101
|
Awad M, Yosri M, Abdel-Aziz MM, Younis AM, Sidkey NM. Assessment of the Antibacterial Potential of Biosynthesized Silver Nanoparticles Combined with Vancomycin Against Methicillin-Resistant Staphylococcus aureus-Induced Infection in Rats. Biol Trace Elem Res 2021; 199:4225-4236. [PMID: 33389618 DOI: 10.1007/s12011-020-02561-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered one of the most serious multidrug-resistant bacteria worldwide. MRSA resistance to methicillin antibiotics made vancomycin, the acceptable treatment option. Silver nanoparticles (Ag-NPs) are among the well-known antibacterial substances showing multimode antibacterial action. Therefore, Ag-NPs are appropriate applicants for use in combination with vancomycin in order to augment its antibacterial action. This study aimed to biosynthesize silver nanoparticles and to evaluate its antibacterial activity against MRSA alone and when combined with vancomycin both in vitro and in vivo. Agaricus bisporus is used to reduce the silver nitrate salts in solution to yield silver nanoparticles which was characterized by UV-visible spectrophotometric analysis that shows maximum absorption at 420 nm as a preliminary confirmation for nanoparticles synthesis, Energy-Dispersive Analysis of X-ray (EDX) which confirms the crystalline nature of silver nanoparticles and transmission electron microscopy (TEM) image shows the particles in spherical form with mean size 27.45 nm. The synthesized silver nanoparticles were tested for antibacterial activity against MRSA, and the synergetic effects of the combination of silver nanoparticles and vancomycin were evaluated. The results showed a strong synergistic antibacterial effect between Ag-NPs and vancomycin in vitro with fractional inhibitory concentration 0.37 and in vivo against MRSA strain. The result revealed that mycosynthesized silver nanoparticles (NPs) enhance the in vitro and in vivo antibacterial activity of vancomycin against MRSA. These results suggested that sliver nanoparticles have an effective antibacterial activity against MRSA count, histopathology, and liver enzymes as well as protective immune response specially when combined with vancomycin in the lungs of infected rats with MRSA.
Collapse
Affiliation(s)
- Mohammed Awad
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11841, Egypt
| | - Mohamed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11787, Egypt.
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11787, Egypt
| | - Ahmed M Younis
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11841, Egypt
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
102
|
Chen Y, Shi Y, Zhu W, You J, Yang J, Xie Y, Zhao H, Li H, Fan S, Li L, Liu C. Combining CRISPR-Cas12a-Based Technology and Metagenomics Next Generation Sequencing: A New Paradigm for Rapid and Full-Scale Detection of Microbes in Infectious Diabetic Foot Samples. Front Microbiol 2021; 12:742040. [PMID: 34690988 PMCID: PMC8529936 DOI: 10.3389/fmicb.2021.742040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Diabetic foot infections (DFIs) pose a huge challenge for clinicians. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is one of the most significant pathogens of DFI. Early pathogen identification will greatly benefit the diagnosis and treatment of the disease. However, existing diagnostic methods are not effective in early detection. Methods: We developed an assay that coupled loop-mediated isothermal amplification (LAMP) and clustered regularly interspaced short palindromic repeats (CRISPR) techniques to enable quick and specific detection of Staphylococcus aureus and differentiate MRSA in samples from patients with DFI. Furthermore, the results were compared using a reference culture, quantitative real-time polymerase chain reaction (qRT-PCR), and metagenomics next generation sequencing (mNGS). Results: The CRISPR-LAMP assay targeting nuc and mecA successfully detected S. aureus strains and differentiated MRSA. The limit of detection (LoD) of the real-time LAMP for nuc and mecA was 20 copies per microliter reaction in comparison to two copies per μL reaction for the qRT-PCR assay. The specificity of the LAMP-CRISPR assay for nuc was 100%, without cross-reactions with non-S. aureus strains. Evaluating assay performance with 18 samples from DFI patients showed that the assay had 94.4% agreement (17/18 samples) with clinical culture results. The results of mNGS for 8/18 samples were consistent with those of the reference culture and LAMP-CRISPR assay. Conclusion: The findings suggest that the LAMP-CRISPR assay could be promising for the point-of-care detection of S. aureus and the differentiation of MRSA in clinical samples. Furthermore, combining the LAMP-CRISPR assay and mNGS provides an advanced platform for molecular pathogen diagnosis of DFI.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ya Shi
- Hangzhou Digital Micro Biotech Co., Ltd., Hangzhou, China
| | - Weifen Zhu
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Jiaxing You
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Jie Yang
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Yaping Xie
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanxin Zhao
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Hongye Li
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Lin Li
- Department of Endocrinology, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| | - Chao Liu
- Department of Orthopedics, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
103
|
Grant-Mackie E, Williams ET, Harris PWR, Brimble MA. Aminovinyl Cysteine Containing Peptides: A Unique Motif That Imparts Key Biological Activity. JACS AU 2021; 1:1527-1540. [PMID: 34723257 PMCID: PMC8549060 DOI: 10.1021/jacsau.1c00308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Natural products that contain distinctive chemical functionality can serve as useful starting points to develop Nature's compounds into viable therapeutics. Peptide natural products, an under-represented class of medicines, such as ribosomally synthesized and post-translationally modified peptides (RiPPs), often contain noncanonical amino acids and structural motifs that give rise to potent biological activity. However, these motifs can be difficult to obtain synthetically, thereby limiting the transition of RiPPs to the clinic. Aminovinyl cysteine containing peptides, which display potent antimicrobial or anticancer activity, possess an intricate C-terminal ring that is critical for bioactivity. To date, successful methods for the total chemical synthesis of such peptides are yet to be realized, although several advancements have been achieved. In this perspective, we review this burgeoning class of aminovinyl cysteine peptides and critically evaluate the chemical strategies to install the distinct aminovinyl cysteine motif.
Collapse
Affiliation(s)
- Emily
S. Grant-Mackie
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
| | - Elyse T. Williams
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
| | - Paul W. R. Harris
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
- School
of Biological Sciences, The University of
Auckland, 3b Symonds
Street, Auckland 1132, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1132, New Zealand
| | - Margaret A. Brimble
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
- School
of Biological Sciences, The University of
Auckland, 3b Symonds
Street, Auckland 1132, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1132, New Zealand
| |
Collapse
|
104
|
Vancomycin Use in Children and Neonates across Three Decades: A Bibliometric Analysis of the Top-Cited Articles. Pathogens 2021; 10:pathogens10101343. [PMID: 34684291 PMCID: PMC8537673 DOI: 10.3390/pathogens10101343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Vancomycin is frequently prescribed in pediatrics, especially in intensive care unit settings, to treat Gram-positive bacterial infections. This work aims to collect the top-cited articles of pediatric and infectious diseases areas to gather the current evidence and gaps of knowledge on the use of vancomycin in these populations. The most relevant journals reported in the "pediatrics" and "infectious diseases" categories of the 2019 edition of Journal Citation Reports were browsed. Articles with more than 30 citations and published over the last three decades were collected. A bibliometric analysis was performed and 115 articles were retrieved. They were published in 21 journals, with a median impact factor of 4.6 (IQR 2.9-5.4). Sixty-eight of them (59.1%) belonged to "infectious diseases" journals. The most relevant topic was "bloodstream/complicated/invasive infections", followed by "antibiotic resistance/MRSA treatment". As for population distribution, 27 articles were on children only and 27 on neonates, most of which were from intensive care unit (ICU) settings. The current literature mainly deals with vancomycin as a treatment for severe infections and antibiotic resistance, especially in neonatal ICU settings. Lately, attention to new dosing strategies in the neonatal and pediatric population has become a sensible topic.
Collapse
|
105
|
Novel ocotillol-derived lactone derivatives: design, synthesis, bioactive evaluation, SARs and preliminary antibacterial mechanism. Mol Divers 2021; 26:2103-2120. [PMID: 34661800 DOI: 10.1007/s11030-021-10318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
A new series of ocotillol-derived lactone derivatives were designed and synthesized to consider their antibacterial activity, structure-activity relationships (SARs), antibacterial mechanism and in vivo antibacterial efficacy. Compound 6d, which exhibited broad antibacterial spectrum, was found to be the most active with minimum inhibitory concentrations (MICs) of 1-2 μg/mL against Gram-positive bacteria and 8-16 μg/mL against Gram-negative bacteria. The subsequent synergistic antibacterial tests displayed that 6d had the ability to improve the susceptibility of MRSA USA300, B. subtilis 168, and E. coli DH5α to kanamycin and chloramphenicol. This active molecule 6d also induced bacterial resistance more slowly than norfloxacin and kanamycin. Furthermore, compound 6d was membrane active and low toxic against mammalian cells, and it could rapidly inhibit the growth of MRSA and E. coli and did not obviously trigger bacterial resistance. Compound 6d also displayed strong in vivo antibacterial activity against S. aureus RN4220 in murine corneal infection models. Additionally, absorption, distribution, metabolism, and excretion properties of this type of compounds have shown drug-likeness with good oral absorption and moderate blood-brain barrier permeability. The obtained results demonstrated that ocotillol-derived compounds are a promising class of antibacterial agents worthy of further study.
Collapse
|
106
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10. [PMID: 34684258 DOI: 10.3390/pathogens10101310/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 05/20/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
107
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10:pathogens10101310. [PMID: 34684258 PMCID: PMC8541462 DOI: 10.3390/pathogens10101310] [Citation(s) in RCA: 357] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
- Correspondence: ; Tel.: +39-090-221-33-22
| |
Collapse
|
108
|
Zhang Y, Xu S, Yang Y, Chou SH, He J. A 'time bomb' in the human intestine-the multiple emergence and spread of antibiotic-resistant bacteria. Environ Microbiol 2021; 24:1231-1246. [PMID: 34632679 DOI: 10.1111/1462-2920.15795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Antibiotics have a strong killing effect on bacteria and are the first choice for the prevention and treatment of bacterial infectious diseases. Therefore, they have been widely used in the medical field, animal husbandry and planting industry. However, with the massive use of antibiotics, more and more antibiotic-resistant bacteria (ARB) have emerged. Because human intestines are rich in nutrients, have suitable temperature, and are high in bacterial abundance, they can easily become a hotbed for the spread of ARB and antibiotic-resistant genes (ARGs). When opportunistic pathogenic bacteria in the intestine acquire ARGs, the infectious diseases caused by such opportunistic pathogens will become more difficult to treat, or even impossible to cure. Therefore, ARB in the human intestine are like a 'time bomb'. In this review, we discuss the sources of intestinal ARB and the transmission routes of ARGs in the human intestine from the perspective of One Health. Further, we describe various methods to prevent the emergence of ARB and inhibit the spread of ARGs in the human intestine. Finally, we may be able to overcome ARB in the human intestine using an interdisciplinary 'One Health' approach.
