101
|
Abel U, Deichmann A, Nowrouzi A, Gabriel R, Bartholomae CC, Glimm H, von Kalle C, Schmidt M. Analyzing the number of common integration sites of viral vectors--new methods and computer programs. PLoS One 2011; 6:e24247. [PMID: 22022353 PMCID: PMC3194800 DOI: 10.1371/journal.pone.0024247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/07/2011] [Indexed: 11/19/2022] Open
Abstract
Vectors based on γ-retroviruses or lentiviruses have been shown to stably express therapeutical transgenes and effectively cure different hematological diseases. Molecular follow up of the insertional repertoire of gene corrected cells in patients and preclinical animal models revealed different integration preferences in the host genome including clusters of integrations in small genomic areas (CIS; common integrations sites). In the majority, these CIS were found in or near genes, with the potential to influence the clonal fate of the affected cell. To determine whether the observed degree of clustering is statistically compatible with an assumed standard model of spatial distribution of integrants, we have developed various methods and computer programs for γ-retroviral and lentiviral integration site distribution. In particular, we have devised and implemented mathematical and statistical approaches for comparing two experimental samples with different numbers of integration sites with respect to the propensity to form CIS as well as for the analysis of coincidences of integration sites obtained from different blood compartments. The programs and statistical tools described here are available as workspaces in R code and allow the fast detection of excessive clustering of integration sites from any retrovirally transduced sample and thus contribute to the assessment of potential treatment-related risks in preclinical and clinical retroviral gene therapy studies.
Collapse
Affiliation(s)
- Ulrich Abel
- Department of Medical Biometry, University of Heidelberg, Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (UA); (MS)
| | - Annette Deichmann
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ali Nowrouzi
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cynthia C. Bartholomae
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (UA); (MS)
| |
Collapse
|
102
|
Fraga M, Bruxel F, Lagranha VL, Teixeira HF, Matte U. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells. Int J Nanomedicine 2011; 6:2213-20. [PMID: 22114484 PMCID: PMC3215161 DOI: 10.2147/ijn.s22335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cationic nanoemulsions have been recently considered as potential delivery systems for nucleic acids. This study reports the influence of phospholipids on the properties of cationic nanoemulsions/DNA plasmid complexes. METHODS Nanoemulsions composed of medium-chain triglycerides, stearylamine, egg lecithin or isolated phospholipids, ie, DSPC, DOPC, DSPE, or DOPE, glycerol, and water were prepared by spontaneous emulsification. Gene transfer to Hep G2 cells was analyzed using real-time polymerase chain reaction. RESULTS The procedure resulted in monodispersed nanoemulsions with a droplet size and zeta potential of approximately 250 nm and +50 mV, respectively. The complexation of cationic nanoemulsions with DNA plasmid, analyzed by agarose gel retardation assay, was complete when the complex was obtained at a charge ratio of ≥ 1.0. In these conditions, the complexes were protected from enzymatic degradation by DNase I. The cytotoxicity of the complexes in Hep G2 cells, evaluated by MTT assay, showed that an increasing number of complexes led to progressive toxicity. Higher amounts of reporter DNA were detected for the formulation obtained with the DSPC phospholipid. Complexes containing DSPC and DSPE phospholipids, which have high phase transition temperatures, were less toxic in comparison with the formulations obtained with lecithin, DOPC, and DOPE. CONCLUSION The results show the effect of the DNA/nanoemulsion complexes composition on the toxicity and transfection results.
Collapse
Affiliation(s)
- Michelle Fraga
- Post Graduation Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
103
|
Presson AP, Kim N, Xiaofei Y, Chen IS, Kim S. Methodology and software to detect viral integration site hot-spots. BMC Bioinformatics 2011; 12:367. [PMID: 21914224 PMCID: PMC3203353 DOI: 10.1186/1471-2105-12-367] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/14/2011] [Indexed: 11/17/2022] Open
Abstract
Background Modern gene therapy methods have limited control over where a therapeutic viral vector inserts into the host genome. Vector integration can activate local gene expression, which can cause cancer if the vector inserts near an oncogene. Viral integration hot-spots or 'common insertion sites' (CIS) are scrutinized to evaluate and predict patient safety. CIS are typically defined by a minimum density of insertions (such as 2-4 within a 30-100 kb region), which unfortunately depends on the total number of observed VIS. This is problematic for comparing hot-spot distributions across data sets and patients, where the VIS numbers may vary. Results We develop two new methods for defining hot-spots that are relatively independent of data set size. Both methods operate on distributions of VIS across consecutive 1 Mb 'bins' of the genome. The first method 'z-threshold' tallies the number of VIS per bin, converts these counts to z-scores, and applies a threshold to define high density bins. The second method 'BCP' applies a Bayesian change-point model to the z-scores to define hot-spots. The novel hot-spot methods are compared with a conventional CIS method using simulated data sets and data sets from five published human studies, including the X-linked ALD (adrenoleukodystrophy), CGD (chronic granulomatous disease) and SCID-X1 (X-linked severe combined immunodeficiency) trials. The BCP analysis of the human X-linked ALD data for two patients separately (774 and 1627 VIS) and combined (2401 VIS) resulted in 5-6 hot-spots covering 0.17-0.251% of the genome and containing 5.56-7.74% of the total VIS. In comparison, the CIS analysis resulted in 12-110 hot-spots covering 0.018-0.246% of the genome and containing 5.81-22.7% of the VIS, corresponding to a greater number of hot-spots as the data set size increased. Our hot-spot methods enable one to evaluate the extent of VIS clustering, and formally compare data sets in terms of hot-spot overlap. Finally, we show that the BCP hot-spots from the repopulating samples coincide with greater gene and CpG island density than the median genome density. Conclusions The z-threshold and BCP methods are useful for comparing hot-spot patterns across data sets of disparate sizes. The methodology and software provided here should enable one to study hot-spot conservation across a variety of VIS data sets and evaluate vector safety for gene therapy trials.
Collapse
Affiliation(s)
- Angela P Presson
- Department of Biostatistics, University of California Los Angeles, School of Public Health, USA.
| | | | | | | | | |
Collapse
|
104
|
Aalbers CJ, Tak PP, Vervoordeldonk MJ. Advancements in adeno-associated viral gene therapy approaches: exploring a new horizon. F1000 MEDICINE REPORTS 2011; 3:17. [PMID: 21941595 PMCID: PMC3169911 DOI: 10.3410/m3-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene therapy is a promising new therapeutic strategy that has been explored in a wide variety of diseases, ranging from cancer to hemophilia, and ocular disorders to autoimmune diseases, among others. Proof of concept of gene transfer approaches has been shown in over 100 studies of animal models of disease, although only a few are under development for clinical application. The US Food and Drug Administration and the European Medicines Agency have not approved any viral human gene therapy products for sale so far, but the amount of gene-related research and development occurring in the United States and Europe continues to grow at a fast rate. This review summarizes the current status of developments in the field of viral gene therapy using adeno-associated virus as a vector, with a special focus on arthritis. For rheumatoid arthritis, and to a lesser extent for other immune-related inflammatory disorders, several cell and gene transfer approaches have been investigated at the preclinical level and a few have been implemented in clinical trials. Finally, both the potential and the hurdles that are faced during development of a viral gene therapy through to its clinical application are discussed.
