101
|
Hu X. CRISPR/Cas9 system and its applications in human hematopoietic cells. Blood Cells Mol Dis 2016; 62:6-12. [PMID: 27736664 DOI: 10.1016/j.bcmd.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Xiaotang Hu
- Department of Biology, College of Arts & Sciences, Barry University, 11300 Northeast Second Avenue, Miami Shores, FL 33161, United States.
| |
Collapse
|
102
|
Brendel C, Guda S, Renella R, Bauer DE, Canver MC, Kim YJ, Heeney MM, Klatt D, Fogel J, Milsom MD, Orkin SH, Gregory RI, Williams DA. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Invest 2016; 126:3868-3878. [PMID: 27599293 DOI: 10.1172/jci87885] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/28/2016] [Indexed: 01/01/2023] Open
Abstract
Reducing expression of the fetal hemoglobin (HbF) repressor BCL11A leads to a simultaneous increase in γ-globin expression and reduction in β-globin expression. Thus, there is interest in targeting BCL11A as a treatment for β-hemoglobinopathies, including sickle cell disease (SCD) and β-thalassemia. Here, we found that using optimized shRNAs embedded within an miRNA (shRNAmiR) architecture to achieve ubiquitous knockdown of BCL11A profoundly impaired long-term engraftment of both human and mouse hematopoietic stem cells (HSCs) despite a reduction in nonspecific cellular toxicities. BCL11A knockdown was associated with a substantial increase in S/G2-phase human HSCs after engraftment into immunodeficient (NSG) mice, a phenotype that is associated with HSC exhaustion. Lineage-specific, shRNAmiR-mediated suppression of BCL11A in erythroid cells led to stable long-term engraftment of gene-modified cells. Transduced primary normal or SCD human HSCs expressing the lineage-specific BCL11A shRNAmiR gave rise to erythroid cells with up to 90% reduction of BCL11A protein. These erythrocytes demonstrated 60%-70% γ-chain expression (vs. < 10% for negative control) and a corresponding increase in HbF. Transplantation of gene-modified murine HSCs from Berkeley sickle cell mice led to a substantial improvement of sickle-associated hemolytic anemia and reticulocytosis, key pathophysiological biomarkers of SCD. These data form the basis for a clinical trial application for treating sickle cell disease.
Collapse
|
103
|
Normal hematologic parameters and fetal hemoglobin silencing with heterozygous IKZF1 mutations. Blood 2016; 128:2100-2103. [PMID: 27581358 DOI: 10.1182/blood-2016-08-731943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
104
|
BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription. Am J Hum Genet 2016; 99:253-74. [PMID: 27453576 PMCID: PMC4974071 DOI: 10.1016/j.ajhg.2016.05.030] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.
Collapse
|
105
|
Smith EC, Orkin SH. Hemoglobin genetics: recent contributions of GWAS and gene editing. Hum Mol Genet 2016; 25:R99-R105. [PMID: 27340226 DOI: 10.1093/hmg/ddw170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
The β-hemoglobinopathies are inherited disorders resulting from altered coding potential or expression of the adult β-globin gene. Impaired expression of β-globin reduces adult hemoglobin (α2β2) production, the hallmark of β-thalassemia. A single-base mutation at codon 6 leads to formation of HbS (α2βS2) and sickle cell disease. While the basis of these diseases is known, therapy remains largely supportive. Bone marrow transplantation is the only curative therapy. Patients with elevated levels of fetal hemoglobin (HbF, α2γ2) as adults exhibit reduced symptoms and enhanced survival. The β-globin gene locus is a paradigm of cell- and developmental stage-specific regulation. Although the principal erythroid cell transcription factors are known, mechanisms responsible for silencing of the γ-globin gene were obscure until application of genome-wide association studies (GWAS). Here, we review findings in the field. GWAS identified BCL11A as a candidate negative regulator of γ-globin expression. Subsequent studies have established BCL11A as a quantitative repressor. GWAS-related single-nucleotide polymorphisms lie within an essential erythroid enhancer of the BCL11A gene. Disruption of a discrete region within the enhancer reduces BCL11A expression and induces HbF expression, providing the basis for gene therapy using gene editing tools. A recently identified, second silencing factor, leukemia/lymphoma-related factor/Pokemon, shares features with BCL11A, including interaction with the nucleosome remodeling deacetylase repressive complex. These findings suggest involvement of a common pathway for HbF silencing. In addition, we discuss other factors that may be involved in γ-globin gene silencing and their potential manipulation for therapeutic benefit in treating the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Elenoe C Smith