Collapse
Affiliation(s)
- Yuling Zhang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yijun Yang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
109
|
Rybak M, Gudzera OI, Gorbatiuk OB, Usenko MO, Yarmoluk SM, Tukalo MA, Volynets GP. Rational Design of Hit Compounds Targeting Staphylococcus aureus Threonyl-tRNA Synthetase. ACS OMEGA 2021; 6:24910-24918. [PMID: 34604672 PMCID: PMC8482496 DOI: 10.1021/acsomega.1c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus is one of the most dangerous nosocomial pathogens which cause a wide variety of hospital-acquired infectious diseases. S. aureus is considered as a superbug due to the development of multidrug resistance to all current therapeutic regimens. Therefore, the discovery of antibiotics with novel mechanisms of action to combat staphylococcal infections is of high priority for modern medicinal chemistry. Nowadays, aminoacyl-tRNA synthetases are considered as promising molecular targets for antibiotic development. In the present study, we used for the first time S. aureus threonyl-tRNA synthetase (ThrRS) as a molecular target. Recombinant S. aureus ThrRS was obtained in the soluble form in a sufficient amount for inhibitor screening assay. Using the molecular docking approach, we selected 180 compounds for investigation of inhibitory activity toward ThrRS. Among the tested compounds, we identified five inhibitors from different chemical classes decreasing the activity of ThrRS by more than 70% at a concentration of 100 μM. The most active compound 2,4-dibromo-6-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol has an IC50 value of 56.5 ± 3.5 μM. These compounds are not cytotoxic toward eukaryotic cells HEK293 (EC50 > 100 μM) and can be useful for further optimization and biological research.
Collapse
Affiliation(s)
- Mariia
Yu. Rybak
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Olga I. Gudzera
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Oksana B. Gorbatiuk
- Department
of Cell Regulatory Mechanisms, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Mariia O. Usenko
- Department
of Cell Regulatory Mechanisms, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Sergiy M. Yarmoluk
- Department
of Medicinal Chemistry, Institute of Molecular
Biology and Genetics National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Michael A. Tukalo
- Department
of Protein Synthesis Enzymology, Institute
of Molecular Biology and Genetics National Academy of Sciences of
Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Galyna P. Volynets
- Department
of Medicinal Chemistry, Institute of Molecular
Biology and Genetics National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
- The
Scientific-Services Company “OTAVA”, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| |
Collapse
|
110
|
Yang D, Zheng X, Jiang L, Ye M, He X, Jin Y, Wu R. Functional Mapping of Phenotypic Plasticity of Staphylococcus aureus Under Vancomycin Pressure. Front Microbiol 2021; 12:696730. [PMID: 34566908 PMCID: PMC8458881 DOI: 10.3389/fmicb.2021.696730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Phenotypic plasticity is the exhibition of various phenotypic traits produced by a single genotype in response to environmental changes, enabling organisms to adapt to environmental changes by maintaining growth and reproduction. Despite its significance in evolutionary studies, we still know little about the genetic control of phenotypic plasticity. In this study, we designed and conducted a genome-wide association study (GWAS) to reveal genetic architecture of how Staphylococcus aureus strains respond to increasing concentrations of vancomycin (0, 2, 4, and 6 μg/mL) in a time course. We implemented functional mapping, a dynamic model for genetic mapping using longitudinal data, to map specific loci that mediate the growth trajectories of abundance of vancomycin-exposed S. aureus strains. 78 significant single nucleotide polymorphisms were identified following analysis of the whole growth and development process, and seven genes might play a pivotal role in governing phenotypic plasticity to the pressure of vancomycin. These seven genes, SAOUHSC_00020 (walR), SAOUHSC_00176, SAOUHSC_00544 (sdrC), SAOUHSC_02998, SAOUHSC_00025, SAOUHSC_00169, and SAOUHSC_02023, were found to help S. aureus regulate antibiotic pressure. Our dynamic gene mapping technique provides a tool for dissecting the phenotypic plasticity mechanisms of S. aureus under vancomycin pressure, emphasizing the feasibility and potential of functional mapping in the study of bacterial phenotypic plasticity.
Collapse
Affiliation(s)
- Dengcheng Yang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xuyang Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Department of Public Health Sciences and Statistics, Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
111
|
Design, synthesis and antibacterial activity of chalcones against MSSA and MRSA planktonic cells and biofilms. Bioorg Chem 2021; 116:105279. [PMID: 34509799 DOI: 10.1016/j.bioorg.2021.105279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is the one of the most successful modern pathogens. The same bacterium that lives as a skin and mucosal commensal can be transmitted in health-care and community-settings and causes severe infections. Thus, there is a great challenge for a discovery of novel anti-Staphylococcus aureus compounds, which should act against resistant strains. Herein, we designed and synthesized a series of 17 chalcones, substituted by amino group on ring A, which were evaluated against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus MRSA planktonic cells. The antibacterial potency was improved by substituents on ring B, which were designed according to Topliss' manual method. 4-bromo-3'-aminochalcone (5f) was the most active, demonstrating minimum inhibitory concentration (MIC) values of 1.9 μg mL-1 and 7.8 µg mL-1 against MSSA and MRSA, respectively. The association of 5f with vancomycin demonstrated synergistic effect against MSSA and MRSA, with Fractional Inhibitory Concentration Index (FICI) values of 0.4 and 0.3, respectively. Subinhibitory concentration of 5f inhibited the MSSA and MRSA adhesion to human keratinocytes. Chalcone 5f was able to reduce MSSA and MRSA biofilm formation, as well as acts on preformed biofilm in concentration-dependent mode. Scanning electron microscopy analyses confirmed severe perturbations caused by 5f on MSSA and MRSA biofilm architecture. The acute toxicity assay, using Galleria mellonella larvae, indicated a low toxic effect of 5f after 72 h, displaying lethality of 20% and 30% at 7.8 μg mL-1 and 78.0 μg mL-1, respectively. In addition, the antibacterial activity spectrum of 5f indicated action against planktonic cells of Enterococcus faecalis (MIC = 7.8 μg mL-1), Acinetobacter baumannii (MIC = 15.6 μg mL-1) and Mycobacterium tuberculosis (MIC = 5.7 μg mL-1). Altogether, these results open new avenues for 5f as an anti-Staphylococcus aureus agent, with potential applications as antibacterial drug, adjunct of antibiotics and medical devices coating.
Collapse
|
112
|
Pyzik E, Dec M, Stępień-Pyśniak D, Marek A, Piedra JLV, Chałabis-Mazurek A, Szczepaniak K, Urban-Chmiel R. The presence of pathogens and heavy metals in urban peregrine falcons ( Falco peregrinus). Vet World 2021; 14:1741-1751. [PMID: 34475693 PMCID: PMC8404116 DOI: 10.14202/vetworld.2021.1741-1751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Wild birds raised in urban environments may be exposed to many negative factors, including biological and chemical toxic elements. The aim of the study was to assess the occurrence of bacteria and parasites in wild birds, based on the example of the peregrine falcon (Falco peregrinus) as a potential indicator of bacterial drug resistance genes. Toxicological contamination was also analyzed to determine the impact of urbanized areas on this predatory species, in terms of its health, welfare, and survival in urban environments. Materials and Methods: The samples consisted of down feathers and fresh feces obtained from seven falcon chicks (during obligatory veterinary examination) reared in two nests located in the Lublin region (Lublin and Puławy). Bacteria and parasites were isolated directly from feces by classical microbiological methods, polymerase chain reaction, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). The down feathers and feces of birds were used for toxicological testing by plasma inductively coupled plasma MS to assess the concentrations of selected heavy metals (cadmium [Cd], lead [Pb], arsenic [As], zinc [Zn], and copper [Cu]). Results: The study revealed the presence of a diverse microbiome in the falcon chicks, among which Escherichia coli, Enterococcus spp., and Staphylococcus spp. bacteria and parasites of the genus Caryospora were dominant. The presence of drug resistance genes was also confirmed among the pathogens. The toxicological analysis found high concentrations of toxic heavy metals, including Cd, Pb, As, and Zn, in the downy feathers and feces of peregrine chicks. Conclusion: Predatory free-living birds living in urban environments not only can be infected with various pathogens but may also show contamination with heavy metals, which could influence their natural resistance, condition, and welfare.
Collapse
Affiliation(s)
- Ewelina Pyzik
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Jose Louis Valverde Piedra
- Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Chałabis-Mazurek
- Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Klaudiusz Szczepaniak
- Department of Veterinary Parasitology and Fish Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| |
Collapse
|
113
|
Abdelraheem WM, Khairy RMM, Zaki AI, Zaki SH. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Ann Clin Microbiol Antimicrob 2021; 20:54. [PMID: 34419054 PMCID: PMC8379777 DOI: 10.1186/s12941-021-00459-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Multidrug resistant (MDR) and biofilm producing Staphylococcus aureus strains are usually associated with serious infections. This study aimed to evaluate the antibacterial and antibiofilm-formation effects of zinc oxide nanoparticles (ZnO-NPs) against staphylococcus aureus (S. aureus) isolates. Methods A total of 116 S. aureus isolates were recovered from 250 burn wound samples. The antimicrobial/antibiofilm effects of ZnO-NPs against methicillin, vancomycin and linezolid resistant S. aureus (MRSA, VRSA and LRSA) isolates were examined using phenotypic and genotypic methods. The minimum inhibitory concentration (MIC) of ZnO-NPs was determined by microdilution method. The effects of sub-MIC concentrations of ZnO-NPs on biofilm formation and drug resistance in S. aureus were determined by the microtiter plate method. The change in the expression levels of the biofilm encoding genes and resistance genes in S. aureus isolates after treatment with ZnO-NPs was assessed by real time reverse transcriptase PCR (rt-PCR). Results MICs of ZnO-NPs in S. aureus isolates were (128–2048 µg/ml). The sub-MIC of ZnO-NPs significantly reduced biofilm formation rate (the highest inhibition rate was 76.47% at 1024 µg/ml) and the expression levels of biofilm genes (ica A, ica D and fnb A) with P < 0.001. Moreover, Sub-MIC of ZnO-NPs significantly reduced the rates of MRSA from 81.9 (95 isolates) to 13.30% (15 isolates), VRSA from 33.60 (39 isolates) to 0% and LARSA from 29.30 (34) to 0% as well as the expression levels of resistance genes (mec A, van A and cfr) with P value < 0.001. Conclusion ZnO-NPs can be used as antibiofilm and potent antimicrobial against MRSA, VRSA and LRSA isolates. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-021-00459-2.
