all animals were randomized to receive intravenously isotonic sodium chloride solution, 1-mg/kg LL-37, 1-mg/kg polymyxin B, 20-mg/kg imipenem, or 60-mg/kg piperacillin. Lethality; growth of bacteria in blood, peritoneum, spleen, liver, and mesenteric lymph nodes; and endotoxin and tumor necrosis factor alpha (TNF-alpha) concentrations in plasma were evaluated. All compounds reduced lethality compared to levels in controls. Endotoxin and TNF-alpha plasma levels were significantly higher in conventional antibiotic-treated rats than in LL-37- and polymyxin B-treated animals. All drugs tested significantly reduced bacterial growth compared to saline treatment. No statistically significant differences between LL-37 and polymyxin B were noted for antimicrobial and antiendotoxin activities. LL-37 and imipenem proved to be the most effective treatments in reducing all variables measured. Due to its multifunctional properties, LL-37 may become an important future consideration for the treatment of sepsis.
Collapse
Affiliation(s)
- Oscar Cirioni
- Università Politecnica delle Marche, Clinica Malattie Infettive, c/o Ospedale Regionale, Via Conca 71, 60020 Torrette, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Tavener SA, Kubes P. Is there a role for cardiomyocyte toll-like receptor 4 in endotoxemia? Trends Cardiovasc Med 2006; 15:153-7. [PMID: 16165010 DOI: 10.1016/j.tcm.2005.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/02/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
Lipopolysaccharide (LPS) is thought to be an important molecule in myocardial depression in sepsis. Toll-like receptor 4 (TLR4), the lipopolysaccharide receptor, is known to underlie these responses. Because TLR4 is expressed on both cardiac myocytes and immune cells, it is unclear as to which cell type is responsible for myocyte depression. In this article, we present evidence that the early response is likely related to TLR4 on immune cells and most likely macrophages, whereas the more delayed response may involve various immune cells as well as myocytes.
Collapse
Affiliation(s)
- Samantha A Tavener
- Department of Oncology, University of Calgary Medical Centre, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
105
|
Tavener SA, Kubes P. Cellular and molecular mechanisms underlying LPS-associated myocyte impairment. Am J Physiol Heart Circ Physiol 2006; 290:H800-6. [PMID: 16172157 DOI: 10.1152/ajpheart.00701.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently we reported that Toll-like receptor 4 (TLR4)-positive immune cells of unknown identity were responsible for the LPS-induced depression of cardiac myocyte shortening. The aim of this study is to identify the TLR4-positive cell type that is responsible for the LPS-induced cardiac dysfunction. Neither neutrophil depletion alone nor mast cell deficiency had any impact on the impairment of myocyte shortening during LPS treatment. In contrast, LPS-treated, macrophage-deficient mice demonstrated a partial reduction in shortening compared with saline-treated, macrophage-deficient mice. Because the removal of macrophages could only partially restore myocyte shortening, we also investigated the effects of removing both neutrophils and macrophages on myocyte shortening. Interestingly, endotoxemic, neutrophil-depleted, and macrophage-deficient mice had completely restored myocyte shortening. Because both macrophages and neutrophils can produce nitric oxide (NO) and TNF-α, we examined LPS-treated inducible NO synthase knockout (iNOSKO) mice and TNF receptor (TNFR)-deficient mice. Eliminating both TNFR1 and TNFR2 was required to restore myocyte shortening during LPS treatment, whereas iNOS deficiency had no effect. These data suggest that macrophages and to a lesser degree neutrophils cause cardiac impairment, presumably via TNF-α.