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
106
|
Kim AR, Sankaran VG. Development of autologous blood cell therapies. Exp Hematol 2016; 44:887-94. [PMID: 27345108 DOI: 10.1016/j.exphem.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation and blood cell transfusions are performed commonly in patients with a variety of blood disorders. Unfortunately, these donor-derived cell therapies are constrained due to limited supplies, infectious risk factors, a lack of appropriately matched donors, and the risk of immunologic complications from such products. The use of autologous cell therapies has been proposed to overcome these shortcomings. One can derive such therapies directly from hematopoietic stem and progenitor cells of individuals, which can then be manipulated ex vivo to produce the desired modifications or differentiated to produce a particular target population. Alternatively, pluripotent stem cells, which have a theoretically unlimited self-renewal capacity and an ability to differentiate into any desired cell type, can be used as an autologous starting source for such manipulation and differentiation approaches. Such cell products can also be used as a delivery vehicle for therapeutics. In this review, we highlight recent advances and discuss ongoing challenges for the in vitro generation of autologous hematopoietic cells that can be used for cell therapy.
Collapse
Affiliation(s)
- Ah Ram Kim
- Division of Hematology/Oncology, Boston Children's Hospital, and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
107
|
Abstract
Sickle-cell disease affects millions of individuals worldwide, but the global incidence is concentrated in Africa. The burden of sickle-cell disease is expected to continue to rise over the coming decades, adding to stress on the health infrastructures of many countries. Although the molecular cause of sickle-cell disease has been known for more than half a century, treatment options remain greatly limited. Allogeneic haemopoietic stem-cell transplantation is the only existing cure but is limited to specialised clinical centres and remains inaccessible for most patients. Induction of fetal haemoglobin production is a promising strategy for the treatment of sickle-cell disease. In this Series paper, we review scientific breakthroughs in epidemiology, genetics, and molecular biology that have brought reactivation of fetal haemoglobin to the forefront of sickle-cell disease research. Improved knowledge of the regulation of fetal haemoglobin production in human beings and the development of genome editing technology now support the design of innovative therapies for sickle-cell disease that are based on fetal haemoglobin.
Collapse
Affiliation(s)
- Guillaume Lettre
- Montreal Heart Institute, Montreal, QC, Canada; Université de Montréal, Montreal, QC, Canada.
| | - Daniel E Bauer
- Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
108
|
Customizing the genome as therapy for the β-hemoglobinopathies. Blood 2016; 127:2536-45. [PMID: 27053533 DOI: 10.1182/blood-2016-01-678128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Despite nearly complete understanding of the genetics of the β-hemoglobinopathies for several decades, definitive treatment options have lagged behind. Recent developments in technologies for facile manipulation of the genome (zinc finger nucleases, transcription activator-like effector nucleases, or clustered regularly interspaced short palindromic repeats-based nucleases) raise prospects for their clinical application. The use of genome-editing technologies in autologous CD34(+) hematopoietic stem and progenitor cells represents a promising therapeutic avenue for the β-globin disorders. Genetic correction strategies relying on the homology-directed repair pathway may repair genetic defects, whereas genetic disruption strategies relying on the nonhomologous end joining pathway may induce compensatory fetal hemoglobin expression. Harnessing the power of genome editing may usher in a second-generation form of gene therapy for the β-globin disorders.