Collapse
Affiliation(s)
- Wedad M Abdelraheem
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Rasha M M Khairy
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Alaa I Zaki
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Shaimaa H Zaki
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| |
Collapse
|
114
|
Mutations in a Membrane Permease or hpt Lead to 6-Thioguanine Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2021; 65:e0076021. [PMID: 34125595 DOI: 10.1128/aac.00760-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently discovered that 6-thioguanine (6-TG) is an antivirulence compound that is produced by a number of coagulase-negative staphylococci. In Staphylococcus aureus, it inhibits de novo purine biosynthesis and ribosomal protein expression, thus inhibiting growth and abrogating toxin production. Mechanisms by which S. aureus may develop resistance to this compound are currently unknown. Here, we show that 6-TG-resistant S. aureus mutants emerge spontaneously when the bacteria are subjected to high concentrations of 6-TG in vitro. Whole-genome sequencing of these mutants revealed frameshift and missense mutations in a xanthine-uracil permease family protein (stgP [six thioguanine permease]) and single nucleotide polymorphisms in hypoxanthine phosphoribosyltransferase (hpt). These mutations engender S. aureus the ability to resist both the growth inhibitory and toxin downregulation effects of 6-TG. While prophylactic administration of 6-TG ameliorates necrotic lesions in subcutaneous infection of mice with methicillin-resistant S. aureus (MRSA) strain USA300 LAC, the drug did not reduce lesion size formed by the 6-TG-resistant strains. These findings identify mechanisms of 6-TG resistance, and this information can be leveraged to inform strategies to slow the evolution of resistance.
Collapse
|
115
|
Lu CH, Shiau CW, Chang YC, Kung HN, Wu JC, Lim CH, Yeo HH, Chang HC, Chien HS, Huang SH, Hung WK, Wei JR, Chiu HC. SC5005 dissipates the membrane potential to kill Staphylococcus aureus persisters without detectable resistance. J Antimicrob Chemother 2021; 76:2049-2056. [PMID: 33855344 DOI: 10.1093/jac/dkab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/13/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES In the past few decades, multiple-antibiotic-resistant Staphylococcus aureus has emerged and quickly spread in hospitals and communities worldwide. Additionally, the formation of antibiotic-tolerant persisters and biofilms further reduces treatment efficacy. Previously, we identified a sorafenib derivative, SC5005, with bactericidal activity against MRSA in vitro and in vivo. Here, we sought to elucidate the resistance status, mode of action and anti-persister activity of this compound. METHODS The propensity of S. aureus to develop SC5005 resistance was evaluated by assessment of spontaneous resistance and by multi-passage selection. The mode of action of SC5005 was investigated using macromolecular synthesis, LIVE/DEAD and ATPlite assays and DiOC2(3) staining. The effect of SC5005 on the mammalian cytoplasmic membrane was measured using haemolytic and lactate dehydrogenase (LDH) assays and flow cytometry. RESULTS SC5005 depolarized and permeabilized the bacterial cytoplasmic membrane, leading to reduced ATP production. Because of this mode of action, no resistance of S. aureus to SC5005 was observed after constant exposure to sub-lethal concentrations for 200 passages. The membrane-perturbing activity of SC5005 was specific to bacteria, as no significant haemolysis or release of LDH from human HT-29 cells was detected. Additionally, compared with other bactericidal antibiotics, SC5005 exhibited superior activity in eradicating both planktonic and biofilm-embedded S. aureus persisters. CONCLUSIONS Because of its low propensity for resistance development and potent persister-eradicating activity, SC5005 is a promising lead compound for developing new therapies for biofilm-related infections caused by S. aureus.
Collapse
Affiliation(s)
- Chieh-Hsien Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| | - Chui-Hian Lim
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Hui-Hui Yeo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Han-Chu Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Han-Sheng Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Sheng-Hsuan Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| | - Wei-Kang Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Jun-Rong Wei
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| |
Collapse
|
116
|
Bornbusch SL, Drea CM. Antibiotic Resistance Genes in Lemur Gut and Soil Microbiota Along a Gradient of Anthropogenic Disturbance. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The overuse of man-made antibiotics has facilitated the global propagation of antibiotic resistance genes in animals, across natural and anthropogenically disturbed environments. Although antibiotic treatment is the most well-studied route by which resistance genes can develop and spread within host-associated microbiota, resistomes also can be acquired or enriched via more indirect routes, such as via transmission between hosts or via contact with antibiotic-contaminated matter within the environment. Relatively little is known about the impacts of anthropogenic disturbance on reservoirs of resistance genes in wildlife and their environments. We therefore tested for (a) antibiotic resistance genes in primate hosts experiencing different severities and types of anthropogenic disturbance (i.e., non-wildlife animal presence, human presence, direct human contact, and antibiotic treatment), and (b) covariation between host-associated and environmental resistomes. We used shotgun metagenomic sequencing of ring-tailed lemur (Lemur catta) gut resistomes and associated soil resistomes sampled from up to 10 sites: seven in the wilderness of Madagascar and three in captivity in Madagascar or the United States. We found that, compared to wild lemurs, captive lemurs harbored greater abundances of resistance genes, but not necessarily more diverse resistomes. Abundances of resistance genes were positively correlated with our assessments of anthropogenic disturbance, a pattern that was robust across all ten lemur populations. The composition of lemur resistomes was site-specific and the types of resistance genes reflected antibiotic usage in the country of origin, such as vancomycin use in Madagascar. We found support for multiple routes of ARG enrichment (e.g., via human contact, antibiotic treatment, and environmental acquisition) that differed across lemur populations, but could result in similar degrees of enrichment. Soil resistomes varied across natural habitats in Madagascar and, at sites with greater anthropogenic disturbance, lemurs and soil resistomes covaried. As one of the broadest, single-species investigations of wildlife resistomes to date, we show that the transmission and enrichment of antibiotic resistance genes varies across environments, thereby adding to the mounting evidence that the resistance crisis extends outside of traditional clinical settings.
Collapse
|
117
|
Huang J, Wu S, Wu M, Zeng Q, Wang X, Wang H. Efficacy of the therapy of 5-aminolevulinic acid photodynamic therapy combined with human umbilical cord mesenchymal stem cells on methicillin-resistant Staphylococcus aureus-infected wound in a diabetic mouse model. Photodiagnosis Photodyn Ther 2021; 36:102480. [PMID: 34375775 DOI: 10.1016/j.pdpdt.2021.102480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A distressing issue of diabetic ulcer (DU) is its poor healing feature with limited clinical solutions. We have previously shown that 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a promising alternative to the currently limited measures for DU. Mesenchymal stem cells (MSCs) transplantation has been believed to impose certain therapeutic effect on restoration of injury. Thus, this study aims to explore whether the combination of MSCs and ALA-PDT will exert a more advanced curative effect on DU. METHODS Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ, 60 mg/kg/d) for consecutive 5 days. A full-thickness skin injury (diameter 6 mm) was created in the center of the back of each mouse, and then 10 μl of methicillin-resistant Staphylococcus aureus (MRSA) suspension was added to establish an infected DU model. All DU models were randomly divided into four groups: Untreated group, MSCs group, ALA-PDT group, and ALA-PDT combined with human umbilical cord mesenchymal stem cells (hUC-MSCs) (ALA-PDT + MSCs) group. The wound sizes were recorded by a digital camera, and the healing rates were calculated using Image J software. Bacterial loads on wounds were measured using CFU (Colony forming units) analysis. The epithelialization, inflammatory cells infiltration and granulation tissue formation were monitored by Haematoxylin and eosin (H&E) staining, and the corresponding semi-quantitative score was matched. Growth and pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Either ALA-PDT or injection of hUC-MSCs resulted in a rapid wound closure compared with the untreated, while their combination brought about the most prominent healing. On day 12, healing rates of the untreated, MSCs, ALA-PDT and ALA-PDT + MSCs were 40.56% ± 7.06%, 74.23 ± 4.83%, 84.03 ± 3.53%, 99.67 ± 0.49%, respectively. The bacterial burden reductions were approximately 1.58 logs (97.36%, P < 0.05), 2.34 logs (99.54%, P < 0.01), 4.50 logs (nearly 100%, P < 0.001) for MSCs, ALA-PDT and ALA-PDT + MSCs, respectively. Histology revealed reduced inflammatory cells and improved collagen precipitation and angiogenesis after hUC-MSCs and ALA-PDT treatment compared to the untreated. The combined therapy leaded to a more intact epithelium, similar to the healthy. Finally, ELISA revealed that the property of ALA-PDT to stimulate transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) and inhibit IL (interleukin) -1β and IL-6 outweighed that of hUC-MSCs, and this function of the combination overwhelmed that of any single therapy. CONCLUSIONS Our findings indicated that the strategy of combining ALA-PDT with hUC-MSCs possessed a significantly enhanced therapeutic effect over either single therapy, providing a promising innovative therapeutic candidate for refractory wounds.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Shutian Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Qingyu Zeng
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiuli Wang
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
118
|
Huang R, Cai GQ, Li J, Li XS, Liu HT, Shang XL, Zhou JD, Nie XM, Gui R. Platelet membrane-camouflaged silver metal-organic framework drug system against infections caused by methicillin-resistant Staphylococcus aureus. J Nanobiotechnology 2021; 19:229. [PMID: 34348721 PMCID: PMC8336064 DOI: 10.1186/s12951-021-00978-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Background Due to the intelligent survival strategy and self-preservation of methicillin-resistant Staphylococcus aureus (MRSA), many antibiotics are ineffective in treating MRSA infections. Nano-drug delivery systems have emerged as a new method to overcome this barrier. The aim of this study was to construct a novel nano-drug delivery system for the treatment of MRSA infection, and to evaluate the therapeutic effect and biotoxicity of this system. We prepared a nano silver metal-organic framework using 2-methylimidazole as ligand and silver nitrate as ion provider. Vancomycin (Vanc) was loaded with Ag-MOF, and nano-sized platelet vesicles were prepared to encapsulate Ag-MOF-Vanc, thus forming the novel platelet membrane-camouflaged nanoparticles PLT@Ag-MOF-Vanc. Results The synthesized Ag-MOF particles had uniform size and shape of radiating corona. The mean nanoparticle size and zeta potential of PLT@Ag-MOF-Vanc were 148 nm and − 25.6 mV, respectively. The encapsulation efficiency (EE) and loading efficiency (LE) of vancomycin were 81.0 and 64.7 %, respectively. PLT@Ag-MOF-Vanc was shown to be a pH-responsive nano-drug delivery system with good biocompatibility. Ag-MOF had a good inhibitory effect on the growth of three common clinical strains (Escherichia coli, Pseudomonas aeruginosa, and S. aureus). PLT@Ag-MOF-Vanc showed better antibacterial activity against common clinical strains in vitro than free vancomycin. PLT@Ag-MOF-Vanc killed MRSA through multiple approaches, including interfering with the metabolism of bacteria, catalyzing reactive oxygen species production, destroying the integrity of cell membrane, and inhibiting biofilm formation. Due to the encapsulation of the platelet membrane, PLT@Ag-MOF-Vanc can bind to the surface of the MRSA bacteria and the sites of MRSA infection. PLT@Ag-MOF-Vanc had a good anti-infective effect in mouse MRSA pneumonia model, which was significantly superior to free vancomycin, and has no obvious toxicity. Conclusions PLT@Ag-MOF-Vanc is a novel effective targeted drug delivery system, which is expected to be used safely in anti-infective therapy of MRSA. Graphic abstract ![]()
Collapse
Affiliation(s)
- Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Guang-Qing Cai
- Department of Orthopedics, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Hunan, Changsha, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Hai-Ting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Xue-Ling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Jian-Dang Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Xin-Min Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China.
