101
|
Todd J, Whitson L, Smith E, Michie PT, Schall U, Ward PB. What's intact and what's not within the mismatch negativity system in schizophrenia. Psychophysiology 2014; 51:337-47. [PMID: 24611871 DOI: 10.1111/psyp.12181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/13/2013] [Indexed: 11/30/2022]
Abstract
Repetitive patterning facilitates inferences about likely properties of sound to follow. Mismatch negativity (MMN) occurs when sound fails to match an inference. Smaller MMN in schizophrenia indexes deficient gain control (difference in utilizing a limited dynamic range). Although it is clear that this group has a lower limit to MMN size, this study addressed whether smaller MMN indicates impaired perceptual inference. MMN was elicited to four deviants in two sequences: one in which occurrence was random and one in which it was paired. Despite smaller MMN, persons with schizophrenia are equally able to reduce MMN size evoked by a deviant when its occurrence is cued. Results also expose alterations in the evoked response to repeated sounds that appear to be exacerbations of age-related amplitude decline. Since these anomalies impact the computed MMN, they highlight the need to identify all contributions to limits in gain control in schizophrenia.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, Australia; Priority Research Centre, Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, Australia; Schizophrenia Research Institute, Darlinghurst, Australia
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
The trophic factor neuregulin 1 (Nrg1) and its receptor ErbB4 are schizophrenia candidate genes. NRG1-ErbB4 signaling was thought to regulate spine formation and function in a cell-autonomous manner. Yet, recent studies indicate that ErbB4 expression is largely restricted to GABAergic interneurons and is very low or absent in pyramidal cells. Here, we generated and characterized cell type-specific ErbB4 mutant and transgenic mice. Spine density and the number of excitatory synapses were unaltered by neither deletion nor overexpression of ErbB4 in pyramidal neurons. However, spine density and excitatory synapse number were reduced in PV-ErbB4(-/-) mice where ErbB4 was selectively ablated in parvalbumin-positive GABAergic interneurons. Concurrently, basal glutamate transmission was impaired in PV-ErbB4(-/-) mice, but not in mice where ErbB4 was deleted or overexpressed in pyramidal neurons. Our results demonstrate a role of ErbB4 in PV-positive interneurons for spine formation in excitatory neurons.
Collapse
|
103
|
Kim J, Shin JY, Kim JI, Seo JS, Webster MJ, Lee D, Kim S. Somatic deletions implicated in functional diversity of brain cells of individuals with schizophrenia and unaffected controls. Sci Rep 2014; 4:3807. [PMID: 24448323 PMCID: PMC3897957 DOI: 10.1038/srep03807] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022] Open
Abstract
While somatic DNA copy number variations (CNVs) have been identified in multiple tissues from normal people, they have not been well studied in brain tissues from individuals with psychiatric disorders. With ultrahigh depth sequencing data, we developed an integrated pipeline for calling somatic deletions using data from multiple tissues of the same individual or a single tissue type taken from multiple individuals. Using the pipelines, we identified 106 somatic deletions in DNA from prefrontal cortex (PFC) and/or cerebellum of two normal controls subjects and/or three individuals with schizophrenia. We then validated somatic deletions in 18 genic and in 1 intergenic region. Somatic deletions in BOD1 and CBX3 were reconfirmed using DNA isolated from non-pyramidal neurons and from cells in white matter using laser capture microdissection (LCM). Our results suggest that somatic deletions may affect metabolic processes and brain development in a region specific manner.
Collapse
Affiliation(s)
- Junho Kim
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Jong-Yeon Shin
- 1] Genomic Medicine Institute (GMI), Medical Research Center, Seoul National, University, Seoul 110-799, Korea [2] Psoma Therapeutics Inc., Seoul, 153-781, Korea
| | - Jong-Il Kim
- 1] Genomic Medicine Institute (GMI), Medical Research Center, Seoul National, University, Seoul 110-799, Korea [2] Psoma Therapeutics Inc., Seoul, 153-781, Korea [3] Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110-799, Korea [4] Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, Seoul 110-799, Korea
| | - Jeong-Sun Seo
- 1] Genomic Medicine Institute (GMI), Medical Research Center, Seoul National, University, Seoul 110-799, Korea [2] Psoma Therapeutics Inc., Seoul, 153-781, Korea [3] Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110-799, Korea [4] Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, Seoul 110-799, Korea [5] Macrogen Inc., Seoul 153-781, Korea
| | - Maree J Webster
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850
| |
Collapse
|
104
|
Enkel T, Berger SM, Schönig K, Tews B, Bartsch D. Reduced expression of nogo-a leads to motivational deficits in rats. Front Behav Neurosci 2014; 8:10. [PMID: 24478657 PMCID: PMC3898325 DOI: 10.3389/fnbeh.2014.00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/07/2014] [Indexed: 12/24/2022] Open
Abstract
Nogo-A is an important neurite growth-regulatory protein in the adult and developing nervous system. Mice lacking Nogo-A, or rats with neuronal Nogo-A deficiency, exhibit behavioral abnormalities such as impaired short-term memory, decreased pre-pulse inhibition, and behavioral inflexibility. In the current study, we extended the behavioral profile of the Nogo-A deficient rat line with respect to reward sensitivity and motivation, and determined the concentrations of the monoamines dopamine and serotonin in the prefrontal cortex (PFC), dorsal striatum (dSTR), and nucleus accumbens (NAcc). Using a limited access consumption task, we found similar intake of a sweet condensed milk solution following ad libitum or restricted feeding in wild-type and Nogo-A deficient rats, indicating normal reward sensitivity and translation of hunger into feeding behavior. When tested for motivation in a spontaneous progressive ratio task, Nogo-A deficient rats exhibited lower break points and tended to have lower "highest completed ratios." Further, under extinction conditions responding ceased substantially earlier in these rats. Finally, in the PFC we found increased tissue levels of serotonin, while dopamine was unaltered. Dopamine and serotonin levels were also unaltered in the dSTR and the NAcc. In summary, these results suggest a role for Nogo-A regulated processes in motivated behavior and related neurochemistry. The behavioral pattern observed resembles aspects of the negative symptomatology of schizophrenia.
Collapse
Affiliation(s)
- Thomas Enkel
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan M. Berger
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Björn Tews
- Schaller Research Group, Division of Molecular Mechanisms of Tumor Invasion, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
105
|
Hyman SE. Revitalizing psychiatric therapeutics. Neuropsychopharmacology 2014; 39:220-9. [PMID: 24317307 PMCID: PMC3857646 DOI: 10.1038/npp.2013.181] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/15/2023]
Abstract
Despite high prevalence and enormous unmet medical need, the pharmaceutical industry has recently de-emphasized neuropsychiatric disorders as 'too difficult' a challenge to warrant major investment. Here I describe major obstacles to drug discovery and development including a lack of new molecular targets, shortcomings of current animal models, and the lack of biomarkers for clinical trials. My major focus, however, is on new technologies and scientific approaches to neuropsychiatric disorders that give promise for revitalizing therapeutics and may thus answer industry's concerns.
Collapse
Affiliation(s)
- Steven E Hyman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
106
|
McCarroll SA, Hyman SE. Progress in the genetics of polygenic brain disorders: significant new challenges for neurobiology. Neuron 2013; 80:578-87. [PMID: 24183011 DOI: 10.1016/j.neuron.2013.10.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Advances in genome analysis, accompanied by the assembly of large patient cohorts, are making possible successful genetic analyses of polygenic brain disorders. If the resulting molecular clues, previously hidden in the genomes of affected individuals, are to yield useful information about pathogenesis and inform the discovery of new treatments, neurobiology will have to rise to many difficult challenges. Here we review the underlying logic of the genetic investigations, describe in more detail progress in schizophrenia and autism, and outline the challenges for neurobiology that lie ahead. We argue that technologies at the disposal of neuroscience are adequately advanced to begin to study the biology of common and devastating polygenic disorders.
