101
|
Kejela T, Dekosa F. High prevalence of MRSA and VRSA among inpatients of Mettu Karl referral hospital, southwest Ethiopia. Trop Med Int Health 2022; 27:735-741. [PMID: 35686989 DOI: 10.1111/tmi.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the prevalence of methicillin and vancomycin-resistant Staphylococcus aureus among patients admitted to Mettu Karl referral hospital. METHODS A cross-sectional study was conducted to study the point prevalence of MRSA and VRSA. A total of 384 patients (male=201 and female=183) admitted to medical (109), pediatric (109), and surgical (166) wards of Mettu Karl referral hospital from November 2019 to April 2020 were included in the study. We studied 384 samples (166 wound swabs and 218 nasal swabs) collected from inpatients. Staphylococcus aureus was isolated, characterized, and identified based on morphological and biochemical features and confirmed by PCR amplification of the nuc gene. The isolates were checked against 12 antibiotics, and MRSA isolates were primarily identified using cefoxitin (30 μg) and confirmed by amplification of mecA gene. Staphylococcus aureus resistance to Vancomycin was tested by the broth microdilution method. RESULTS The rate of isolation of Staphylococcus aureus was 32.8% (126/384). The point prevalence of MRSA and VRSA from clinical specimens was 18.8% (72/384) and 2.6% (10/384) respectively. Of 126 Staphylococcus aureus isolated, 57.1% (72) were MRSA and 7.9% (10) were VRSA. Of the 166 samples collected from patients in the surgical ward, the rates of isolation of MRSA and VRSA were 21.1% (35/166) and 4.8% (8/166), respectively. A high rate of isolation of MRSA and VRSA was recorded among patients admitted to surgical wards compared to medical and pediatric wards. CONCLUSIONS This study showed a high prevalence of MRSA and VRSA in the hospital. Proper implementation of infection control practices and investigation of underlying risk factors are urgently needed to mitigate the further spread of the pathogen.
Collapse
Affiliation(s)
- Tekalign Kejela
- Department of Biology, Mettu University, Mettu, Oromia, Ethiopia
| | - Fili Dekosa
- Department of Biology, Mettu University, Mettu, Oromia, Ethiopia
| |
Collapse
|
102
|
Liang M, Ge X, Xua H, Ma K, Zhang W, Zan Y, Efferth T, Xue Z, Hua X. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154073. [PMID: 35397285 DOI: 10.1016/j.phymed.2022.154073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The evolution of resistance to antimicrobials is a ubiquitous phenomenon. The evolution of antibiotic resistance in Staphylococcus aureus suggests that there is no remedy with sustaining effectiveness against this pathogen. The limited number of antibacterial drug classes and the common occurrence of cross-resistant bacteria reinforce the urgent need to discover new compounds targeting novel cellular functions. Natural products are a potential source of novel antibacterial agents. Anti-MRSA (methicillin-resistant S. aureus) bioactive compounds from Streptomyces and the anti-MRSA activity of a series of plant extracts have been reviewed respectively. However, there has been no detailed review of the precise bioactive components from plants. PURPOSE The present review aimed to summarize the phytochemicals that have been reported with anti-MRSA activities, analyze their structure-activity relationship and novel anti-MRSA mechanisms. METHODS Data contained in this review article are compiled from the authoritative databases PubMed, Web of Science, Google Scholar, and so on. RESULTS This review summarizes 100 phytochemicals (27 flavonoids, 23 alkaloids, 17 terpenes and 33 others) that have been tested for their anti-MRSA activity. Among these phytochemicals, 39 compounds showed remarkable anti-MRSA activity with MIC values less than 10 μg/ml, 14 compounds with MIC ranges including values < 10 μg/ml, 5 compounds with MIC values less than 5 μM; 11 phytochemicals show synergism anti-MRSA effects in combination with antibiotics. Phytochemicals exerted anti-MRSA activities mainly by destroying the membrane structure and inhibiting the efflux pump. CONCLUSIONS The 58 compounds with excellent anti-MRSA activity the 11 compounds with synergistic anti-MRSA effect, especially cannabinoids, xanthones and fatty acids should be further studied in vitro. Novel targets, such as cell membrane and efflux pump could be promising alternatives to develop antibacterial drugs in the future in order to prevent drug resistance.
Collapse
Affiliation(s)
- Miaomiao Liang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala SE-75124, Sweden
| | - Hui Xua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Kaifeng Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Wei Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Yibo Zan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
103
|
Sonoda A, Iwashita Y, Takada Y, Hamazono R, Ishida K, Imamura H. Prediction Accuracy of Area under the Concentration-Time Curve of Vancomycin by Bayesian Approach Using Creatinine-Based Equations of Estimated Kidney Function in Bedridden Elderly Japanese Patients. Biol Pharm Bull 2022; 45:763-769. [PMID: 35370223 DOI: 10.1248/bpb.b22-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An administration plan for vancomycin (VCM) in bedridden elderly patients has not been established. This retrospective study aimed to evaluate the prediction accuracy of the area under the concentration-time curve (AUC) of VCM by the Bayesian approach using creatinine-based equations of estimated kidney function in such patients. Kidney function was estimated using the Japanese equation of estimated glomerular filtration rate (eGFR) and the Cockcroft-Gault equation of estimated creatinine clearance (eCCr). eCCr (serum creatinine (SCr) + 0.2) was calculated by substituting the SCr level +0.2 mg/dL into the Cockcroft-Gault equation. For eGFR/0.789, eGFR, eCCr, and eCCr (SCr + 0.2), the AUC values were calculated by the Bayesian approach using the therapeutic drug monitoring (TDM) software, BMs-Pod (ver 8.06) and denoted as AUCeGFR/0.789, AUCeGFR, AUCeCCr, and AUCeCCr (SCr + 0.2) respectively. The reference AUC (AUCREF) was calculated by applying VCM's peak and trough steady-state concentrations to first-order pharmacokinetic equations. The medians (range) of AUCeGFR/0.789/AUCREF, AUCeGFR/AUCREF, AUCeCCr/AUCREF, and AUCeCCr (SCr + 0.2)/AUCREF were 0.88 (0.74-0.93), 0.90 (0.79-1.04), 0.92 (0.81-1.07), and 1.00 (0.88-1.11), respectively. Moreover, the percentage of patients within 10% of the AUCREF, defined as |Bayesian-estimated AUC - AUCREF| < AUCREF × 0.1, was the highest (86%) in AUCeCCr (SCr + 0.2). These results suggest that the Bayesian approach using eCCr (SCr + 0.2) has the highest prediction accuracy for the AUCREF in bedridden elderly patients. Although further studies are required with more accurate determination methods of the CCr and AUC, our findings highlight the potential of eCCr (SCr + 0.2) for estimating VCM's AUC by the Bayesian approach in such patients.
Collapse
Affiliation(s)
| | | | - Yukina Takada
- Department of Pharmacy, Izumi Regional Medical Center
| | - Ryu Hamazono
- Department of Pharmacy, Izumi Regional Medical Center
| | | | | |
Collapse
|
104
|
Zhang Y, Zhang Y, Chen C, Cheng H, Deng X, Li D, Bai B, Yu Z, Deng Q, Guo J, Wen Z. Antibacterial activities and action mode of anti-hyperlipidemic lomitapide against Staphylococcus aureus. BMC Microbiol 2022; 22:114. [PMID: 35473561 PMCID: PMC9040290 DOI: 10.1186/s12866-022-02535-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
Abstract
Background The increasing emergence of multidrug-resistant Gram-positive bacterial infections necessitates new antibacterial agents with novel mechanisms of action that can be used to treat these infections. Lomitapide has been approved by FDA for years in reducing levels of low-density lipoprotein (LDL) in cases of familial hypercholesterolemia, whereas the antibacterial effect of lomitapide remains elusive. In this study, the inhibitory activities of lomitapide against Gram-positive bacteria were the first time explored. Quantitative proteomics analysis was then applied to investigate the mechanisms of action of lomitapide. Results The minimum inhibitory concentration (MIC) values of lomitapide against Gram-positive bacteria including both methicillin sensitive and resistant Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium, and Streptococcus agalactiae were range 12.5–50 μM. Moreover, lomitapide also inhibited anti-biofilm activity against clinical S. aureus isolates. A total of 106 proteins with > 1.5-fold changes in expression were identified upon 1/2 × MIC lomitapide exposure, including 83 up-regulated proteins and 23 down-regulated proteins. Based on bioinformatics analysis, the expression of cell wall damage response proteins including two-component system VraS/VraR, lipoteichoic acid (LPA) D-alanylnation related proteins D-alanyl carrier protein (dltC) and carrier protein ligase (dltA), methionine sulfoxide reductases (mrsA1 and mrsB) were up-regulated. Moreover, the expression of SaeS and multiple fibrinogen-binding proteins (SAOUHSC_01110, FnBPB, SAOUHSC_02802, SdrC, SdrD) which were involved in the bacterial adhesion and biofilm formation, was inhibited by lomitapide. Furthermore, VraS/VraR deletion mutant (ΔvraSR) showed an enhanced lomitapide sensitivity phenotype. Conclusion Lomitapide displayed broad antimicrobial activities against Gram-positive bacteria. The antibacterial effect of lomitapide may be caused by cell wall destruction, while the anti-biofilm activity may be related to the inhibition of surface proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02535-9.
Collapse
Affiliation(s)
- Yufang Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.,Class of Biological Science, Futian District, Shenzhen College of International Education, No. 3 Antuoshan 6th Rd, Shenzhen, 518040, China
| | - Yiying Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Chengchun Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Hang Cheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Xiangbin Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Bing Bai
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Jie Guo
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated Hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
105
|
Volynets GP, Barthels F, Hammerschmidt SJ, Moshynets OV, Lukashov SS, Starosyla SA, Vyshniakova HV, Iungin OS, Bdzhola VG, Prykhod'ko AO, Syniugin AR, Sapelkin VM, Yarmoluk SM, Schirmeister T. Identification of novel small-molecular inhibitors of Staphylococcus aureus sortase A using hybrid virtual screening. J Antibiot (Tokyo) 2022; 75:321-332. [PMID: 35440771 PMCID: PMC9016125 DOI: 10.1038/s41429-022-00524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/18/2023]
Abstract
Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.
Collapse
Affiliation(s)
- Galyna P Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine.