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Hunan, Changsha, China.
| |
Collapse
|
119
|
Salam LB, Obayori OS, Ilori MO, Amund OO. Impact of spent engine oil contamination on the antibiotic resistome of a tropical agricultural soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1251-1271. [PMID: 33993436 DOI: 10.1007/s10646-021-02422-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Profiling of hydrocarbon-contaminated soils for antibiotic resistance genes (ARGs) is becoming increasingly important due to emerging realities of their preponderance in hydrocarbon-inundated matrices. In this study, the antibiotic resistome of an agricultural soil (1S) and agricultural soil contaminated with spent engine oil (AB1) were evaluated via functional annotation of the open reading frames (ORFs) of their metagenomes using the comprehensive antibiotic database (CARD) and KEGG KofamKOALA. CARD analysis of AB1 metagenome revealed the detection of 24 AMR (antimicrobial resistance) gene families, 66 ARGs, and the preponderance (69.7%) of ARGs responsible for antibiotic efflux in AB1 metagenome. CARD analysis of 1S metagenome revealed four AMR gene families and five ARGs. Functional annotation of the two metagenomes using KofamKOALA showed 171 ARGs in AB1 and 29 ARGs in 1S, respectively. Majority of the detected ARGs in AB1 (121; 70.8%) and 1S (16; 55.2%) using KofamKOALA are responsible for antibiotic efflux while ARGs for other resistance mechanisms were also detected. All the five major antibiotic efflux pump systems were detected in AB1 metagenome, though majority of the ARGs for antibiotic efflux belong to the RND (resistance-nodulation-cell division) and MFS (major facilitator superfamily) efflux systems. Significant differences observed in the ARGs recovered from 1S and AB1 metagenomes were statistically validated (P < 0.05). SEO contamination is believed to be responsible for ARGs increase in AB1 metagenome via mechanisms of cross-resistance especially with efflux pumps. The detection of these ARGs is of great public health concern in this era of multidrug resistant isolates resurgence.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology Unit, Summit University, Offa, Kwara, Nigeria.
| | | | | | | |
Collapse
|
120
|
Plastoquinone analogs: a potential antimicrobial lead structure intensely suppressing Staphylococcus epidermidis and Candida albicans growth. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02772-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
121
|
Maraldi M, Lisi M, Moretti G, Sponchioni M, Moscatelli D. Health care-associated infections: Controlled delivery of cationic antiseptics from polymeric excipients. Int J Pharm 2021; 607:120956. [PMID: 34333024 DOI: 10.1016/j.ijpharm.2021.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, the treatment of health care-associated infections represents a serious issue, due to the increasing number of bacterial strains resistant to traditional antibiotics. The use of antiseptics like quaternary ammonium salts and biguanides is a viable alternative to face these life-threatening infections. However, their inherent toxicity as well as the necessity of providing a sustained release to avoid the formation of pathogen biofilms are compelling obstacles towards their assessment in the hospitals. Within this framework, the role of polymeric drug delivery systems is fundamental to overcome the aforementioned problems. Biocompatibility, biodegradability and excipient-drug interactions are crucial properties determining the efficacy of the formulation. In this work, we provide an in-depth analysis of the polymer drug delivery systems that have been developed or are under development for the sustained release of positively charged antiseptics, highlighting the crucial characteristics that allowed to achieve the most relevant therapeutic effects. We reported and compared natural occurring polymers and synthetic carriers to show their pros and cons and applicability in the treatment of health care-associated infections. Then, the discussion is focused on a particularly relevant class of materials adopted for the scope, represented by polyesters, which gave rise, due to their biodegradability, to the field of resorbable drug delivery devices. Finally, a specific analysis on the effect of the polymer functionalization over the formulation performances for the different types of polymeric carriers is presented.
Collapse
Affiliation(s)
- Matteo Maraldi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Marco Lisi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Giacomo Moretti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy.
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
122
|
Eidaroos NH, Youssef AI, El-Sebae A, Enany ME, Farid DS. Genotyping of enterotoxigenic methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA) among commensal rodents in North Sinai, Egypt. J Appl Microbiol 2021; 132:2331-2341. [PMID: 34297868 DOI: 10.1111/jam.15226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to identify genotype enterotoxigenic antimicrobial-resistant Staphylococcus aureus species, mainly methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) among commensal rodents. METHODS AND RESULTS A total of 280 samples were collected from nasal and mouth swabs, heart blood, intestinal content, and lung tissues of 56 commensal rodents trapped from North Sinai, Egypt. Antimicrobial susceptibility testing was performed to bacteriologically identified S. aureus isolates against 15 antimicrobial agents by disc diffusion method. Detection was conducted for identifying coagulase gene (coA), antimicrobial-resistant genes (mecA and vanA/B), enterotoxigenic, and virulence determinant genes (hlg, seb, sed, and see) among the MRSA and VRSA isolates. RESULTS S. aureus species were isolated from 24 (42.86%) out of 56 rodents. Phenotypic examination revealed that all the isolates were multidrug-resistant, whereas two isolates were multiple antibiotic resistant (MAR). Out of 33 examined isolates, 33 (100%) were resistant to oxacillin and amoxicillin, 31 (93.93%) to cefoxitin, and 12 (36.36%) to vancomycin. PCR assay revealed that 24 isolates revealed (100%) positivity to coA gene, 17 (70.83%) to mecA gene, and 12 (50%) to vanA/B genes. Enterotoxin genes and hemolysin genes were detected among MRSA and VRSA isolates. There was a strong positive correlation between the tested antimicrobial-resistant genes and virulence genes (P>0.05). CONCLUSIONS This study demonstrated the occurrence of MRSA and VRSA strains among commensal rodents in North Sinai, Egypt. The detection of enterotoxigenic and virulence genes of the isolated MRSA and VRSA strains indicated the health hazards of food contamination and zoonotic infections. SIGNIFICANCE AND IMPACTS OF THE STUDY This study emphasizes the role of commensal rodents in maintaining and disseminating multidrug-resistant MRSA and VRSA strains to the environment, animals, and human beings.
Collapse
Affiliation(s)
- Nada H Eidaroos
- Department of Microbiology and Immunology (Bacteriology), Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Ahmed I Youssef
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Ali El-Sebae
- Deparment of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai, Egypt
| | - Mohamed E Enany
- Department of Microbiology and Immunology (Bacteriology), Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Doaa S Farid
- Deparment of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai, Egypt
| |
Collapse
|
123
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|
124
|
Su M, Davis MH, Peterson J, Solis-Lemus C, Satola SW, Read TD. Effect of genetic background on the evolution of Vancomycin-Intermediate Staphylococcus aureus (VISA). PeerJ 2021; 9:e11764. [PMID: 34306830 PMCID: PMC8284308 DOI: 10.7717/peerj.11764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) typically arises through accumulation of chromosomal mutations that alter cell-wall thickness and global regulatory pathways. Genome-based prediction of VISA requires understanding whether strain background influences patterns of mutation that lead to resistance. We used an iterative method to experimentally evolve three important methicillin-resistant S. aureus (MRSA) strain backgrounds-(CC1, CC5 and CC8 (USA300)) to generate a library of 120 laboratory selected VISA isolates. At the endpoint, isolates had vancomycin MICs ranging from 4 to 10 μg/mL. We detected mutations in more than 150 genes, but only six genes (already known to be associated with VISA from prior studies) were mutated in all three background strains (walK, prs, rpoB, rpoC, vraS, yvqF). We found evidence of interactions between loci (e.g., vraS and yvqF mutants were significantly negatively correlated) and rpoB, rpoC, vraS and yvqF were more frequently mutated in one of the backgrounds. Increasing vancomycin resistance was correlated with lower maximal growth rates (a proxy for fitness) regardless of background. However, CC5 VISA isolates had higher MICs with fewer rounds of selection and had lower fitness costs than the CC8 VISA isolates. Using multivariable regression, we found that genes differed in their contribution to overall MIC depending on the background. Overall, these results demonstrated that VISA evolved through mutations in a similar set of loci in all backgrounds, but the effect of mutation in common genes differed with regard to fitness and contribution to resistance in different strains.
Collapse
Affiliation(s)
- Michelle Su
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michelle H Davis
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jessica Peterson
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Claudia Solis-Lemus
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Dermatology, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
125
|
Schneider YK. Bacterial Natural Product Drug Discovery for New Antibiotics: Strategies for Tackling the Problem of Antibiotic Resistance by Efficient Bioprospecting. Antibiotics (Basel) 2021; 10:antibiotics10070842. [PMID: 34356763 PMCID: PMC8300778 DOI: 10.3390/antibiotics10070842] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
The problem of antibiotic resistance has become a challenge for our public health and society; it has allowed infectious diseases to re-emerge as a risk to human health. New antibiotics that are introduced to the market face the rise of resistant pathogens after a certain period of use. The relatively fast development of resistance against some antibiotics seems to be closely linked to their microbial origin and function in nature. Antibiotics in clinical use are merely products of microorganisms or derivatives of microbial products. The evolution of these antimicrobial compounds has progressed with the evolution of the respective resistance mechanisms in microbes for billions of years. Thus, antimicrobial resistance genes are present within the environment and can be taken up by pathogens through horizontal gene transfer. Natural products from bacteria are an important source of leads for drug development, and microbial natural products have contributed the most antibiotics in current clinical use. Bioprospecting for new antibiotics is a labor-intensive task as obstacles such as redetection of known compounds and low compound yields consume significant resources. The number of bacterial isolates one can theoretically investigate for new secondary metabolites is, on the other hand, immense. Therefore, the available capacity for biodiscovery should be focused on the most promising sources for chemical novelty and bioactivity, employing the appropriate scientific tools. This can be done by first looking into under- or unexplored environments for bacterial isolates and by focusing on the promising candidates to reduce the number of subjects.
Collapse
Affiliation(s)
- Yannik K Schneider
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
| |
Collapse
|
126
|
Ziesmer J, Tajpara P, Hempel N, Ehrström M, Melican K, Eidsmo L, Sotiriou GA. Vancomycin-Loaded Microneedle Arrays against Methicillin-Resistant Staphylococcus Aureus Skin Infections. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001307. [PMID: 34307835 PMCID: PMC8281827 DOI: 10.1002/admt.202001307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Indexed: 05/24/2023]
Abstract
Skin and soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major healthcare burden, often treated with intravenous injection of the glycopeptide antibiotic vancomycin (VAN). However, low local drug concentration in the skin limits its treatment efficiency, while systemic exposure promotes the development of resistant bacterial strains. Topical administration of VAN on skin is ineffective as its high molecular weight prohibits transdermal penetration. In order to implement a local VAN delivery, microneedle (MN) arrays with a water-insoluble support layer for the controlled administration of VAN into the skin are developed. The utilization of such a support layer results in water-insoluble needle shafts surrounded by drug-loaded water-soluble tips with high drug encapsulation. The developed MN arrays can penetrate the dermal barriers of both porcine and fresh human skin. Permeation studies on porcine skin reveal that the majority of the delivered VAN is retained within the skin. It is shown that the VAN-MN array reduces MRSA growth both in vitro and ex vivo on skin. The developed VAN-MN arrays may be extended to several drugs and may facilitate localized treatment of MRSA-caused skin infections while minimizing adverse systemic effects.