Collapse
Affiliation(s)
- Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
107
|
Todd J, Harms L, Schall U, Michie PT. Mismatch negativity: translating the potential. Front Psychiatry 2013; 4:171. [PMID: 24391602 PMCID: PMC3866657 DOI: 10.3389/fpsyt.2013.00171] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
The mismatch negativity (MMN) component of the auditory event-related potential has become a valuable tool in cognitive neuroscience. Its reduced size in persons with schizophrenia is of unknown origin but theories proposed include links to problems in experience-dependent plasticity reliant on N-methyl-d-aspartate glutamate receptors. In this review we address the utility of this tool in revealing the nature and time course of problems in perceptual inference in this illness together with its potential for use in translational research testing animal models of schizophrenia-related phenotypes. Specifically, we review the reasons for interest in MMN in schizophrenia, issues pertaining to the measurement of MMN, its use as a vulnerability index for the development of schizophrenia, the pharmacological sensitivity of MMN and the progress in developing animal models of MMN. Within this process we highlight the challenges posed by knowledge gaps pertaining to the tool and the pharmacology of the underlying system.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lauren Harms
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ulrich Schall
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Patricia T. Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
108
|
Cho RY, Walker CP, Polizzotto NR, Wozny TA, Fissell C, Chen CMA, Lewis DA. Development of sensory gamma oscillations and cross-frequency coupling from childhood to early adulthood. ACTA ACUST UNITED AC 2013; 25:1509-18. [PMID: 24334917 DOI: 10.1093/cercor/bht341] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Given the importance of gamma oscillations in normal and disturbed cognition, there has been growing interest in their developmental trajectory. In the current study, age-related changes in sensory cortical gamma were studied using the auditory steady-state response (ASSR), indexing cortical activity entrained to a periodic auditory stimulus. A large sample (n = 188) aged 8-22 years had electroencephalography recording of ASSR during 20-, 30-, and 40-Hz click trains, analyzed for evoked amplitude, phase-locking factor (PLF) and cross-frequency coupling (CFC) with lower frequency oscillations. Both 40-Hz evoked power and PLF increased monotonically from 8 through 16 years, and subsequently decreased toward ages 20-22 years. CFC followed a similar pattern, with strongest age-related modulation of 40-Hz amplitude by the phase of delta oscillations. In contrast, the evoked power, PLF and CFC for the 20- and 30-Hz stimulation were distinct from the 40-Hz condition, with flat or decreasing profiles from childhood to early adulthood. The inverted U-shaped developmental trajectory of gamma oscillations may be consistent with interacting maturational processes-such as increasing fast GABA inhibition that enhances gamma activity and synaptic pruning that decreases gamma activity-that may continue from childhood through to adulthood.
Collapse
Affiliation(s)
- Raymond Y Cho
- Department of Psychiatry and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Christopher P Walker
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | - Chi-Ming A Chen
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | - David A Lewis
- Department of Psychiatry and Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
109
|
Del Pino I, García-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martínez de Lagrán M, Ciceri G, Gabaldón MV, Moratal D, Dierssen M, Canals S, Marín O, Rico B. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 2013; 79:1152-68. [PMID: 24050403 DOI: 10.1016/j.neuron.2013.07.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2013] [Indexed: 01/09/2023]
Abstract
Genetic variation in neuregulin and its ErbB4 receptor has been linked to schizophrenia, although little is known about how they contribute to the disease process. Here, we have examined conditional Erbb4 mouse mutants to study how disruption of specific inhibitory circuits in the cerebral cortex may cause large-scale functional deficits. We found that deletion of ErbB4 from the two main classes of fast-spiking interneurons, chandelier and basket cells, causes relatively subtle but consistent synaptic defects. Surprisingly, these relatively small wiring abnormalities boost cortical excitability, increase oscillatory activity, and disrupt synchrony across cortical regions. These functional deficits are associated with increased locomotor activity, abnormal emotional responses, and impaired social behavior and cognitive function. Our results reinforce the view that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Isabel Del Pino
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Moran LV, Tagamets MA, Sampath H, O’Donnell A, Stein EA, Kochunov P, Hong LE. Disruption of anterior insula modulation of large-scale brain networks in schizophrenia. Biol Psychiatry 2013; 74:467-74. [PMID: 23623456 PMCID: PMC3735654 DOI: 10.1016/j.biopsych.2013.02.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Systems level modeling of functional magnetic resonance imaging data has demonstrated dysfunction of several large-scale brain networks in schizophrenia. Anomalies across multiple functional networks associated with schizophrenia could be due to diffuse pathology across multiple networks or, alternatively, dysfunction at converging control(s) common to these networks. The right anterior insula has been shown to modulate activity in the central executive and default mode networks in healthy individuals. We tested the hypothesis that right anterior insula modulation of central executive and default mode networks is disrupted in schizophrenia and associated with cognitive deficits. METHODS In 44 patients with schizophrenia and 44 healthy control subjects, we used seed-based resting state functional connectivity functional magnetic resonance imaging analysis to examine connectivity between right insular subregions and central executive/default mode network regions. We also performed two directed connectivity analyses of resting state data: Granger analysis and confirmatory structural equation modeling. Between-group differences in path coefficients were used to evaluate anterior insula modulation of central executive and default mode networks. Cognitive performance was assessed with the rapid visual information processing task, a test of sustained attention. RESULTS With multiple connectivity techniques, we found compelling, corroborative evidence of disruption of right anterior insula modulation of central executive and default mode networks in patients with schizophrenia. The strength of right anterior insula modulation of these networks predicted cognitive performance. CONCLUSIONS Individuals with schizophrenia have impaired right anterior insula modulation of large-scale brain networks. The right anterior insula might be an emergent pathophysiological gateway in schizophrenia.
Collapse
Affiliation(s)
- Lauren V. Moran
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228
,Correspondence to, Maryland Psychiatric Research Center, P.O. Box 21247, Baltimore, MD 21228. Tel: 410 402 6827. Fax: 410 402 6023.
| | - Malle A. Tagamets
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - Alan O’Donnell
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228
| |
Collapse
|
111
|
Alterations to the circuitry of the frontal cortex following exposure to the polybrominated diphenyl ether mixture, DE-71. Toxicology 2013; 312:48-55. [PMID: 23916505 DOI: 10.1016/j.tox.2013.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022]
Abstract
Recent studies have identified exposure to polybrominated diphenyl ethers (PBDEs) as a risk factor for deficits in cognitive functioning seen in children as well as adults. Additionally, similar alterations in learning and memory have also been observed in animal models of PBDE exposure. However, given these findings, the molecular alterations that may underlie these neurobehavioral endpoints have not been identified. As the frontal cortex is involved in modulating several cognitive functions, the purpose of our study was to investigate the possible changes to the GABAergic and glutamatergic neurotransmitter systems located in the frontal cortex following exposure to the PBDE mixture, DE-71. Primary cultured neurons isolated from the frontal cortex showed a dose-dependent reduction in neurons as well as neurite outgrowth. Furthermore, evaluation of DE-71 neurotoxicity in the frontal cortex using an in vivo model showed alterations to specific proteins involved in mediating GABA and glutamate neurotransmission, including GAD67, vGAT, vGlut, and GABA(A) 2α receptor subunit. Interestingly, these alterations appeared to be preferential for the GABA and glutamate systems located in the frontal cortex. These findings identify specific targets of PBDE neurotoxicity and provide a possible molecular mechanism for PBDE-mediated neurobehavioral deficits that arise from the frontal cortex.