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Olena V Moshynets
- Biofilm study group, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Sergiy S Lukashov
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Sergiy A Starosyla
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine.,RECEPTOR.AI, Boston, MA, USA
| | - Hanna V Vyshniakova
- L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases NAMS of Ukraine, 5 Amosova St, 03038, Kyiv, Ukraine
| | - Olga S Iungin
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Andrii O Prykhod'ko
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine.,Research and Development Department, Scientific Services Company Otava Ltd, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Anatolii R Syniugin
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Vladislav M Sapelkin
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St, 03143, Kyiv, Ukraine
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| |
Collapse
|
106
|
Li L, Cao S, Wu Z, Guo R, Xie L, Wang L, Tang Y, Li Q, Luo X, Ma L, Cheng C, Qiu L. Modulating Electron Transfer in Vanadium-Based Artificial Enzymes for Enhanced ROS-Catalysis and Disinfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108646. [PMID: 35181946 DOI: 10.1002/adma.202108646] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Indexed: 02/05/2023]
Abstract
Nanomaterials-based artificial enzymes (AEs) have flourished for more than a decade. However, it is still challenging to further enhance their biocatalytic performances due to the limited strategies to tune the electronic structures of active centers. Here, a new path is reported for the de novo design of the d electrons of active centers by modulating the electron transfer in vanadium-based AEs (VOx -AE) via a unique Zn-O-V bridge for efficient reactive oxygen species (ROS)-catalysis. Benefiting from the electron transfer from Zn to V, the V site in VOx -AE exhibits a lower valence state than that in V2 O5 , which results in charge-filled V-dyz orbital near the Fermi level to interfere with the formation of sigma bonds between the V- d z 2 and O-pz orbitals in H2 O2 . The VOx -AE exhibits a twofold Vmax and threefold turnover number than V2 O5 when catalyzing H2 O2 . Meanwhile, the VOx -AE shows enhanced catalytic eradication of drug-resistant bacteria and achieves comparable wound-treatment indexes to vancomycin. This modulating charge-filling of d electrons provides a new direction for the de novo design of nanomaterials-based AEs and deepens the understanding of ROS-catalysis.
Collapse
Affiliation(s)
- Ling Li
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
- Department of Ultrasound Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Sujiao Cao
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Zihe Wu
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Ruiqian Guo
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Lan Xie
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Liyun Wang
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Yuanjiao Tang
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Qi Li
- The First Affiliated Hospital of Hainan Medical University Hainan 570102 China
| | - Xianglin Luo
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Lang Ma
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Chong Cheng
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Li Qiu
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
107
|
Minotti C, Zuccon I, Priante E, Bonadies L, Di Chiara C, Donà D, Baraldi E, Costenaro P. Daptomycin for Treatment of S. Epidermidis Endocarditis in an Extremely Preterm Neonate-Outcome and Perspectives. CHILDREN (BASEL, SWITZERLAND) 2022; 9:457. [PMID: 35455502 PMCID: PMC9030184 DOI: 10.3390/children9040457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
With a considerable morbidity and mortality burden, infective endocarditis still represents a challenge for clinicians. This is a case of persistent Staphylococcus epidermidis endocarditis in an extremely preterm newborn. The infection, initially treated with vancomycin, was successfully cured with daptomycin. Its use was safe and effective, ensuring a complete remission without adverse effects.
Collapse
Affiliation(s)
- Chiara Minotti
- Department of Women’s and Children’s Health, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (I.Z.); (C.D.C.)
| | - Ilaria Zuccon
- Department of Women’s and Children’s Health, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (I.Z.); (C.D.C.)
| | - Elena Priante
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Via Giustiniani 2, 35128 Padua, Italy; (E.P.); (L.B.); (E.B.)
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Via Giustiniani 2, 35128 Padua, Italy; (E.P.); (L.B.); (E.B.)
| | - Costanza Di Chiara
- Department of Women’s and Children’s Health, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (I.Z.); (C.D.C.)
| | - Daniele Donà
- Division of Pediatric Infectious Diseases, Department of Women’s and Children’s Health, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (D.D.); (P.C.)
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Via Giustiniani 2, 35128 Padua, Italy; (E.P.); (L.B.); (E.B.)
| | - Paola Costenaro
- Division of Pediatric Infectious Diseases, Department of Women’s and Children’s Health, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (D.D.); (P.C.)
| |
Collapse
|
108
|
Selim S, Faried OA, Almuhayawi MS, Saleh FM, Sharaf M, El Nahhas N, Warrad M. Incidence of Vancomycin-Resistant Staphylococcus aureus Strains among Patients with Urinary Tract Infections. Antibiotics (Basel) 2022; 11:antibiotics11030408. [PMID: 35326871 PMCID: PMC8944512 DOI: 10.3390/antibiotics11030408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022] Open
Abstract
There has been a substantial rise in the number of vancomycin-resistant Staphylococcus aureus (VRSA) strains during the last several years. The proportion of vancomycin-resistant strains among isolated S. aureus has risen steadily in recent years, with the first spike occurring in critical care units and thereafter in general hospital wards. S. aureus isolates from urinary tract infection patients were studied for their prevalence and antibiotic resistance. From 292 urine samples, 103 bacterial strains (35.3%) were identified as S. aureus. Various antibiotics were used to test the isolates’ antibacterial resistance profiles. Antibiotic resistance to erythromycin was found in most bacterial isolates, whereas tobramycin antibiotic sensitivity was found in most of them. Vancomycin resistance was found in 23 of all S. aureus isolates in this study. Analysis for β-lactamase found that 71% of S. aureus isolates were positive in all isolates. There was a single plasmid with a molecular weight of 39.306 Kbp in five selected VRSA isolates that was subjected to plasmid analysis. There was evidence of vancomycin resistance among the S. aureus isolates collected from UTI patients in this investigation. This vancomycin resistance pretenses a challenge in the treatment of S. aureus infections and the need to precisely recognize persons who require last-resort medication such as tobramycin.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence:
| | - Osama Ahmed Faried
- Medical Microbiology and Immunology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62513, Egypt;
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Cairo 11651, Egypt;
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21526, Egypt;
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat 77454, Saudi Arabia;
| |
Collapse
|
109
|
Weldick PJ, Wang A, Halbus AF, Paunov VN. Emerging nanotechnologies for targeting antimicrobial resistance. NANOSCALE 2022; 14:4018-4041. [PMID: 35234774 DOI: 10.1039/d1nr08157h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance is a leading cause of mortality worldwide. Without newly approved antibiotics and antifungals being brought to the market, resistance is being developed to the ones currently available to clinicians. The reason is the applied evolutionary pressure to bacterial and fungal species due to the wide overuse of common antibiotics and antifungals in clinical practice and agriculture. Biofilms harbour antimicrobial-resistant subpopulations, which make their antimicrobial treatment even more challenging. Nanoparticle-based technologies have recently been shown to successfully overcome antimicrobial resistance in both planktonic and biofilms phenotypes. This results from the combination of novel nanomaterial research and classic antimicrobial therapies which promise to deliver a whole new generation of high-performance active nanocarrier systems. This review discusses the latest developments of promising nanotechnologies with applications against resistant pathogens and evaluates their potential and feasibility for use in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Paul J Weldick
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Anheng Wang
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Ahmed F Halbus
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Baryr Ave. 53, Nur-sultan city, 010000, Kazakhstan.
| |
Collapse
|
110
|
Jiang X, Li W, Chen X, Wang C, Guo R, Hong W. On-Demand Multifunctional Electrostatic Complexation for Synergistic Eradication of MRSA Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10200-10211. [PMID: 35179370 DOI: 10.1021/acsami.2c00658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, methicillin-resistant Staphylococcus aureus (MRSA) severely threatened the public health, especially when the biofilms developed. Although the biofilm eradication capability of nanoparticles (NPs) has been proposed and confirmed, efficient biofilm penetration and retention are still a big challenge. To solve this problem, a multifunctional electrostatic complexation (denoted as TDZ-G4@CA) was constructed for biofilm combination therapy. TDZ-G4@CA was composed of a TDZ-grafted amino-ended poly(amidoamine) dendrimer (TDZ-PAMAM) as the inner core and cis-aconitic anhydride-modified d-tyrosine (CA-Tyr) wrapped outside via electrostatic interaction. In our design, TDZ-G4@CA could simultaneously reduce the particle size and reverse the surface charge under an acidic microenvironment, which was designed for efficient biofilm penetration and retention. Meanwhile, the on-demand two-step sequential delivery of biofilm dispersal and antibacterial agents was also obtained. The acid responsiveness of TDZ-G4@CA triggered the immediate release of d-Tyr to damage the matrix of the biofilm. Subsequently, TDZ-G4 could penetrate over the depth of the biofilm and bind tightly to MRSA, which could enhance the permeability of the bacterial membrane for TDZ internalization. Additionally, TDZ exhibited a sustained-release pattern as a response to lipase to maintain an effective bactericidal concentration for a long time. As expected, in vitro experiments demonstrated that surface charge/particle size-adaptive TDZ-G4@CA with a sequential delivery strategy exhibited intensive infiltration in the biofilm matrix and excellent biofilm eradication capabilities. Afterward, in vivo experimental results also confirmed the prolonged circulation time and comprehensive therapeutic efficacy of TDZ-G4@CA against MRSA-induced subcutaneous abscess without any systemic side effects. Based on the comprehensive evaluation of the therapeutic outcome, the electrostatic complexation (TDZ-G4@CA) can serve as a promising strategy for enhanced antibiotic therapy for combating biofilm-associated infections.