Collapse
Affiliation(s)
- Jill Ziesmer
- Department of MicrobiologyTumour and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | - Poojabahen Tajpara
- Department of Medicine SolnaUnit of RheumatologyKarolinska InstitutetStockholmSE‐17177Sweden
| | | | - Marcus Ehrström
- Department of Reconstructive Plastic SurgeryKarolinska University Hospital SolnaStockholmSE‐17176Sweden
| | - Keira Melican
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES)Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Liv Eidsmo
- Department of Medicine SolnaUnit of RheumatologyKarolinska InstitutetStockholmSE‐17177Sweden
- Diagnostiskt Centrum HudStockholmSE‐11137Sweden
- Leo Foundation Skin Immunology CenterUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | - Georgios A. Sotiriou
- Department of MicrobiologyTumour and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| |
Collapse
|
127
|
Elsawy S, Elsherif WM, Hamed R. Effect of silver nanoparticles on vancomycin resistant Staphylococcus aureus infection in critically ill patients. Pathog Glob Health 2021; 115:315-324. [PMID: 33872131 PMCID: PMC8547882 DOI: 10.1080/20477724.2021.1914412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A prevalent increase in antimicrobial resistance represents a universal obstacle for the treatment of Staphylococcus aureus (S. aureus) infection, especially in critically ill patients. Silver nanoparticles are defined as broad spectrum bactericidal agents, which might be effective against vancomycin resistant S. aureus (VRSA). In this study, we examined the bactericidal efficacy of silver nanoparticles on VRSA in 150 blood and sputum samples isolated from intensive care patients. Methicillin resistant S. aureus (MRSA) isolates were identified in 83 samples, with an incidence of 55.3%. Meanwhile, VRSA isolates were found in 11 and 8 isolates (a total of 19 isolates out of 150) from sputum and blood samples, with an incidence of 14.67% and 10.67%, respectively, with a total incidence of 12.67%. Vancomycin intermediate S. aureus (VISA) isolates had an inhibitory zone ranging from 9 to 13 mm, which was found in 13 out of 19 isolates, whereas VRSA isolates had an inhibitory zone ranging from 0 to 6 mm, which was detected in 6 out of 19 isolates. The findings of this study confirm that silver nanoparticles are an effective treatment against VRSA.
Collapse
Affiliation(s)
- Saeid Elsawy
- Anaesthesia and Intensive Care Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Walaa M. Elsherif
- Microbiology Department, Nanotechnology Unit, Animal Health Research Institute, Taipei, Egypt
| | - Rasha Hamed
- Anaesthesia and Intensive Care Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
128
|
Hu WC, Pang J, Biswas S, Wang K, Wang C, Xia XH. Ultrasensitive Detection of Bacteria Using a 2D MOF Nanozyme-Amplified Electrochemical Detector. Anal Chem 2021; 93:8544-8552. [PMID: 34097376 DOI: 10.1021/acs.analchem.1c01261] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial infection is one of the major causes of human death worldwide. To prevent bacterial infectious diseases from spreading, it is of critical importance to develop convenient, ultrasensitive, and cost-efficient methods for bacteria detection. Here, an electrochemical detector of a functional two-dimensional (2D) metal-organic framework (MOF) nanozyme was developed for the sensitive detection of pathogenic Staphylococcus aureus. A dual recognition strategy consisting of vancomycin and anti-S. aureus antibody was proposed to specifically anchor S. aureus. The 2D MOFs with excellent peroxidase-like activity can efficiently catalyze o-phenylenediamine to 2,2-diaminoazobenzene, which is an ideal electrochemical signal readout for monitoring the bacteria concentration. Under optimal conditions, the present bioassay provides a wide detection range of 10-7.5 × 107 colony-forming units CFU/mL with a detection limit of 6 CFU/mL, which is better than most of the previous reports. In addition, the established electrochemical sensor can selectively and accurately identify S. aureus in the presence of other bacteria. The present work provides a new pathway for sensitive and selective detection of S. aureus and presents a promising potential in the realm of clinical diagnosis.
Collapse
Affiliation(s)
- Wen-Chao Hu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Pang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sudip Biswas
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
129
|
Page JE, Walker S. Natural products that target the cell envelope. Curr Opin Microbiol 2021; 61:16-24. [PMID: 33662818 PMCID: PMC8169544 DOI: 10.1016/j.mib.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The inexorable spread of resistance to clinically used drugs demands that we maintain a full pipeline of antibiotic candidates. As organisms have struggled to survive and compete over evolutionary history, they have developed the capacity to make a remarkably diverse array of natural products that target the cell envelope. A few have been developed for use in the clinic but most have not, and there are still an enormous number of opportunities to investigate. Substrate-binding antibiotics for Gram-positive organisms, phage-derived lysins, and outer membrane protein-targeting agents for Gram-negative organisms represent promising avenues where nature's gifts may be repurposed for use in the clinic.
Collapse
Affiliation(s)
- Julia E Page
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States.
| |
Collapse
|
130
|
Yahya G, Ebada A, Khalaf EM, Mansour B, Nouh NA, Mosbah RA, Saber S, Moustafa M, Negm S, El-Sokkary MMA, El-Baz AM. Soil-Associated Bacillus Species: A Reservoir of Bioactive Compounds with Potential Therapeutic Activity against Human Pathogens. Microorganisms 2021; 9:1131. [PMID: 34073963 PMCID: PMC8225174 DOI: 10.3390/microorganisms9061131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Soil hosts myriads of living organisms with the extensive potential to produce bioactive compounds. Bacteria are the major soil inhabitants that represent a rich reservoir for antibiotic production along with their role in recycling nutrients and maintenance of the soil ecosystem. Here, from 55 tested soil samples, we isolated and identified a novel antibiotic-producing bacterial strain with a phylogenetically closest match to Bacillus subtilis sp. based on BLASTN search of GenBank for the 16S rRNA gene sequence. We characterized this novel strain through microscopic, biochemical, and molecular techniques, combined with testing its potential antimicrobial activity. Chemical studies revealed that the antibiotic produced by this strain is a glycopeptide. It exhibited profound activity against both methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. The antibiotic is optimally produced at 37 °C after 28 h of growth. The biocompatibility of the extracted antibiotic was tested over a wide range of factors including temperature, pH, surfactants, and metal salts. To confirm its therapeutic potential, a sterile solution of the antibiotic was tested in vivo against bacteria-induced keratitis in rats where significant healing activity was recorded. Hence, this soil Bacillus strain may lead to the development of novel antibiotics for the treatment of human pathogens.
Collapse
Affiliation(s)
- Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
| | - Asmaa Ebada
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; (A.E.); (A.M.E.-B.)
| | - Eman M. Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Nehal A. Nouh
- Department of Microbiology, Albatterjee Medical College, Jeddah 6231, Saudi Arabia;
| | - Rasha A. Mosbah
- Infection Control Unit, Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt;
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Sally Negm
- Life Sciences Department, College of Science and Literature Mahyel Aseer, King Khalid University, Abha 61413, Saudi Arabia;
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Sharkia 44516, Egypt
| | | | - Ahmed M. El-Baz
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; (A.E.); (A.M.E.-B.)
| |
Collapse
|
131
|
da Silva PB, Araújo VHS, Fonseca-Santos B, Solcia MC, Ribeiro CM, da Silva IC, Alves RC, Pironi AM, Silva ACL, Victorelli FD, Fernandes MA, Ferreira PS, da Silva GH, Pavan FR, Chorilli M. Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Curr Med Chem 2021; 28:1906-1956. [PMID: 32400324 DOI: 10.2174/0929867327666200513080719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.
Collapse
Affiliation(s)
- Patricia Bento da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | - Bruno Fonseca-Santos
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Mariana Cristina Solcia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Renata Carolina Alves
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Andressa Maria Pironi
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Mariza Aires Fernandes
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Paula Scanavez Ferreira
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Gilmar Hanck da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Fernando Rogério Pavan
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Marlus Chorilli
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| |
Collapse
|
132
|
Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021; 165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Zahraa Mustafa Hussein
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Fahimi Mustapa
- Hospital Batu Gajah Jalan Changkat, 31000 Batu Gajah, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Xiang Yi Chen
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
133
|
Kim MH, Kim YC, Kim H, Lee HM, Lee JH, Kim DA, Kim C, Park JY, Park YS. Lessons Learned from an Experience with Vancomycin-Intermediate Staphylococcus aureus Outbreak in a Newly Built Secondary Hospital in Korea. Pathogens 2021; 10:pathogens10050564. [PMID: 34066625 PMCID: PMC8148553 DOI: 10.3390/pathogens10050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
A vancomycin-intermediate Staphylococcus aureus (VISA) outbreak occurred in an intensive care unit (ICU) in South Korea. We aimed to investigate the condition that led to the VISA outbreak and seek measures to prevent further spread of the multidrug-resistant organism. A total of three VISA isolates were obtained from two patients and a health care worker (HCW) in a newly built 450-bed secondary hospital. Extensive screening of close contacts for VISA in terms of space sharing and physical contact, irrespective of contact time, was performed. Furthermore, multilocus sequence type, staphylococcal cassette chromosome mec type, and spa type profiles were determined for all VISA isolates. The relationship between vancomycin use and the minimum inhibitory concentration (MIC) of S. aureus was also investigated. Molecular typing showed that the strains of the three VISA isolates were identical, indicating horizontal hospital transmission. We assumed that VISA colonised in the HCW could have transmitted to the two patients, which resulted in one infection and one colonisation. The affected HCW was excused from work and was decolonised with mupirocin. Five weeks after the interventions, no additional VISA isolates were identified. No relationship between vancomycin use and MIC of S. aureus was identified. Extensive screening of contacts in addition to decolonisation is crucial in preventing the further spread of VISA.