Collapse
|
112
|
Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness. Proc Natl Acad Sci U S A 2013; 110:12462-7. [PMID: 23840059 DOI: 10.1073/pnas.1307925110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Guided by features of molecular, cellular, and circuit dysfunction affecting the prefrontal cortex in clinical investigations, we targeted prefrontal cortex in studies of a model for neuropsychiatric illness using transgenic mice expressing a putative dominant-negative disrupted in schizophrenia 1 (DN-DISC1). We detected marked augmentation of GAPDH-seven in absentia homolog Siah protein binding in the DISC1 mice, a major hallmark of a nuclear GAPDH cascade that is activated in response to oxidative stress. Furthermore, deficits were observed in well-defined tests for the cognitive control of adaptive behavior using reversal learning and reinforcer devaluation paradigms. These deficits occurred even though DN-DISC1 mice showed intact performance in simple associative learning and normal responses in consumption of reward. In an additional series of assessments, motivational functions also were impoverished in DN-DISC1 mice, including tests of the dynamic modulation of reward value by effortful action, progressive ratio performance, and social behavior. Augmentation of an oxidative stress-associated cascade (e.g., a nuclear GAPDH cascade) points to an underlying condition that may contribute to the profile of cognitive and motivational impairments in DN-DISC1 mice by affecting the functional integrity of the prefrontal cortex and dysfunction within its connected networks. As such, this model should be useful for further preclinical research and drug discovery efforts relevant to the burden of prefrontal dysfunction in neuropsychiatric illness.
Collapse
|
113
|
Díez A, Suazo V, Casado P, Martín-Loeches M, Molina V. Spatial distribution and cognitive correlates of gamma noise power in schizophrenia. Psychol Med 2013; 43:1175-1185. [PMID: 22963867 DOI: 10.1017/s0033291712002103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Brain activity is less organized in patients with schizophrenia than in healthy controls (HC). Noise power (scalp-recorded electroencephalographic activity unlocked to stimuli) may be of use for studying this disorganization. Method Fifty-four patients with schizophrenia (29 minimally treated and 25 stable treated), 23 first-degree relatives and 27 HC underwent clinical and cognitive assessments and an electroencephalographic recording during an oddball P300 paradigm to calculate noise power magnitude in the gamma band. We used a principal component analysis (PCA) to determine the factor structure of gamma noise power values across electrodes and the clinical and cognitive correlates of the resulting factors. RESULTS The PCA revealed three noise power factors, roughly corresponding to the default mode network (DMN), frontal and occipital regions respectively. Patients showed higher gamma noise power loadings in the first factor when compared to HC and first-degree relatives. In the patients, frontal gamma noise factor scores related significantly and inversely to working memory and problem-solving performance. There were no associations with symptoms. CONCLUSIONS There is an elevated gamma activity unrelated to task processing over regions coherent with the DMN topography in patients with schizophrenia. The same type of gamma activity over frontal regions is inversely related to performance in tasks with high involvement in these frontal areas. The idea of gamma noise as a possible biological marker for schizophrenia seems promising. Gamma noise might be of use in the study of underlying neurophysiological mechanisms involved in this disease.
Collapse
Affiliation(s)
- A Díez
- Basic Psychology, Psychobiology and Methodology Department, School of Psychology, University of Salamanca, Spain
| | | | | | | | | |
Collapse
|
114
|
Johnsen E, Hugdahl K, Fusar-Poli P, Kroken RA, Kompus K. Neuropsychopharmacology of auditory hallucinations: insights from pharmacological functional MRI and perspectives for future research. Expert Rev Neurother 2013; 13:23-36. [PMID: 23253389 DOI: 10.1586/ern.12.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experiencing auditory verbal hallucinations is a prominent symptom in schizophrenia that also occurs in subjects at enhanced risk for psychosis and in the general population. Drug treatment of auditory hallucinations is challenging, because the current understanding is limited with respect to the neural mechanisms involved, as well as how CNS drugs, such as antipsychotics, influence the subjective experience and neurophysiology of hallucinations. In this article, the authors review studies of the effect of antipsychotic medication on brain activation as measured with functional MRI in patients with auditory verbal hallucinations. First, the authors examine the neural correlates of ongoing auditory hallucinations. Then, the authors critically discuss studies addressing the antipsychotic effect on the neural correlates of complex cognitive tasks. Current evidence suggests that blood oxygen level-dependant effects of antipsychotic drugs reflect specific, regional effects but studies on the neuropharmacology of auditory hallucinations are scarce. Future directions for pharmacological neuroimaging of auditory hallucinations are discussed.
Collapse
Affiliation(s)
- Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | |
Collapse
|
115
|
MK-801 disrupts and nicotine augments 40 Hz auditory steady state responses in the auditory cortex of the urethane-anesthetized rat. Neuropharmacology 2013; 73:1-9. [PMID: 23688921 DOI: 10.1016/j.neuropharm.2013.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/30/2013] [Accepted: 05/06/2013] [Indexed: 01/29/2023]
Abstract
Patients with schizophrenia show marked deficits in processing sensory inputs including a reduction in the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation. Such deficits are not readily demonstrable at other input frequencies. Acute administration of NMDA antagonists to healthy human subjects or laboratory animals is known to reproduce many sensory and cognitive deficits seen in schizophrenia patients. In the following study, we tested the hypothesis that the NMDA antagonist MK-801 would selectively disrupt steady-state gamma entrainment in the auditory cortex of urethane-anesthetized rat. Moreover, we further hypothesized that nicotinic receptor activation would alleviate this disruption. Auditory steady state responses were recorded in response to auditory stimuli delivered over a range of frequencies (10-80 Hz) and averaged over 50 trials. Evoked power was computed under baseline condition and after vehicle or MK-801 (0.03 mg/kg, iv). MK-801 produced a significant attenuation in response to 40 Hz auditory stimuli while entrainment to other frequencies was not affected. Time-frequency analysis revealed deficits in both power and phase-locking to 40 Hz. Nicotine (0.1 mg/kg, iv) administered after MK-801 reversed the attenuation of the 40 Hz response. Administered alone, nicotine augmented 40 Hz steady state power and phase-locking. Nicotine's effects were blocked by simultaneous administration of the α4β2 antagonist DHßE. Thus we report for the first time, a rodent model that mimics a core neurophysiological deficit seen in patients with schizophrenia and a pharmacological approach to alleviate it.
Collapse
|
116
|
BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 2013; 14:401-16. [PMID: 23674053 DOI: 10.1038/nrn3505] [Citation(s) in RCA: 537] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that synaptic dysfunction is a key pathophysiological hallmark in neurodegenerative disorders, including Alzheimer's disease. Understanding the role of brain-derived neurotrophic factor (BDNF) in synaptic plasticity and synaptogenesis, the impact of the BDNF Val66Met polymorphism in Alzheimer's disease-relevant endophenotypes - including episodic memory and hippocampal volume - and the technological progress in measuring synaptic changes in humans all pave the way for a 'synaptic repair' therapy for neurodegenerative diseases that targets pathophysiology rather than pathogenesis. This article reviews the key issues in translating BDNF biology into synaptic repair therapies.