Collapse
Affiliation(s)
- Caroline J. Aalbers
- Division of Clinical Immunology and Rheumatology, Academic Medical Center / University of Amsterdam, AmsterdamThe Netherlands
- Arthrogen BV, AmsterdamThe Netherlands
| | - Paul P. Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center / University of Amsterdam, AmsterdamThe Netherlands
- Arthrogen BV, AmsterdamThe Netherlands
| | - Margriet J. Vervoordeldonk
- Division of Clinical Immunology and Rheumatology, Academic Medical Center / University of Amsterdam, AmsterdamThe Netherlands
- Arthrogen BV, AmsterdamThe Netherlands
| |
Collapse
|
105
|
Insertion sites in engrafted cells cluster within a limited repertoire of genomic areas after gammaretroviral vector gene therapy. Mol Ther 2011; 19:2031-9. [PMID: 21862999 DOI: 10.1038/mt.2011.178] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vector-associated side effects in clinical gene therapy have provided insights into the molecular mechanisms of hematopoietic regulation in vivo. Surprisingly, many retrovirus insertion sites (RIS) present in engrafted cells have been found to cluster nonrandomly in close association with specific genes. Our data demonstrate that these genes directly influence the in vivo fate of hematopoietic cell clones. Analysis of insertions thus far has been limited to individual clinical studies. Here, we studied >7,000 insertions retrieved from various studies. More than 40% of all insertions found in engrafted gene-modified cells were clustered in the same genomic areas covering only 0.36% of the genome. Gene classification analyses displayed significant overrepresentation of genes associated with hematopoietic functions and relevance for cell growth and survival in vivo. The similarity of insertion distributions indicates that vector insertions in repopulating cells cluster in predictable patterns. Thus, insertion analyses of preclinical in vitro and murine in vivo studies as well as vector insertion repertoires in clinical trials yielded concerted results and mark a small number of interesting genomic loci and genes that warrants further investigation of the biological consequences of vector insertions.
Collapse
|
106
|
Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 2011; 29:816-23. [PMID: 21822255 DOI: 10.1038/nbt.1948] [Citation(s) in RCA: 456] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/19/2011] [Indexed: 11/09/2022]
Abstract
Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.
Collapse
Affiliation(s)
- Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Tolar J, Adair JE, Antoniou M, Bartholomae CC, Becker PS, Blazar BR, Bueren J, Carroll T, Cavazzana-Calvo M, Clapp DW, Dalgleish R, Galy A, Gaspar HB, Hanenberg H, Von Kalle C, Kiem HP, Lindeman D, Naldini L, Navarro S, Renella R, Rio P, Sevilla J, Schmidt M, Verhoeyen E, Wagner JE, Williams DA, Thrasher AJ. Stem cell gene therapy for fanconi anemia: report from the 1st international Fanconi anemia gene therapy working group meeting. Mol Ther 2011; 19:1193-8. [PMID: 21540837 PMCID: PMC3129570 DOI: 10.1038/mt.2011.78] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/23/2011] [Indexed: 12/28/2022] Open
Abstract
Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA.
Collapse
Affiliation(s)
- Jakub Tolar
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Hendriks RW, Bredius RG, Pike-Overzet K, Staal FJ. Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man. Expert Opin Ther Targets 2011; 15:1003-21. [PMID: 21635151 DOI: 10.1517/14728222.2011.585971] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency in man, and is caused by a single genetic defect. Inactivating mutations in the Bruton's tyrosine kinase (BTK) gene are invariably the cause of XLA,. XLA is characterized by a differentiation arrest at the pre-B cell stage, the absence of immunoglobulins and recurrent bacterial infections, making it an insidious disease that gradually disables the patient, and can result in death due to chronic lung disease. Current treatment involves prophylactic antibiotics and immunoglobulin infusions, which are non-curative. This disease is a good candidate for curative hematopoietic stem cell (HSC)-based gene therapy, which could correct the B cell and myeloid deficiencies. AREAS COVERED This paper reviews the basic biology of BTK in B cell development, the clinical features of XLA, and the possibilities of gene therapy for XLA, covering the literature from 1995 to 2010. EXPERT OPINION Work from various laboratories demonstrates the feasibility of using gene-corrected HSCs to complement the immune defects of Btk-deficiency in mice. We propose that it is timely to start clinical programs to develop stem cell based therapy for XLA, using gene-corrected autologous HSC.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
109
|
Mattar CN, Choolani M, Biswas A, Waddington SN, Chan JKY. Fetal gene therapy: recent advances and current challenges. Expert Opin Biol Ther 2011; 11:1257-71. [PMID: 21623703 DOI: 10.1517/14712598.2011.585153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Fetal gene therapy (FGT) can potentially be applied to perinatally lethal monogenic diseases for rescuing clinically severe phenotypes, increasing the probability of intact neurological and other key functions at birth, or inducing immune tolerance to a transgenic protein to facilitate readministration of the vector/protein postnatally. As the field is still at an experimental stage, there are several important considerations regarding the practicality and the ethics of FGT. AREAS COVERED Here, through a review of FGT studies, the authors discuss the role and applications of FGT, the progress made with animal models that simulate human development, possible adverse effects in the recipient fetus and the mother and factors that affect clinical translation. EXPERT OPINION Although there are valid safety and ethical concerns, the authors argue that there may soon be enough convincing evidence from non-human primate models to take the next step towards clinical trials in the near future.
Collapse
Affiliation(s)
- Citra N Mattar
- Yong Loo Lin School of Medicine, National University of Singapore, Department of Obstetrics and Gynaecology, Experimental Fetal Medicine Group, NUHS Tower Block, Level 12, 1E Kent Ridge Road, 119228 Singapore
| | | | | | | | | |
Collapse
|
110
|
Recombinant AAV2-mediated β-globin expression in human fetal hematopoietic cells from the aborted fetuses with β-thalassemia major. Int J Hematol 2011; 93:691-699. [PMID: 21617888 DOI: 10.1007/s12185-011-0823-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 02/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Genetic correction of autologous hematopoietic stem cells has been proposed as an attractive treatment method for β-thalassemia. Our previous study has shown that recombinant adeno-associated virus 2 (rAAV2) efficiently transduces human fetal liver hematopoietic cells, and mediates the expression of the human β-globin gene in vivo. In this study, we investigated whether rAAV2 could also mediate the expression of normal β-globin gene in human hematopoietic cells from β-thalassemia patients. Human hematopoietic cells were isolated from aborted β-thalassemia major fetuses, transduced with rAAV2-β-globin, and then transplanted into nude mice. We found that rAAV2-β-globin transduced human fetal hematopoietic cells, as determined by allele-specific PCR analysis. Furthermore, β-globin transgene expression was detected in human hematopoietic cells up to 70 days post-transplantation in the recipient mice. High-pressure liquid chromatography analysis showed that human β-globin expression levels increased significantly compared with control, as indicated by a 1.2-2.8-fold increase in the ratio of β/α-globin chain. These novel data demonstrate that rAAV2 can transduce and mediate the normal β-globin gene expression in fetal hematopoietic cells from β-thalassemia patients. Our findings further support the potential use of rAAV-based gene therapy in the treatment of human β-thalassemia.
Collapse
|
111
|
Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M, Cesani M, Benedicenti F, Plati T, Rubagotti E, Merella S, Capotondo A, Sgualdino J, Zanetti G, von Kalle C, Schmidt M, Naldini L, Montini E. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 2011; 117:5332-9. [PMID: 21403130 DOI: 10.1182/blood-2010-09-306761] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A recent clinical trial for adrenoleukodystrophy (ALD) showed the efficacy and safety of lentiviral vector (LV) gene transfer in hematopoietic stem progenitor cells. However, several common insertion sites (CIS) were found in patients' cells, suggesting that LV integrations conferred a selective advantage. We performed high-throughput LV integration site analysis on human hematopoietic stem progenitor cells engrafted in immunodeficient mice and found the same CISs reported in patients with ALD. Strikingly, most CISs in our experimental model and in patients with ALD cluster in megabase-wide chromosomal regions of high LV integration density. Conversely, cancer-triggering integrations at CISs found in tumor cells from γ-retroviral vector-based clinical trials and oncogene-tagging screenings in mice always target a single gene and are contained in narrow genomic intervals. These findings imply that LV CISs are produced by an integration bias toward specific genomic regions rather than by oncogenic selection.