Collapse
Affiliation(s)
- Min Hyung Kim
- Department of Internal Medicine, Division of Infectious Disease, Bundang Jesaeng Hospital, Seongam, Gyeonggi 13590, Korea;
| | - Yong Chan Kim
- Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin-si 16995, Korea;
| | - Heejung Kim
- Department of Laboratory Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
| | - Hyuk Min Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Ju Hyun Lee
- Infection Control Office, Yongin Severance Hospital, Yongin-si 16995, Korea; (J.H.L.); (D.A.K.)
| | - Da Ae Kim
- Infection Control Office, Yongin Severance Hospital, Yongin-si 16995, Korea; (J.H.L.); (D.A.K.)
| | - Chanhee Kim
- Division of Disease Control Policy, Bureau of Health, Gyeonggi Provincial Office, Gyeonggi 13494, Korea;
| | - Jin Young Park
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin-si 16995, Korea;
| | - Yoon Soo Park
- Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin-si 16995, Korea;
- Correspondence: ; Tel.: +82-31-5189-8761
| |
Collapse
|
134
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
135
|
Chen T, Chen Q, Fu H, Wang D, Gao Y, Zhang M, Liu H. Construction and performance evaluation of a sustained release implant material polyetheretherketone with antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112109. [PMID: 34082931 DOI: 10.1016/j.msec.2021.112109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aimed to construct a tightly binding antibiotic sustained release system on the polyetheretherketone (PEEK) surface and investigate the cellular activity and antibacterial properties of the new oral implant materials. METHODS Low-temperature argon plasma under certain parameters was used to prepare P-PEEK with nano-topology, and chemical deposition technology was adopted to form a polydopamine (PDA) coating on the PEEK surface to build a biological binding platform, PDA/P-PEEK. Subsequently, vancomycin gelatin nanoparticles (Van-GNPs) were prepared by two-step desolvation method. Finally, Van-GNPs were combined with PEEK implant material surface to form a new composite material, Van-GNPs/PEEK. scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), and contact angle tester were used to comprehensively characterize the materials. The in vitro release test of Van was performed by dynamic dialysis with ultraviolet spectrophotometer. The cell cytotoxicity and adhesion tests were studied by mouse embryonic osteoblasts. The antibacterial properties were evaluated by bacterial adhesion test, plate colony counting, and antimicrobial ring test with Staphylococcus aureus and Streptococcus mutans. RESULTS PEEK was treated with low-temperature argon plasma and attached to PDA to form a biological binding platform. The synthesized Van-GNPs were smooth, round, with uniform particle size distribution, and bound to PEEK to form a new composite material, which can release Van constantly. Cell experiments showed that Van-GNPs/PEEK had no cytotoxicity and had good interaction with osteoblasts. Bacterial experiments showed that surface conjugation with Van-GNPs could significantly improve the antibacterial performance of PEEK against S. aureus and S. mutans. SIGNIFICANCE This study demonstrated that Van-GNPs/PEEK have good cellular compatibility and autonomous antibacterial properties, which provide a theoretical basis for the wide application of PEEK in the field of stomatology.
Collapse
Affiliation(s)
- Tianjie Chen
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Qinchao Chen
- Department of Stomatology, Central Hospital of Zibo city, 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, PR China
| | - Haibo Fu
- Department of Pediatrics, Central Hospital of Zibo city, 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, PR China
| | - Defei Wang
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Yunbo Gao
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Meiqin Zhang
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Hong Liu
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
136
|
Kakoullis L, Papachristodoulou E, Chra P, Panos G. Mechanisms of Antibiotic Resistance in Important Gram-Positive and Gram-Negative Pathogens and Novel Antibiotic Solutions. Antibiotics (Basel) 2021; 10:415. [PMID: 33920199 PMCID: PMC8069106 DOI: 10.3390/antibiotics10040415] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
Multidrug-resistant bacteria have on overwhelming impact on human health, as they cause over 670,000 infections and 33,000 deaths annually in the European Union alone. Of these, the vast majority of infections and deaths are caused by only a handful of species-multi-drug resistant Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp. and Klebsiella pneumoniae. These pathogens employ a multitude of antibiotic resistance mechanisms, such as the production of antibiotic deactivating enzymes, changes in antibiotic targets, or a reduction of intracellular antibiotic concentration, which render them insusceptible to multiple antibiotics. The purpose of this review is to summarize in a clinical manner the resistance mechanisms of each of these 6 pathogens, as well as the mechanisms of recently developed antibiotics designed to overcome them. Through a basic understanding of the mechanisms of antibiotic resistance, the clinician can better comprehend and predict resistance patterns even to antibiotics not reported on the antibiogram and can subsequently select the most appropriate antibiotic for the pathogen in question.
Collapse
Affiliation(s)
- Loukas Kakoullis
- Department of Respiratory Medicine, University General Hospital of Patras, 26504 Patras, Greece;
| | - Eleni Papachristodoulou
- Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Paraskevi Chra
- Department of Microbiology, Evangelismos Hospital, 10676 Athens, Greece;
| | - George Panos
- Department of Internal Medicine, Division of Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
137
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
138
|
Isolation and Characterization of Two Virulent Phages to Combat Staphylococcus aureus and Enterococcus faecalis causing Dental Caries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study aimed to isolate and characterize bacteriophages, as a biocontrol agent, against certain antibiotic-resistant bacteria causing dental caries. Here, two dental caries-causing bacteria S. aureus and E. faecalis were isolated and characterized biochemically using the automated VITEK® 2 system. Antibiotic sensitivity pattern of the isolated dental caries bacteria was assessed against selection of antibiotics. The two isolates showed resistance against most of the tested antibiotics. To overcome this problem, two lytic phages vB_SauM-EG-AE3 and vB_EfaP-EF01 were isolated, identified, and applied to control the growth of S. aureus and E. faecalis, respectively. Phages were identified morphologically using TEM and showed that vB_SauM-EG-AE3 phage is related to Myoviridae and vB_EfaP-EF01 phage belongs to Podoviridae. The two phages exhibited high lytic activity, high stability, and a narrow host range. The one-step growth curve of phages showed burst sizes of 78.87 and 113.55 PFU/cell with latent periods of 25 and 30 minutes for S. aureus phage and E. faecalis phage respectively. In addition, the two phages showed different structural protein profiles and exhibited different patterns using different restriction enzymes. The genome sizes were estimated to be 13.30 Kb and 15.60 Kb for phages vB_SauM-EGAE3, vB_EfaP-EGAE1, respectively. Complete inhibition of bacterial growth was achieved using phages with MOIs of 103, 102 and 10 after 1, 3, 5, and 24 h of incubation at 37°C. Hence, this study indicates that the isolated bacteriophages are promising biocontrol agents that could challenge antibiotic-resistant dental caries bacteria to announce new successful alternatives to antibiotics.
Collapse
|
139
|
Penna B, Silva MB, Soares AER, Vasconcelos ATR, Ramundo MS, Ferreira FA, Silva-Carvalho MC, de Sousa VS, Rabello RF, Bandeira PT, de Souza VS, Planet PJ, Vieira-da-Motta O, Botelho AMN, Figueiredo AMS. Comparative genomics of MRSA strains from human and canine origins reveals similar virulence gene repertoire. Sci Rep 2021; 11:4724. [PMID: 33633263 PMCID: PMC7907190 DOI: 10.1038/s41598-021-83993-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen associated with a wide variety of infections in humans. The ability of MRSA to infect companion animals has gained increasing attention in the scientific literature. In this study, 334 dogs were screened for MRSA in two cities located in Rio de Janeiro State. The prevalence of MRSA in dogs was 2.7%. Genotyping revealed isolates from sequence types (ST) 1, 5, 30, and 239 either colonizing or infecting dogs. The genome of the canine ST5 MRSA (strain SA112) was compared with ST5 MRSA from humans-the main lineage found in Rio de Janeiro hospitals-to gain insights in the origin of this dog isolate. Phylogenetic analysis situated the canine genome and human strain CR14-035 in the same clade. Comparative genomics revealed similar virulence profiles for SA112 and CR14-035. Both genomes carry S. aureus genomic islands νSAα, νSAβ, and νSAγ. The virulence potential of the canine and human strains was similar in a Caenorhabditis elegans model. Together, these results suggest a potential of canine MRSA to infect humans and vice versa. The circulation in community settings of a MRSA lineage commonly found in hospitals is an additional challenge for public health surveillance authorities.
Collapse
Affiliation(s)
- Bruno Penna
- grid.411173.10000 0001 2184 6919Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Marcella B. Silva
- grid.412331.60000 0000 9087 6639Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - André E. R. Soares
- grid.452576.70000 0004 0602 9007Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Ana T. R. Vasconcelos
- grid.452576.70000 0004 0602 9007Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Mariana S. Ramundo
- grid.8536.80000 0001 2294 473XDepartment of Medical Microbiology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne A. Ferreira
- grid.411237.20000 0001 2188 7235Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina Brazil
| | - Maria C. Silva-Carvalho
- grid.8536.80000 0001 2294 473XDepartment of Medical Microbiology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane S. de Sousa
- grid.8536.80000 0001 2294 473XDepartment of Medical Microbiology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata F. Rabello
- grid.411173.10000 0001 2184 6919Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Paula T. Bandeira
- grid.8536.80000 0001 2294 473XDepartment of Medical Microbiology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil ,grid.8536.80000 0001 2294 473XInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane S. de Souza
- grid.8536.80000 0001 2294 473XInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul J. Planet
- grid.25879.310000 0004 1936 8972Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Olney Vieira-da-Motta
- grid.412331.60000 0000 9087 6639Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Ana M. N. Botelho
- grid.411173.10000 0001 2184 6919Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil ,grid.8536.80000 0001 2294 473XDepartment of Medical Microbiology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agnes M. S. Figueiredo
- grid.8536.80000 0001 2294 473XDepartment of Medical Microbiology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
140
|
Silva KB, Pinheiro CTS, Soares CRM, Souza MA, Matos-Rocha TJ, Fonseca SA, Pavão JMSJ, Costa JG, Pires LLS, Santos AF. Phytochemical characterization, antioxidant potential and antimicrobial activity of Averrhoa carambola L. (Oxalidaceae) against multiresistant pathogens. BRAZ J BIOL 2021; 81:509-515. [PMID: 32876163 DOI: 10.1590/1519-6984.220259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
The objective of this work was to perform the phytochemical characterization, to determine total phenols, antioxidant (AAO%) and antimicrobial potential of the ethanolic extracts of carambola. The phytochemical study was carried out through a qualitative analysis of the chemical constituents and quantitative determination of the phenol content By the Folin-Ciocalteu test. Qualitative and quantitative antioxidant tests were performed using the DPPH method (2,2 diphenyl-1-picryl-hydrazila) and iron reduction (FRAP). The minimum inhibitory concentration (MIC) was determined by microdilution in 96-well plates. The presence of pyrogallic tannins, steroids and saponins has been identified. The highest total phenol content, quantified in the samples, was found in the stem bark (0.0866 mgEAG/g) and in the fruit (0.0734 mgEAG/g). In the antioxidant evaluation, the extracts of the green fruit bagasse (AAO% 71.9%,) and stem bark at 50 μg/mL (AAO% 94%) with CE50 23.7 μg/mL. Leaf extracts, stem bark, ripe fruit bagasse and green fruit bagasse presented MICs of 100 μg/mL against multiresistant pathogenic bacteria and fungi.
