101
|
Racich MJ. Occlusion, temporomandibular disorders, and orofacial pain: An evidence-based overview and update with recommendations. J Prosthet Dent 2018; 120:678-685. [DOI: 10.1016/j.prosdent.2018.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
|
102
|
Changes in Brainstem Pain Modulation Circuitry Function over the Migraine Cycle. J Neurosci 2018; 38:10479-10488. [PMID: 30341182 DOI: 10.1523/jneurosci.1088-18.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
The neural mechanism responsible for migraine remains unclear. While an external trigger has been proposed to initiate a migraine, it has also been proposed that changes in brainstem function are critical for migraine headache initiation and maintenance. Although the idea of altered brainstem function has some indirect support, no study has directly measured brainstem pain modulation circuitry function in migraineurs particularly immediately before a migraine. In male and female humans, we performed fMRI in 31 controls and 31 migraineurs at various times in their migraine cycle. We measured brainstem function during noxious orofacial stimulation and assessed resting-state functional connectivity. First, we found that, in individual migraineurs, pain sensitivity increased over the interictal period but then dramatically decreased immediately before a migraine. Second, despite overall similar pain intensity ratings between groups, in the period immediately before a migraine, compared with controls and other migraine phases, migraineurs displayed greater activation in the spinal trigeminal nucleus during noxious orofacial stimulation and reduced functional connectivity of this region with the rostral ventromedial medulla. Additionally, during the interictal phase, migraineurs displayed reduced activation of the midbrain periaqueductal gray matter and enhanced periaqueductal gray connectivity with the rostral ventromedial medulla. These data support the hypothesis that brainstem sensitivity fluctuates throughout the migraine cycle. However, in contrast to the prevailing hypothesis, our data suggest that, immediately before a migraine attack, endogenous analgesic mechanisms are enhanced and incoming noxious inputs are less likely to reach higher brain centers.SIGNIFICANCE STATEMENT It has been hypothesized that alterations in brainstem function are critical for the generation of migraine. In particular, modulation of orofacial pain pathways by brainstem circuits alters the propensity of external triggers or ongoing spontaneous activity to evoke a migraine attack. We sought to obtain empirical evidence to support this theory. Contrary to our hypothesis, we found that pain sensitivity decreased immediately before a migraine, and this was coupled with increased sensitivity of the spinal trigeminal nucleus to noxious stimuli. We also found that resting connectivity within endogenous pain modulation circuitry alters across the migraine cycle. These changes may reflect enhanced and diminished neural tone states proposed to be critical for the generation of a migraine and underlie cyclic fluctuations in migraine brainstem sensitivity.
Collapse
|
103
|
Ex vivo visualization of the trigeminal pathways in the human brainstem using 11.7T diffusion MRI combined with microscopy polarized light imaging. Brain Struct Funct 2018; 224:159-170. [PMID: 30293214 PMCID: PMC6373363 DOI: 10.1007/s00429-018-1767-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023]
Abstract
Classic anatomical atlases depict a contralateral hemispheral representation of each side of the face. Recently, however, a bilateral projection of each hemiface was hypothesized, based on animal studies that showed the coexistence of an additional trigeminothalamic tract sprouting from the trigeminal principal sensory nucleus that ascends ipsilaterally. This study aims to provide an anatomical substrate for the hypothesized bilateral projection. Three post-mortem human brainstems were scanned for anatomical and diffusion magnetic resonance imaging at 11.7T. The trigeminal tracts were delineated in each brainstem using track density imaging (TDI) and tractography. To evaluate the reconstructed tracts, the same brainstems were sectioned for polarized light imaging (PLI). Anatomical 11.7T MRI shows a dispersion of the trigeminal tract (tt) into a ventral and dorsal portion. This bifurcation was also seen on the TDI maps, tractography results and PLI images of all three specimens. Referring to a similar anatomic feature in primate brains, the dorsal and ventral tracts were named the dorsal and ventral trigeminothalamic tract (dtt and vtt), respectively. This study shows that both the dtt and vtt are present in humans, indicating that each hemiface has a bilateral projection, although the functional relevance of these tracts cannot be determined by the present anatomical study. If both tracts convey noxious stimuli, this could open up new insights into and treatments for orofacial pain in patients.