Collapse
Affiliation(s)
- Xinyu Jiang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Rong Guo
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
111
|
Synthesis of novel d-α-galactopyranosyl-l-seryl/l-threonyl-l-alanyl-l-alanine as useful precursors of new glycopeptide antibiotics with computational calculations studies. Carbohydr Res 2022; 514:108546. [DOI: 10.1016/j.carres.2022.108546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
|
112
|
Wang H, Wu D, Di L, Zhu F, Wang Z, Sun L, Chen Y, Jiang S, Zhuang H, Chen M, Ji S, Chen Y. Genetic Characteristics of Multiple Copies of Tn1546-Like Elements in ermB-Positive Methicillin-Resistant Staphylococcus aureus From Mainland China. Front Microbiol 2022; 13:814062. [PMID: 35295307 PMCID: PMC8919048 DOI: 10.3389/fmicb.2022.814062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To determine the genetic structure of ermB-positive Tn1546-like mobile elements in methicillin-resistant Staphylococcus aureus (MRSA) from mainland China. Methods A total of 271 erythromycin-resistant MRSA isolates were isolated from Sir Run Run Shaw Hospital (SRRSH) from 2013 to 2015. Whole-genome sequencing was performed for the ermB-positive strains, and the genetic environment of the ermB genes was analyzed. Southern hybridization analysis and transformation tests were performed to confirm the location of the ermB gene. Results A total of 64 isolates (64/271, 23.6%) were ermB-positive strains, with 62 strains (62/64, 96.9%) belonging to the CC59 clone. The other two strains, SR130 and SR231, belonging to CC5-ST965, both harbored 14,567 bp ermB-positive Tn1546-like elements and displayed multidrug-resistant profiles. PFGE followed by Southern blot demonstrated that the ermB genes were located on the plasmids of both SR130 and SR231, while two copies of ermB were located on the chromosome of SR231. Further sequencing demonstrated that SR231 carried one Tn1546-ermB elements in the plasmid and two identical copies integrated on the chromosome, which had 99.99% identity to the element in the plasmid of SR130. The Tn1546-ermB elements were highly similar (100% coverage, >99.9% identity) to the element Tn6636 reported in a previous study from Taiwan. The plasmids (pSR130 and pSR231) harboring ermB-positive Tn1546-like elements were also identical to the mosaic plasmid pNTUH_5066148. However, conjugation of ermB-carrying plasmids of SR130 and SR231 were failed after triple repeats. Conclusion Multiple copies of ermB-positive Tn1546-like mobile elements were found in CC5-ST965 MRSA from mainland China, showing the wide dissemination of these Enterococcus faecium-originated ermB-positive Tn1546-like elements. Molecular epidemiological study of Tn1546-like elements is essential to avoid the spreading of resistant determinants.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Di
- Department of Clinical Laboratory, Tongxiang First people’s hospital, Tongxiang, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shujuan Ji,
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hospital Epidemiology and Infection Control, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Yan Chen,
| |
Collapse
|
113
|
Hamad M, Al-Marzooq F, Srinivasulu V, Omar HA, Sulaiman A, Zaher DM, Orive G, Al-Tel TH. Antibacterial Activity of Small Molecules Which Eradicate Methicillin-Resistant Staphylococcus aureus Persisters. Front Microbiol 2022; 13:823394. [PMID: 35178043 PMCID: PMC8846302 DOI: 10.3389/fmicb.2022.823394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
The serious challenge posed by multidrug-resistant bacterial infections with concomitant treatment failure and high mortality rates presents an urgent threat to the global health. We herein report the discovery of a new class of potent antimicrobial compounds that are highly effective against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The compounds were efficiently synthesized in one-pot employing a cascade of Groebke-Blackburn-Bienaymé and aza-Michael addition reactions. Phenotypic screening of the pilot library against various bacterial species including methicillin-sensitive and MRSA strains, has identified potent chemotypes with minimal inhibitory concentrations (MIC) of 3.125-6.25 μg/ml. The most potent compounds were fast-acting at eradicating exponentially growing MRSA, with killing achieved after 30 min of exposure to the compounds. They were also able to kill MRSA persister cells which are tolerant to most available medications. Microscopic analysis using fluorescence microscope and atomic force microscope indicate that these compounds lead to disruption of bacterial cell envelopes. Most notably, bacterial resistance toward these compounds was not observed after 20 serial passages in stark contrast to the significant resistance developed rapidly upon exposure to a clinically relevant antibiotic. Furthermore, the compounds did not induce significant hemolysis to human red blood cells. In vivo safety studies revealed a high safety profile of these motifs. These small molecules hold a promise for further studies and development as new antibacterial agents against MRSA infections.
Collapse
Affiliation(s)
- Mohamad Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farah Al-Marzooq
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashna Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
114
|
Hagbani TA, Yadav H, Moin A, Lila ASA, Mehmood K, Alshammari F, Khan S, Khafagy ES, Hussain T, Rizvi SMD, Abdallah MH. Enhancement of Vancomycin Potential against Pathogenic Bacterial Strains via Gold Nano-Formulations: A Nano-Antibiotic Approach. MATERIALS 2022; 15:ma15031108. [PMID: 35161053 PMCID: PMC8840600 DOI: 10.3390/ma15031108] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The remarkable rise of antibiotic resistance among pathogenic bacteria poses a significant threat to human health. Nanoparticles (NPs) have recently emerged as novel strategies for conquering fatal bacterial diseases. Furthermore, antibiotic-functionalized metallic NPs represent a viable nano-platform for combating bacterial resistance. In this study, we present the use of vancomycin-functionalized gold nanoparticles (V-GNPs) to battle pathogenic bacterial strains. A facile one-pot method was adopted to synthesize vancomycin-loaded GNPs in which the reducing properties of vancomycin were exploited to produce V-GNPs from gold ions. UV–Visible spectroscopy verified the production of V-GNPs via the existence of a surface plasmon resonance peak at 524 nm, whereas transmission electron microscopy depicted a size of ~24 nm. Further, dynamic light scattering (DLS) estimated the hydrodynamic diameter as 77 nm. The stability of V-GNPs was investigated using zeta-potential measurements, and the zeta potential of V-GNPs was found to be −18 mV. Fourier transform infrared spectroscopy confirmed the efficient loading of vancomycin onto GNP surfaces; however, the loading efficiency of vancomycin onto V-GNPs was 86.2%. Finally, in vitro antibacterial studies revealed that V-GNPs were much more effective, even at lower concentrations, than pure vancomycin. The observed antibacterial activities of V-GNPs were 1.4-, 1.6-, 1.8-, and 1.6-fold higher against Gram-negative Escherichia coli, Klebsiella oxytoca, and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus, respectively, compared to pure vancomycin. Collectively, V-GNPs represented a more viable alternative to pure vancomycin, even at a lower antibiotic dose, in conquering pathogenic bacteria.
Collapse
Affiliation(s)
- Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (A.M.); (A.S.A.L.); (F.A.); (M.H.A.)
| | - Hemant Yadav
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (A.M.); (A.S.A.L.); (F.A.); (M.H.A.)
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (A.M.); (A.S.A.L.); (F.A.); (M.H.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Khalid Mehmood
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian 22010, Pakistan;
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (A.M.); (A.S.A.L.); (F.A.); (M.H.A.)
| | - Salman Khan
- Nanomedicine and Nanotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Correspondence: (T.H.); (S.M.D.R.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (A.M.); (A.S.A.L.); (F.A.); (M.H.A.)
- Correspondence: (T.H.); (S.M.D.R.)
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (T.A.H.); (A.M.); (A.S.A.L.); (F.A.); (M.H.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
115
|
4Antimicrobial photodynamic therapy with curcumin on methicillin-resistant Staphylococcus aureus biofilm. Photodiagnosis Photodyn Ther 2022; 37:102729. [PMID: 35041982 DOI: 10.1016/j.pdpdt.2022.102729] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
Healthcare-Associated Infections (HAI) affect approximately 1.5 million individuals worldwide. Among the causes of HAIs in Latin America, Staphylococcus aureus presents a severe danger due to its rapid spread and ease of developing antibiotic resistance. Upon acquiring methicillin resistance, it receives the classification Methicillin-Resistant Staphylococcus aureus (MRSA), responsible for 40 to 60% of HAIs. The increase in resistant microorganisms led to the search for alternative methods, such as antimicrobial Photodynamic Therapy (aPDT), forming Reactive Oxygen Species (ROS), leading bacterial cells to death. The objective of this work was to evaluate in vitro the antimicrobial action of PDT with curcumin in MRSA biofilm. The strains were induced to form biofilm and incubated with curcumin for 20 minutes, irradiated with LED (Light Emitting Diode) 450 nm, at 110 mW/cm2, 50 J/cm2 for 455 seconds, subsequently counting the Colony Forming Units, Scanning Electron Microscopy (SEM) micrographs, Confocal Microscopy images, Resazurin dye test, ROS quantification to assess the effect of PDT on biofilm. The results show that PDT with curcumin reduced the biofilm growth of the MRSA strain. In addition, confocal microscopy showed that curcumin was internalized by S. aureus in the cells at the concentration used, and when isolated, curcumin and the irradiation parameter did not show cytotoxicity. The study demonstrated that the PDT in the established parameters reduced the growth of the MRSA strain biofilm, making it a relevant alternative possibility for the inactivation of this strain.
Collapse
|
116
|
Bottalico L, Charitos IA, Potenza MA, Montagnani M, Santacroce L. The war against bacteria, from the past to present and beyond. Expert Rev Anti Infect Ther 2021; 20:681-706. [PMID: 34874223 DOI: 10.1080/14787210.2022.2013809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human defense against microorganisms dates back to the ancient civilizations, with attempts to use substances from vegetal, animal, or inorganic origin to fight infections. Today, the emerging threat of multidrug-resistant bacteria highlights the consequences of antibiotics inappropriate use, and the urgent need for novel effective molecules. METHODS AND MATERIALS We extensively researched on more recent data within PubMed, Medline, Web of Science, Elsevier's EMBASE, Cochrane Review for the modern pharmacology in between 1987 - 2021. The historical evolution included a detailed analysis of past studies on the significance of medical applications in the ancient therapeutic field. AREAS COVERED We examined the history of antibiotics development and discovery, the most relevant biochemical aspects of their mode of action, and the biomolecular mechanisms conferring bacterial resistance to antibiotics. EXPERT OPINION The list of pathogens showing low sensitivity or full resistance to most currently available antibiotics is growing worldwide. Long after the 'golden age' of antibiotic discovery, the most novel molecules should be carefully reserved to treat serious bacterial infections of susceptible bacteria. A correct diagnostic and therapeutic procedure can slow down the spreading of nosocomial and community infections sustained by multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Lucrezia Bottalico
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (Cediclo), University of Bari, Bari, Italy
| | - Ioannis Alexandros Charitos
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (Cediclo), University of Bari, Bari, Italy.,Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology - Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology - Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine,University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
117
|
Dos Santos IC, Barbosa LN, da Silva GR, Otutumi LK, Zaniolo MM, Dos Santos MC, de Paula Ferreira LR, Gonçalves DD, de Almeida Martins L. Pet dogs as reservoir of oxacillin and vancomycin-resistant Staphylococcus spp. Res Vet Sci 2021; 143:28-32. [PMID: 34959042 DOI: 10.1016/j.rvsc.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study was to verify the bacterial resistance profile and detect the presence of mecA gene in Staphylococcus spp. isolated from the nasal microbiota of domiciled dogs. For this purpose 100 nasal swabs from 100 domiciled dogs were collected from the central area of the city of Umuarama (PR), along with a questionnaire answered by their owners. After the isolation all Staphylococcus spp. isolates were submitted to the diffusion disc test by the Kirby-Bauer method, and only oxacillin-resistant samples were submitted to the PCR technique to search for the mecA gene and the results were then submitted to statistical analysis to verify possible risk variables. The 100 Staphylococcus spp. and coagulase negative, among which 41 isolates were resistant to oxacillin, no samples were positive for the mecA gene presence, however, 12 resistant to vancomycin were found. It can be concluded that the domiciled dogs are carriers of Staphylococcus spp. multiresistant, being these a possible source of human contamination.