Collapse
Affiliation(s)
- K B Silva
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas - UFAL, Av. Lourival de Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-970, Maceió, AL, Brasil
| | - C T S Pinheiro
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| | - C R M Soares
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| | - M A Souza
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| | - T J Matos-Rocha
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| | - S A Fonseca
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| | - J M S J Pavão
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| | - J G Costa
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| | - L L S Pires
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| | - A F Santos
- Centro Universitário Cesmac, Rua Cônego Machado, 918, CEP 57051-160, Alagoas, AL, Brasil
| |
Collapse
|
141
|
Egyir B, Bentum J, Attram N, Fox A, Obeng-Nkrumah N, Appiah-Korang L, Behene E, Kumordjie S, Yeboah C, Agbodzi B, Bentil RE, Tagoe R, Kofi Adu Tabi B, Owusu F, Dayie NTKD, Donkor ES, Nsaful J, Asah-Opoku K, Nyarko E, Asumanu E, Larsen AR, Wolfe DM, Letizia AG. Whole Genome Sequencing and Antimicrobial Resistance of Staphylococcus aureus from Surgical Site Infections in Ghana. Pathogens 2021; 10:pathogens10020196. [PMID: 33673230 PMCID: PMC7918159 DOI: 10.3390/pathogens10020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a common cause of surgical site infections (SSIs) globally. Data on the occurrence of methicillin-susceptible S. aureus (MSSA) as well as methicillin-resistant S. aureus (MRSA) among patients with surgical site infections (SSIs) in sub-Saharan African are scarce. We characterized S. aureus from SSIs in Ghana using molecular methods and antimicrobial susceptibility testing (AST). Wound swabs or aspirate samples were collected from subjects with SSIs. S. aureus was identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF-MS); AST was performed by Kirby-Bauer disk diffusion, and results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Detection of spa, mecA, and pvl genes was performed by polymerase chain reaction (PCR). Whole-genome sequencing (WGS) was done using the Illumina MiSeq platform. Samples were collected from 112 subjects, with 13 S. aureus isolates recovered. Of these, 92% were sensitive to co-trimoxazole, 77% to clindamycin, and 54% to erythromycin. Multi-drug resistance was detected in 5 (38%) isolates. The four mecA gene-positive MRSA isolates detected belonged to ST152 (n = 3) and ST5 (n = 1). In total, 62% of the isolates were positive for the Panton-Valentine leukocidin (pvl) toxin gene. This study reports, for the first time, a pvl-positive ST152-t355 MRSA clone from SSIs in Ghana. The occurrence of multi-drug-resistant S. aureus epidemic clones suggests that continuous surveillance is required to monitor the spread and resistance trends of S. aureus in hospital settings in the country.
Collapse
Affiliation(s)
- Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra 00233, Ghana; (J.B.); (R.T.); (B.K.A.T.); (F.O.)
- Correspondence:
| | - Jeannette Bentum
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra 00233, Ghana; (J.B.); (R.T.); (B.K.A.T.); (F.O.)
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Naiki Attram
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Anne Fox
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Noah Obeng-Nkrumah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra 00233, Ghana;
| | - Labi Appiah-Korang
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra 00233, Ghana;
| | - Eric Behene
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Selassie Kumordjie
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Clara Yeboah
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Bright Agbodzi
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Ronald Essah Bentil
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Rhodalyn Tagoe
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra 00233, Ghana; (J.B.); (R.T.); (B.K.A.T.); (F.O.)
| | - Blessing Kofi Adu Tabi
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra 00233, Ghana; (J.B.); (R.T.); (B.K.A.T.); (F.O.)
| | - Felicia Owusu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra 00233, Ghana; (J.B.); (R.T.); (B.K.A.T.); (F.O.)
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Nicholas T. K. D. Dayie
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra 00233, Ghana; (N.T.K.D.D.); (E.S.D.)
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra 00233, Ghana; (N.T.K.D.D.); (E.S.D.)
| | - Josephine Nsaful
- Department of Surgery, Korle-bu Teaching Hospital, Accra 00233, Ghana;
| | - Kwaku Asah-Opoku
- Department of Obstetrics and Gynaecology, University of Ghana Medical School, University of Ghana, Accra 00233, Ghana;
| | - Edward Nyarko
- 37 Military Hospital, Accra 00233, Ghana; (E.N.); (E.A.)
| | - Edward Asumanu
- 37 Military Hospital, Accra 00233, Ghana; (E.N.); (E.A.)
| | - Anders Rhod Larsen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Reference Laboratory for Antimicrobial Resistance, Artillerivej 5, DK-2300 Copenhagen, Denmark;
| | - David M. Wolfe
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| | - Andrew G. Letizia
- Naval Medical Research Unit—Three, Ghana Detachment, Accra 00233, Ghana; (N.A.); Ghana; (A.F.); (E.B.); (S.K.); (C.Y.); (B.A.); (R.E.B.); (D.M.W.); (A.G.L.)
| |
Collapse
|
142
|
Esteban P, Redrado S, Comas L, Domingo MP, Millán-Lou MI, Seral C, Algarate S, Lopez C, Rezusta A, Pardo J, Arias M, Galvez EM. In Vitro and In Vivo Antibacterial Activity of Gliotoxin Alone and in Combination with Antibiotics against Staphylococcus aureus. Toxins (Basel) 2021; 13:toxins13020085. [PMID: 33498622 PMCID: PMC7911140 DOI: 10.3390/toxins13020085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
Multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of hospital-acquired and community infections and pose a challenge to the human health care system. Therefore, it is important to find new drugs that show activity against these bacteria, both in monotherapy and in combination with other antimicrobial drugs. Gliotoxin (GT) is a mycotoxin produced by Aspergillus fumigatus and other fungi of the Aspergillus genus. Some evidence suggests that GT shows antimicrobial activity against S. aureus in vitro, albeit its efficacy against multidrug-resistant strains such as MRSA or vancomycin-intermediate S. aureus (VISA) strainsis not known. This work aimed to evaluate the antibiotic efficacy of GT as monotherapy or in combination with other therapeutics against MRSA in vitro and in vivo using a Caenorhabditis elegans infection model.
Collapse
Affiliation(s)
- Patricia Esteban
- Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; (P.E.); (J.P.)
| | - Sergio Redrado
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (L.C.); (M.P.D.)
| | - Laura Comas
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (L.C.); (M.P.D.)
| | - M. Pilar Domingo
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (L.C.); (M.P.D.)
| | - M. Isabel Millán-Lou
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (M.I.M.-L.); (C.L.); (A.R.)
| | - Cristina Seral
- Department of Microbiology, University Clinic Hospital Lozano Blesa, 50009 Zaragoza, Spain; (C.S.); (S.A.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Algarate
- Department of Microbiology, University Clinic Hospital Lozano Blesa, 50009 Zaragoza, Spain; (C.S.); (S.A.)
| | - Concepción Lopez
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (M.I.M.-L.); (C.L.); (A.R.)
| | - Antonio Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (M.I.M.-L.); (C.L.); (A.R.)
| | - Julian Pardo
- Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; (P.E.); (J.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
| | - Maykel Arias
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (L.C.); (M.P.D.)
- Correspondence: (M.A.); (E.M.G.)
| | - Eva M. Galvez
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (L.C.); (M.P.D.)
- Correspondence: (M.A.); (E.M.G.)
| |
Collapse
|
143
|
Zhu J, Liu B, Shu X, Sun B. A novel mutation of walK confers vancomycin-intermediate resistance in methicillin-susceptible Staphylococcus aureus. Int J Med Microbiol 2021; 311:151473. [PMID: 33445057 DOI: 10.1016/j.ijmm.2021.151473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022] Open
Abstract
With the treatment failure by vancomycin and poor clinical outcomes, the emergence and spread of vancomycin intermediate-resistant Staphylococcus aureus (VISA) has raised more concerns in recent years. While most VISA strains are isolated from methicillin-resistant S. aureus (MRSA), the mechanism underlying the generation of VISA from methicillin-susceptible S. aureus (MSSA) is still largely unknown. Here, we identified a total of 10 mutations in 9 genes through comparative genome analysis from laboratory-derived VISA strain. We verified the role of a novel mutation of WalK (I237T) and our results further indicated that the introduction of WalK (I237T) by allelic replacement can confer vancomycin resistance in MSSA with common VISA characteristics, including thickened cell walls, reduced autolysis, and attenuated virulence. Consistent with these phenotypes, real-time quantitative reverse transcription-PCR revealed the altered expression of several genes associated with cell wall metabolism and virulence control. In addition, electrophoretic mobility shift assay indicated that WalR can directly bind to the promoter regions of oatA, sle1, and mgt, fluorescence-based promoter activity and β-galactosidase assays revealed WalK (I237T) can alter promoter activities of oatA, mgt, and sle1, thus regulating genes expression. These findings broaden our understanding of the regulatory network by WalKR system and decipher the molecular mechanisms of developmental VISA resistance in MSSA with point mutations.
Collapse
Affiliation(s)
- Jiade Zhu
- Department of Oncology, The First Affiliated Hospital, CAS Key Laboratory of Innate Immunity and Chronic Disease, and Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Banghui Liu
- Department of Oncology, The First Affiliated Hospital, CAS Key Laboratory of Innate Immunity and Chronic Disease, and Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Xueqin Shu
- Department of Oncology, The First Affiliated Hospital, CAS Key Laboratory of Innate Immunity and Chronic Disease, and Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, CAS Key Laboratory of Innate Immunity and Chronic Disease, and Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China.
| |
Collapse
|
144
|
Peddinti BST, Morales-Gagnon N, Pourdeyhimi B, Scholle F, Spontak RJ, Ghiladi RA. Photodynamic Coatings on Polymer Microfibers for Pathogen Inactivation: Effects of Application Method and Composition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:155-163. [PMID: 33356100 DOI: 10.1021/acsami.0c16953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A substantial increase in the risk of hospital-acquired infections (HAIs) has greatly impacted the global healthcare industry. Harmful pathogens adhere to a variety of surfaces and infect personnel on contact, thereby promoting transmission to new hosts. This is particularly worrisome in the case of antibiotic-resistant pathogens, which constitute a growing threat to human health worldwide and require new preventative routes of disinfection. In this study, we have incorporated different loading levels of a porphyrin photosensitizer capable of generating reactive singlet oxygen in the presence of O2 and visible light in a water-soluble, photo-cross-linkable polymer coating, which was subsequently deposited on polymer microfibers. Two different application methods are considered, and the morphological and chemical characteristics of these coated fibers are analyzed to detect the presence of the coating and photosensitizer. To discern the efficacy of the fibers against pathogenic bacteria, photodynamic inactivation has been performed on two different bacterial strains, Staphylococcus aureus and antibiotic-resistant Escherichia coli, with population reductions of >99.9999 and 99.6%, respectively, after exposure to visible light for 1 h. In response to the current COVID-19 pandemic, we also confirm that these coated fibers can inactivate a human common cold coronavirus serving as a surrogate for the SARS-CoV-2 virus.