Collapse
|
104
|
Nakazaki S, Tadokoro K, Takehana S, Syoji Y, Shimazu Y, Takeda M. Docosahexaenoic acid attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats. Eur J Oral Sci 2018; 126:458-465. [DOI: 10.1111/eos.12571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Sou Nakazaki
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Kazuya Tadokoro
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Shiori Takehana
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Yumiko Syoji
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| |
Collapse
|
105
|
Ayoub LJ, Seminowicz DA, Moayedi M. A meta-analytic study of experimental and chronic orofacial pain excluding headache disorders. NEUROIMAGE-CLINICAL 2018; 20:901-912. [PMID: 30292089 PMCID: PMC6176551 DOI: 10.1016/j.nicl.2018.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Chronic orofacial pain (COFP) disorders are prevalent and debilitating pain conditions affecting the head, neck and face areas. Neuroimaging studies have reported functional and grey matter abnormalities, but not all the studies have reported consistent findings. Identifying convergent abnormalities across COFPs provides a basis for future hypothesis-driven research aimed at elucidating common CNS mechanisms. Here, we perform three coordinate-based meta-analyses according to PRISMA guidelines to elucidate the central mechanisms of orofacial pain disorders. Specifically, we investigated consistent patterns of: (1) brain function to experimental orofacial pain in healthy subjects, (2) structural and (3) functional brain abnormalities in COFP. We computed our coordinate-based meta-analyses using GingerALE. The experimental pain meta-analysis revealed increased brain activity in bilateral thalami, posterior mid-cingulate cortices, and secondary somatosensory cortices, the right posterior parietal cortex extending to the orofacial region of the right primary somatosensory cortex and the right insula, and decreased activity in the right somatomotor regions. The structural COFP meta-analysis identified consistent higher grey matter volume/concentration in the right ventral thalamus and posterior putamen of COFP patients compared to healthy controls. The functional COFP meta-analysis identified a consistent increase in brain activity in the left medial and posterior thalamus and lesser activity in the left posterior insula in COFP, compared to healthy controls. Overall, these findings provide evidence of brain abnormalities in pain-related regions, namely the thalamus and insula, across different COFP disorders. The convergence of thalamic abnormalities in both structure and function suggest a key role for this region in COFP pathophysiology. Identifying convergent abnormalities in COFP can elucidate novel therapeutic targets. Experimental orofacial pain is associated with activity in nociceptive processing brain areas. Chronic orofacial pain (COFP) is associated with abnormal thalamic activity and grey matter. Our review highlights the need for more high quality COFP brain imaging studies.
Collapse
Affiliation(s)
- Lizbeth J Ayoub
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | - Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada; Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
106
|
Rhinogenic Contact Point Headache: Surgical Treatment Versus Medical Treatment. J Craniofac Surg 2018; 29:e228-e230. [PMID: 29283946 DOI: 10.1097/scs.0000000000004211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rhinogenic contact point headache (RCPH) is a headache syndrome secondary to mucosal contact points in the sinonasal cavities, in the absence of inflammatory signs, hyperplastic mucosa, purulent discharge, sinonasal polyps, or masses. It may result from pressure on the nasal mucosa due to anatomic variations among which the septal deviation, septal spur, and concha bullosa, are the most commonly observed. In recent years, RCPH has remained a subject of controversy regarding both its pathogenesis and treatment. This study aimed to investigate the effect of surgical and medical treatment of pain relief in patients with RCPH, evaluating the intensity, duration, and frequency of headaches, and the impact of different treatments on quality of life. Ninety-four patients with headache, no symptoms or signs of acute and chronic sinonasal inflammation and who present with intranasal mucosal contact points positive to the lidocaine test were randomized into 2 equal groups and given medical or surgical treatment. The authors used visual analog scale, number of hours, and days with pain to characterize the headache and Migraine Disability Assessment score (MIDAS) to assess the migraine disability score before and 3 to 6 months after treatment. After treatment the severity, duration, and frequency of the headache decreased significantly (P < 0.001, P < 0.001, and P = 0.031, respectively) as well as the MIDAS in the surgical group compared with medical group. Our results suggest that surgical removal of mucosal contact points is more effective than local medical treatment improving the therapeutic outcomes in patients with contact point headache.