Collapse
|
117
|
Kelsom C, Lu W. Development and specification of GABAergic cortical interneurons. Cell Biosci 2013; 3:19. [PMID: 23618463 PMCID: PMC3668182 DOI: 10.1186/2045-3701-3-19] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022] Open
Abstract
GABAergic interneurons are inhibitory neurons of the nervous system that play a vital role in neural circuitry and activity. They are so named due to their release of the neurotransmitter gamma-aminobutyric acid (GABA), and occupy different areas of the brain. This review will focus primarily on GABAergic interneurons of the mammalian cerebral cortex from a developmental standpoint. There is a diverse amount of cortical interneuronal subtypes that may be categorized by a number of characteristics; this review will classify them largely by the protein markers they express. The developmental origins of GABAergic interneurons will be discussed, as well as factors that influence the complex migration routes that these interneurons must take in order to ultimately localize in the cerebral cortex where they will integrate with the neural circuitry set in place. This review will also place an emphasis on the transcriptional network of genes that play a role in the specification and maintenance of GABAergic interneuron fate. Gaining an understanding of the different aspects of cortical interneuron development and specification, especially in humans, has many useful clinical applications that may serve to treat various neurological disorders linked to alterations in interneuron populations.
Collapse
Affiliation(s)
- Corey Kelsom
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
118
|
The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis. J Neurosci 2013; 32:16651-65. [PMID: 23175820 DOI: 10.1523/jneurosci.0681-12.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB(1) receptor, by preventing Satb2 (special AT-rich binding protein 2)-mediated repression, increased Ctip2 (COUP-TF interacting protein 2) promoter activity, and Ctip2-positive neuron generation. Unbalanced neurogenic fate determination found in complete CB(1)(-/-) mice and in glutamatergic neuron-specific Nex-CB(1)(-/-) mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB(1) receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB(1) receptor contributes to the generation of deep-layer cortical neurons by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood.
Collapse
|
119
|
Visel A, Taher L, Girgis H, May D, Golonzhka O, Hoch RV, McKinsey GL, Pattabiraman K, Silberberg SN, Blow MJ, Hansen DV, Nord AS, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I, Shoukry M, Afzal V, Kaplan T, Kriegstein AR, Rubin EM, Ovcharenko I, Pennacchio LA, Rubenstein JLR. A high-resolution enhancer atlas of the developing telencephalon. Cell 2013; 152:895-908. [PMID: 23375746 DOI: 10.1016/j.cell.2012.12.041] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 11/25/2022]
Abstract
The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
|
121
|
New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia. Behav Brain Res 2013; 237:86-95. [DOI: 10.1016/j.bbr.2012.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/07/2012] [Indexed: 01/06/2023]
|
122
|
Sultan FA, Sweatt JD. The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:81-119. [DOI: 10.1007/978-1-4614-8289-5_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
123
|
Yang Y, Nuechterlein KH, Phillips OR, Gutman B, Kurth F, Dinov I, Thompson PM, Asarnow RF, Toga AW, Narr KL. Disease and genetic contributions toward local tissue volume disturbances in schizophrenia: a tensor-based morphometry study. Hum Brain Mapp 2012; 33:2081-91. [PMID: 22241649 DOI: 10.1002/hbm.21349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Structural brain deficits, especially frontotemporal volume reduction and ventricular enlargement, have been repeatedly reported in patients with schizophrenia. However, it remains unclear whether brain structural deformations may be attributable to disease-related or genetic factors. In this study, the structural magnetic resonance imaging data of 48 adult-onset schizophrenia patients, 65 first-degree nonpsychotic relatives of schizophrenia patients, 27 community comparison (CC) probands, and 73 CC relatives were examined using tensor-based morphometry (TBM) to isolate global and localized differences in tissue volume across the entire brain between groups. We found brain tissue contractions most prominently in frontal and temporal regions and expansions in the putamen/pallidum, and lateral and third ventricles in schizophrenia patients when compared with unrelated CC probands. Results were similar, though less prominent when patients were compared with their nonpsychotic relatives. Structural deformations observed in unaffected patient relatives compared to age-similar CC relatives were suggestive of schizophrenia-related genetic liability and were pronounced in the putamen/pallidum and medial temporal regions. Schizophrenia and genetic liability effects for the putamen/pallidum were confirmed by regions-of-interest analysis. In conclusion, TBM findings complement reports of frontal, temporal, and ventricular dysmorphology in schizophrenia and further indicate that putamen/pallidum enlargements, originally linked mainly with medication exposure in early studies, also reflect a genetic predisposition for schizophrenia. Thus, brain deformation profiles revealed in this study may help to clarify the role of specific genetic or environmental risk factors toward altered brain morphology in schizophrenia.
Collapse
Affiliation(s)
- Yaling Yang
- Laboratory of Neuro Imaging, Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Stan AD, Lewis DA. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies. Curr Pharm Biotechnol 2012; 13:1557-62. [PMID: 22283765 DOI: 10.2174/138920112800784925] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/28/2010] [Accepted: 12/06/2010] [Indexed: 12/11/2022]
Abstract
Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.
Collapse
Affiliation(s)
- Ana D Stan
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, W1651 BST, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
125
|
Lewis DA. Cortical circuit dysfunction and cognitive deficits in schizophrenia--implications for preemptive interventions. Eur J Neurosci 2012; 35:1871-8. [PMID: 22708598 DOI: 10.1111/j.1460-9568.2012.08156.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Schizophrenia is a devastating disorder that is common, usually chronic, frequently associated with substantial co-morbidity for addictive and medical disorders and, as a consequence, very costly in both personal and economic terms. At present, no proven means for preventing or modifying the course of the illness exist. This review discusses evidence supporting the ideas that: (i) impairments in certain cognitive processes are the core feature of schizophrenia; (ii) these cognitive impairments reflect abnormalities in specific cortical circuits; and (iii) these circuitry abnormalities arise during childhood-adolescence. The implications of these findings for the development and implementation of safe, preemptive, disease-modifying interventions in individuals at high risk for a clinical diagnosis of schizophrenia are considered.
Collapse
Affiliation(s)
- David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Biomedical Science Tower W1654, Pittsburgh, PA 15213, USA.
| |
Collapse
|
126
|
Reduced glutamate decarboxylase 65 protein within primary auditory cortex inhibitory boutons in schizophrenia. Biol Psychiatry 2012; 72:734-43. [PMID: 22624794 PMCID: PMC3465514 DOI: 10.1016/j.biopsych.2012.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Schizophrenia is associated with perceptual and physiological auditory processing impairments that may result from primary auditory cortex excitatory and inhibitory circuit pathology. High-frequency oscillations are important for auditory function and are often reported to be disrupted in schizophrenia. These oscillations may, in part, depend on upregulation of gamma-aminobutyric acid synthesis by glutamate decarboxylase 65 (GAD65) in response to high interneuron firing rates. It is not known whether levels of GAD65 protein or GAD65-expressing boutons are altered in schizophrenia. METHODS We studied two cohorts of subjects with schizophrenia and matched control subjects, comprising 27 pairs of subjects. Relative fluorescence intensity, density, volume, and number of GAD65-immunoreactive boutons in primary auditory cortex were measured using quantitative confocal microscopy and stereologic sampling methods. Bouton fluorescence intensities were used to compare the relative expression of GAD65 protein within boutons between diagnostic groups. Additionally, we assessed the correlation between previously measured dendritic spine densities and GAD65-immunoreactive bouton fluorescence intensities. RESULTS GAD65-immunoreactive bouton fluorescence intensity was reduced by 40% in subjects with schizophrenia and was correlated with previously measured reduced spine density. The reduction was greater in subjects who were not living independently at time of death. In contrast, GAD65-immunoreactive bouton density and number were not altered in deep layer 3 of primary auditory cortex of subjects with schizophrenia. CONCLUSIONS Decreased expression of GAD65 protein within inhibitory boutons could contribute to auditory impairments in schizophrenia. The correlated reductions in dendritic spines and GAD65 protein suggest a relationship between inhibitory and excitatory synapse pathology in primary auditory cortex.