Collapse
|
109
|
Simon R, Baumann L, Fischer J, Seigfried FA, De Bruyckere E, Liu P, Jenkins NA, Copeland NG, Schwegler H, Britsch S. Structure-function integrity of the adult hippocampus depends on the transcription factor Bcl11b/Ctip2. GENES BRAIN AND BEHAVIOR 2016; 15:405-19. [PMID: 26915960 PMCID: PMC4832350 DOI: 10.1111/gbb.12287] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
The dentate gyrus is one of the only two brain regions where adult neurogenesis occurs. Throughout life, cells of the neuronal stem cell niche undergo proliferation, differentiation and integration into the hippocampal neural circuitry. Ongoing adult neurogenesis is a prerequisite for the maintenance of adult hippocampal functionality. Bcl11b, a zinc finger transcription factor, is expressed by postmitotic granule cells in the developing as well as adult dentate gyrus. We previously showed a critical role of Bcl11b for hippocampal development. Whether Bcl11b is also required for adult hippocampal functions has not been investigated. Using a tetracycline‐dependent inducible mouse model under the control of the forebrain‐specific CaMKIIα promoter, we show here that the adult expression of Bcl11b is essential for survival, differentiation and functional integration of adult‐born granule cell neurons. In addition, Bcl11b is required for survival of pre‐existing mature neurons. Consequently, loss of Bcl11b expression selectively in the adult hippocampus results in impaired spatial working memory. Together, our data uncover for the first time a specific role of Bcl11b in adult hippocampal neurogenesis and function.
Collapse
Affiliation(s)
- R Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm
| | - L Baumann
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm.,Institute of Pathology and Neuropathology, University of Tübingen, Tübingen
| | - J Fischer
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm
| | - F A Seigfried
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm.,Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - E De Bruyckere
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm
| | - P Liu
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - N A Jenkins
- Houston Methodist Research Institute, Houston, TX, USA
| | - N G Copeland
- Houston Methodist Research Institute, Houston, TX, USA
| | - H Schwegler
- Institute of Anatomy, Otto-von-Guericke-University, Magdeburg, Germany
| | - S Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm
| |
Collapse
|
110
|
Bagheri H, Badduke C, Qiao Y, Colnaghi R, Abramowicz I, Alcantara D, Dunham C, Wen J, Wildin RS, Nowaczyk MJ, Eichmeyer J, Lehman A, Maranda B, Martell S, Shan X, Lewis SM, O’Driscoll M, Gregory-Evans CY, Rajcan-Separovic E. Identifying candidate genes for 2p15p16.1 microdeletion syndrome using clinical, genomic, and functional analysis. JCI Insight 2016; 1:e85461. [PMID: 27699255 PMCID: PMC5033885 DOI: 10.1172/jci.insight.85461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/09/2016] [Indexed: 01/14/2023] Open
Abstract
The 2p15p16.1 microdeletion syndrome has a core phenotype consisting of intellectual disability, microcephaly, hypotonia, delayed growth, common craniofacial features, and digital anomalies. So far, more than 20 cases of 2p15p16.1 microdeletion syndrome have been reported in the literature; however, the size of the deletions and their breakpoints vary, making it difficult to identify the candidate genes. Recent reports pointed to 4 genes (XPO1, USP34, BCL11A, and REL) that were included, alone or in combination, in the smallest deletions causing the syndrome. Here, we describe 8 new patients with the 2p15p16.1 deletion and review all published cases to date. We demonstrate functional deficits for the above 4 candidate genes using patients' lymphoblast cell lines (LCLs) and knockdown of their orthologs in zebrafish. All genes were dosage sensitive on the basis of reduced protein expression in LCLs. In addition, deletion of XPO1, a nuclear exporter, cosegregated with nuclear accumulation of one of its cargo molecules (rpS5) in patients' LCLs. Other pathways associated with these genes (e.g., NF-κB and Wnt signaling as well as the DNA damage response) were not impaired in patients' LCLs. Knockdown of xpo1a, rel, bcl11aa, and bcl11ab resulted in abnormal zebrafish embryonic development including microcephaly, dysmorphic body, hindered growth, and small fins as well as structural brain abnormalities. Our multifaceted analysis strongly implicates XPO1, REL, and BCL11A as candidate genes for 2p15p16.1 microdeletion syndrome.