Collapse
Affiliation(s)
- Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), via Olgettina 58, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Some of the earliest studies of retroviral integration targeting reported that sites of gammaretroviral DNA integration were positively correlated with DNase I-hypersensitive sites in chromatin. This led to the suggestion that open chromatin was favorable for integration. More recent deep sequencing experiments confirmed that gammaretroviral integration sites and DNase I cleavage sites are associated in genome-wide surveys. Paradoxically, in vitro studies of integration show that nucleosomal DNA is actually favored over naked DNA, raising the question of whether integration target DNA in chromosomes is wrapped in nucleosomes or nucleosome free. In this study we examined gammaretroviral integration by infecting primary human CD4(+) T lymphocytes with a murine leukemia virus (MLV)-based retroviral vector or xenotropic murine leukemia virus-related virus (XMRV), and isolated 32,585 unique integration sites using ligation-mediated PCR and 454 pyrosequencing. CD4(+) T lymphocytes were chosen for study because of the particularly dense genome-wide mapping of chromatin features available for comparison. Analysis relative to predicted nucleosome positions showed that gammaretroviruses direct integration into outward-facing major grooves on nucleosome-wrapped DNA, similar to the integration pattern of HIV. Also, a suite of histone modifications correlated with gene activity are positively associated with integration by both MLV and XMRV. Thus, we conclude that favored integration near DNase I-hypersensitive sites does not imply that integration takes place exclusively in nucleosome-free regions.
Collapse
|
113
|
Abstract
Some of the earliest studies of retroviral integration targeting reported that sites of gammaretroviral DNA integration were positively correlated with DNase I-hypersensitive sites in chromatin. This led to the suggestion that open chromatin was favorable for integration. More recent deep sequencing experiments confirmed that gammaretroviral integration sites and DNase I cleavage sites are associated in genome-wide surveys. Paradoxically, in vitro studies of integration show that nucleosomal DNA is actually favored over naked DNA, raising the question of whether integration target DNA in chromosomes is wrapped in nucleosomes or nucleosome free. In this study we examined gammaretroviral integration by infecting primary human CD4(+) T lymphocytes with a murine leukemia virus (MLV)-based retroviral vector or xenotropic murine leukemia virus-related virus (XMRV), and isolated 32,585 unique integration sites using ligation-mediated PCR and 454 pyrosequencing. CD4(+) T lymphocytes were chosen for study because of the particularly dense genome-wide mapping of chromatin features available for comparison. Analysis relative to predicted nucleosome positions showed that gammaretroviruses direct integration into outward-facing major grooves on nucleosome-wrapped DNA, similar to the integration pattern of HIV. Also, a suite of histone modifications correlated with gene activity are positively associated with integration by both MLV and XMRV. Thus, we conclude that favored integration near DNase I-hypersensitive sites does not imply that integration takes place exclusively in nucleosome-free regions.
Collapse
|
114
|
Abstract
Cell-based therapies are fast-growing forms of personalized medicine that make use of the steady advances in stem cell manipulation and gene transfer technologies. In this Review, I highlight the latest developments and the crucial challenges for this field, with an emphasis on haematopoietic stem cell gene therapy, which is taken as a representative example given its advanced clinical translation. New technologies for gene correction and targeted integration promise to overcome some of the main hurdles that have long prevented progress in this field. As these approaches marry with our growing capacity for genetic reprogramming of mammalian cells, they may fulfil the promise of safe and effective therapies for currently untreatable diseases.
Collapse
Affiliation(s)
- Luigi Naldini
- HSR-TIGET, San Raffaele Telethon Institute for Gene Therapy and Vita Salute San Raffaele University, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
115
|
Nowrouzi A, Glimm H, von Kalle C, Schmidt M. Retroviral vectors: post entry events and genomic alterations. Viruses 2011; 3:429-55. [PMID: 21994741 PMCID: PMC3185758 DOI: 10.3390/v3050429] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 12/16/2022] Open
Abstract
The curative potential of retroviral vectors for somatic gene therapy has been demonstrated impressively in several clinical trials leading to sustained long-term correction of the underlying genetic defect. Preclinical studies and clinical monitoring of gene modified hematopoietic stem and progenitor cells in patients have shown that biologically relevant vector induced side effects, ranging from in vitro immortalization to clonal dominance and oncogenesis in vivo, accompany therapeutic efficiency of integrating retroviral gene transfer systems. Most importantly, it has been demonstrated that the genotoxic potential is not identical among all retroviral vector systems designed for clinical application. Large scale viral integration site determination has uncovered significant differences in the target site selection of retrovirus subfamilies influencing the propensity for inducing genetic alterations in the host genome. In this review we will summarize recent insights gained on the mechanisms of insertional mutagenesis based on intrinsic target site selection of different retrovirus families. We will also discuss examples of side effects occurring in ongoing human gene therapy trials and future prospectives in the field.
Collapse
Affiliation(s)
- Ali Nowrouzi
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Authors to whom correspondence should be addressed; E-Mails: (C.v.K.); (M.S.); Tel.: +49-6221-56-6991; +49-6221-42-1600; Fax: +49-6221-56-6930; +49-6221-42-1611
| | - Manfred Schmidt
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Authors to whom correspondence should be addressed; E-Mails: (C.v.K.); (M.S.); Tel.: +49-6221-56-6991; +49-6221-42-1600; Fax: +49-6221-56-6930; +49-6221-42-1611
| |
Collapse
|
116
|
Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications. Leukemia 2011; 25:1095-102. [DOI: 10.1038/leu.2011.52] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
117
|
Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies. Hematol Oncol Clin North Am 2011; 25:89-100. [PMID: 21236392 DOI: 10.1016/j.hoc.2010.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The concept of gene therapy emerged as a way of correcting monogenic inherited diseases by introducing a normal copy of the mutated gene into at least some of the patients' cells. Although this concept has turned out to be quite complicated to implement, it is in the field of primary immunodeficiencies (PIDs) that proof of feasibility has been undoubtedly achieved. There is now a strong rationale in support of gene therapy for at least some PIDs, as discussed in this article.
Collapse
Affiliation(s)
- Alain Fischer
- Developpement Normal et Pathologique du Systeme Immunitaire, INSERM U 768, Hopital Necker, 149 rue de Sevres, Paris, France
| | | | | |
Collapse
|
118
|
Giordano FA, Sorg UR, Appelt JU, Lachmann N, Bleier S, Roeder I, Kleff V, Flasshove M, Zeller WJ, Allgayer H, von Kalle C, Fruehauf S, Moritz T, Laufs S. Clonal inventory screens uncover monoclonality following serial transplantation of MGMT P140K-transduced stem cells and dose-intense chemotherapy. Hum Gene Ther 2011; 22:697-710. [PMID: 21319998 DOI: 10.1089/hum.2010.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene transfer of mutant O(6)-methylguanine-DNA-methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSCs) protects hematopoiesis from alkylating agents and allows efficient in vivo selection of transduced HSCs. However, insertional mutagenesis, high regenerative stress associated with selection, and the genotoxic potential of alkylating drugs represent considerable risk factors for clinical applications of this approach. Therefore, we investigated the long-term effect of MGMT(P140K) gene transfer followed by repetitive, dose-intensive treatment with alkylating agents in a murine serial bone marrow transplant model and assessed clonality of hematopoiesis up to tertiary recipients. The substantial selection pressure resulted in almost completely transduced hematopoiesis in all cohorts. Ligation-mediated PCR and next-generation sequencing identified several repopulating clones carrying vector insertions in distinct genomic regions that were ∼ 9 kb of size (common integration sites). Beside polyclonal reconstitution in the majority of the mice, we also detected monoclonal or oligoclonal repopulation patterns with HSC clones showing vector insertions in the Usp10 or Tubb3 gene. Interestingly, neither Usp10, Tubb3, nor any of the genes located in common integration sites have been linked to clonal expansion in previous preclinical or clinical gene therapy trials. However, a considerable number of these genes are involved in DNA damage response and cell fate decision pathways following cytostatic drug application. Thus, in summary, our study advocates ligation-mediated PCR and next generation sequencing as an effective and reliable method to identify gene products associated with clonal survival in specific experimental settings such as chemoselection using alkylating agents.