Collapse
|
127
|
Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull 2012; 38:950-7. [PMID: 22355184 PMCID: PMC3446219 DOI: 10.1093/schbul/sbs010] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Gamma oscillations appear to be dependent on inhibitory neurotransmission from parvalbumin (PV)-containing gamma-amino butyric acid neurons. Thus, the abnormalities in PV neurons found in schizophrenia may underlie the deficits of gamma-band synchrony in the illness. Because gamma-band synchrony is thought to be crucial for cognition, cognitive deficits in schizophrenia may reflect PV neuron dysfunction in cortical neural circuits. Interestingly, it has been suggested that PV alterations in schizophrenia are the consequence of a hypofunction of signaling through N-methyl-D-aspartate (NMDA) receptors (NMDARs). Here, we review recent findings that address the question of how NMDAR hypofunction might produce deficits of PV neuron-mediated inhibition in schizophrenia. We conclude that while dysregulation of NMDARs may play an important role in the pathophysiology of schizophrenia, additional research is required to determine the particular cell type(s) that mediate dysfunctional NMDAR signaling in the illness.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
128
|
Abstract
The peak in incidence for schizophrenia is during late adolescence for both sexes, but within this time frame the peak is both earlier and steeper for males. Additionally, women have a second peak in incidence following menopause. Two meta-analyses have reported that men have an overall ∼40% greater chance of developing schizophrenia than do women (Aleman et al., 2003; McGrath et al., 2004). These and other findings have led to the suggestion that ovarian hormones may be protective against schizophrenia. Less explored is the potential role of testosterone in schizophrenia, although disruptions in steroid levels have also been reported in men with the illness. The relationship between increased gonadal hormone release per se and peri-adolescent vulnerability for psychiatric illness is difficult to tease apart from other potentially contributory factors in clinical studies, as adolescence is a turbulent period characterized by many social and biological changes. Despite the obvious opportunity provided by animal research, surprisingly little basic science effort has been devoted to this important issue. On the other hand, the animal work offers an understanding of the many ways in which gonadal steroids exert a powerful impact on the brain, both shaping its development and modifying its function during adulthood. Recently, investigators using preclinical models have described a greater male vulnerability to neurodevelopmental insults that are associated with schizophrenia; such studies may provide clinically relevant insights into the role of gonadal steroids in psychiatric illness.
Collapse
Affiliation(s)
- Julie A Markham
- Maryland Psychiatric Research Center, University of Maryland-Baltimore School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA.
| |
Collapse
|
129
|
Selective expression of KCNS3 potassium channel α-subunit in parvalbumin-containing GABA neurons in the human prefrontal cortex. PLoS One 2012; 7:e43904. [PMID: 22937123 PMCID: PMC3427167 DOI: 10.1371/journal.pone.0043904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/27/2012] [Indexed: 11/25/2022] Open
Abstract
The cognitive deficits of schizophrenia appear to be associated with altered cortical GABA neurotransmission in the subsets of inhibitory neurons that express either parvalbumin (PV) or somatostatin (SST). Identification of molecular mechanisms that operate selectively in these neurons is essential for developing targeted therapeutic strategies that do not influence other cell types. Consequently, we sought to identify, in the human cortex, gene products that are expressed selectively by PV and/or SST neurons, and that might contribute to their distinctive functional properties. Based on previously reported expression patterns in the cortex of mice and humans, we selected four genes: KCNS3, LHX6, KCNAB1, and PPP1R2, encoding K+ channel Kv9.3 modulatory α-subunit, LIM homeobox protein 6, K+ channel Kvβ1 subunit, and protein phosphatase 1 regulatory subunit 2, respectively, and examined their colocalization with PV or SST mRNAs in the human prefrontal cortex using dual-label in situ hybridization with 35S- and digoxigenin-labeled antisense riboprobes. KCNS3 mRNA was detected in almost all PV neurons, but not in SST neurons, and PV mRNA was detected in >90% of KCNS3 mRNA-expressing neurons. LHX6 mRNA was detected in almost all PV and >90% of SST neurons, while among all LHX6 mRNA-expressing neurons 50% expressed PV mRNA and >44% expressed SST mRNA. KCNAB1 and PPP1R2 mRNAs were detected in much larger populations of cortical neurons than PV or SST neurons. These findings indicate that KCNS3 is a selective marker of PV neurons, whereas LHX6 is expressed by both PV and SST neurons. KCNS3 and LHX6 might be useful for characterizing cell-type specific molecular alterations of cortical GABA neurotransmission and for the development of novel treatments targeting PV and/or SST neurons in schizophrenia.
Collapse
|
130
|
Abstract
Antipsychotic polytherapy (APT) has evolved as a common treatment strategy at odds with recommendations from schizophrenia treatment guidelines. The literature on combinations with clozapine as a means to enhance efficacy and with aripiprazole to reduce side effects was reviewed. No solid evidence supporting antipsychotic combinations with clozapine for treatment-resistant patients with schizophrenia was identified. The reason for this may be that most combinations with clozapine increase the D(2)-receptor blockade, and this strategy is probably not efficient for patients with treatment-resistant schizophrenia. Some basic and clinical evidence for the addition of aripiprazole to lower prolactin levels was identified. In conclusion, there is very limited support in the evidence for the feasibility of rational APT.
Collapse
|
131
|
Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia. PLoS One 2012; 7:e38211. [PMID: 22675524 PMCID: PMC3365879 DOI: 10.1371/journal.pone.0038211] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.
Collapse
|
132
|
Auditory hallucinations: expectation-perception model. Med Hypotheses 2012; 78:802-10. [PMID: 22520337 DOI: 10.1016/j.mehy.2012.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/22/2012] [Indexed: 12/28/2022]
Abstract
In this paper, we aimed to present a hypothesis that would explain the mechanism of auditory hallucinations, one of the main symptoms of schizophrenia. We propose that auditory hallucinations arise from abnormalities in the predictive coding which underlies normal perception, specifically, from the absence or attenuation of prediction error. The suggested deficiencies in processing prediction error could arise from (1) abnormal modulation of thalamus by prefrontal cortex, (2) absence or impaired transmission of external input, (3) dysfunction of the auditory and association cortex, (4) neurotransmitter dysfunction and abnormal connectivity, and (5) hyperactivity activity in auditory cortex and broad prior probability. If there is no prediction error, the initially vague prior probability develops into an explicit percept in the absence of external input, as a result of a recursive pathological exchange between auditory and prefrontal cortex. Unlike existing explanations of auditory hallucinations, we propose concrete mechanisms which underlie the imbalance between perceptual expectation and external input. Impaired processing of prediction error is reflected in reduced mismatch negativity and increased tendency to report non-existing meaningful language stimuli in white noise, shown by those suffering from auditory hallucinations. We believe that the expectation-perception model of auditory hallucinations offers a comprehensive explanation of the underpinnings of auditory hallucinations in both patients and those not diagnosed with mental illness. Therefore, our hypothesis has the potential to fill the gaps in the existing knowledge about this distressing phenomenon and contribute to improved effectiveness of treatments, targeting specific mechanisms.