Collapse
Affiliation(s)
- Hani Bagheri
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Chansonette Badduke
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Ying Qiao
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Iga Abramowicz
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Diana Alcantara
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Christopher Dunham
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Jiadi Wen
- University of Texas at Dallas, Dallas, Texas, USA
| | | | - Malgorzata J.M. Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | | | - Anna Lehman
- Department of Medical Genetics, UBC, Vancouver, British Columbia, Canada
| | - Bruno Maranda
- Medical Genetics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sally Martell
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Xianghong Shan
- Department of Ophthalmology, UBC, Vancouver, British Columbia, Canada
| | - Suzanne M.E. Lewis
- Department of Medical Genetics, UBC, Vancouver, British Columbia, Canada
| | - Mark O’Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | | | - Evica Rajcan-Separovic
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
111
|
Basak A, Sankaran VG. Regulation of the fetal hemoglobin silencing factor BCL11A. Ann N Y Acad Sci 2016; 1368:25-30. [PMID: 26963603 DOI: 10.1111/nyas.13024] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
The clinical severity of sickle cell disease and β-thalassemia, the major disorders of β-globin, can be ameliorated by increased production of fetal hemoglobin (HbF). Here, we provide a brief overview of the fetal-to-adult hemoglobin switch that occurs in humans shortly after birth and review our current understanding of one of the most potent known regulators of this switching process, the multiple zinc finger-containing transcription factor BCL11A. Originally identified in genome-wide association studies, multiple orthogonal lines of evidence have validated BCL11A as a key regulator of hemoglobin switching and as a promising therapeutic target for HbF induction. We discuss recent studies that have highlighted its importance in silencing the HbF-encoding genes and discuss opportunities that exist to further understand the regulation of BCL11A and its mechanism of action, which could provide new insight into opportunities to induce HbF for therapeutic purposes.
Collapse
Affiliation(s)
- Anindita Basak
- Division of Hematology/Oncology, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
112
|
Society for Pediatric Research 2015 Young Investigator Award: genetics of human hematopoiesis-what patients can teach us about blood cell production. Pediatr Res 2016; 79:366-70. [PMID: 26575596 DOI: 10.1038/pr.2015.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 11/09/2022]
Abstract
Blood cell production or hematopoiesis is one of the most well-understood paradigms of cell differentiation in the body. The majority of work on hematopoiesis comes from studies that have primarily been conducted in mice, zebrafish, or other valuable model systems. However, it is clear that such model organisms may not consistently and faithfully mimic what is observed in humans with blood disorders. Moreover, there is significant divergence between species that is increasingly being appreciated at the genomic level. As a result, there is an opportunity to use observations in humans to provide a refined view of hematopoiesis. Here, we discuss vignettes from our work that illustrate how insight from human genetics can improve our understanding of blood cell production and identify promising therapeutic approaches for blood disorders.
Collapse
|
113
|
Orkin SH. Recent advances in globin research using genome-wide association studies and gene editing. Ann N Y Acad Sci 2016; 1368:5-10. [PMID: 26866328 DOI: 10.1111/nyas.13001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A long-sought goal in the hemoglobin field has been an improved understanding of the mechanisms that regulate the switch from fetal (HbF) to adult (HbA) hemoglobin during development. With such knowledge, the hope is that strategies for directed reactivation of HbF in adults could be devised as an approach to therapy for the β-hemoglobinopathies thalassemia and sickle cell disease. Recent genome-wide association studies (GWAS) led to identification of three loci (BCL11A, HBS1L-MYB, and the β-globin cluster itself) in which natural genetic variation is correlated with different HbF levels in populations. Here, the central role of BCL11A in control of HbF is reviewed from the perspective of how findings may be translated to gene therapy in the not-too-distant future. This summary traces the evolution of recent studies from the initial recognition of BCL11A through GWAS to identification of critical sequences in an enhancer required for its erythroid-specific expression, thereby highlighting an Achilles heel for genome editing.