Collapse
Affiliation(s)
- Samantha A Tavener
- Dept. of Physiology and Biophysics, Univ. of Calgary Medical Centre, AB, Canada
| | | |
Collapse
|
106
|
Xu X, Zhang D, Lyubynska N, Wolters PJ, Killeen NP, Baluk P, McDonald DM, Hawgood S, Caughey GH. Mast cells protect mice from Mycoplasma pneumonia. Am J Respir Crit Care Med 2006; 173:219-25. [PMID: 16210667 PMCID: PMC2662990 DOI: 10.1164/rccm.200507-1034oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 10/06/2005] [Indexed: 11/16/2022] Open
Abstract
RATIONALE As the smallest free-living bacteria and a frequent cause of respiratory infections, mycoplasmas are unique pathogens. Mice infected with Mycoplasma pulmonis can develop localized, life-long airway infection accompanied by persistent inflammation and remodeling. OBJECTIVE Because mast cells protect mice from acute septic peritonitis and gram-negative pneumonia, we hypothesized that they defend against mycoplasma infection. This study tests this hypothesis using mast cell-deficient mice. METHODS Responses to airway infection with M. pulmonis were compared in wild-type and mast cell-deficient Kit(W-sh)/Kit(W-sh) mice and sham-infected control mice. MEASUREMENTS AND MAIN RESULTS Endpoints include mortality, body and lymph node weight, mycoplasma antibody titer, and lung mycoplasma burden and histopathology at intervals after infection. The results reveal that infected Kit(W-sh)/Kit(W-sh) mice, compared with other groups, lose more weight and are more likely to die. Live mycoplasma burden is greater in Kit(W-sh)/Kit(W-sh) than in wild-type mice at early time points. Four days after infection, the difference is 162-fold. Titers of mycoplasma-specific IgM and IgA appear earlier and rise higher in Kit(W-sh)/Kit(W-sh) mice, but antibody responses to heat-killed mycoplasma are not different compared with wild-type mice. Infected Kit(W-sh)/Kit(W-sh) mice develop larger bronchial lymph nodes and progressive pneumonia and airway occlusion with neutrophil-rich exudates, accompanied by angiogenesis and lymphangiogenesis. In wild-type mice, pneumonia and exudates are less severe, quicker to resolve, and are not associated with increased angiogenesis. CONCLUSIONS These findings suggest that mast cells are important for innate immune containment of and recovery from respiratory mycoplasma infection.
Collapse
Affiliation(s)
- Xiang Xu
- Pulmonary and Critical Care Medicine, Mailstop 111-D, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:835-48. [PMID: 16127161 PMCID: PMC1698741 DOI: 10.1016/s0002-9440(10)62055-x] [Citation(s) in RCA: 467] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mice carrying certain mutations in the white spotting (W) locus (ie, c-kit) exhibit reduced c-kit tyrosine kinase-dependent signaling that results in mast cell deficiency and other phenotypic abnormalities. The c-kit mutations in Kit(W/W-v) mice impair melanogenesis and result in anemia, sterility, and markedly reduced levels of tissue mast cells. In contrast, Kit(W-sh/W-sh) mice, bearing the W-sash (W(sh)) inversion mutation, have mast cell deficiency but lack anemia and sterility. We report that adult Kit(W-sh/W-sh) mice had a profound deficiency in mast cells in all tissues examined but normal levels of major classes of other differentiated hematopoietic and lymphoid cells. Unlike Kit(W/W-v) mice, Kit(W-sh/W-sh) mice had normal numbers of TCR gammadelta intraepithelial lymphocytes in the intestines and did not exhibit a high incidence of idiopathic dermatitis, ulcers, or squamous papillomas of the stomach, but like Kit(W/W-v) mice, they lacked interstitial cells of Cajal in the gut and exhibited bile reflux into the stomach. Systemic or local reconstitution of mast cell populations was achieved in nonirradiated adult Kit(W-sh/W-sh) mice by intravenous, intraperitoneal, or intradermal injection of wild-type bone marrow-derived cultured mast cells but not by transplantation of wild-type bone marrow cells. Thus, Kit(W-sh/W-sh) mice represent a useful model for mast cell research, especially for analyzing mast cell function in vivo.
Collapse
Affiliation(s)
- Michele A Grimbaldeston
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | | | | | | | | |
Collapse
|
108
|
Carvalho M, Benjamim C, Santos F, Ferreira S, Cunha F. Effect of mast cells depletion on the failure of neutrophil migration during sepsis. Eur J Pharmacol 2005; 525:161-9. [PMID: 16266701 DOI: 10.1016/j.ejphar.2005.09.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 09/15/2005] [Accepted: 09/27/2005] [Indexed: 11/21/2022]
Abstract
The possible role of mast cell in neutrophil migration failure during sepsis was examined in a polymicrobial sepsis model in mice. Mast cells were depleted by compound 48/80 or lysed by distilled water, both preventing the neutrophil migration failure. This phenomenon was accompanied by reduction of bacteria in the peritoneal cavity and blood, serum tumor necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta) and nitrate (NO3) and by an increase in mice survival rate. Neither neutrophil migration failure nor significant mortality was observed when lethal inoculum was injected into the air-pouch model, a cavity poorly populated by mast cells. Confirming that neutrophil migration failure is a phenomenon induced by systemic circulating mediators, it was observed that i.p. administration of lethal inoculum induced a neutrophil migration failure to the air pouch inoculated with non-lethal bacterial challenge. These results suggest that mast cells have a key role in the genesis of neutrophil migration failure, and, consequently, contribute to the systemic inflammatory response and mortality in severe sepsis.