Collapse
Affiliation(s)
- Isabela Carvalho Dos Santos
- Bolsista PROSUP/CAPES - Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil.
| | - Lidiane Nunes Barbosa
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Gustavo Ratti da Silva
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Luciana Kazue Otutumi
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil.
| | - Melissa Marchi Zaniolo
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Mariana Carvalho Dos Santos
- Centro Universitário Cesumar (UNICESUMAR), Avenida Guedner, 1610, Jardim Aclimacao, 87050-900 Maringá, PR, Brazil
| | | | - Daniela Dib Gonçalves
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil.
| | - Lisiane de Almeida Martins
- Faculdade de Ensino Superior Santa Bárbara (FAESB), Rua Onze de Agosto, 2900, Jardim Lucila, 18277-000 Tatuí, SP, Brazil
| |
Collapse
|
118
|
Pokhrel R, Bhattarai N, Baral P, Gerstman BS, Park JH, Handfield M, Chapagain PP. Lipid II Binding and Transmembrane Properties of Various Antimicrobial Lanthipeptides. J Chem Theory Comput 2021; 18:516-525. [PMID: 34874159 DOI: 10.1021/acs.jctc.1c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There has been an alarming rise in antibacterial resistant infections in recent years due to the widespread use of antibiotics, and there is a dire need for the development of new antibiotics utilizing novel modes of action. Lantibiotics are promising candidates to engage in the fight against resistant strains of bacteria due to their unique modes of action, including interference with cell wall synthesis by binding to lipid II and creating pores in bacterial membranes. In this study, we use atomic-scale molecular dynamics computational studies to compare both the lipid II binding ability and the membrane interactions of five lanthipeptides that are commonly used in antimicrobial research: nisin, Mutacin 1140 (MU1140), gallidermin, NVB302, and NAI107. Among the five peptides investigated, nisin is found to be the most efficient at forming water channels through a membrane, whereas gallidermin and MU1140 are found to be better at binding the lipid II molecules. Nisin's effectiveness in facilitating water transport across the membrane is due to the creation of several different water trajectories along with no significant water delay points along the paths. The shorter peptide deoxyactagardine B (NVB302) was found to not form a water channel. These detailed observations provide insights into the dual mechanisms of the action of lantibiotic peptides and can facilitate the design and development of novel lanthipeptides by strategic placement of different residues.
Collapse
Affiliation(s)
| | | | | | | | - Jae H Park
- Oragenics Inc., Alachua, Florida 32615, United States
| | | | | |
Collapse
|
119
|
Awad M, Yosri M, Abdel-Aziz MM, Younis AM, Sidkey NM. Assessment of the Antibacterial Potential of Biosynthesized Silver Nanoparticles Combined with Vancomycin Against Methicillin-Resistant Staphylococcus aureus-Induced Infection in Rats. Biol Trace Elem Res 2021; 199:4225-4236. [PMID: 33389618 DOI: 10.1007/s12011-020-02561-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered one of the most serious multidrug-resistant bacteria worldwide. MRSA resistance to methicillin antibiotics made vancomycin, the acceptable treatment option. Silver nanoparticles (Ag-NPs) are among the well-known antibacterial substances showing multimode antibacterial action. Therefore, Ag-NPs are appropriate applicants for use in combination with vancomycin in order to augment its antibacterial action. This study aimed to biosynthesize silver nanoparticles and to evaluate its antibacterial activity against MRSA alone and when combined with vancomycin both in vitro and in vivo. Agaricus bisporus is used to reduce the silver nitrate salts in solution to yield silver nanoparticles which was characterized by UV-visible spectrophotometric analysis that shows maximum absorption at 420 nm as a preliminary confirmation for nanoparticles synthesis, Energy-Dispersive Analysis of X-ray (EDX) which confirms the crystalline nature of silver nanoparticles and transmission electron microscopy (TEM) image shows the particles in spherical form with mean size 27.45 nm. The synthesized silver nanoparticles were tested for antibacterial activity against MRSA, and the synergetic effects of the combination of silver nanoparticles and vancomycin were evaluated. The results showed a strong synergistic antibacterial effect between Ag-NPs and vancomycin in vitro with fractional inhibitory concentration 0.37 and in vivo against MRSA strain. The result revealed that mycosynthesized silver nanoparticles (NPs) enhance the in vitro and in vivo antibacterial activity of vancomycin against MRSA. These results suggested that sliver nanoparticles have an effective antibacterial activity against MRSA count, histopathology, and liver enzymes as well as protective immune response specially when combined with vancomycin in the lungs of infected rats with MRSA.
Collapse
Affiliation(s)
- Mohammed Awad
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11841, Egypt
| | - Mohamed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11787, Egypt.
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11787, Egypt
| | - Ahmed M Younis
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11841, Egypt
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
120
|
Chen Y, Shi Y, Zhu W, You J, Yang J, Xie Y, Zhao H, Li H, Fan S, Li L, Liu C. Combining CRISPR-Cas12a-Based Technology and Metagenomics Next Generation Sequencing: A New Paradigm for Rapid and Full-Scale Detection of Microbes in Infectious Diabetic Foot Samples. Front Microbiol 2021; 12:742040. [PMID: 34690988 PMCID: PMC8529936 DOI: 10.3389/fmicb.2021.742040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Diabetic foot infections (DFIs) pose a huge challenge for clinicians. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is one of the most significant pathogens of DFI. Early pathogen identification will greatly benefit the diagnosis and treatment of the disease. However, existing diagnostic methods are not effective in early detection. Methods: We developed an assay that coupled loop-mediated isothermal amplification (LAMP) and clustered regularly interspaced short palindromic repeats (CRISPR) techniques to enable quick and specific detection of Staphylococcus aureus and differentiate MRSA in samples from patients with DFI. Furthermore, the results were compared using a reference culture, quantitative real-time polymerase chain reaction (qRT-PCR), and metagenomics next generation sequencing (mNGS). Results: The CRISPR-LAMP assay targeting nuc and mecA successfully detected S. aureus strains and differentiated MRSA. The limit of detection (LoD) of the real-time LAMP for nuc and mecA was 20 copies per microliter reaction in comparison to two copies per μL reaction for the qRT-PCR assay. The specificity of the LAMP-CRISPR assay for nuc was 100%, without cross-reactions with non-S. aureus strains. Evaluating assay performance with 18 samples from DFI patients showed that the assay had 94.4% agreement (17/18 samples) with clinical culture results. The results of mNGS for 8/18 samples were consistent with those of the reference culture and LAMP-CRISPR assay. Conclusion: The findings suggest that the LAMP-CRISPR assay could be promising for the point-of-care detection of S. aureus and the differentiation of MRSA in clinical samples. Furthermore, combining the LAMP-CRISPR assay and mNGS provides an advanced platform for molecular pathogen diagnosis of DFI.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ya Shi
- Hangzhou Digital Micro Biotech Co., Ltd., Hangzhou, China
| | - Weifen Zhu
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Jiaxing You
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Jie Yang
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Yaping Xie
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanxin Zhao
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Hongye Li
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Lin Li
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Chao Liu
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
121
|
Grant-Mackie E, Williams ET, Harris PWR, Brimble MA. Aminovinyl Cysteine Containing Peptides: A Unique Motif That Imparts Key Biological Activity. JACS AU 2021; 1:1527-1540. [PMID: 34723257 PMCID: PMC8549060 DOI: 10.1021/jacsau.1c00308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Natural products that contain distinctive chemical functionality can serve as useful starting points to develop Nature's compounds into viable therapeutics. Peptide natural products, an under-represented class of medicines, such as ribosomally synthesized and post-translationally modified peptides (RiPPs), often contain noncanonical amino acids and structural motifs that give rise to potent biological activity. However, these motifs can be difficult to obtain synthetically, thereby limiting the transition of RiPPs to the clinic. Aminovinyl cysteine containing peptides, which display potent antimicrobial or anticancer activity, possess an intricate C-terminal ring that is critical for bioactivity. To date, successful methods for the total chemical synthesis of such peptides are yet to be realized, although several advancements have been achieved. In this perspective, we review this burgeoning class of aminovinyl cysteine peptides and critically evaluate the chemical strategies to install the distinct aminovinyl cysteine motif.
Collapse
Affiliation(s)
- Emily
S. Grant-Mackie
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
| | - Elyse T. Williams
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
| | - Paul W. R. Harris
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
- School
of Biological Sciences, The University of
Auckland, 3b Symonds
Street, Auckland 1132, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1132, New Zealand
| | - Margaret A. Brimble
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
- School
of Biological Sciences, The University of
Auckland, 3b Symonds
Street, Auckland 1132, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1132, New Zealand
| |
Collapse
|
122
|
Vancomycin Use in Children and Neonates across Three Decades: A Bibliometric Analysis of the Top-Cited Articles. Pathogens 2021; 10:pathogens10101343. [PMID: 34684291 PMCID: PMC8537673 DOI: 10.3390/pathogens10101343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Vancomycin is frequently prescribed in pediatrics, especially in intensive care unit settings, to treat Gram-positive bacterial infections. This work aims to collect the top-cited articles of pediatric and infectious diseases areas to gather the current evidence and gaps of knowledge on the use of vancomycin in these populations. The most relevant journals reported in the "pediatrics" and "infectious diseases" categories of the 2019 edition of Journal Citation Reports were browsed. Articles with more than 30 citations and published over the last three decades were collected. A bibliometric analysis was performed and 115 articles were retrieved. They were published in 21 journals, with a median impact factor of 4.6 (IQR 2.9-5.4). Sixty-eight of them (59.1%) belonged to "infectious diseases" journals. The most relevant topic was "bloodstream/complicated/invasive infections", followed by "antibiotic resistance/MRSA treatment". As for population distribution, 27 articles were on children only and 27 on neonates, most of which were from intensive care unit (ICU) settings. The current literature mainly deals with vancomycin as a treatment for severe infections and antibiotic resistance, especially in neonatal ICU settings. Lately, attention to new dosing strategies in the neonatal and pediatric population has become a sensible topic.
Collapse
|
123
|
Novel ocotillol-derived lactone derivatives: design, synthesis, bioactive evaluation, SARs and preliminary antibacterial mechanism. Mol Divers 2021; 26:2103-2120. [PMID: 34661800 DOI: 10.1007/s11030-021-10318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
A new series of ocotillol-derived lactone derivatives were designed and synthesized to consider their antibacterial activity, structure-activity relationships (SARs), antibacterial mechanism and in vivo antibacterial efficacy. Compound 6d, which exhibited broad antibacterial spectrum, was found to be the most active with minimum inhibitory concentrations (MICs) of 1-2 μg/mL against Gram-positive bacteria and 8-16 μg/mL against Gram-negative bacteria. The subsequent synergistic antibacterial tests displayed that 6d had the ability to improve the susceptibility of MRSA USA300, B. subtilis 168, and E. coli DH5α to kanamycin and chloramphenicol. This active molecule 6d also induced bacterial resistance more slowly than norfloxacin and kanamycin. Furthermore, compound 6d was membrane active and low toxic against mammalian cells, and it could rapidly inhibit the growth of MRSA and E. coli and did not obviously trigger bacterial resistance. Compound 6d also displayed strong in vivo antibacterial activity against S. aureus RN4220 in murine corneal infection models. Additionally, absorption, distribution, metabolism, and excretion properties of this type of compounds have shown drug-likeness with good oral absorption and moderate blood-brain barrier permeability. The obtained results demonstrated that ocotillol-derived compounds are a promising class of antibacterial agents worthy of further study.