Collapse
Affiliation(s)
- Stuart H Orkin
- Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, and Howard Hughes Medical Institute, Boston, Massachusetts
| |
Collapse
|
114
|
Abstract
To assess the future of a clinical science one must first assess the rate of accrual of understanding in the past century. From the time of Cooley's description (1925) to 1964, the year of the first Symposium, progress was glacial because the molecular biology revolution in medicine was in its infancy and therapy other than transfusion was impossible. But between 1964 and 2015, progress has been huge on every front. Our patients ushered in the molecular biology revolution in medicine. They have benefited from far better understanding of molecular pathophysiology, substantial improvements in transfusion and chelation, more effective stem cell transplantation, the beginnings of gene therapy, and now major advances in our capacity to reinduce fetal hemoglobin. We have only lagged in the application of prevention technology in the less developed world that suffers the most from thalassemia and sickle cell disease. We must redouble our efforts to spare patients from these cruel diseases.
Collapse
|
115
|
Nandakumar SK, Ulirsch JC, Sankaran VG. Advances in understanding erythropoiesis: evolving perspectives. Br J Haematol 2016; 173:206-18. [PMID: 26846448 DOI: 10.1111/bjh.13938] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Red blood cells (RBCs) are generated from haematopoietic stem and progenitor cells (HSPCs) through the step-wise process of differentiation known as erythropoiesis. In this review, we discuss our current understanding of erythropoiesis and highlight recent advances in this field. During embryonic development, erythropoiesis occurs in three distinct waves comprising first, the yolk sac-derived primitive RBCs, followed sequentially by the erythro-myeloid progenitor (EMP) and HSPC-derived definitive RBCs. Recent work has highlighted the complexity and variability that may exist in the hierarchical arrangement of progenitors responsible for erythropoiesis. Using recently defined cell surface markers, it is now possible to enrich for erythroid progenitors and precursors to a much greater extent than has been possible before. While a great deal of knowledge has been gained on erythropoiesis from model organisms, our understanding of this process is currently being refined through human genetic studies. Genes mutated in erythroid disorders can now be identified more rapidly by the use of next-generation sequencing techniques. Genome-wide association studies on erythroid traits in healthy populations have also revealed new modulators of erythropoiesis. All of these recent developments have significant promise not only for increasing our understanding of erythropoiesis, but also for improving our ability to intervene when RBC production is perturbed in disease.
Collapse
Affiliation(s)
- Satish K Nandakumar
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
116
|
Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood 2015; 127:1481-92. [PMID: 26679864 DOI: 10.1182/blood-2015-09-667923] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/02/2015] [Indexed: 12/24/2022] Open
Abstract
Current therapeutic strategies for sickle cell anemia are aimed at reactivating fetal hemoglobin. Pomalidomide, a third-generation immunomodulatory drug, was proposed to induce fetal hemoglobin production by an unknown mechanism. Here, we report that pomalidomide induced a fetal-like erythroid differentiation program, leading to a reversion of γ-globin silencing in adult human erythroblasts. Pomalidomide acted early by transiently delaying erythropoiesis at the burst-forming unit-erythroid/colony-forming unit-erythroid transition, but without affecting terminal differentiation. Further, the transcription networks involved in γ-globin repression were selectively and differentially affected by pomalidomide including BCL11A, SOX6, IKZF1, KLF1, and LSD1. IKAROS (IKZF1), a known target of pomalidomide, was degraded by the proteasome, but was not the key effector of this program, because genetic ablation of IKZF1 did not phenocopy pomalidomide treatment. Notably, the pomalidomide-induced reprogramming was conserved in hematopoietic progenitors from individuals with sickle cell anemia. Moreover, multiple myeloma patients treated with pomalidomide demonstrated increased in vivo γ-globin levels in their erythrocytes. Together, these data reveal the molecular mechanisms by which pomalidomide reactivates fetal hemoglobin, reinforcing its potential as a treatment for patients with β-hemoglobinopathies.