Collapse
|
107
|
Michot B, Lee CS, Gibbs JL. TRPM8 and TRPA1 do not contribute to dental pulp sensitivity to cold. Sci Rep 2018; 8:13198. [PMID: 30181551 PMCID: PMC6123413 DOI: 10.1038/s41598-018-31487-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/15/2018] [Indexed: 01/17/2023] Open
Abstract
Sensory neurons innervating the dental pulp have unique morphological and functional characteristics compared to neurons innervating other tissues. Stimulation of dental pulp afferents whatever the modality or intensity of the stimulus, even light mechanical stimulation that would not activate nociceptors in other tissues, produces an intense pain. These specific sensory characteristics could involve receptors of the Transient Receptor Potential channels (TRP) family. In this study, we compared the expression of the cold sensitive receptors TRPM8 and TRPA1 in trigeminal ganglion neurons innervating the dental pulp, the skin of the cheek or the buccal mucosa and we evaluated the involvement of these receptors in dental pulp sensitivity to cold. We showed a similar expression of TRPM8, TRPA1 and CGRP in sensory neurons innervating the dental pulp, the skin or the mucosa. Moreover, we demonstrated that noxious cold stimulation of the tooth induced an overexpression of cFos in the trigeminal nucleus that was not prevented by the genetic deletion of TRPM8 or the administration of the TRPA1 antagonist HC030031. These data suggest that the unique sensory characteristics of the dental pulp are independent to TRPM8 and TRPA1 receptors expression and functionality.
Collapse
Affiliation(s)
- Benoit Michot
- Department of Endodontics, New York University College of Dentistry, New York, USA.
| | - Caroline S Lee
- Department of Endodontics, New York University College of Dentistry, New York, USA
| | - Jennifer L Gibbs
- Department of Endodontics, New York University College of Dentistry, New York, USA
| |
Collapse
|
108
|
Noguchi Y, Matsuzawa N, Akama Y, Sekiguchi K, Takehana S, Shimazu Y, Takeda M. Dietary constituent, decanoic acid suppresses the excitability of nociceptive trigeminal neuronal activity associated with hypoalgesia via muscarinic M2 receptor signaling. Mol Pain 2018; 13:1744806917710779. [PMID: 28474958 PMCID: PMC5448867 DOI: 10.1177/1744806917710779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Although decanoic acid (DA) is thought to act as a muscarinic cholinergic agonist, effect of DA on nociceptive behavioral responses and the excitability of nociceptive neuronal activity under in vivo conditions remain to be determined. The aim of the present study, therefore, was to investigate whether in vivo acute administration of ointment containing DA affects the excitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) neurons associated with hypoalgesia in naïve rats. Results After local application of DA, the threshold of escape from mechanical stimulation applied to the shaved orofacial skin was significantly higher than before DA application. Vehicle treatment (without DA) had no significant effect on the escape threshold from mechanical stimulation. Extracellular single unit recordings were made from SpVc wide-dynamic range (WDR) neurons in response to orofacial non-noxious and noxious mechanical stimuli of pentobarbital-anesthetized rats. The mean firing frequency of SpVc WDR neurons in response to noxious, but not non-noxious, mechanical stimuli was inhibited by local application of DA, and the maximum inhibition of discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 1–5 min. The DA-induced short-term inhibitory effects were reversed after approximately 10 min. Pretreatment intravenously with the muscarinic-specific M2 receptor antagonist, methoctramine, abolished the DA-induced suppression of firing frequency of SpVc WDR neurons in response to noxious stimulation. Fluorogold (FG) labeling was identified as the trigeminal ganglion (TG) neurons innervating orofacial skin. FG-labeled small-diameter TG neurons expressed M2 receptor immunoreactivity. Conclusion These results suggest that acute DA application induces short-term mechanical hypoalgesia and this effect was mainly due to suppression of the excitability of SpVc WDR neurons via the peripheral M2 receptor signaling pathway in the trigeminal primary afferents. These findings support the idea that DA is a potential therapeutic agent and complementary alternative medicine for the attenuation of trigeminal nociception in the absence of inflammatory/neuropathic conditions.