Collapse
Affiliation(s)
- Frank A Giordano
- Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Improvements in the gene transfer vectors used in therapeutic trials have led to substantial clinical successes in patients with serious genetic conditions, such as immunodeficiency syndromes, blindness and some cancer types. Several barriers need to be overcome before this type of therapy becomes a widely accepted treatment for a broad group of medical diseases. However, recent progress in the field is finally realizing some of the promises made more than 20 years ago, providing optimism for additional successes in the near future.
Collapse
Affiliation(s)
- Mark A Kay
- Department of Pediatrics and Genetics, Stanford University, 269 Campus Drive, Room 2105, Stanford, California 94305, USA.
| |
Collapse
|
120
|
Brady T, Roth SL, Malani N, Wang GP, Berry CC, Leboulch P, Hacein-Bey-Abina S, Cavazzana-Calvo M, Papapetrou EP, Sadelain M, Savilahti H, Bushman FD. A method to sequence and quantify DNA integration for monitoring outcome in gene therapy. Nucleic Acids Res 2011; 39:e72. [PMID: 21415009 PMCID: PMC3113588 DOI: 10.1093/nar/gkr140] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human genetic diseases have been successfully corrected by integration of functional copies of the defective genes into human cells, but in some cases integration of therapeutic vectors has activated proto-oncogenes and contributed to leukemia. For this reason, extensive efforts have focused on analyzing integration site populations from patient samples, but the most commonly used methods for recovering newly integrated DNA suffer from severe recovery biases. Here, we show that a new method based on phage Mu transposition in vitro allows convenient and consistent recovery of integration site sequences in a form that can be analyzed directly using DNA barcoding and pyrosequencing. The method also allows simple estimation of the relative abundance of gene-modified cells from human gene therapy subjects, which has previously been lacking but is crucial for detecting expansion of cell clones that may be a prelude to adverse events.
Collapse
Affiliation(s)
- Troy Brady
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
INTRODUCTION Retroviral vectors have been developed for hematopoietic stem cell (HSC) gene therapy and have successfully cured X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy, and Wiskott-Aldrich syndrome. However, in HSC gene therapy clinical trials, genotoxicity mediated by integrated vector proviruses has led to clonal expansion, and in some cases frank leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity with the aim of developing safer vectors and safer gene therapy protocols. These genotoxicity studies are critical to advancing HSC gene therapy. AREAS COVERED This review provides an introduction to the mechanisms of retroviral vector genotoxicity. It also covers advances over the last 20 years in designing safer gene therapy vectors, and in integration site analysis in clinical trials and large animal models. Mechanisms of retroviral-mediated genotoxicity, and the risk factors that contribute to clonal expansion and leukemia in HSC gene therapy are introduced. EXPERT OPINION Continued research on virus-host interactions and next-generation vectors should further improve the safety of future HSC gene therapy vectors and protocols.
Collapse
Affiliation(s)
- Grant D Trobridge
- Washington State University, Department of Pharmaceutical Sciences and School of Molecular Biosciences, P.O. Box 646534, Pullman, WA 99164-6534, USA.
| |
Collapse
|
122
|
Abstract
Since their first clinical trial 20 years ago, retroviral (gretroviral and lentiviral) vectors have now been used in more than 350 gene-therapy studies. Retroviral vectors are particularly suited for gene-correction of cells due to long-term and stable expression of the transferred transgene(s), and also because little effort is required for their cloning and production. Several monogenic inherited diseases, mostly immunodeficiencies, can now be successfully treated. The occurrence of insertional mutagenesis in some studies allowed extensive analysis of integration profiles of retroviral vectors, as well as the design of lentiviral vectors with increased safety properties. These new-generation vectors will enable us to continue the successful story of gene therapy, and treat more patients and even more complex diseases.
Collapse
Affiliation(s)
- Patrick Maier
- Department of Radiation Oncology, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | |
Collapse
|
123
|
Yasukawa M, Ochi T, Fujiwara H. Adoptive T-cell immunotherapy using T-cell receptor gene transfer: aiming at a cure for cancer. Immunotherapy 2011; 3:135-40. [PMID: 21322752 DOI: 10.2217/imt.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
124
|
Belay E, Mátrai J, Acosta-Sanchez A, Ma L, Quattrocelli M, Mátés L, Sancho-Bru P, Geraerts M, Yan B, Vermeesch J, Rincón MY, Samara-Kuko E, Ivics Z, Verfaillie C, Sampaolesi M, Izsvák Z, Vandendriessche T, Chuah MKL. Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: a nonviral paradigm for coaxed differentiation. Stem Cells 2011; 28:1760-71. [PMID: 20715185 DOI: 10.1002/stem.501] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult stem cells and induced pluripotent stem cells (iPS) hold great promise for regenerative medicine. The development of robust nonviral approaches for stem cell gene transfer would facilitate functional studies and potential clinical applications. We have previously generated hyperactive transposases derived from Sleeping Beauty, using an in vitro molecular evolution and selection paradigm. We now demonstrate that these hyperactive transposases resulted in superior gene transfer efficiencies and expression in mesenchymal and muscle stem/progenitor cells, consistent with higher expression levels of therapeutically relevant proteins including coagulation factor IX. Their differentiation potential and karyotype was not affected. Moreover, stable transposition could also be achieved in iPS, which retained their ability to differentiate along neuronal, cardiac, and hepatic lineages without causing cytogenetic abnormalities. Most importantly, transposon-mediated delivery of the myogenic PAX3 transcription factor into iPS coaxed their differentiation into MYOD(+) myogenic progenitors and multinucleated myofibers, suggesting that PAX3 may serve as a myogenic "molecular switch" in iPS. Hence, this hyperactive transposon system represents an attractive nonviral gene transfer platform with broad implications for regenerative medicine, cell and gene therapy.
Collapse
Affiliation(s)
- Eyayu Belay
- Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Biasco L, Ambrosi A, Pellin D, Bartholomae C, Brigida I, Roncarolo MG, Di Serio C, von Kalle C, Schmidt M, Aiuti A. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol Med 2011; 3:89-101. [PMID: 21243617 PMCID: PMC3060339 DOI: 10.1002/emmm.201000108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 12/21/2022] Open
Abstract
The analysis of genomic distribution of retroviral vectors is a powerful tool to monitor 'vector-on-host' effects in gene therapy (GT) trials but also provides crucial information about 'host-on-vector' influences based on the target cell genetic and epigenetic state. We had the unique occasion to compare the insertional profile of the same therapeutic moloney murine leukemia virus (MLV) vector in the context of the adenosine deaminase-severe combined immunodeficiency (ADA-SCID) genetic background in two GT trials based on infusions of transduced mature lymphocytes (peripheral blood lymphocytes, PBL) or a single infusion of haematopoietic stem/progenitor cells (HSC). We found that vector insertions are cell-specific according to the differential expression profile of target cells, favouring, in PBL-GT, genes involved in immune system and T-cell functions/pathways as well as T-cell DNase hypersensitive sites, differently from HSC-GT. Chromatin conformations and histone modifications influenced integration preferences but we discovered that only H3K27me3 was cell-specifically disfavoured, thus representing a key epigenetic determinant of cell-type dependent insertion distribution. Our study shows that MLV vector insertional profile is cell-specific according to the genetic/chromatin state of the target cell both in vitro and in vivo in patients several years after GT.