Collapse
|
145
|
Masim ML, Argimón S, Espiritu HO, Magbanua MA, Lagrada ML, Olorosa AM, Cohen V, Gayeta JM, Jeffrey B, Abudahab K, Hufano CM, Sia SB, Holden MT, Stelling J, Aanensen DM, Carlos CC. Genomic surveillance of methicillin-resistant Staphylococcus aureus in the Philippines,
2013-2014. Western Pac Surveill Response J 2021; 12:6-16. [PMID: 34094618 PMCID: PMC8143927 DOI: 10.5365/wpsar.2020.11.1.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the leading causes of both nosocomial and community infections worldwide. In the Philippines, MRSA rates have remained above 50% since 2010, but resistance to other antibiotics, including vancomycin, is low. The MRSA burden can be partially attributed to pathogen-specific characteristics of the circulating clones, but little was known about the S. aureus clones circulating in the Philippines. We sequenced the whole genomes of 116 S. aureus isolates collected in 2013-2014 within the Antimicrobial Resistance Surveillance Program. The multilocus sequence type, spa type, SCCmec type, presence of antimicrobial resistance (AMR) determinants and virulence genes and relatedness between the isolates were all derived from the sequence data. The concordance between phenotypic and genotypic resistance was also determined. The MRSA population in the Philippines comprised a limited number of genetic clones, including several international epidemic clones, such as CC30-spa-t019-SCCmec-IV-PVL+, CC5-SCCmec-typeIV and ST239-spa-t030-SCCmec-typeIII. The CC30 genomes were related to the South-West Pacific clone but formed a distinct, diverse lineage, with evidence of global dissemination. We showed independent acquisition of resistance to sulfamethoxazole/trimethoprim in various locations and genetic clones but mostly in paediatric patients with invasive infections. The concordance between phenotypic and genotypic resistance was 99.68% overall for eight antibiotics in seven classes. We have made the first comprehensive genomic survey of S. aureus in the Philippines, which bridges the gap in genomic data from the Western Pacific Region and will constitute the genetic background for contextualizing prospective surveillance.
Collapse
Affiliation(s)
- Melissa L. Masim
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
- These authors contributed equally to this work
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
- These authors contributed equally to this work
| | - Holly O. Espiritu
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Mariane A. Magbanua
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Marietta L. Lagrada
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Agnettah M. Olorosa
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Victoria Cohen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
| | - June M. Gayeta
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Benjamin Jeffrey
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
| | - Charmian M. Hufano
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Sonia B. Sia
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Matthew T.G. Holden
- University of St Andrews School of Medicine, St Andrews, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - John Stelling
- Brigham and Women’s Hospital, Boston (MA), United States of America
| | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, England, United Kingdom of Great Britain and Northern Ireland
- These authors contributed equally to this work
| | - Celia C. Carlos
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
- These authors contributed equally to this work
| | - on behalf of the Philippines Antimicrobial Resistance Surveillance Program
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
- University of St Andrews School of Medicine, St Andrews, Scotland, United Kingdom of Great Britain and Northern Ireland
- Brigham and Women’s Hospital, Boston (MA), United States of America
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, England, United Kingdom of Great Britain and Northern Ireland
- These authors contributed equally to this work
- These authors contributed equally to this work
| |
Collapse
|
146
|
Pajares-Chamorro N, Wagley Y, Maduka CV, Youngstrom DW, Yeger A, Badylak SF, Hammer ND, Hankenson K, Chatzistavrou X. Silver-doped bioactive glass particles for in vivo bone tissue regeneration and enhanced methicillin-resistant Staphylococcus aureus (MRSA) inhibition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111693. [PMID: 33545854 PMCID: PMC8168684 DOI: 10.1016/j.msec.2020.111693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
Infection is a significant risk factor for failed healing of bone and other tissues. We have developed a sol-gel (solution-gelation) derived bioactive glass doped with silver ions (Ag-BG), tailored to provide non-cytotoxic antibacterial activity while significantly enhancing osteoblast-lineage cell growth in vitro and bone regeneration in vivo. Our objective was to engineer a biomaterial that combats bacterial infection while maintaining the capability to promote bone growth. We observed that Ag-BG inhibits bacterial growth and potentiates the efficacy of conventional antibiotic treatment. Ag-BG microparticles enhance cell proliferation and osteogenic differentiation in human bone marrow stromal cells (hBMSC) in vitro. Moreover, in vivo tests using a calvarial defect model in mice demonstrated that Ag-BG microparticles induce bone regeneration. This novel system with dual biological and advanced antibacterial properties is a promising therapeutic for combating resistant bacteria while triggering new bone formation.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Chima V Maduka
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA; Institute for Quantitative Health Sciences and Technology, Michigan State University, East Lansing, MI 48824, USA; Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Alyssa Yeger
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
147
|
Zaki M, Galeb S, Eid AR, Ahmed D, Mabrouk A, Latif RA. Molecular characterization of Staphylococcus aureus isolated from hospital acquired sepsis in pediatrics, relation to antibiotics, resistance and virulence genes. Germs 2020; 10:295-302. [PMID: 33489944 DOI: 10.18683/germs.2020.1221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 01/04/2023]
Abstract
Introduction The objective of this study was to determine the prevalence of antibiotic resistance genes mecA, vanA, B, C and virulence genes Panton-Valentine Leucocidin (PVL) and fibronectin-binding protein (fnBPA) among S. aureus isolates from hospital-acquired sepsis from pediatric intensive care units. Methods The study was a retrospective cross-sectional study, including 250 unique isolates of S. aureus obtained from pediatric patients with hospital-acquired sepsis. The isolates were subjected to study of antibiotic susceptibility by disc diffusion method and molecular analysis of antibiotic resistance genes and certain virulence genes (PVL and fnBPA genes). Results Methicillin resistant S. aureus represented 178 (71%) of the isolated S. aureus and reduced susceptibility to vancomycin was detected by minimum inhibitory concentration in 39 (22%) isolates. It was found that there was a strong association between the MRSA strains and resistance to some antibiotics, devices association (p<0.001) and patient outcomes (p=0.003). There was a significant association between reduced vancomycin susceptibility (p=0.010), the presence of a central line catheter (p=0.000) and fnBPA gene (p<0.001) and mortality rate. Conclusions The present study highlights that major S. aureus strains isolated from sepsis in pediatric patients were methicillin resistant with a substantial proportion of reduced susceptibility to vancomycin. Although none of the isolates had van genes responsible for vancomycin resistance, this finding warrants a considerable attention for study as it was a risk factor for mortality in those patients. The virulence genes fibronectin-binding protein and Panton-Valentine Leucocidin were not uncommon in S. aureus.
Collapse
Affiliation(s)
- Maysaa Zaki
- MD, Department of Clinical Pathology, Mansoura Faculty of Medicine, El Gomhoria Street, Mansoura, Egypt
| | - Sara Galeb
- MD, Department of Clinical Pathology, Mansoura Faculty of Medicine, El Gomhoria Street, Mansoura, Egypt
| | - Abdel-Rahman Eid
- MD, Department of Genetic Unit Pediatric Department, Genetics unit, Mansoura Faculty of Medicine, El Gomhoria Street, Mansoura, Egypt
| | - Doaa Ahmed
- MD, Department of Medical Microbiology and Immunology, Faculty of Medicine, Beni-Suef University, Mohamed Hassan Street, Beni-Suef, Egypt
| | - Amna Mabrouk
- MD, Department of Pediatric Medicine, Faculty of Medicine, Beni-Suef University, Mohamed Hassan Street, Beni-Suef, Egypt
| | - Radwa Abdel Latif
- MD, Department of Clinical Pathology, Faculty of Medicine, Beni-Suef University- Mohamed Hassan Street, Beni-Suef, Egypt
| |
Collapse
|
148
|
Xing J, Wang F, Cong H, Wang S, Shen Y, Yu B. Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating. Analyst 2020; 146:1320-1325. [PMID: 33367313 DOI: 10.1039/d0an02018d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Vancomycin is an amphoteric glycopeptide molecule, and its group diversity and chiral active sites provide a potential basis for its application in chromatographic analysis. In this article, using photosensitive diazo resin (DR) as the coupling agent, vancomycin is modified on the inner wall of the capillary to construct a capillary coating separation system. The highlight of the coated capillary is that it has both anti-protein adsorption and chiral separation properties. Compared with the bare capillary or non-covalently bonded DR/vancomycin-coated capillary, it can not only achieve the separation of four mixed proteins of lysozyme (Lys), bovine serum albumin (BSA), myoglobin (Mb), and ribonuclease A (RNase A), but also shows excellent performance in chiral drugs. The coated capillary effectively solves the problems of low efficiency of the separation column and high sample loss and provides ideas for the development of coated capillaries in the future.
Collapse
Affiliation(s)
- Jie Xing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
149
|
Magalhães C, Lima M, Trieu-Cuot P, Ferreira P. To give or not to give antibiotics is not the only question. THE LANCET. INFECTIOUS DISEASES 2020; 21:e191-e201. [PMID: 33347816 DOI: 10.1016/s1473-3099(20)30602-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
In a 1945 Nobel Lecture, Sir Alexander Fleming warned against the overuse of antibiotics, particularly in response to public pressure. In the subsequent decades, evidence has shown that bacteria can become resistant to almost any available molecule. One key question is how the emergence and dissemination of resistant bacteria or resistance genes can be delayed. Although some clinicians remain sceptical, in this Personal View, we argue that the prescription of fewer antibiotics and shorter treatment duration is just as effective as longer regimens that remain the current guideline. Additionally, we discuss the fact that shorter antibiotic treatments exert less selective pressure on microorganisms, preventing the development of resistance. By contrast, longer treatments associated with a strong selective pressure favour the emergence of resistant clones within commensal organisms. We also emphasise that more studies are needed to identify the optimal duration of antibiotic therapy for common infections, which is important for making changes to the current guidelines, and to identify clinical biomarkers to guide antibiotic treatment in both hospital and ambulatory settings.
Collapse
Affiliation(s)
- Catarina Magalhães
- Department of Immuno-Physiology and Pharmacology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida Lima
- Unidade de Investigação Biomédica do Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Department of Hematology, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Centre National de la Recherche Scientifique (CNRS UMR 2001), Paris, France
| | - Paula Ferreira
- Department of Immuno-Physiology and Pharmacology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
150
|
Donkor ES, Kotey FCN. Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. Infect Dis (Lond) 2020; 13:1178633720976581. [PMID: 33402829 PMCID: PMC7739134 DOI: 10.1177/1178633720976581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism.
Collapse
Affiliation(s)
- Eric S Donkor
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Fleischer CN Kotey
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
- FleRhoLife Research Consult, Teshie, Accra, Ghana
| |
Collapse
|