Collapse
Affiliation(s)
| | | | | | - Kenta Sekiguchi
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | | | | | | |
Collapse
|
109
|
Kakita K, Tsubouchi H, Adachi M, Takehana S, Shimazu Y, Takeda M. Local subcutaneous injection of chlorogenic acid inhibits the nociceptive trigeminal spinal nucleus caudalis neurons in rats. Neurosci Res 2018; 134:49-55. [DOI: 10.1016/j.neures.2017.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022]
|
110
|
Jang SH, Park SJ, Lee CJ, Ahn DK, Han SK. Botulinum toxin type A enhances the inhibitory spontaneous postsynaptic currents on the substantia gelatinosa neurons of the subnucleus caudalis in immature mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:539-546. [PMID: 30181700 PMCID: PMC6115353 DOI: 10.4196/kjpp.2018.22.5.539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022]
Abstract
Botulinum toxin type A (BoNT/A) has been used therapeutically for various conditions including dystonia, cerebral palsy, wrinkle, hyperhidrosis and pain control. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) receive orofacial nociceptive information from primary afferents and transmit the information to higher brain center. Although many studies have shown the analgesic effects of BoNT/A, the effects of BoNT/A at the central nervous system and the action mechanism are not well understood. Therefore, the effects of BoNT/A on the spontaneous postsynaptic currents (sPSCs) in the SG neurons were investigated. In whole cell voltage clamp mode, the frequency of sPSCs was increased in 18 (37.5%) neurons, decreased in 5 (10.4%) neurons and not affected in 25 (52.1%) of 48 neurons tested by BoNT/A (3 nM). Similar proportions of frequency variation of sPSCs were observed in 1 and 10 nM BoNT/A and no significant differences were observed in the relative mean frequencies of sPSCs among 1-10 nM BoNT/A. BoNT/A-induced frequency increase of sPSCs was not affected by pretreated tetrodotoxin (0.5 µM). In addition, the frequency of sIPSCs in the presence of CNQX (10 µM) and AP5 (20 µM) was increased in 10 (53%) neurons, decreased in 1 (5%) neuron and not affected in 8 (42%) of 19 neurons tested by BoNT/A (3 nM). These results demonstrate that BoNT/A increases the frequency of sIPSCs on SG neurons of the Vc at least partly and can provide an evidence for rapid action of BoNT/A at the central nervous system.