Collapse
Affiliation(s)
- Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET)Milano, Italy
- Università Vita-Salute San RaffaeleMilano, Italy
| | | | | | - Cynthia Bartholomae
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET)Milano, Italy
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET)Milano, Italy
- Università Vita-Salute San RaffaeleMilano, Italy
| | - Clelia Di Serio
- Università Vita-Salute San RaffaeleMilano, Italy
- CUSSB, Università Vita-SaluteMilan, Italy
| | - Christof von Kalle
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Manfred Schmidt
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET)Milano, Italy
- University of Rome ‘Tor Vergata’Rome, Italy
| |
Collapse
|
126
|
Grund N, Maier P, Giordano FA, Appelt JU, Zucknick M, Li L, Wenz F, Zeller WJ, Fruehauf S, Allgayer H, Laufs S. Analysis of self-inactivating lentiviral vector integration sites and flanking gene expression in human peripheral blood progenitor cells after alkylator chemotherapy. Hum Gene Ther 2011; 21:943-56. [PMID: 20210626 DOI: 10.1089/hum.2009.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract Hematotoxicity is a major and frequently dose-limiting side effect of chemotherapy. Retroviral methylguanine-DNA-methyltransferase (MGMT; EC 2.1.1.63) gene transfer to primitive hematopoietic progenitor cells (CD34(+) cells) might allow the application of high-dose alkylator chemotherapy with almost mild to absent myelosuppression. Because gammaretroviral vector integration was found in association with malignant or increased proliferation, novel lentiviral vectors with self-inactivating (SIN) capacity might display a safer option for future gene transfer studies. We assessed the influence of chemoselection on integration patterns in 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-treated and untreated human CD34(+) cells transduced with an SIN lentiviral vector carrying the MGMT(P140K) transgene, using ligation-mediated PCR (LM-PCR) and next-generation sequencing. In addition, for the first time, the local influence of the lentiviral provirus on the expression of hit and flanking genes in human CD34(+) cells was analyzed at a clonal level. For each colony, the integration site was detected (LM-PCR) and analyzed (QuickMap), and the expression of hit and flanking genes was measured (quantitative RT-PCR). Analyses of both treated and untreated CD34(+) cells revealed preferential integration into genes. Integration patterns in BCNU-treated cells showed mild, but not significant, differences compared with those found in untreated CD34(+) cells. Most importantly, when analyzing the local influence of the provirus, we saw no significant deregulation of the integration-flanking genes. These findings demonstrate that SIN vector-mediated gene transfer might display a feasible and possibly safe option for MGMT(P140K)-mediated chemoprotection of CD34(+) cells.
Collapse
Affiliation(s)
- N Grund
- Department of Experimental Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Powers JM, Trobridge GD. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies. ACTA ACUST UNITED AC 2011; 2013. [PMID: 24383045 PMCID: PMC3875223 DOI: 10.4172/2157-7633.s3-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.
Collapse
Affiliation(s)
- John M Powers
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington, USA
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington, USA ; School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
128
|
Cattoglio C, Maruggi G, Bartholomae C, Malani N, Pellin D, Cocchiarella F, Magnani Z, Ciceri F, Ambrosi A, von Kalle C, Bushman FD, Bonini C, Schmidt M, Mavilio F, Recchia A. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion. PLoS One 2010; 5:e15688. [PMID: 21203516 PMCID: PMC3008730 DOI: 10.1371/journal.pone.0015688] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/22/2010] [Indexed: 01/20/2023] Open
Abstract
The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and pyrosequencing to build a genome-wide, high-definition map of retroviral integration sites in the genome of peripheral blood T cells from two different donors and used gene expression profiling and bioinformatics to associate integration clusters to transcriptional activity and to genetic and epigenetic features of the T cell genome. Comparison with matched random controls and with integrations obtained from CD34(+) hematopoietic stem/progenitor cells showed that integration clusters occur within chromatin regions bearing epigenetic marks associated with active promoters and regulatory elements in a cell-specific fashion. Analysis of integration sites in T cells obtained ex vivo two months after infusion showed no evidence of integration-related clonal expansion or dominance, but rather loss of cells harboring integration events interfering with RNA post-transcriptional processing. The study shows that high-definition maps of retroviral integration sites are a powerful tool to analyze the fate of genetically modified T cells in patients and the biological consequences of retroviral transduction.
Collapse
Affiliation(s)
- Claudia Cattoglio
- IIT Unit of Molecular Neuroscience, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Giulietta Maruggi
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Cynthia Bartholomae
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Danilo Pellin
- Center for Statistics in Biomedical Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Fabienne Cocchiarella
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Zulma Magnani
- Experimental Hematology Unit, PIBIC, Division of Regenerative Medicine, Gene Therapy and Stem Cells, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Hematology Unit, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Alessandro Ambrosi
- Center for Statistics in Biomedical Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chiara Bonini
- Experimental Hematology Unit, PIBIC, Division of Regenerative Medicine, Gene Therapy and Stem Cells, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fulvio Mavilio
- IIT Unit of Molecular Neuroscience, Istituto Scientifico H. San Raffaele, Milan, Italy
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Recchia
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
129
|
Ohmine K, Li Y, Bauer TR, Hickstein DD, Russell DW. Tracking of specific integrant clones in dogs treated with foamy virus vectors. Hum Gene Ther 2010; 22:217-24. [PMID: 20738155 DOI: 10.1089/hum.2010.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vector integration can lead to proto-oncogene activation and malignancies during hematopoietic stem cell gene therapy. We previously used foamy virus vectors to deliver the CD18 gene under the control of an internal murine stem cell virus promoter and successfully treated dogs with canine leukocyte adhesion deficiency. Here we have tracked the copy numbers of 11 specific proviruses found in these animals for 36-42 months after transplantation, including examples within or near proto-oncogenes, tumor suppressor genes, and genes unrelated to cancer. We found no evidence for clonal expansion of any of the clones, including those with proviruses in the MECOM gene (MDS1-EVI1 complex). These results suggest that although foamy virus vectors may integrate near proto-oncogenes, this does not necessarily lead to clonal expansion and malignancies. Additionally, we show that copy number estimates of these specific proviruses based on linker-mediated PCR results are different from those obtained by quantitative PCR, but can provide a qualitative assessment of provirus levels.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
130
|
Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LMS, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M. Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 2010; 29:73-8. [PMID: 21151124 DOI: 10.1038/nbt.1717] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/26/2010] [Indexed: 12/20/2022]
Abstract
Realizing the therapeutic potential of human induced pluripotent stem (iPS) cells will require robust, precise and safe strategies for genetic modification, as cell therapies that rely on randomly integrated transgenes pose oncogenic risks. Here we describe a strategy to genetically modify human iPS cells at 'safe harbor' sites in the genome, which fulfill five criteria based on their position relative to contiguous coding genes, microRNAs and ultraconserved regions. We demonstrate that ∼10% of integrations of a lentivirally encoded β-globin transgene in β-thalassemia-patient iPS cell clones meet our safe harbor criteria and permit high-level β-globin expression upon erythroid differentiation without perturbation of neighboring gene expression. This approach, combining bioinformatics and functional analyses, should be broadly applicable to introducing therapeutic or suicide genes into patient-specific iPS cells for use in cell therapy.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Santoni FA, Hartley O, Luban J. Deciphering the code for retroviral integration target site selection. PLoS Comput Biol 2010; 6:e1001008. [PMID: 21124862 PMCID: PMC2991247 DOI: 10.1371/journal.pcbi.1001008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/25/2010] [Indexed: 01/17/2023] Open
Abstract
Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses. When HIV-1, murine leukemia virus (MLV), or other retroviruses infect a cell, the virus generates a DNA copy of the viral RNA genome and ligates the cDNA within host chromosomal DNA. This integration reaction occurs at sites throughout the host cell genome, but little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by comparing the genome-wide binding sites for more than 60 factors with 14 retroviral integration datasets. We borrowed Precision-Recall methods from the Information Retrieval field for extracting information from highly skewed datasets such as these. For MLV and other gammaretroviruses, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. We generated a supermarker by combining high scoring markers. The supermarker localized within 2 kB of 75% of MLV proviruses and predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner. This study identified chromosomal features highly favored for retroviral integration. It also provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses.