Collapse
|
124
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10. [PMID: 34684258 DOI: 10.3390/pathogens10101310/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 05/20/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
125
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10:pathogens10101310. [PMID: 34684258 PMCID: PMC8541462 DOI: 10.3390/pathogens10101310] [Citation(s) in RCA: 452] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
- Correspondence: ; Tel.: +39-090-221-33-22
| |
Collapse
|
126
|
Zhang Y, Xu S, Yang Y, Chou SH, He J. A 'time bomb' in the human intestine-the multiple emergence and spread of antibiotic-resistant bacteria. Environ Microbiol 2021; 24:1231-1246. [PMID: 34632679 DOI: 10.1111/1462-2920.15795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Antibiotics have a strong killing effect on bacteria and are the first choice for the prevention and treatment of bacterial infectious diseases. Therefore, they have been widely used in the medical field, animal husbandry and planting industry. However, with the massive use of antibiotics, more and more antibiotic-resistant bacteria (ARB) have emerged. Because human intestines are rich in nutrients, have suitable temperature, and are high in bacterial abundance, they can easily become a hotbed for the spread of ARB and antibiotic-resistant genes (ARGs). When opportunistic pathogenic bacteria in the intestine acquire ARGs, the infectious diseases caused by such opportunistic pathogens will become more difficult to treat, or even impossible to cure. Therefore, ARB in the human intestine are like a 'time bomb'. In this review, we discuss the sources of intestinal ARB and the transmission routes of ARGs in the human intestine from the perspective of One Health. Further, we describe various methods to prevent the emergence of ARB and inhibit the spread of ARGs in the human intestine. Finally, we may be able to overcome ARB in the human intestine using an interdisciplinary 'One Health' approach.
Collapse
Affiliation(s)
- Yuling Zhang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yijun Yang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
127
|
Rybak M, Gudzera OI, Gorbatiuk OB, Usenko MO, Yarmoluk SM, Tukalo MA, Volynets GP. Rational Design of Hit Compounds Targeting Staphylococcus aureus Threonyl-tRNA Synthetase. ACS OMEGA 2021; 6:24910-24918. [PMID: 34604672 PMCID: PMC8482496 DOI: 10.1021/acsomega.1c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus is one of the most dangerous nosocomial pathogens which cause a wide variety of hospital-acquired infectious diseases. S. aureus is considered as a superbug due to the development of multidrug resistance to all current therapeutic regimens. Therefore, the discovery of antibiotics with novel mechanisms of action to combat staphylococcal infections is of high priority for modern medicinal chemistry. Nowadays, aminoacyl-tRNA synthetases are considered as promising molecular targets for antibiotic development. In the present study, we used for the first time S. aureus threonyl-tRNA synthetase (ThrRS) as a molecular target. Recombinant S. aureus ThrRS was obtained in the soluble form in a sufficient amount for inhibitor screening assay. Using the molecular docking approach, we selected 180 compounds for investigation of inhibitory activity toward ThrRS. Among the tested compounds, we identified five inhibitors from different chemical classes decreasing the activity of ThrRS by more than 70% at a concentration of 100 μM. The most active compound 2,4-dibromo-6-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol has an IC50 value of 56.5 ± 3.5 μM. These compounds are not cytotoxic toward eukaryotic cells HEK293 (EC50 > 100 μM) and can be useful for further optimization and biological research.
Collapse
Affiliation(s)
- Mariia
Yu. Rybak
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Olga I. Gudzera
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Oksana B. Gorbatiuk
- Department
of Cell Regulatory Mechanisms, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Mariia O. Usenko
- Department
of Cell Regulatory Mechanisms, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Sergiy M. Yarmoluk
- Department
of Medicinal Chemistry, Institute of Molecular
Biology and Genetics National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Michael A. Tukalo
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Galyna P. Volynets
- Department
of Medicinal Chemistry, Institute of Molecular
Biology and Genetics National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
- The
Scientific-Services Company “OTAVA”, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| |
Collapse
|
128
|
Yang D, Zheng X, Jiang L, Ye M, He X, Jin Y, Wu R. Functional Mapping of Phenotypic Plasticity of Staphylococcus aureus Under Vancomycin Pressure. Front Microbiol 2021; 12:696730. [PMID: 34566908 PMCID: PMC8458881 DOI: 10.3389/fmicb.2021.696730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Phenotypic plasticity is the exhibition of various phenotypic traits produced by a single genotype in response to environmental changes, enabling organisms to adapt to environmental changes by maintaining growth and reproduction. Despite its significance in evolutionary studies, we still know little about the genetic control of phenotypic plasticity. In this study, we designed and conducted a genome-wide association study (GWAS) to reveal genetic architecture of how Staphylococcus aureus strains respond to increasing concentrations of vancomycin (0, 2, 4, and 6 μg/mL) in a time course. We implemented functional mapping, a dynamic model for genetic mapping using longitudinal data, to map specific loci that mediate the growth trajectories of abundance of vancomycin-exposed S. aureus strains. 78 significant single nucleotide polymorphisms were identified following analysis of the whole growth and development process, and seven genes might play a pivotal role in governing phenotypic plasticity to the pressure of vancomycin. These seven genes, SAOUHSC_00020 (walR), SAOUHSC_00176, SAOUHSC_00544 (sdrC), SAOUHSC_02998, SAOUHSC_00025, SAOUHSC_00169, and SAOUHSC_02023, were found to help S. aureus regulate antibiotic pressure. Our dynamic gene mapping technique provides a tool for dissecting the phenotypic plasticity mechanisms of S. aureus under vancomycin pressure, emphasizing the feasibility and potential of functional mapping in the study of bacterial phenotypic plasticity.
Collapse
Affiliation(s)
- Dengcheng Yang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xuyang Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Department of Public Health Sciences and Statistics, Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
129
|
Design, synthesis and antibacterial activity of chalcones against MSSA and MRSA planktonic cells and biofilms. Bioorg Chem 2021; 116:105279. [PMID: 34509799 DOI: 10.1016/j.bioorg.2021.105279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is the one of the most successful modern pathogens. The same bacterium that lives as a skin and mucosal commensal can be transmitted in health-care and community-settings and causes severe infections. Thus, there is a great challenge for a discovery of novel anti-Staphylococcus aureus compounds, which should act against resistant strains. Herein, we designed and synthesized a series of 17 chalcones, substituted by amino group on ring A, which were evaluated against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus MRSA planktonic cells. The antibacterial potency was improved by substituents on ring B, which were designed according to Topliss' manual method. 4-bromo-3'-aminochalcone (5f) was the most active, demonstrating minimum inhibitory concentration (MIC) values of 1.9 μg mL-1 and 7.8 µg mL-1 against MSSA and MRSA, respectively. The association of 5f with vancomycin demonstrated synergistic effect against MSSA and MRSA, with Fractional Inhibitory Concentration Index (FICI) values of 0.4 and 0.3, respectively. Subinhibitory concentration of 5f inhibited the MSSA and MRSA adhesion to human keratinocytes. Chalcone 5f was able to reduce MSSA and MRSA biofilm formation, as well as acts on preformed biofilm in concentration-dependent mode. Scanning electron microscopy analyses confirmed severe perturbations caused by 5f on MSSA and MRSA biofilm architecture. The acute toxicity assay, using Galleria mellonella larvae, indicated a low toxic effect of 5f after 72 h, displaying lethality of 20% and 30% at 7.8 μg mL-1 and 78.0 μg mL-1, respectively. In addition, the antibacterial activity spectrum of 5f indicated action against planktonic cells of Enterococcus faecalis (MIC = 7.8 μg mL-1), Acinetobacter baumannii (MIC = 15.6 μg mL-1) and Mycobacterium tuberculosis (MIC = 5.7 μg mL-1). Altogether, these results open new avenues for 5f as an anti-Staphylococcus aureus agent, with potential applications as antibacterial drug, adjunct of antibiotics and medical devices coating.
Collapse
|
130
|
Pyzik E, Dec M, Stępień-Pyśniak D, Marek A, Piedra JLV, Chałabis-Mazurek A, Szczepaniak K, Urban-Chmiel R. The presence of pathogens and heavy metals in urban peregrine falcons ( Falco peregrinus). Vet World 2021; 14:1741-1751. [PMID: 34475693 PMCID: PMC8404116 DOI: 10.14202/vetworld.2021.1741-1751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Wild birds raised in urban environments may be exposed to many negative factors, including biological and chemical toxic elements. The aim of the study was to assess the occurrence of bacteria and parasites in wild birds, based on the example of the peregrine falcon (Falco peregrinus) as a potential indicator of bacterial drug resistance genes. Toxicological contamination was also analyzed to determine the impact of urbanized areas on this predatory species, in terms of its health, welfare, and survival in urban environments. Materials and Methods: The samples consisted of down feathers and fresh feces obtained from seven falcon chicks (during obligatory veterinary examination) reared in two nests located in the Lublin region (Lublin and Puławy). Bacteria and parasites were isolated directly from feces by classical microbiological methods, polymerase chain reaction, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). The down feathers and feces of birds were used for toxicological testing by plasma inductively coupled plasma MS to assess the concentrations of selected heavy metals (cadmium [Cd], lead [Pb], arsenic [As], zinc [Zn], and copper [Cu]). Results: The study revealed the presence of a diverse microbiome in the falcon chicks, among which Escherichia coli, Enterococcus spp., and Staphylococcus spp. bacteria and parasites of the genus Caryospora were dominant. The presence of drug resistance genes was also confirmed among the pathogens. The toxicological analysis found high concentrations of toxic heavy metals, including Cd, Pb, As, and Zn, in the downy feathers and feces of peregrine chicks. Conclusion: Predatory free-living birds living in urban environments not only can be infected with various pathogens but may also show contamination with heavy metals, which could influence their natural resistance, condition, and welfare.