Collapse
Affiliation(s)
- Seon-Hui Jang
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Korea
| | - Soo-Joung Park
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Korea
| | - Chang-Jin Lee
- Research and Development Division, Hugel Inc., Chuncheon 24206, Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Seong-Kyu Han
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
111
|
Henderson LA. Trigeminal neuropathic pain: Evidence of central changes from human brain imaging investigations. AUST ENDOD J 2018. [DOI: 10.1111/aej.12250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luke A. Henderson
- Department of Anatomy and Histology; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
112
|
Mehalick ML, Glueck AC. Examining the relationship and clinical management between traumatic brain injury and pain in military and civilian populations. Brain Inj 2018; 32:1307-1314. [PMID: 29993307 DOI: 10.1080/02699052.2018.1495339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, we discuss the comorbidity of traumatic brain injury (TBI) and pain among civilians and military members, the common causes of pain resulting from TBI, and offer insight about the therapeutic management of TBI symptoms and pain. Traumatic brain injury (TBI) is a debilitating health problem and one of the most common post-TBI symptoms is pain, which can contribute to psychological issues such as Post-traumatic stress disorder (PTSD) and depression. Headache pain appears to be the most common type of pain that results from TBI, yet pain can also be more widespread. Managing TBI symptoms and pain simultaneously is difficult because extensive randomized control and clinical studies assessing the effectiveness of therapeutic approaches are lacking. Pharmacological agents such as antidepressants and Triptans and nonpharmacological therapies such as cognitive rehabilitation and physical therapies are commonly used yet it is unknown how effective these therapies are in the long-term. A combination of pharmacological and non-pharmacological therapies is often more effective for managing TBI symptoms and pain than either treatment alone. However, future research is needed to determine the most therapeutic approaches for managing the comorbidity of pain and TBI symptoms in the long term. This review offers suggestions for such future studies.
Collapse
Affiliation(s)
- Melissa L Mehalick
- a Department of Neurotrauma, Operational and Undersea Medicine Directorate , Naval Medical Research Center , Silver Spring , MD, USA
| | - Amanda C Glueck
- b Sports Medicine Research Institute , University of Kentucky , Lexington , KY, USA
| |
Collapse
|
113
|
Abstract
OBJECTIVES The aim of this study is to investigate the role of peroxisome proliferator-activated receptor-gamma isoform (PPARγ), in trigeminal neuropathic pain utilizing a novel mouse trigeminal inflammatory compression (TIC) injury model. RESULTS The study determined that the PPARγ nuclear receptor plays a significant role in trigeminal nociception transmission, evidenced by: 1) Intense PPARγ immunoreactivity is expressed 3 weeks after TIC nerve injury in the spinal trigeminal caudalis, the termination site of trigeminal nociceptive nerve fibers. 2) Systemic administration of a PPARγ agonist, pioglitazone (PIO), attenuates whisker pad mechanical allodynia at doses of 300 mg/kg i.p. and 600 mg/kg p.o. 3) Administration of a PPARγ antagonist, GW9662 (30 mg/kg i.p.), prior to providing the optimal dose of PIO (300 mg/kg i.p.) blocked the analgesic effect of PIO. DISCUSSION This is the first study localizing PPARγ immunoreactivity throughout the brainstem trigeminal sensory spinal nucleus (spV) and its increase three weeks after TIC nerve injury. This is also the first study to demonstrate that activation of PPARγ attenuates trigeminal hypersensitivity in the mouse TIC nerve injury model. The findings presented here suggest the possibility of utilizing the FDA approved diabetic treatment drug, PIO, as a new therapeutic that targets PPARγ for treatment of patients suffering from orofacial neuropathic pain.
Collapse
|
114
|
SOUZA SP, ANTEQUERDDS R, ARATANGY EW, SIQUEIRA SRDT, CORDÁS TA, SIQUEIRA JTT. Pain and temporomandibular disorders in patients with eating disorders. Braz Oral Res 2018; 32:e51. [DOI: 10.1590/1807-3107bor-2018.vol32.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
|
115
|
Hidaka S, Kanai Y, Takehana S, Syoji Y, Kubota Y, Uotsu N, Yui K, Shimazu Y, Takeda M. Systemic administration of α-lipoic acid suppresses excitability of nociceptive wide-dynamic range neurons in rat spinal trigeminal nucleus caudalis. Neurosci Res 2018; 144:14-20. [PMID: 29885345 DOI: 10.1016/j.neures.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Although a modulatory role has been reported for α-lipoic acid (LA) on T-type Ca2+ channels in the nervous system, the acute effects of LA in vivo, particularly on nociceptive transmission in the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous LA administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from seventeen SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was significantly and dose-dependently inhibited by LA (1-100 mM, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 5 min. These inhibitory effects lasted for approximately 10 min. These results suggest that acute intravenous LA administration suppresses trigeminal sensory transmission, including nociception, via possibly blocking T-type Ca2+ channels. LA may be used as a therapeutic agent for the treatment of trigeminal nociceptive pain.