Collapse
|
133
|
Ampadu E. The impact of immigration on the development of adolescent schizophrenia. JOURNAL OF CHILD AND ADOLESCENT PSYCHIATRIC NURSING 2012; 24:161-7. [PMID: 21810132 DOI: 10.1111/j.1744-6171.2011.00290.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PROBLEM Impact of immigration on the development of adolescent schizophrenia. METHODS The review of literature used Academic Search Premier, CINHAL, PsychINFO, PubMed, and MEDLINE databases to examine reasons given to immigration as a risk factor to adolescent schizophrenia. FINDINGS There is not a single factor or a group of related factors that could explain why the incidence of schizophrenia among immigrants is higher compared with natives of the host county. CONCLUSION Further inquiry into this phenomenon is needed to understand factors that increase the risk of schizophrenia among immigrant children and to help plan and implement strategies for prevention.
Collapse
Affiliation(s)
- Esther Ampadu
- Laboure College, Northeastern University, Boston, MA, USA.
| |
Collapse
|
134
|
Abstract
The purpose of this study is to review the MR spectroscopic literature regarding schizophrenia. However, as there are over 250 primary MRS articles and dozens of MRS review articles on the subject already, this study will take a different approach. First, the clinical features of schizophrenia will be described. The background neuroanatomy and biochemistry relevant to schizophrenia will be reviewed, as many readers of this journal are unlikely to be familiar with these fields. A current model of the abnormal neural circuitry in schizophrenia will be presented, and predictions extrapolated about relevant metabolite changes over time. Finally, the existing MRS literature will be reviewed in the context of our existing anatomical and chemical knowledge, and future MRS research directions will be elaborated.
Collapse
Affiliation(s)
- John D Port
- Department of Radiology, Mayo Clinic, Rochester, Minnesota; Department of Psychiatry, Mayo Clinic, Rochester, Minnesota, USA.
| | | |
Collapse
|
135
|
Boggs DL, Kelly DL, McMahon RP, Gold JM, Gorelick DA, Linthicum J, Conley RR, Liu F, Waltz J, Huestis MA, Buchanan RW. Rimonabant for neurocognition in schizophrenia: a 16-week double blind randomized placebo controlled trial. Schizophr Res 2012; 134:207-10. [PMID: 22137462 PMCID: PMC3268840 DOI: 10.1016/j.schres.2011.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To examine the effect of rimonabant on neurocognitive impairments in people with schizophrenia. METHODS Participants entered a 16-week double-blind, placebo-controlled, randomized clinical trial. A neurocognitive battery was administered at baseline and end of study. RESULTS In comparison to rimonabant (20mg/day), placebo-treated participants exhibited a significant improvement on the Repeatable Battery for the Assessment of Neuropsychological Status total score. In contrast, rimonabant was associated with significant improvement on a probabilistic learning task. There were no other significant treatment effects. CONCLUSIONS Rimonabant did not improve global cognitive functioning, but did improve a specific learning deficit based on response to positive feedback.
Collapse
Affiliation(s)
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert P. McMahon
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James M. Gold
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Gorelick
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD
| | - Jared Linthicum
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Fang Liu
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD
| | - Robert W. Buchanan
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
136
|
Abstract
Schizophrenia, autism and intellectual disabilities are best understood as spectrums of diseases that have broad sets of causes. However, it is becoming evident that these conditions also have overlapping phenotypes and genetics, which is suggestive of common deficits. In this context, the idea that the disruption of inhibitory circuits might be responsible for some of the clinical features of these disorders is gaining support. Recent studies in animal models demonstrate that the molecular basis of such disruption is linked to specific defects in the development and function of interneurons - the cells that are responsible for establishing inhibitory circuits in the brain. These insights are leading to a better understanding of the causes of schizophrenia, autism and intellectual disabilities, and may contribute to the development of more-effective therapeutic interventions.
Collapse
|
137
|
Harvey PD. Cognitive impairment in schizophrenia: profile, course, and neurobiological determinants. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:433-45. [PMID: 22608636 DOI: 10.1016/b978-0-444-52002-9.00025-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Philip D Harvey
- Department of Psychiatry and Behavioural Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
138
|
Cui L, Chen Z, Deng W, Huang X, Li M, Ma X, Huang C, Jiang L, Wang Y, Wang Q, Collier DA, Gong Q, Li T. Assessment of white matter abnormalities in paranoid schizophrenia and bipolar mania patients. Psychiatry Res 2011; 194:347-353. [PMID: 22079662 DOI: 10.1016/j.pscychresns.2011.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 02/05/2023]
Abstract
White matter abnormalities have been repeatedly reported in both schizophrenia and bipolar disorder (BD) in diffusion tensor imaging (DTI) studies, but the empirical evidence about the diagnostic specificity of white matter abnormalities in these disorders is still limited. This study sought to investigate the alterations in fractional anisotropy (FA) in white matter throughout the entire brain of patients from Chengdu, China with paranoid schizophrenia and bipolar mania. For this purpose, DTI was used to assess white matter integrity in patients with paranoid schizophrenia (n=25) and psychotic bipolar mania (n=18) who had been treated with standard pharmacotherapy for fewer than 5 days at the time of study, as well as in normal controls (n=30). The differences in FA were measured by use of voxel-based analysis. The results show that reduced FA was found in the left posterior corona radiata (PCR) in patients with psychotic bipolar mania and paranoid schizophrenia compared to the controls. Patients with psychotic bipolar mania also showed a significant reduction in FA in right posterior corona radiata and in right anterior thalamic radiation (ATR). A direct comparison between the two patient groups found no significant differences in any regions, and none of the findings were associated with illness duration. Correlation analysis indicated that FA values showed a significant negative correlation with positive symptom scores on the Positive and Negative Syndrome Scale in the left frontal-parietal lobe in the paranoid schizophrenia. It was concluded that common abnormalities in the left PCR might imply an overlap in white matter pathology in the two disorders and might be related to shared risk factors for the two disorders.
Collapse
Affiliation(s)
- Liqian Cui
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; The Department of Psychiatry,The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Zhuangfei Chen
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Deng
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoqi Huang
- MRI center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingli Li
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaohong Ma
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chaohua Huang
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lijun Jiang
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yingcheng Wang
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiang Wang
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - David A Collier
- King's College London, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | - Qiyong Gong
- MRI center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Li
- The Department of Psychiatry & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; King's College London, Department of Psychiatry and Psychological Medicine, Institute of Psychiatry, London, UK; King's College London, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK.