Collapse
|
117
|
Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015; 527:192-7. [PMID: 26375006 PMCID: PMC4644101 DOI: 10.1038/nature15521] [Citation(s) in RCA: 629] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022]
Abstract
Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.
Collapse
Affiliation(s)
- Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elenoe C Smith
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Falak Sher
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Neville E Sanjana
- Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences and Department of Biological Engineering, MIT, Cambridge, Massachusetts 02142, USA
| | - Ophir Shalem
- Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences and Department of Biological Engineering, MIT, Cambridge, Massachusetts 02142, USA
| | - Diane D Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Patrick G Schupp
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sara P Garcia
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Sidinh Luc
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Takahiro Maeda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences and Department of Biological Engineering, MIT, Cambridge, Massachusetts 02142, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
118
|
Bcl11a (Ctip1) Controls Migration of Cortical Projection Neurons through Regulation of Sema3c. Neuron 2015; 87:311-25. [PMID: 26182416 DOI: 10.1016/j.neuron.2015.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/04/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
During neocortical development, neurons undergo polarization, oriented migration, and layer-type-specific differentiation. The transcriptional programs underlying these processes are not completely understood. Here, we show that the transcription factor Bcl11a regulates polarity and migration of upper layer neurons. Bcl11a-deficient late-born neurons fail to correctly switch from multipolar to bipolar morphology, resulting in impaired radial migration. We show that the expression of Sema3c is increased in migrating Bcl11a-deficient neurons and that Bcl11a is a direct negative regulator of Sema3c transcription. In vivo gain-of-function and rescue experiments demonstrate that Sema3c is a major downstream effector of Bcl11a required for the cell polarity switch and for the migration of upper layer neurons. Our data uncover a novel Bcl11a/Sema3c-dependent regulatory pathway used by migrating cortical neurons.
Collapse
|
119
|
2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment. Blood 2015; 126:89-93. [PMID: 26019277 DOI: 10.1182/blood-2015-04-638528] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/18/2015] [Indexed: 01/07/2023] Open
Abstract
Elevated fetal hemoglobin (HbF) ameliorates the clinical severity of hemoglobinopathies such as β-thalassemia and sickle cell anemia. Currently, the only curative approach for individuals under chronic transfusion/chelation support therapy is allogeneic stem cell transplantation. However, recent analyses of heritable variations in HbF levels have provided a new therapeutic target for HbF reactivation: the transcriptional repressor BCL11A. Erythroid-specific BCL11A abrogation is now actively being sought as a therapeutic avenue, but the specific impact of such disruption in humans remains to be determined. Although single nucleotide polymorphisms in BCL11A erythroid regulatory elements have been reported, coding mutations are scarcer. It is thus of great interest that patients have recently been described with microdeletions encompassing BCL11A. These patients display neurodevelopmental abnormalities, but whether they show increased HbF has not been reported. We have examined the hematological phenotype, HbF levels, and erythroid BCL11A expression in 3 such patients. Haploinsufficiency of BCL11A induces only partial developmental γ-globin silencing. Of greater interest is that a patient with a downstream deletion exhibits reduced BCL11A expression and increased HbF. Novel erythroid-specific regulatory elements in this region may be required for normal erythroid BCL11A expression, whereas loss of separate elements in the developing brain may explain the neurological phenotype.
Collapse
|