Collapse
Affiliation(s)
- Michel Carvalho
- Department of Pharmacology, Faculty of Medicine Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
109
|
Abstract
Mast cells (MCs) are major effector cells of immunoglobulin E (IgE)-mediated allergic inflammation. However, it has become increasingly clear that they also play important roles in diverse physiological and pathological processes. Recent advances have focused on the importance of MCs in both innate and adaptive immune responses and have fostered studies of MCs beyond the myopic focus on allergic reactions. MCs possess a variety of surface receptors and may be activated by inflammatory mediators, IgE, IgG, light chains, complement fragments, proteases, hormones, neuropeptides, and microbial products. Following activation, they produce a plethora of pro-inflammatory mediators and participate in inflammatory reactions in many organs. This review focuses on the role of MCs in inflammatory reactions in mucosal surfaces with particular emphasis on their role in respiratory and gastrointestinal inflammatory conditions.
Collapse
Affiliation(s)
- Harissios Vliagoftis
- Department of Medicine, Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
110
|
Bondebjerg J, Fuglsang H, Valeur KR, Kaznelson DW, Hansen JA, Pedersen RO, Krogh BO, Jensen BS, Lauritzen C, Petersen G, Pedersen J, Naerum L. Novel semicarbazide-derived inhibitors of human dipeptidyl peptidase I (hDPPI). Bioorg Med Chem 2005; 13:4408-24. [PMID: 15893930 DOI: 10.1016/j.bmc.2005.04.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 11/28/2022]
Abstract
Human dipeptidyl peptidase I (hDPPI, cathepsin C, EC 3.4.14.1) is a novel putative drug target for the treatment of inflammatory diseases. Using 1 as a starting point (IC50>10 microM), we have improved potency by more than 500-fold and successfully identified novel inhibitors of DPPI via screening of a one-bead-two-compounds library of semicarbazide derivatives. Selected compounds were shown to inhibit intracellular DPPI in RBL-2H3 cells. These compounds were further characterized for adverse effects on HepG2 cells (cytotoxicity and viability) and their metabolic stability in rat liver microsomes was estimated. One of the most potent inhibitors, 8 (IC50=31+/-3 nM; Ki=45+/-2 nM, competitive inhibition), is selective for DPPI over other cysteine and serine proteases, has a half-life of 24 min in rat liver microsomes, shows approximately 50% inhibition of intracellular DPPI at 20 microM and is noncytotoxic.
Collapse
Affiliation(s)
- Jon Bondebjerg
- Combio A/S, Vesterbrogade 188, DK-1800 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Zhao W, Oskeritzian CA, Pozez AL, Schwartz LB. Cytokine Production by Skin-Derived Mast Cells: Endogenous Proteases Are Responsible for Degradation of Cytokines. THE JOURNAL OF IMMUNOLOGY 2005; 175:2635-42. [PMID: 16081839 DOI: 10.4049/jimmunol.175.4.2635] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current study characterizes the cytokine protein (ELISA) and mRNA (gene array and RT-PCR) profiles of skin-derived mast cells cultured under serum-free conditions when activated by cross-linking of Fc epsilonRI. Prior to mast cell activation, mRNA only for TNF-alpha was detected, while after activation mRNA for IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF substantially increased, and for IL-4 it minimally increased. However, at the protein level certain recombinant cytokines, as measured by ELISAs, were degraded by proteases released by these skin-derived mast cells. IL-6 and IL-13 were most susceptible, followed by IL-5 and TNF-alpha; GM-CSF was completely resistant. These observations also held for the endogenous cytokines produced by activated mast cells. By using protease inhibitors, chymase and cathepsin G, not tryptase, were identified in the mast cell releasates as the likely culprits that digest these cytokines. Their cytokine-degrading capabilities were confirmed with purified chymase and cathepsin G. Soy bean trypsin inhibitor, when added to mast cell releasates, prevented the degradation of exogenously added cytokines and, when added to mast cells prior to their activation, prevented degradation of susceptible endogenous cytokines without affecting either degranulation or GM-CSF production. Consequently, substantial levels of IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF were detected 24-48 h after mast cells had been activated, while none were detected 15 min after activation, by which time preformed granule mediators had been released. IL-4 was not detected at any time point. Thus, unless cytokines are protected from degradation by endogenous proteases, cytokine production by human mast cells with chymase and cathepsin G cells may be grossly underestimated.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pediatrics, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | |
Collapse
|
112
|
Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CMM, Tsai M. Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005; 23:749-86. [PMID: 15771585 DOI: 10.1146/annurev.immunol.21.120601.141025] [Citation(s) in RCA: 931] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on recent progress in our understanding of how mast cells can contribute to the initiation, development, expression, and regulation of acquired immune responses, both those associated with IgE and those that are apparently expressed independently of this class of Ig. We emphasize findings derived from in vivo studies in mice, particularly those employing genetic approaches to influence mast cell numbers and/or to alter or delete components of pathways that can regulate mast cell development, signaling, or function. We advance the hypothesis that mast cells not only can function as proinflammatory effector cells and drivers of tissue remodeling in established acquired immune responses, but also may contribute to the initiation and regulation of such responses. That is, we propose that mast cells can also function as immunoregulatory cells. Finally, we show that the notion that mast cells have primarily two functional configurations, off (or resting) or on (or activated for extensive mediator release), markedly oversimplifies reality. Instead, we propose that mast cells are "tunable," by both genetic and environmental factors, such that, depending on the circumstances, the cell can be positioned phenotypically to express a wide spectrum of variation in the types, kinetics, and/or magnitude of its secretory functions.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
113
|
Guhl S, Lee HH, Babina M, Henz BM, Zuberbier T. Evidence for a restricted rather than generalized stimulatory response of skin-derived human mast cells to substance P. J Neuroimmunol 2005; 163:92-101. [PMID: 15885311 DOI: 10.1016/j.jneuroim.2005.02.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 02/28/2005] [Indexed: 11/19/2022]
Abstract
To resolve the controversy regarding substance P (SP) mediated stimulation of mast cells (MC), we demonstrate that SP triggers histamine release from purified human skin MC (sMC), but contrast to stimulation via FcepsilonRI, does not effect the production of TNF-alpha or IL-8. Conversely, both anti-IgE and SP are suppressive in terms of IL-6. By quantitative RT-PCR, the amount of templates at baseline (per 25 ng total RNA) is 2178 (IL-6), 2,665 (IL-8) and 94 (TNF-alpha), and remains unaltered by SP. Contrast to sMC, LAD2 MC respond to SP with stronger histamine release and robust TNF-alpha production in an only partially neurokinin-1R mediated manner, while histamine release of sMC is chiefly mediated by this receptor. We conclude that human sMC are responsive to SP in a selective manner by eliciting degranulation without the induction of cytokines and that SP-triggered cytokine production varies among MC subtypes, likely through differences in signaling mechanisms.
Collapse
Affiliation(s)
- Sven Guhl
- Department of Dermatology and Allergy, Charité, Campus Mitte, Schumannstr. 20/21, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
114
|
Wolters PJ, Mallen-St Clair J, Lewis CC, Villalta SA, Baluk P, Erle DJ, Caughey GH. Tissue-selective mast cell reconstitution and differential lung gene expression in mast cell-deficient Kit(W-sh)/Kit(W-sh) sash mice. Clin Exp Allergy 2005; 35:82-8. [PMID: 15649271 PMCID: PMC2271075 DOI: 10.1111/j.1365-2222.2005.02136.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mast cell-deficient Kit(W)/Kit(W-v) mice are an important resource for studying mast cell functions in vivo. However, because they are compound heterozygotes in a mixed genetic background and are infertile, they cannot be crossed easily with other mice. OBJECTIVE To overcome this limitation, we explored the use of Kit(W-sh)/Kit(W-sh) mice for studying mast cell biology in vivo. RESULTS These mice are in a C57BL/6 background, are fertile and can be bred directly with other genetically modified mice. Ten-week-old Kit(W-sh)/Kit(W-sh) are profoundly mast cell-deficient. No mast cells are detected in any major organ, including the lung. Gene microarrays detect differential expression of just seven of 16,463 genes in lungs of Kit(W-sh)/Kit(W-sh) mice compared with wild-type mice, indicating that resting mast cells regulate expression of a small set of genes in the normal lung. Injecting 10(7) bone marrow-derived mast cells (BMMC) into tail veins of Kit(W-sh)/Kit(W-sh) mice reconstitutes mast cell populations in lung, stomach, liver, inguinal lymph nodes, and spleen, but not in the tongue, trachea or skin. Injection of BMMC into ear dermis or peritoneum reconstitutes mast cells locally in these tissues. When splenectomized Kit(W-sh)/Kit(W-sh) mice are intravenously injected with BMMC, mast cells circulate longer and are found more often in the liver and inguinal lymph nodes, indicating that the spleen acts as a reservoir for mast cells following injection and limits migration to some tissues. CONCLUSION In summary, these findings show that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice possess unique attributes that favour their use for studying mast cell functions in vivo.