| |
Collapse
|
139
|
Discovery and development of integrative biological markers for schizophrenia. Prog Neurobiol 2011; 95:686-702. [DOI: 10.1016/j.pneurobio.2011.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 12/30/2022]
|
140
|
Abstract
Markers of GABA neurotransmission between chandelier neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons, are altered in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia. For example, immunoreactivity for the GABA membrane transporter (GAT1) is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABA(A) receptor α2 subunit is increased in postsynaptic AIS. These alterations are most marked in cortical layers 2-3. In addition, other determinants of the function of chandelier cell-pyramidal neuron synapses, such as ankyrin-G (which regulates the recruitment of sodium channels to the AIS), are also selectively altered in superficial layer pyramidal neurons in subjects with schizophrenia. Each of these components of chandelier cell-pyramidal neuron connectivity exhibits distinctive developmental trajectories in the primate DLPFC, suggesting that disturbances in these trajectories could contribute to the pathogenesis of schizophrenia. Recent findings that inputs from neocortical chandelier neurons are excitatory provide new ideas about the role of this circuitry in the pathophysiology of cortical dysfunction in schizophrenia.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
141
|
Deo AJ, Cahill ME, Li S, Goldszer I, Henteleff R, Vanleeuwen JE, Rafalovich I, Gao R, Stachowski EK, Sampson AR, Lewis DA, Penzes P, Sweet RA. Increased expression of Kalirin-9 in the auditory cortex of schizophrenia subjects: its role in dendritic pathology. Neurobiol Dis 2011; 45:796-803. [PMID: 22120753 DOI: 10.1016/j.nbd.2011.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
Reductions in dendritic arbor length and complexity are among the most consistently replicated changes in neuronal structure in post mortem studies of cerebral cortical samples from subjects with schizophrenia, however, the underlying molecular mechanisms have not been identified. This study is the first to identify an alteration in a regulatory protein which is known to promote both dendritic length and arborization in developing neurons, Kalirin-9. We found Kalirin-9 expression to be paradoxically increased in schizophrenia. We followed up this observation by overexpressing Kalirin-9 in mature primary neuronal cultures, causing reduced dendritic length and complexity. Kalirin-9 overexpression represents a potential mechanism for dendritic changes seen in schizophrenia.
Collapse
Affiliation(s)
- Anthony J Deo
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Drug targets: single-cell transcriptomics hastens unbiased discovery. Trends Pharmacol Sci 2011; 33:9-16. [PMID: 22032985 DOI: 10.1016/j.tips.2011.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 12/13/2022]
Abstract
Drug discovery in neuro- and psychopharmacology is lagging, and the most commonly mentioned cause is the scarcity of drug targets. Using NextGen 'sequencing based single-cell transcriptomics' (SBSCT), several hundred different receptors and channels can be identified in individual neurons, and the functional gene product can subsequently be validated. The use of single-cell transcriptome data to reveal the entire receptor repertoire is crucial, as the copy numbers of mRNAs encoding receptors are low, and when cells are pooled dilution of rare mRNAs leads to loss of signal. These overlooked receptors on key neurons often mediate robust effects that may be therapeutically useful. SBSCT also enables the identification of orphan receptors and can provide strong evidence for receptor heterodimers. Here, we compare SBSCT to other single-cell profiling methods. We argue that the unbiased nature of SBSCT makes it a powerful tool for the identification of new drug targets.
Collapse
|
143
|
Phillips OR, Nuechterlein KH, Asarnow RF, Clark KA, Cabeen R, Yang Y, Woods RP, Toga AW, Narr KL. Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability. Biol Psychiatry 2011; 70:680-9. [PMID: 21571255 PMCID: PMC3838300 DOI: 10.1016/j.biopsych.2011.03.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 03/03/2011] [Accepted: 03/23/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Structural and diffusion tensor imaging studies implicate gray and white matter (WM) abnormalities and disruptions of neural circuitry in schizophrenia. However, the structural integrity of the superficial WM, comprising short-range association (U-fibers) and intracortical axons, has not been investigated in schizophrenia. METHODS High-resolution structural and diffusion tensor images and sophisticated cortical pattern matching methods were used to measure and compare global and local variations in superficial WM fractional anisotropy between schizophrenia patients and their relatives and community comparison subjects and their relatives (n = 150). RESULTS Compared with control subjects, patients showed reduced superficial WM fractional anisotropy distributed across each hemisphere, particularly in left temporal and bilateral occipital regions (all p < .05, corrected). Furthermore, by modeling biological risk for schizophrenia in patients, patient relatives, and control subjects, fractional anisotropy was shown to vary in accordance with relatedness to a patient in both hemispheres and in the temporal and occipital lobes (p < .05, corrected). However, effects did not survive correction procedures for two-group comparisons between patient relatives and control subjects. CONCLUSIONS Results extend previous findings restricted to deep WM pathways to demonstrate that disturbances in corticocortical connectivity are associated with schizophrenia and might indicate a genetic predisposition for the disorder. Because the structural integrity of WM plays a crucial role in the functionality of networks linking gray matter regions, disturbances in the coherence and organization of fibers at the juncture of the neuropil might relate to features of schizophrenia at least partially attributable to disease-related genetic factors.
Collapse
|
144
|
Field JR, Walker AG, Conn PJ. Targeting glutamate synapses in schizophrenia. Trends Mol Med 2011; 17:689-98. [PMID: 21955406 DOI: 10.1016/j.molmed.2011.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 12/25/2022]
Abstract
Although early clinical observations implicated dopamine dysfunction in the neuropathology of schizophrenia, accumulating evidence suggests that multiple neurotransmitter pathways are dysregulated. The psychotomimetic actions of NMDA receptor antagonists point to an imbalance of glutamatergic signaling. Encouragingly, numerous preclinical and clinical studies have elucidated several potential targets for increasing NMDA receptor function and equilibrating glutamatergic tone, including the metabotropic glutamate receptors 2, 3 and 5, the muscarinic acetylcholine receptors M(1) and M(4), and the glycine transporter GlyT1. Highly specific allosteric and orthosteric ligands have been developed that modify the activity of these novel target proteins, and in this review we summarize both the glutamatergic mechanisms and the novel compounds that are increasing the promise for a multifaceted pharmacological approach to treat schizophrenia.
Collapse
Affiliation(s)
- Julie R Field
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | | |
Collapse
|
145
|
Konradi C, Yang CK, Zimmerman EI, Lohmann KM, Gresch P, Pantazopoulos H, Berretta S, Heckers S. Hippocampal interneurons are abnormal in schizophrenia. Schizophr Res 2011; 131:165-73. [PMID: 21745723 PMCID: PMC3159834 DOI: 10.1016/j.schres.2011.06.007] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/05/2011] [Accepted: 06/09/2011] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The cellular substrate of hippocampal dysfunction in schizophrenia remains unknown. We tested the hypothesis that hippocampal interneurons are abnormal in schizophrenia, but that the total number of hippocampal neurons in the pyramidal cell layer is normal. METHODS We collected whole hippocampal specimens of 13 subjects with schizophrenia and 20 matched healthy control subjects to study the number of all neurons, the somal volume of neurons, the number of somatostatin- and parvalbumin-positive interneurons and the messenger RNA levels of somatostatin, parvalbumin and glutamic acid decarboxylase 67. RESULTS The total number of hippocampal neurons in the pyramidal cell layer was normal in schizophrenia, but the number of somatostatin- and parvalbumin-positive interneurons, and the level of somatostatin, parvalbumin and glutamic acid decarboxylase mRNA expression were reduced. CONCLUSIONS The study provides strong evidence for a specific defect of hippocampal interneurons in schizophrenia and has implications for emerging models of hippocampal dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Christine Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-8548, USA.