Collapse
Affiliation(s)
- Federico Andrea Santoni
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland
- Center for Advanced Studies, Research, and Development in Sardinia, Pula, Italy
| | - Oliver Hartley
- Department of Structural Biology and Bioinformatics, University of Geneva, Geneva, Switzerland
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
132
|
Schmitt TM, Ragnarsson GB, Greenberg PD. T cell receptor gene therapy for cancer. Hum Gene Ther 2010; 20:1240-8. [PMID: 19702439 DOI: 10.1089/hum.2009.146] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T cell-based adoptive immunotherapy has been shown to be a promising treatment for various types of cancer. However, adoptive T cell therapy currently requires the custom isolation and characterization of tumor-specific T cells from each patient-a process that can be not only difficult and time-consuming but also often fails to yield high-avidity T cells, which together have limited the broad application of this approach as a clinical treatment. Employing T cell receptor (TCR) gene therapy as a component of adoptive T cell therapy strategies can overcome many of these obstacles, allowing autologous T cells with a defined specificity to be generated in a much shorter time period. Initial studies using this approach have been hampered by a number of technical difficulties resulting in low TCR expression and acquisition of potentially problematic specificities due to mispairing of introduced TCR chains with endogenous TCR chains. The last several years have seen substantial progress in our understanding of the multiple facets of TCR gene therapy that will have to be properly orchestrated for this strategy to succeed. Here we outline the challenges of TCR gene therapy and the advances that have been made toward realizing the promise of this approach.
Collapse
|
133
|
High-throughput, sensitive quantification of repopulating hematopoietic stem cell clones. J Virol 2010; 84:11771-80. [PMID: 20844053 DOI: 10.1128/jvi.01355-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral vector-mediated gene therapy has been successfully used to correct genetic diseases. However, a number of studies have shown a subsequent risk of cancer development or aberrant clonal growths due to vector insertion near or within proto-oncogenes. Recent advances in the sequencing technology enable high-throughput clonality analysis via vector integration site (VIS) sequencing, which is particularly useful for studying complex polyclonal hematopoietic progenitor/stem cell (HPSC) repopulation. However, clonal repopulation analysis using the current methods is typically semiquantitative. Here, we present a novel system and standards for accurate clonality analysis using 454 pyrosequencing. We developed a bidirectional VIS PCR method to improve VIS detection by concurrently analyzing both the 5' and the 3' vector-host junctions and optimized the conditions for the quantitative VIS sequencing. The assay was validated by quantifying the relative frequencies of hundreds of repopulating HPSC clones in a nonhuman primate. The reliability and sensitivity of the assay were assessed using clone-specific real-time PCR. The majority of tested clones showed a strong correlation between the two methods. This assay permits high-throughput and sensitive assessment of clonal populations and hence will be useful for a broad range of gene therapy, stem cell, and cancer research applications.
Collapse
|
134
|
Kustikova O, Brugman M, Baum C. The genomic risk of somatic gene therapy. Semin Cancer Biol 2010; 20:269-78. [DOI: 10.1016/j.semcancer.2010.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/02/2010] [Accepted: 06/24/2010] [Indexed: 01/08/2023]
|
135
|
Sorrentino B. Assessing the risk of T-cell malignancies in mouse models of SCID-X1. Mol Ther 2010; 18:868-70. [PMID: 20436493 DOI: 10.1038/mt.2010.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Brian Sorrentino
- Division of Experimental Hematology, Department of Hematology, St Jude Children's Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
136
|
|
137
|
Paruzynski A, Arens A, Gabriel R, Bartholomae CC, Scholz S, Wang W, Wolf S, Glimm H, Schmidt M, von Kalle C. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc 2010; 5:1379-95. [PMID: 20671722 DOI: 10.1038/nprot.2010.87] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-throughput integration site profiling has become a feasible tool to assess vector biosafety and to monitor the cell fate of the gene-corrected cell population in clinical gene therapy studies. Here we report a step-by-step protocol for universal genome-wide and comprehensive integrome analysis that can be performed on >10(2)-10(3) samples of interest in parallel. This assay is composed of fast and cost-efficient non-restrictive linear amplification-mediated PCR; optimized sample preparation for pyrosequencing; and automated bioinformatic data mining, including sequence trimming, alignment to the cellular genome and further annotation. Moreover, the workflow of this large-scale assay can be adapted to any PCR-based method aiming to characterize unknown flanking DNA adjacent to a known DNA region. Thus, in combination with next-generation sequencing technologies, large-scale integrome analysis of > 4 x 10(5)-1 x 10(6) integration site sequences can be accomplished within a single week.
Collapse
Affiliation(s)
- Anna Paruzynski
- Department of Translational Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Ng YY, Baert MRM, Pike-Overzet K, Rodijk M, Brugman MH, Schambach A, Baum C, Hendriks RW, van Dongen JJM, Staal FJT. Correction of B-cell development in Btk-deficient mice using lentiviral vectors with codon-optimized human BTK. Leukemia 2010; 24:1617-30. [PMID: 20574453 DOI: 10.1038/leu.2010.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency (PID) in man and caused by mutations in the Bruton's tyrosine kinase (BTK) gene. XLA is characterized by a B-cell differentiation arrest in bone marrow, absence of mature B cells and immunoglobulins (Igs), and recurrent bacterial infections. We used self-inactivating lentiviral vectors expressing codon-optimized human BTK under the control of three different ubiquitous or B cell-specific promoters. Btk-/- mice engrafted with transduced cells showed correction of both precursor B-cell and peripheral B-cell development. Lentiviral vectors containing the wildtype BTK sequence did not correct the phenotype. All treated mice with codon-optimized BTK exhibited the recovery of B1 cells in the peritoneal cavity, and of serum IgM and IgG3 levels. Calcium mobilization responses upon B-cell receptor stimulation as well as in vivo responses to T cell-independent antigens were restored. Viral promoters overexpressing BTK >100-fold above normal resulted in erythro-myeloid proliferations independent of insertional mutagenesis. However, transplantation into secondary Btk-/- recipients using cellular promoters resulted in functional restoration of peripheral B cells and IgM levels, without any adverse effects. In conclusion, transduction of human BTK corrects B-cell development and antigen-specific antibody responses in Btk-/- mice, thus indicating the feasibility of lentiviral gene therapy for XLA, provided that BTK expression does not vastly exceed normal levels.
Collapse
Affiliation(s)
- Y Y Ng
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Fischer A, Hacein-Bey-Abina S, Cavazanna-Calvo M. Gene Therapy for Primary Immunodeficiencies. Immunol Allergy Clin North Am 2010; 30:237-48. [DOI: 10.1016/j.iac.2010.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
140
|
Bertino JR. Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol 2010; 22:577-82. [PMID: 19959110 DOI: 10.1016/j.beha.2009.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The antifolates aminopterin and methotrexate have two firsts in the treatment of malignancy. Aminopterin was the first drug reported to cause remissions in children with acute lymphocytic leukaemia, and methotrexate (MTX), the antifolate that has supplemented aminopterin in the clinic, was the first drug that was shown to be curative for patients with a solid tumour, choriocarcinoma. More than 50 years after its introduction in the clinic, MTX is still being used and studied. The role of dihydrofolate reductase (DHFR), the principal target of aminopterin, has been studied extensively, and DHFR gene amplification and mutations have been implicated in drug resistance. Recent research focusses on studies of the translational regulation of DHFR and transfer of mutant DHFR and other drug resistance genes by viral vectors to protect haematopoietic cells. Based upon the detailed understanding of the mechanism of action of antifolates, both as inhibitors of DHFR and thymidylate syntase (TS), new agents have been developed that show effectiveness in the treatment of human malignancies. MTX remains a potent and widely used agent.