Collapse
Affiliation(s)
- Ewelina Pyzik
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Jose Louis Valverde Piedra
- Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Chałabis-Mazurek
- Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Klaudiusz Szczepaniak
- Department of Veterinary Parasitology and Fish Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| |
Collapse
|
131
|
Abdelraheem WM, Khairy RMM, Zaki AI, Zaki SH. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Ann Clin Microbiol Antimicrob 2021; 20:54. [PMID: 34419054 PMCID: PMC8379777 DOI: 10.1186/s12941-021-00459-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Multidrug resistant (MDR) and biofilm producing Staphylococcus aureus strains are usually associated with serious infections. This study aimed to evaluate the antibacterial and antibiofilm-formation effects of zinc oxide nanoparticles (ZnO-NPs) against staphylococcus aureus (S. aureus) isolates. Methods A total of 116 S. aureus isolates were recovered from 250 burn wound samples. The antimicrobial/antibiofilm effects of ZnO-NPs against methicillin, vancomycin and linezolid resistant S. aureus (MRSA, VRSA and LRSA) isolates were examined using phenotypic and genotypic methods. The minimum inhibitory concentration (MIC) of ZnO-NPs was determined by microdilution method. The effects of sub-MIC concentrations of ZnO-NPs on biofilm formation and drug resistance in S. aureus were determined by the microtiter plate method. The change in the expression levels of the biofilm encoding genes and resistance genes in S. aureus isolates after treatment with ZnO-NPs was assessed by real time reverse transcriptase PCR (rt-PCR). Results MICs of ZnO-NPs in S. aureus isolates were (128–2048 µg/ml). The sub-MIC of ZnO-NPs significantly reduced biofilm formation rate (the highest inhibition rate was 76.47% at 1024 µg/ml) and the expression levels of biofilm genes (ica A, ica D and fnb A) with P < 0.001. Moreover, Sub-MIC of ZnO-NPs significantly reduced the rates of MRSA from 81.9 (95 isolates) to 13.30% (15 isolates), VRSA from 33.60 (39 isolates) to 0% and LARSA from 29.30 (34) to 0% as well as the expression levels of resistance genes (mec A, van A and cfr) with P value < 0.001. Conclusion ZnO-NPs can be used as antibiofilm and potent antimicrobial against MRSA, VRSA and LRSA isolates. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-021-00459-2.
Collapse
Affiliation(s)
- Wedad M Abdelraheem
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Rasha M M Khairy
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Alaa I Zaki
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Shaimaa H Zaki
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| |
Collapse
|
132
|
Mutations in a Membrane Permease or hpt Lead to 6-Thioguanine Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2021; 65:e0076021. [PMID: 34125595 DOI: 10.1128/aac.00760-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently discovered that 6-thioguanine (6-TG) is an antivirulence compound that is produced by a number of coagulase-negative staphylococci. In Staphylococcus aureus, it inhibits de novo purine biosynthesis and ribosomal protein expression, thus inhibiting growth and abrogating toxin production. Mechanisms by which S. aureus may develop resistance to this compound are currently unknown. Here, we show that 6-TG-resistant S. aureus mutants emerge spontaneously when the bacteria are subjected to high concentrations of 6-TG in vitro. Whole-genome sequencing of these mutants revealed frameshift and missense mutations in a xanthine-uracil permease family protein (stgP [six thioguanine permease]) and single nucleotide polymorphisms in hypoxanthine phosphoribosyltransferase (hpt). These mutations engender S. aureus the ability to resist both the growth inhibitory and toxin downregulation effects of 6-TG. While prophylactic administration of 6-TG ameliorates necrotic lesions in subcutaneous infection of mice with methicillin-resistant S. aureus (MRSA) strain USA300 LAC, the drug did not reduce lesion size formed by the 6-TG-resistant strains. These findings identify mechanisms of 6-TG resistance, and this information can be leveraged to inform strategies to slow the evolution of resistance.
Collapse
|
133
|
Lu CH, Shiau CW, Chang YC, Kung HN, Wu JC, Lim CH, Yeo HH, Chang HC, Chien HS, Huang SH, Hung WK, Wei JR, Chiu HC. SC5005 dissipates the membrane potential to kill Staphylococcus aureus persisters without detectable resistance. J Antimicrob Chemother 2021; 76:2049-2056. [PMID: 33855344 DOI: 10.1093/jac/dkab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/13/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES In the past few decades, multiple-antibiotic-resistant Staphylococcus aureus has emerged and quickly spread in hospitals and communities worldwide. Additionally, the formation of antibiotic-tolerant persisters and biofilms further reduces treatment efficacy. Previously, we identified a sorafenib derivative, SC5005, with bactericidal activity against MRSA in vitro and in vivo. Here, we sought to elucidate the resistance status, mode of action and anti-persister activity of this compound. METHODS The propensity of S. aureus to develop SC5005 resistance was evaluated by assessment of spontaneous resistance and by multi-passage selection. The mode of action of SC5005 was investigated using macromolecular synthesis, LIVE/DEAD and ATPlite assays and DiOC2(3) staining. The effect of SC5005 on the mammalian cytoplasmic membrane was measured using haemolytic and lactate dehydrogenase (LDH) assays and flow cytometry. RESULTS SC5005 depolarized and permeabilized the bacterial cytoplasmic membrane, leading to reduced ATP production. Because of this mode of action, no resistance of S. aureus to SC5005 was observed after constant exposure to sub-lethal concentrations for 200 passages. The membrane-perturbing activity of SC5005 was specific to bacteria, as no significant haemolysis or release of LDH from human HT-29 cells was detected. Additionally, compared with other bactericidal antibiotics, SC5005 exhibited superior activity in eradicating both planktonic and biofilm-embedded S. aureus persisters. CONCLUSIONS Because of its low propensity for resistance development and potent persister-eradicating activity, SC5005 is a promising lead compound for developing new therapies for biofilm-related infections caused by S. aureus.
Collapse
Affiliation(s)
- Chieh-Hsien Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| | - Chui-Hian Lim
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Hui-Hui Yeo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Han-Chu Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Han-Sheng Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Sheng-Hsuan Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| | - Wei-Kang Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Jun-Rong Wei
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| |
Collapse
|
134
|
Bornbusch SL, Drea CM. Antibiotic Resistance Genes in Lemur Gut and Soil Microbiota Along a Gradient of Anthropogenic Disturbance. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The overuse of man-made antibiotics has facilitated the global propagation of antibiotic resistance genes in animals, across natural and anthropogenically disturbed environments. Although antibiotic treatment is the most well-studied route by which resistance genes can develop and spread within host-associated microbiota, resistomes also can be acquired or enriched via more indirect routes, such as via transmission between hosts or via contact with antibiotic-contaminated matter within the environment. Relatively little is known about the impacts of anthropogenic disturbance on reservoirs of resistance genes in wildlife and their environments. We therefore tested for (a) antibiotic resistance genes in primate hosts experiencing different severities and types of anthropogenic disturbance (i.e., non-wildlife animal presence, human presence, direct human contact, and antibiotic treatment), and (b) covariation between host-associated and environmental resistomes. We used shotgun metagenomic sequencing of ring-tailed lemur (Lemur catta) gut resistomes and associated soil resistomes sampled from up to 10 sites: seven in the wilderness of Madagascar and three in captivity in Madagascar or the United States. We found that, compared to wild lemurs, captive lemurs harbored greater abundances of resistance genes, but not necessarily more diverse resistomes. Abundances of resistance genes were positively correlated with our assessments of anthropogenic disturbance, a pattern that was robust across all ten lemur populations. The composition of lemur resistomes was site-specific and the types of resistance genes reflected antibiotic usage in the country of origin, such as vancomycin use in Madagascar. We found support for multiple routes of ARG enrichment (e.g., via human contact, antibiotic treatment, and environmental acquisition) that differed across lemur populations, but could result in similar degrees of enrichment. Soil resistomes varied across natural habitats in Madagascar and, at sites with greater anthropogenic disturbance, lemurs and soil resistomes covaried. As one of the broadest, single-species investigations of wildlife resistomes to date, we show that the transmission and enrichment of antibiotic resistance genes varies across environments, thereby adding to the mounting evidence that the resistance crisis extends outside of traditional clinical settings.
Collapse
|
135
|
Huang J, Wu S, Wu M, Zeng Q, Wang X, Wang H. Efficacy of the therapy of 5-aminolevulinic acid photodynamic therapy combined with human umbilical cord mesenchymal stem cells on methicillin-resistant Staphylococcus aureus-infected wound in a diabetic mouse model. Photodiagnosis Photodyn Ther 2021; 36:102480. [PMID: 34375775 DOI: 10.1016/j.pdpdt.2021.102480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A distressing issue of diabetic ulcer (DU) is its poor healing feature with limited clinical solutions. We have previously shown that 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a promising alternative to the currently limited measures for DU. Mesenchymal stem cells (MSCs) transplantation has been believed to impose certain therapeutic effect on restoration of injury. Thus, this study aims to explore whether the combination of MSCs and ALA-PDT will exert a more advanced curative effect on DU. METHODS Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ, 60 mg/kg/d) for consecutive 5 days. A full-thickness skin injury (diameter 6 mm) was created in the center of the back of each mouse, and then 10 μl of methicillin-resistant Staphylococcus aureus (MRSA) suspension was added to establish an infected DU model. All DU models were randomly divided into four groups: Untreated group, MSCs group, ALA-PDT group, and ALA-PDT combined with human umbilical cord mesenchymal stem cells (hUC-MSCs) (ALA-PDT + MSCs) group. The wound sizes were recorded by a digital camera, and the healing rates were calculated using Image J software. Bacterial loads on wounds were measured using CFU (Colony forming units) analysis. The epithelialization, inflammatory cells infiltration and granulation tissue formation were monitored by Haematoxylin and eosin (H&E) staining, and the corresponding semi-quantitative score was matched. Growth and pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Either ALA-PDT or injection of hUC-MSCs resulted in a rapid wound closure compared with the untreated, while their combination brought about the most prominent healing. On day 12, healing rates of the untreated, MSCs, ALA-PDT and ALA-PDT + MSCs were 40.56% ± 7.06%, 74.23 ± 4.83%, 84.03 ± 3.53%, 99.67 ± 0.49%, respectively. The bacterial burden reductions were approximately 1.58 logs (97.36%, P < 0.05), 2.34 logs (99.54%, P < 0.01), 4.50 logs (nearly 100%, P < 0.001) for MSCs, ALA-PDT and ALA-PDT + MSCs, respectively. Histology revealed reduced inflammatory cells and improved collagen precipitation and angiogenesis after hUC-MSCs and ALA-PDT treatment compared to the untreated. The combined therapy leaded to a more intact epithelium, similar to the healthy. Finally, ELISA revealed that the property of ALA-PDT to stimulate transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) and inhibit IL (interleukin) -1β and IL-6 outweighed that of hUC-MSCs, and this function of the combination overwhelmed that of any single therapy. CONCLUSIONS Our findings indicated that the strategy of combining ALA-PDT with hUC-MSCs possessed a significantly enhanced therapeutic effect over either single therapy, providing a promising innovative therapeutic candidate for refractory wounds.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Shutian Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Qingyu Zeng
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiuli Wang
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
136
|
Huang R, Cai GQ, Li J, Li XS, Liu HT, Shang XL, Zhou JD, Nie XM, Gui R. Platelet membrane-camouflaged silver metal-organic framework drug system against infections caused by methicillin-resistant Staphylococcus aureus. J Nanobiotechnology 2021; 19:229. [PMID: 34348721 PMCID: PMC8336064 DOI: 10.1186/s12951-021-00978-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Background Due to the intelligent survival strategy and self-preservation of methicillin-resistant Staphylococcus aureus (MRSA), many antibiotics are ineffective in treating MRSA infections. Nano-drug delivery systems have emerged as a new method to overcome this barrier. The aim of this study was to construct a novel nano-drug delivery system for the treatment of MRSA infection, and to evaluate the therapeutic effect and biotoxicity of this system. We prepared a nano silver metal-organic framework using 2-methylimidazole as ligand and silver nitrate as ion provider. Vancomycin (Vanc) was loaded with Ag-MOF, and nano-sized platelet vesicles were prepared to encapsulate Ag-MOF-Vanc, thus forming the novel platelet membrane-camouflaged nanoparticles PLT@Ag-MOF-Vanc. Results The synthesized Ag-MOF particles had uniform size and shape of radiating corona. The mean nanoparticle size and zeta potential of PLT@Ag-MOF-Vanc were 148 nm and − 25.6 mV, respectively. The encapsulation efficiency (EE) and loading efficiency (LE) of vancomycin were 81.0 and 64.7 %, respectively. PLT@Ag-MOF-Vanc was shown to be a pH-responsive nano-drug delivery system with good biocompatibility. Ag-MOF had a good inhibitory effect on the growth of three common clinical strains (Escherichia coli, Pseudomonas aeruginosa, and S. aureus). PLT@Ag-MOF-Vanc showed better antibacterial activity against common clinical strains in vitro than free vancomycin. PLT@Ag-MOF-Vanc killed MRSA through multiple approaches, including interfering with the metabolism of bacteria, catalyzing reactive oxygen species production, destroying the integrity of cell membrane, and inhibiting biofilm formation. Due to the encapsulation of the platelet membrane, PLT@Ag-MOF-Vanc can bind to the surface of the MRSA bacteria and the sites of MRSA infection. PLT@Ag-MOF-Vanc had a good anti-infective effect in mouse MRSA pneumonia model, which was significantly superior to free vancomycin, and has no obvious toxicity. Conclusions PLT@Ag-MOF-Vanc is a novel effective targeted drug delivery system, which is expected to be used safely in anti-infective therapy of MRSA. Graphic abstract ![]()
Collapse
Affiliation(s)
- Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Guang-Qing Cai
- Department of Orthopedics, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Hunan, Changsha, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Hai-Ting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Xue-Ling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Jian-Dang Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Xin-Min Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China.