Collapse
Affiliation(s)
- P J Wolters
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0911, USA.
| | | | | | | | | | | | | |
Collapse
|
115
|
Raymond WW, Sommerhoff CP, Caughey GH. Mastin is a gelatinolytic mast cell peptidase resembling a mini-proteasome. Arch Biochem Biophys 2005; 435:311-22. [PMID: 15708374 DOI: 10.1016/j.abb.2004.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/23/2004] [Indexed: 11/28/2022]
Abstract
Mastin is a tryptic peptidase secreted by canine mast cells. This work reveals that mastin is composed of catalytic domain singlets and disulfide-linked dimers. Monomers unite non-covalently to form tryptase-like tetramers, whereas dimers aggregate with monomers into larger clusters stabilized by hydrophobic contacts. Unlike tryptases, mastin resists inactivation by leech-derived tryptase inhibitor, indicating a smaller central cavity, as confirmed by structural models. Nonetheless, mastin is strongly gelatinolytic while not cleaving native collagen or casein, suggesting a preference for denatured proteins threaded into its central cavity. Phylogenetic analysis suggests that mammalian mastins shared more recent ancestors with soluble alpha/beta/delta tryptases than with membrane-anchored gamma-tryptases, and diverged more rapidly. We hypothesize that gelatinase activity and formation of inhibitor-resistant oligomers are ancestral characteristics shared by soluble tryptases and mastins, and that secreted mastin is a mini-proteasome-like complex that breaks down partially degraded proteins without causing bystander damage to intact, native proteins.
Collapse
Affiliation(s)
- Wilfred W Raymond
- Department of Medicine, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94143-0911, USA
| | | | | |
Collapse
|
116
|
Abstract
Mast cells are so widely recognized as critical effector cells in allergic disorders and other immunoglobulin E-associated acquired immune responses that it can be difficult to think of them in any other context. However, mast cells also can be important as initiators and effectors of innate immunity. In addition, mast cells that are activated during innate immune responses to pathogens, or in other contexts, can secrete products and have cellular functions with the potential to facilitate the development, amplify the magnitude or regulate the kinetics of adaptive immune responses. Thus, mast cells may influence the development, intensity and duration of adaptive immune responses that contribute to host defense, allergy and autoimmunity, rather than simply functioning as effector cells in these settings.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA.
| | | | | |
Collapse
|
117
|
Abstract
Septic shock, the most severe complication of sepsis, is a deadly disease. In recent years, exciting advances have been made in the understanding of its pathophysiology and treatment. Pathogens, via their microbial-associated molecular patterns, trigger sequential intracellular events in immune cells, epithelium, endothelium, and the neuroendocrine system. Proinflammatory mediators that contribute to eradication of invading microorganisms are produced, and anti-inflammatory mediators control this response. The inflammatory response leads to damage to host tissue, and the anti-inflammatory response causes leucocyte reprogramming and changes in immune status. The time-window for interventions is short, and treatment must promptly control the source of infection and restore haemodynamic homoeostasis. Further research is needed to establish which fluids and vasopressors are best. Some patients with septic shock might benefit from drugs such as corticosteroids or activated protein C. Other therapeutic strategies are under investigation, including those that target late proinflammatory mediators, endothelium, or the neuroendocrine system.
Collapse
Affiliation(s)
- Djillali Annane
- Service de Réanimation, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Ile de France Ouest, Université de Versailles Saint Quentin en Yvelines, Garches, France.
| | | | | |
Collapse
|