Collapse
Affiliation(s)
- Joseph R Bertino
- Department of Molecular Therapeutics, The Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
141
|
Radecke S, Radecke F, Cathomen T, Schwarz K. Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther 2010; 18:743-53. [PMID: 20068556 PMCID: PMC2862519 DOI: 10.1038/mt.2009.304] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/14/2009] [Indexed: 12/26/2022] Open
Abstract
Correcting a mutated gene directly at its endogenous locus represents an alternative to gene therapy protocols based on viral vectors with their risk of insertional mutagenesis. When solely a single-stranded oligodeoxynucleotide (ssODN) is used as a repair matrix, the efficiency of the targeted gene correction is low. However, as shown with the homing endonuclease I-SceI, ssODN-mediated gene correction can be enhanced by concomitantly inducing a DNA double-strand break (DSB) close to the mutation. Because I-SceI is hardly adjustable to cut at any desired position in the human genome, here, customizable zinc-finger nucleases (ZFNs) were used to stimulate ssODN-mediated repair of a mutated single-copy reporter locus stably integrated into human embryonic kidney-293 cells. The ZFNs induced faithful gene repair at a frequency of 0.16%. Six times more often, ZFN-induced DSBs were found to be modified by unfaithful addition of ssODN between the termini and about 60 times more often by nonhomologous end joining-related deletions and insertions. Additionally, ZFN off-target activity based on binding mismatch sites at the locus of interest was detected in in vitro cleavage assays and also in chromosomal DNA isolated from treated cells. Therefore, the specificity of ZFN-induced ssODN-mediated gene repair needs to be improved, especially regarding clinical applications.
Collapse
Affiliation(s)
- Sarah Radecke
- Department of Molecular Diagnostics, Molecular Therapy and Experimental Transplantation, Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | | | | | | |
Collapse
|
142
|
Hackett PB, Largaespada DA, Cooper LJN. A transposon and transposase system for human application. Mol Ther 2010; 18:674-83. [PMID: 20104209 PMCID: PMC2862530 DOI: 10.1038/mt.2010.2] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/04/2010] [Indexed: 12/12/2022] Open
Abstract
The stable introduction of therapeutic transgenes into human cells can be accomplished using viral and nonviral approaches. Transduction with clinical-grade recombinant viruses offers the potential of efficient gene transfer into primary cells and has a record of therapeutic successes. However, widespread application for gene therapy using viruses can be limited by their initially high cost of manufacture at a limited number of production facilities as well as a propensity for nonrandom patterns of integration. The ex vivo application of transposon-mediated gene transfer now offers an alternative to the use of viral vectors. Clinical-grade DNA plasmids can be prepared at much reduced cost and with lower immunogenicity, and the integration efficiency can be improved by the transient coexpression of a hyperactive transposase. This has facilitated the design of human trials using the Sleeping Beauty (SB) transposon system to introduce a chimeric antigen receptor (CAR) to redirect the specificity of human T cells. This review examines the rationale and safety implications of application of the SB system to genetically modify T cells to be manufactured in compliance with current good manufacturing practice (cGMP) for phase I/II trials.
Collapse
Affiliation(s)
- Perry B Hackett
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, Institute of Human Genetics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
143
|
Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood 2010; 115:4356-66. [PMID: 20228274 DOI: 10.1182/blood-2009-12-257352] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
X-linked severe-combined immunodeficiency (SCID-X1) has been treated by therapeutic gene transfer using gammaretroviral vectors, but insertional activation of proto-oncogenes contributed to leukemia in some patients. Here we report a longitudinal study of gene-corrected progenitor cell populations from 8 patients using 454 pyrosequencing to map vector integration sites, and extensive resampling to allow quantification of clonal abundance. The number of transduced cells infused into patients initially predicted the subsequent diversity of circulating cells. A capture-recapture analysis was used to estimate the size of the gene-corrected cell pool, revealing that less than 1/100th of the infused cells had long-term repopulating activity. Integration sites were clustered even at early time points, often near genes involved in growth control, and several patients harbored expanded cell clones with vectors integrated near the cancer-implicated genes CCND2 and HMGA2, but remain healthy. Integration site tracking also documented that chemotherapy for adverse events resulted in successful control. The longitudinal analysis emphasizes that key features of transduced cell populations--including diversity, integration site clustering, and expansion of some clones--were established early after transplantation. The approaches to sequencing and bioinformatics analysis reported here should be widely useful in assessing the outcome of gene therapy trials.
Collapse
|
144
|
Zweier-Renn LA, Hawley TS, Burkett S, Ramezani A, Riz I, Adler RL, Hickstein DD, Hawley RG. Hematopoietic immortalizing function of the NKL-subclass homeobox gene TLX1. Genes Chromosomes Cancer 2010; 49:119-31. [PMID: 19862821 DOI: 10.1002/gcc.20725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Translocations resulting in ectopic expression of the TLX1 homeobox gene (previously known as HOX11) are recurrent events in human T-cell acute lymphoblastic leukemia (T-ALL). Transduction of primary murine hematopoietic stem/progenitor cells with retroviral vectors expressing TLX1 readily yields immortalized hematopoietic progenitor cell lines. Understanding the processes involved in TLX1-mediated cellular immortalization should yield insights into the growth and differentiation pathways altered by TLX1 during the development of T-ALL. In recent clinical gene therapy trials, hematopoietic clonal dominance or T-ALL-like diseases have occurred as a direct consequence of insertional activation of the EVI1, PRDM16 or LMO2 proto-oncogenes by the retroviral vectors used to deliver the therapeutic genes. Additionally, the generation of murine hematopoietic progenitor cell lines due to retroviral integrations into Evi1 or Prdm16 has also been recently reported. Here, we determined by linker-mediated nested polymerase chain reaction the integration sites in eight TLX1-immortalized hematopoietic cell lines. Notably, no common integration site was observed among the cell lines. Moreover, no insertions into the Evi1 or Prdm16 genes were identified although insertion near Lmo2 was observed in one instance. However, neither Lmo2 nor any of the other genes examined surrounding the integration sites showed differential vector-influenced expression compared to the cell lines lacking such insertions. While we cannot exclude the possibility that insertional side effects transiently provided a selective growth/survival advantage to the hematopoietic progenitor populations, our results unequivocally rule out insertions into Evi1 and Prdm16 as being integral to the TLX1-initiated immortalization process.
Collapse
Affiliation(s)
- Lynnsey A Zweier-Renn
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Fratini P, Strauss BE. Serial bone marrow transplantation reveals in vivo expression of the pCLPG retroviral vector. Virol J 2010; 7:16. [PMID: 20096105 PMCID: PMC2845565 DOI: 10.1186/1743-422x-7-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/22/2010] [Indexed: 11/30/2022] Open
Abstract
Background Gene therapy in the hematopoietic system remains promising, though certain aspects of vector design, such as transcriptional control elements, continue to be studied. Our group has developed a retroviral vector where transgene expression is controlled by p53 with the intention of harnessing the dynamic and inducible nature of this tumor suppressor and transcription factor. We present here a test of in vivo expression provided by the p53-responsive vector, pCLPG. For this, we used a model of serial transplantation of transduced bone marrow cells. Results We observed, by flow cytometry, that the eGFP transgene was expressed at higher levels when the pCLPG vector was used as compared to the parental pCL retrovirus, where expression is directed by the native MoMLV LTR. Expression from the pCLPG vector was longer lasting, but did decay along with each sequential transplant. The detection of eGFP-positive cells containing either vector was successful only in the bone marrow compartment and was not observed in peripheral blood, spleen or thymus. Conclusions These findings indicate that the p53-responsive pCLPG retrovirus did offer expression in vivo and at a level that surpassed the non-modified, parental pCL vector. Our results indicate that the pCLPG platform may provide some advantages when applied in the hematopoietic system.