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China.
| |
Collapse
|
137
|
Salam LB, Obayori OS, Ilori MO, Amund OO. Impact of spent engine oil contamination on the antibiotic resistome of a tropical agricultural soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1251-1271. [PMID: 33993436 DOI: 10.1007/s10646-021-02422-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Profiling of hydrocarbon-contaminated soils for antibiotic resistance genes (ARGs) is becoming increasingly important due to emerging realities of their preponderance in hydrocarbon-inundated matrices. In this study, the antibiotic resistome of an agricultural soil (1S) and agricultural soil contaminated with spent engine oil (AB1) were evaluated via functional annotation of the open reading frames (ORFs) of their metagenomes using the comprehensive antibiotic database (CARD) and KEGG KofamKOALA. CARD analysis of AB1 metagenome revealed the detection of 24 AMR (antimicrobial resistance) gene families, 66 ARGs, and the preponderance (69.7%) of ARGs responsible for antibiotic efflux in AB1 metagenome. CARD analysis of 1S metagenome revealed four AMR gene families and five ARGs. Functional annotation of the two metagenomes using KofamKOALA showed 171 ARGs in AB1 and 29 ARGs in 1S, respectively. Majority of the detected ARGs in AB1 (121; 70.8%) and 1S (16; 55.2%) using KofamKOALA are responsible for antibiotic efflux while ARGs for other resistance mechanisms were also detected. All the five major antibiotic efflux pump systems were detected in AB1 metagenome, though majority of the ARGs for antibiotic efflux belong to the RND (resistance-nodulation-cell division) and MFS (major facilitator superfamily) efflux systems. Significant differences observed in the ARGs recovered from 1S and AB1 metagenomes were statistically validated (P < 0.05). SEO contamination is believed to be responsible for ARGs increase in AB1 metagenome via mechanisms of cross-resistance especially with efflux pumps. The detection of these ARGs is of great public health concern in this era of multidrug resistant isolates resurgence.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology Unit, Summit University, Offa, Kwara, Nigeria.
| | | | | | | |
Collapse
|
138
|
Plastoquinone analogs: a potential antimicrobial lead structure intensely suppressing Staphylococcus epidermidis and Candida albicans growth. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02772-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
139
|
Maraldi M, Lisi M, Moretti G, Sponchioni M, Moscatelli D. Health care-associated infections: Controlled delivery of cationic antiseptics from polymeric excipients. Int J Pharm 2021; 607:120956. [PMID: 34333024 DOI: 10.1016/j.ijpharm.2021.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, the treatment of health care-associated infections represents a serious issue, due to the increasing number of bacterial strains resistant to traditional antibiotics. The use of antiseptics like quaternary ammonium salts and biguanides is a viable alternative to face these life-threatening infections. However, their inherent toxicity as well as the necessity of providing a sustained release to avoid the formation of pathogen biofilms are compelling obstacles towards their assessment in the hospitals. Within this framework, the role of polymeric drug delivery systems is fundamental to overcome the aforementioned problems. Biocompatibility, biodegradability and excipient-drug interactions are crucial properties determining the efficacy of the formulation. In this work, we provide an in-depth analysis of the polymer drug delivery systems that have been developed or are under development for the sustained release of positively charged antiseptics, highlighting the crucial characteristics that allowed to achieve the most relevant therapeutic effects. We reported and compared natural occurring polymers and synthetic carriers to show their pros and cons and applicability in the treatment of health care-associated infections. Then, the discussion is focused on a particularly relevant class of materials adopted for the scope, represented by polyesters, which gave rise, due to their biodegradability, to the field of resorbable drug delivery devices. Finally, a specific analysis on the effect of the polymer functionalization over the formulation performances for the different types of polymeric carriers is presented.
Collapse
Affiliation(s)
- Matteo Maraldi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Marco Lisi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Giacomo Moretti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy.
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
140
|
Eidaroos NH, Youssef AI, El-Sebae A, Enany ME, Farid DS. Genotyping of enterotoxigenic methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA) among commensal rodents in North Sinai, Egypt. J Appl Microbiol 2021; 132:2331-2341. [PMID: 34297868 DOI: 10.1111/jam.15226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to identify genotype enterotoxigenic antimicrobial-resistant Staphylococcus aureus species, mainly methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) among commensal rodents. METHODS AND RESULTS A total of 280 samples were collected from nasal and mouth swabs, heart blood, intestinal content, and lung tissues of 56 commensal rodents trapped from North Sinai, Egypt. Antimicrobial susceptibility testing was performed to bacteriologically identified S. aureus isolates against 15 antimicrobial agents by disc diffusion method. Detection was conducted for identifying coagulase gene (coA), antimicrobial-resistant genes (mecA and vanA/B), enterotoxigenic, and virulence determinant genes (hlg, seb, sed, and see) among the MRSA and VRSA isolates. RESULTS S. aureus species were isolated from 24 (42.86%) out of 56 rodents. Phenotypic examination revealed that all the isolates were multidrug-resistant, whereas two isolates were multiple antibiotic resistant (MAR). Out of 33 examined isolates, 33 (100%) were resistant to oxacillin and amoxicillin, 31 (93.93%) to cefoxitin, and 12 (36.36%) to vancomycin. PCR assay revealed that 24 isolates revealed (100%) positivity to coA gene, 17 (70.83%) to mecA gene, and 12 (50%) to vanA/B genes. Enterotoxin genes and hemolysin genes were detected among MRSA and VRSA isolates. There was a strong positive correlation between the tested antimicrobial-resistant genes and virulence genes (P>0.05). CONCLUSIONS This study demonstrated the occurrence of MRSA and VRSA strains among commensal rodents in North Sinai, Egypt. The detection of enterotoxigenic and virulence genes of the isolated MRSA and VRSA strains indicated the health hazards of food contamination and zoonotic infections. SIGNIFICANCE AND IMPACTS OF THE STUDY This study emphasizes the role of commensal rodents in maintaining and disseminating multidrug-resistant MRSA and VRSA strains to the environment, animals, and human beings.
Collapse
Affiliation(s)
- Nada H Eidaroos
- Department of Microbiology and Immunology (Bacteriology), Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Ahmed I Youssef
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Ali El-Sebae
- Deparment of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai, Egypt
| | - Mohamed E Enany
- Department of Microbiology and Immunology (Bacteriology), Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Doaa S Farid
- Deparment of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai, Egypt
| |
Collapse
|
141
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|
142
|
Su M, Davis MH, Peterson J, Solis-Lemus C, Satola SW, Read TD. Effect of genetic background on the evolution of Vancomycin-Intermediate Staphylococcus aureus (VISA). PeerJ 2021; 9:e11764. [PMID: 34306830 PMCID: PMC8284308 DOI: 10.7717/peerj.11764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) typically arises through accumulation of chromosomal mutations that alter cell-wall thickness and global regulatory pathways. Genome-based prediction of VISA requires understanding whether strain background influences patterns of mutation that lead to resistance. We used an iterative method to experimentally evolve three important methicillin-resistant S. aureus (MRSA) strain backgrounds-(CC1, CC5 and CC8 (USA300)) to generate a library of 120 laboratory selected VISA isolates. At the endpoint, isolates had vancomycin MICs ranging from 4 to 10 μg/mL. We detected mutations in more than 150 genes, but only six genes (already known to be associated with VISA from prior studies) were mutated in all three background strains (walK, prs, rpoB, rpoC, vraS, yvqF). We found evidence of interactions between loci (e.g., vraS and yvqF mutants were significantly negatively correlated) and rpoB, rpoC, vraS and yvqF were more frequently mutated in one of the backgrounds. Increasing vancomycin resistance was correlated with lower maximal growth rates (a proxy for fitness) regardless of background. However, CC5 VISA isolates had higher MICs with fewer rounds of selection and had lower fitness costs than the CC8 VISA isolates. Using multivariable regression, we found that genes differed in their contribution to overall MIC depending on the background. Overall, these results demonstrated that VISA evolved through mutations in a similar set of loci in all backgrounds, but the effect of mutation in common genes differed with regard to fitness and contribution to resistance in different strains.