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Woodward ND, Rogers B, Heckers S. Functional resting-state networks are differentially affected in schizophrenia. Schizophr Res 2011; 130:86-93. [PMID: 21458238 PMCID: PMC3139756 DOI: 10.1016/j.schres.2011.03.010] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/26/2011] [Accepted: 03/04/2011] [Indexed: 12/18/2022]
Abstract
Neurobiological theories posit that schizophrenia relates to disturbances in connectivity between brain regions. Resting-state functional magnetic resonance imaging is a powerful tool for examining functional connectivity and has revealed several canonical brain networks, including the default mode, dorsal attention, executive control, and salience networks. The purpose of this study was to examine changes in these networks in schizophrenia. 42 patients with schizophrenia and 61 healthy subjects completed a RS-fMRI scanning session. Seed-based region-of-interest correlation analysis was used to identify the default mode, dorsal attention, executive control, and salience networks. Compared to healthy subjects, individuals with schizophrenia demonstrated greater connectivity between the posterior cingulate cortex, a key hub of the default mode, and the left inferior gyrus, left middle frontal gyrus, and left middle temporal gyrus. Interestingly, these regions were more strongly connected to the executive control network in healthy control subjects. In contrast to the default mode, patients demonstrated less connectivity in the executive control and dorsal attention networks. No differences were observed in the salience network. The results indicate that resting-state networks are differentially affected in schizophrenia. The alterations are characterized by reduced segregation between the default mode and executive control networks in the prefrontal cortex and temporal lobe, and reduced connectivity in the dorsal attention and executive control networks. The changes suggest that the process of functional specialization is altered in schizophrenia. Further work is needed to determine if the alterations are related to disturbances in white matter connectivity, neurodevelopmental abnormalities, and genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Neil D. Woodward
- Psychotic Disorders Program & Psychiatric Neuroimaging Program, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN
| | - Baxter Rogers
- Vanderbilt Institute of Imaging Sciences, Vanderbilt University, Nashville, TN
| | - Stephan Heckers
- Psychotic Disorders Program & Psychiatric Neuroimaging Program, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
147
|
Peedicayil J. Epigenetic management of major psychosis. Clin Epigenetics 2011; 2:249-56. [PMID: 22704340 PMCID: PMC3365380 DOI: 10.1007/s13148-011-0038-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/26/2011] [Indexed: 11/24/2022] Open
Abstract
Epigenetic mechanisms are thought to play a major role in the pathogenesis of the major psychoses (schizophrenia and bipolar disorder), and they may be the link between the environment and the genome in the pathogenesis of these disorders. This paper discusses the role of epigenetics in the management of major psychosis: (1) the role of epigenetic drugs in treating these disorders. At present, there are three categories of epigenetic drugs that are being actively investigated for their ability to treat psychosis: drugs inhibiting histone deacetylation; drugs decreasing DNA methylation; and drugs targeting microRNAs; and (2) the role of epigenetic mechanisms in electroconvulsive therapy in these disorders.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
148
|
Taniguchi Y, Young-Pearse T, Sawa A, Kamiya A. In utero electroporation as a tool for genetic manipulation in vivo to study psychiatric disorders: from genes to circuits and behaviors. Neuroscientist 2011; 18:169-79. [PMID: 21551077 DOI: 10.1177/1073858411399925] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many genetic risk factors for major mental disorders have key roles in brain development. Thus, exploring the roles for these genetic factors for brain development at the molecular, cellular, and neuronal circuit level is crucial for discovering how genetic disturbances affect high brain functions, which ultimately lead to disease pathologies. However, it is a tremendously difficult task, given that most mental disorders have genetic complexities in which many genetic risk factors have multiple roles in different cell types and brain regions over a time-course dependent manner. Furthermore, some genetic risk factors are likely to act epistatically in common molecular pathways. For this reason, a technique for spatial and temporal manipulation of multiple genes is necessary for understanding how genetic disturbances contribute to disease etiology. Here, the authors will review the said technique, in utero electroporation, which investigates the molecular disease pathways in rodent models for major mental disorders. This technique is also useful to examine the effect of genetic risks at the behavioral level. Furthermore, the authors will discuss the recent progress of this technology, such as inducible and cell type-specific targeting, as well as nonepisomal genetic manipulation, which provide further availability of this technique for research on major mental disorders.
Collapse
Affiliation(s)
- Yu Taniguchi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | |
Collapse
|
149
|
Barnes MR, Huxley-Jones J, Maycox PR, Lennon M, Thornber A, Kelly F, Bates S, Taylor A, Reid J, Jones N, Schroeder J, Scorer CA, Davies C, Hagan JJ, Kew JNC, Angelinetta C, Akbar T, Hirsch S, Mortimer AM, Barnes TRE, de Belleroche J. Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J Neurosci Res 2011; 89:1218-27. [PMID: 21538462 DOI: 10.1002/jnr.22647] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/08/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The molecular basis of schizophrenia is poorly understood; however, different brain regions are believed to play distinct roles in disease symptomology. We have studied gene expression in the superior temporal cortex (Brodmann area 22; BA22), which may play a role in positive pathophysiology, and compared our results with data from the anterior prefrontal cortex (BA10), which shows evidence for a role in negative symptoms. Genome-wide mRNA expression was determined in the BA22 region in 23 schizophrenics and 19 controls and compared with a BA10 data set from the same subjects. After adjustments for confounding sources of variation, we carried out GeneGO pathway enrichment analysis in each region. Significant differences were seen in age-related transcriptional changes between the BA22 and the BA10 regions, 21.8% and 41.4% of disease-associated transcripts showing age association, respectively. After removing age associated changes from our data, we saw the highest enrichment in processes mediating cell adhesion, synaptic contact, cytoskeletal remodelling, and apoptosis in the BA22 region. For the BA10 region, we observed the strongest changes in reproductive signalling, tissue remodelling, and cell differentiation. Further exploratory analysis also identified potentially disease-relevant processes that were undetected in our more stringent primary analysis, including autophagy in the BA22 region and the amyloid process in the BA10 region. Collectively, our analysis suggests disruption of many common pathways and processes underpinning synaptic plasticity in both regions in schizophrenia, whereas individual regions emphasize changes in certain pathways that may help to highlight pathway-specific therapeutic opportunities to treat negative or positive symptoms of the disease.
Collapse
Affiliation(s)
- Michael R Barnes
- Computational Biology, Quantitative Sciences, Biopharmaceuticals, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Fukuda T, Hashimoto H, Okayasu N, Kameyama A, Onogi H, Nakagawasai O, Nakazawa T, Kurosawa T, Hao Y, Isaji T, Tadano T, Narimatsu H, Taniguchi N, Gu J. Alpha1,6-fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and serotonin systems. J Biol Chem 2011; 286:18434-43. [PMID: 21471224 DOI: 10.1074/jbc.m110.172536] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8(-/-)) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we examined Fut8(-/-) mice using a combination of neurological and behavioral tests. Fut8(-/-) mice exhibited multiple behavioral abnormalities consistent with a schizophrenia-like phenotype. Fut8(-/-) mice displayed increased locomotion compared with wild-type (Fut8(+/+)) and heterozygous (Fut8(+/-)) mice. In particular, Fut8(-/-) mice showed strenuous hopping behavior in a novel environment. Working memory performance was impaired in Fut8(-/-) mice as evidenced by the Y-maze tests. Furthermore, Fut8(-/-) mice showed prepulse inhibition (PPI) deficiency. Intriguingly, although there was no significant difference between Fut8(+/+) and Fut8(+/-) mice in the PPI test under normal conditions, Fut8(+/-) mice showed impaired PPI after exposure to a restraint stress. This result suggests that reduced expression of Fut8 is a plausible cause of schizophrenia and related disorders. The levels of serotonin metabolites were significantly decreased in both the striatum and nucleus accumbens of the Fut8(-/-) mice. Likewise, treatment with haloperidol, which is an antipsychotic drug that antagonizes dopaminergic and serotonergic receptors, significantly reduced hopping behaviors. The present study is the first to clearly demonstrate that α1,6-fucosylation plays an important role in the brain, and that it might be related to schizophrenia-like behaviors. Thus, the results of the present study provide new insights into the underlying mechanisms responsible for schizophrenia and related disorders.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Division of Regulatory Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsusima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|