Collapse
Affiliation(s)
- Paula Fratini
- Setor de Vetores Virais, Laboratório de Genética e Cardiologia Molecular/LIM 13, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, CEP 05403-900, Brasil
| | | |
Collapse
|
146
|
Sadat MA, Dirscherl S, Sastry L, Dantzer J, Pech N, Griffin S, Hawkins T, Zhao Y, Barese CN, Cross S, Orazi A, An C, Goebel WS, Yoder MC, Li X, Grez M, Cornetta K, Mooney SD, Dinauer MC. Retroviral vector integration in post-transplant hematopoiesis in mice conditioned with either submyeloablative or ablative irradiation. Gene Ther 2009; 16:1452-64. [PMID: 19657370 PMCID: PMC2795029 DOI: 10.1038/gt.2009.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/09/2009] [Indexed: 12/11/2022]
Abstract
X-linked chronic granulomatous disease (X-CGD) is an inherited immunodeficiency with absent phagocyte NADPH-oxidase activity caused by defects in the gene-encoding gp91(phox). Here, we evaluated strategies for less intensive conditioning for gene therapy of genetic blood disorders without selective advantage for gene correction, such as might be used in a human X-CGD protocol. We compared submyeloablative with ablative irradiation as conditioning in murine X-CGD, examining engraftment, oxidase activity and vector integration in mice transplanted with marrow transduced with a gamma-retroviral vector for gp91(phox) expression. The frequency of oxidase-positive neutrophils in the donor population was unexpectedly higher in many 300 cGy-conditioned mice compared with lethally irradiated recipients, as was the fraction of vector-marked donor secondary CFU-S12. Vector integration sites in marrow, spleen and secondary CFU-S12 DNA from primary recipients were enriched for cancer-associated genes, including Evi1, and integrations in or near cancer-associated genes were more frequent in marrow and secondary CFU-S12 from 300 cGy-conditioned mice compared with fully ablated mice. These findings support the concept that vector integration can confer a selection bias, and suggest that the intensity of the conditioning regimen may further influence the effects of vector integration on clonal selection in post-transplant engraftment and hematopoiesis.
Collapse
Affiliation(s)
- Mohammed A. Sadat
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sara Dirscherl
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Lakshmi Sastry
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jessica Dantzer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Nancy Pech
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Samantha Griffin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Troy Hawkins
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Yiqiang Zhao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Cecilia N. Barese
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Scott Cross
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Caroline An
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - W. Scott Goebel
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Mervin C. Yoder
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Xiaoman Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medicine; Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Manuel Grez
- Molecular Virology, Georg-Speyer-Haus, Frankfurt, Germany
| | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medicine; Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Sean D. Mooney
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Mary C. Dinauer
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
147
|
Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med 2009; 15:1431-6. [PMID: 19966782 DOI: 10.1038/nm.2057] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 06/16/2009] [Indexed: 11/09/2022]
Abstract
Retroviral vectors have induced subtle clonal skewing in many gene therapy patients and severe clonal proliferation and leukemia in some of them, emphasizing the need for comprehensive integration site analyses to assess the biosafety and genomic pharmacokinetics of vectors and clonal fate of gene-modified cells in vivo. Integration site analyses such as linear amplification-mediated PCR (LAM-PCR) require a restriction digest generating unevenly small fragments of the genome. Here we show that each restriction motif allows for identification of only a fraction of all genomic integrants, hampering the understanding and prediction of biological consequences after vector insertion. We developed a model to define genomic access to the viral integration site that provides optimal restriction motif combinations and minimizes the percentage of nonaccessible insertion loci. We introduce a new nonrestrictive LAM-PCR approach that has superior capabilities for comprehensive unbiased integration site retrieval in preclinical and clinical samples independent of restriction motifs and amplification inefficiency.
Collapse
|
148
|
Tittiger M, Ma X, Xu L, Ponder KP. Neonatal intravenous injection of a gammaretroviral vector has a low incidence of tumor induction in mice. Hum Gene Ther 2009; 19:1317-23. [PMID: 19866493 DOI: 10.1089/hum.2008.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neonatal intravenous injection of gammaretroviral vectors (gamma-RVs) with an intact long terminal repeat (LTR) and an internal liver promoter can result in long-term expression in liver cells and correction of mucopolysaccharidosis. Some expression also occurs in blood cells and brain, which likely derives from the LTR, and may contribute to clinical efficacy. The goal of this project was to determine whether neonatal gene therapy with an LTR-intact gamma-RV would induce tumors in mice. Fifty-one normal newborn C57BL/6 mice were injected intravenously at 10(10) transducing units/kg with a gamma-RV expressing canine beta-glucuronidase (GUSB) cDNA. This resulted in transduction of 23 +/- 9% of hepatocytes as determined by histochemical staining, and 0.24 +/- 0.20 copy of gamma-RV DNA per cell in liver as determined by real-time polymerase chain reaction. Serum GUSB activity was stable for 1.75 years after transduction at 705 +/- 119 units/ml. Ninety-six percent of mice survived for the duration of evaluation, which was similar to the survival rate for 65 control mice that were not injected with gamma-RV. One gamma-RV-treated mouse (2%) developed a small (diameter, 2 mm) liver adenoma, which was similar to the frequency of liver adenomas (2%) or hepatocellular carcinoma (2%) in untreated mice. Although 22% of gamma-RV-treated mice developed hematopoietic tumors, none contained high gamma-RV DNA copy numbers, and the frequency was similar to that in the control group (22%). We conclude that neonatal intravenous injection of an LTR-intact gamma-RV does not have a high risk of inducing cancer in mice.
Collapse
Affiliation(s)
- Mindy Tittiger
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
149
|
Cassani B, Montini E, Maruggi G, Ambrosi A, Mirolo M, Selleri S, Biral E, Frugnoli I, Hernandez-Trujillo V, Di Serio C, Roncarolo MG, Naldini L, Mavilio F, Aiuti A. Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy. Blood 2009; 114:3546-56. [PMID: 19652199 DOI: 10.1182/blood-2009-02-202085] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene transfer into hematopoietic stem cells by gamma-retroviral vectors (RVs) is an effective treatment for inherited blood disorders, although potentially limited by the risk of insertional mutagenesis. We evaluated the genomic impact of RV integration in T lymphocytes from adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) patients 10 to 30 months after infusion of autologous, genetically corrected CD34(+) cells. Expression profiling on ex vivo T-cell bulk population revealed no difference with respect to healthy controls. To assess the effect of vector integration on gene expression at the single-cell level, primary T-cell clones were isolated from 2 patients. T-cell clones harbored either 1 (89.8%) or 2 (10.2%) vector copies per cell and displayed partial to full correction of ADA expression, purine metabolism, and T-cell receptor-driven functions. Analysis of RV integration sites indicated a high diversity in T-cell origin, consistently with the polyclonal T-cell receptor-Vbeta repertoire. Quantitative transcript analysis of 120 genes within a 200-kb window around RV integration sites showed modest (2.8- to 5.2-fold) dysregulation of 5.8% genes in 18.6% of the T-cell clones compared with controls. Nonetheless, affected clones maintained a stable phenotype and normal in vitro functions. These results confirm that RV-mediated gene transfer for ADA-SCID is safe, and provide crucial information for the development of future gene therapy protocols. The trials described herein have been registered at http://www.clinicaltrials.gov as #NCT00598481 and #NCT00599781.
Collapse
MESH Headings
- Adenosine Deaminase/deficiency
- Adenosine Deaminase/genetics
- Antigens, CD34
- Biomarkers, Tumor/genetics
- Cells, Cultured
- Gene Expression Profiling
- Gene Transfer Techniques
- Genetic Therapy
- Genetic Vectors/therapeutic use
- Humans
- Oligonucleotide Array Sequence Analysis
- Purines/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Severe Combined Immunodeficiency/enzymology
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/therapy
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Transduction, Genetic
- Virus Integration
Collapse
Affiliation(s)
- Barbara Cassani
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Qasim W, Gaspar HB, Thrasher AJ. Progress and prospects: gene therapy for inherited immunodeficiencies. Gene Ther 2009; 16:1285-91. [DOI: 10.1038/gt.2009.127] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|