Collapse
Affiliation(s)
- Michelle Su
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michelle H Davis
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jessica Peterson
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Claudia Solis-Lemus
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Dermatology, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
143
|
Schneider YK. Bacterial Natural Product Drug Discovery for New Antibiotics: Strategies for Tackling the Problem of Antibiotic Resistance by Efficient Bioprospecting. Antibiotics (Basel) 2021; 10:antibiotics10070842. [PMID: 34356763 PMCID: PMC8300778 DOI: 10.3390/antibiotics10070842] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
The problem of antibiotic resistance has become a challenge for our public health and society; it has allowed infectious diseases to re-emerge as a risk to human health. New antibiotics that are introduced to the market face the rise of resistant pathogens after a certain period of use. The relatively fast development of resistance against some antibiotics seems to be closely linked to their microbial origin and function in nature. Antibiotics in clinical use are merely products of microorganisms or derivatives of microbial products. The evolution of these antimicrobial compounds has progressed with the evolution of the respective resistance mechanisms in microbes for billions of years. Thus, antimicrobial resistance genes are present within the environment and can be taken up by pathogens through horizontal gene transfer. Natural products from bacteria are an important source of leads for drug development, and microbial natural products have contributed the most antibiotics in current clinical use. Bioprospecting for new antibiotics is a labor-intensive task as obstacles such as redetection of known compounds and low compound yields consume significant resources. The number of bacterial isolates one can theoretically investigate for new secondary metabolites is, on the other hand, immense. Therefore, the available capacity for biodiscovery should be focused on the most promising sources for chemical novelty and bioactivity, employing the appropriate scientific tools. This can be done by first looking into under- or unexplored environments for bacterial isolates and by focusing on the promising candidates to reduce the number of subjects.
Collapse
Affiliation(s)
- Yannik K Schneider
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
| |
Collapse
|
144
|
Ziesmer J, Tajpara P, Hempel N, Ehrström M, Melican K, Eidsmo L, Sotiriou GA. Vancomycin-Loaded Microneedle Arrays against Methicillin-Resistant Staphylococcus Aureus Skin Infections. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001307. [PMID: 34307835 PMCID: PMC8281827 DOI: 10.1002/admt.202001307] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Indexed: 05/24/2023]
Abstract
Skin and soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major healthcare burden, often treated with intravenous injection of the glycopeptide antibiotic vancomycin (VAN). However, low local drug concentration in the skin limits its treatment efficiency, while systemic exposure promotes the development of resistant bacterial strains. Topical administration of VAN on skin is ineffective as its high molecular weight prohibits transdermal penetration. In order to implement a local VAN delivery, microneedle (MN) arrays with a water-insoluble support layer for the controlled administration of VAN into the skin are developed. The utilization of such a support layer results in water-insoluble needle shafts surrounded by drug-loaded water-soluble tips with high drug encapsulation. The developed MN arrays can penetrate the dermal barriers of both porcine and fresh human skin. Permeation studies on porcine skin reveal that the majority of the delivered VAN is retained within the skin. It is shown that the VAN-MN array reduces MRSA growth both in vitro and ex vivo on skin. The developed VAN-MN arrays may be extended to several drugs and may facilitate localized treatment of MRSA-caused skin infections while minimizing adverse systemic effects.
Collapse
Affiliation(s)
- Jill Ziesmer
- Department of MicrobiologyTumour and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | - Poojabahen Tajpara
- Department of Medicine SolnaUnit of RheumatologyKarolinska InstitutetStockholmSE‐17177Sweden
| | | | - Marcus Ehrström
- Department of Reconstructive Plastic SurgeryKarolinska University Hospital SolnaStockholmSE‐17176Sweden
| | - Keira Melican
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES)Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Liv Eidsmo
- Department of Medicine SolnaUnit of RheumatologyKarolinska InstitutetStockholmSE‐17177Sweden
- Diagnostiskt Centrum HudStockholmSE‐11137Sweden
- Leo Foundation Skin Immunology CenterUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | - Georgios A. Sotiriou
- Department of MicrobiologyTumour and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| |
Collapse
|
145
|
Elsawy S, Elsherif WM, Hamed R. Effect of silver nanoparticles on vancomycin resistant Staphylococcus aureus infection in critically ill patients. Pathog Glob Health 2021; 115:315-324. [PMID: 33872131 PMCID: PMC8547882 DOI: 10.1080/20477724.2021.1914412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A prevalent increase in antimicrobial resistance represents a universal obstacle for the treatment of Staphylococcus aureus (S. aureus) infection, especially in critically ill patients. Silver nanoparticles are defined as broad spectrum bactericidal agents, which might be effective against vancomycin resistant S. aureus (VRSA). In this study, we examined the bactericidal efficacy of silver nanoparticles on VRSA in 150 blood and sputum samples isolated from intensive care patients. Methicillin resistant S. aureus (MRSA) isolates were identified in 83 samples, with an incidence of 55.3%. Meanwhile, VRSA isolates were found in 11 and 8 isolates (a total of 19 isolates out of 150) from sputum and blood samples, with an incidence of 14.67% and 10.67%, respectively, with a total incidence of 12.67%. Vancomycin intermediate S. aureus (VISA) isolates had an inhibitory zone ranging from 9 to 13 mm, which was found in 13 out of 19 isolates, whereas VRSA isolates had an inhibitory zone ranging from 0 to 6 mm, which was detected in 6 out of 19 isolates. The findings of this study confirm that silver nanoparticles are an effective treatment against VRSA.
Collapse
Affiliation(s)
- Saeid Elsawy
- Anaesthesia and Intensive Care Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Walaa M. Elsherif
- Microbiology Department, Nanotechnology Unit, Animal Health Research Institute, Taipei, Egypt
| | - Rasha Hamed
- Anaesthesia and Intensive Care Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
146
|
Hu WC, Pang J, Biswas S, Wang K, Wang C, Xia XH. Ultrasensitive Detection of Bacteria Using a 2D MOF Nanozyme-Amplified Electrochemical Detector. Anal Chem 2021; 93:8544-8552. [PMID: 34097376 DOI: 10.1021/acs.analchem.1c01261] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial infection is one of the major causes of human death worldwide. To prevent bacterial infectious diseases from spreading, it is of critical importance to develop convenient, ultrasensitive, and cost-efficient methods for bacteria detection. Here, an electrochemical detector of a functional two-dimensional (2D) metal-organic framework (MOF) nanozyme was developed for the sensitive detection of pathogenic Staphylococcus aureus. A dual recognition strategy consisting of vancomycin and anti-S. aureus antibody was proposed to specifically anchor S. aureus. The 2D MOFs with excellent peroxidase-like activity can efficiently catalyze o-phenylenediamine to 2,2-diaminoazobenzene, which is an ideal electrochemical signal readout for monitoring the bacteria concentration. Under optimal conditions, the present bioassay provides a wide detection range of 10-7.5 × 107 colony-forming units CFU/mL with a detection limit of 6 CFU/mL, which is better than most of the previous reports. In addition, the established electrochemical sensor can selectively and accurately identify S. aureus in the presence of other bacteria. The present work provides a new pathway for sensitive and selective detection of S. aureus and presents a promising potential in the realm of clinical diagnosis.
Collapse
Affiliation(s)
- Wen-Chao Hu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Pang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sudip Biswas
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
147
|
Page JE, Walker S. Natural products that target the cell envelope. Curr Opin Microbiol 2021; 61:16-24. [PMID: 33662818 PMCID: PMC8169544 DOI: 10.1016/j.mib.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The inexorable spread of resistance to clinically used drugs demands that we maintain a full pipeline of antibiotic candidates. As organisms have struggled to survive and compete over evolutionary history, they have developed the capacity to make a remarkably diverse array of natural products that target the cell envelope. A few have been developed for use in the clinic but most have not, and there are still an enormous number of opportunities to investigate. Substrate-binding antibiotics for Gram-positive organisms, phage-derived lysins, and outer membrane protein-targeting agents for Gram-negative organisms represent promising avenues where nature's gifts may be repurposed for use in the clinic.
Collapse
Affiliation(s)
- Julia E Page
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States.
| |
Collapse
|
148
|
Yahya G, Ebada A, Khalaf EM, Mansour B, Nouh NA, Mosbah RA, Saber S, Moustafa M, Negm S, El-Sokkary MMA, El-Baz AM. Soil-Associated Bacillus Species: A Reservoir of Bioactive Compounds with Potential Therapeutic Activity against Human Pathogens. Microorganisms 2021; 9:1131. [PMID: 34073963 PMCID: PMC8225174 DOI: 10.3390/microorganisms9061131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Soil hosts myriads of living organisms with the extensive potential to produce bioactive compounds. Bacteria are the major soil inhabitants that represent a rich reservoir for antibiotic production along with their role in recycling nutrients and maintenance of the soil ecosystem. Here, from 55 tested soil samples, we isolated and identified a novel antibiotic-producing bacterial strain with a phylogenetically closest match to Bacillus subtilis sp. based on BLASTN search of GenBank for the 16S rRNA gene sequence. We characterized this novel strain through microscopic, biochemical, and molecular techniques, combined with testing its potential antimicrobial activity. Chemical studies revealed that the antibiotic produced by this strain is a glycopeptide. It exhibited profound activity against both methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. The antibiotic is optimally produced at 37 °C after 28 h of growth. The biocompatibility of the extracted antibiotic was tested over a wide range of factors including temperature, pH, surfactants, and metal salts. To confirm its therapeutic potential, a sterile solution of the antibiotic was tested in vivo against bacteria-induced keratitis in rats where significant healing activity was recorded. Hence, this soil Bacillus strain may lead to the development of novel antibiotics for the treatment of human pathogens.
Collapse
Affiliation(s)
- Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
| | - Asmaa Ebada
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; (A.E.); (A.M.E.-B.)
| | - Eman M. Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Nehal A. Nouh
- Department of Microbiology, Albatterjee Medical College, Jeddah 6231, Saudi Arabia;
| | - Rasha A. Mosbah
- Infection Control Unit, Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt;
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Sally Negm
- Life Sciences Department, College of Science and Literature Mahyel Aseer, King Khalid University, Abha 61413, Saudi Arabia;
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Sharkia 44516, Egypt
| | | | - Ahmed M. El-Baz
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; (A.E.); (A.M.E.-B.)
| |
Collapse
|
149
|
da Silva PB, Araújo VHS, Fonseca-Santos B, Solcia MC, Ribeiro CM, da Silva IC, Alves RC, Pironi AM, Silva ACL, Victorelli FD, Fernandes MA, Ferreira PS, da Silva GH, Pavan FR, Chorilli M. Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Curr Med Chem 2021; 28:1906-1956. [PMID: 32400324 DOI: 10.2174/0929867327666200513080719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.
Collapse
Affiliation(s)
- Patricia Bento da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | - Bruno Fonseca-Santos
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Mariana Cristina Solcia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Renata Carolina Alves
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Andressa Maria Pironi
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Mariza Aires Fernandes
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Paula Scanavez Ferreira
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Gilmar Hanck da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Fernando Rogério Pavan
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Marlus Chorilli
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| |
Collapse
|
150
|
Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021; 165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Zahraa Mustafa Hussein
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Fahimi Mustapa
- Hospital Batu Gajah Jalan Changkat, 31000 Batu Gajah, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Xiang Yi Chen
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|