Collapse
Affiliation(s)
- S Hidaka
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Kanai
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - S Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Syoji
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Kubota
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - N Uotsu
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - K Yui
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - Y Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - M Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
116
|
Shahsavari F, Abbasnejad M, Esmaeili-Mahani S, Raoof M. Orexin-1 receptors in the rostral ventromedial medulla are involved in the modulation of capsaicin evoked pulpal nociception and impairment of learning and memory. Int Endod J 2018; 51:1398-1409. [PMID: 29858522 DOI: 10.1111/iej.12958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/30/2018] [Indexed: 12/01/2022]
Abstract
AIM To investigate the role of rostral ventromedial medulla orexin-1 receptors in the modulation of orofacial nociception as well as nociception-induced learning and memory impairment in adult male rats. METHODOLOGY Pulpal nociception was induced by intradental application of capsaicin (100 μg) into the incisors of rats. Orexin-1 receptors agonist (orexin-A, 10, 25 and 50 pmol L-1 rat-1 ) and antagonist (SB-334867-A, 40 and 80 nmol L-1 rat-1 ) were microinjected into the rostral ventromedial medulla prior to capsaicin administration. Total time spent on nocifensive behaviour was recorded by direct visualization of freely moving rats whilst learning and memory were evaluated by the Morris water maze test. One-way analysis of variance and repeated-measures were used for the statistical analysis. RESULTS Capsaicin-treated rats had a significant increase of nocifensive behaviours (P < 0.001), as well as learning and memory impairment (P < 0.001). However, intraventromedial medulla prior micro-injection of orexin-A (50 pmol L-1 rat-1 ) significantly reduced the nociceptive behaviour (P < 0.001). This effect was blocked by pre-treatment with SB334867-A (80 nmol L-1 rat-1 ). Orexin-A (50 pmol L-1 rat-1 ) also inhibited nociception-induced learning and memory deficits. Moreover, administration of SB-334867-A (80 nmol L-1 rat-1 ) plus orexin-A (50 pmol L-1 rat-1 ) had no effect on learning and memory deficits induced by capsaicin. CONCLUSIONS The data suggest that rostral ventromedial medulla orexin-A receptors are involved in pulpal nociceptive modulation and improvement of learning and memory deficits induced by intradental application of capsaicin.
Collapse
Affiliation(s)
- F Shahsavari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - M Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - S Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - M Raoof
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
117
|
Electromyographic Analysis of Masticatory Muscles in Cleft Lip and Palate Children with Pain-Related Temporomandibular Disorders. Pain Res Manag 2018; 2018:4182843. [PMID: 29861801 PMCID: PMC5971269 DOI: 10.1155/2018/4182843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/16/2018] [Accepted: 04/12/2018] [Indexed: 11/17/2022]
Abstract
Aim The aim of this study was to assess the electrical activity of temporalis and masseter muscles in children with cleft lip and palate (CLP) and pain-related temporomandibular disorders (TMD-P). Methods The sample consisted of 31 CLP patients with a TMD-P (mean age 9.5 ± 1.8 years) and 32 CLP subjects with no TMD (mean age 9.2 ± 1.7 years). The children were assessed for the presence of temporomandibular disorders (TMD) using Axis I of the Research Diagnostic Criteria for TMD (RDC/TMD). Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany) in the mandibular rest position and during maximum voluntary contraction (MVC). Results The rest activity of the temporalis and masseter muscles was significantly higher in TMD-P group compared with non-TMD children. A significant decrease in temporalis muscle activity during MVC was observed in TMD-P patients. There was a significant increase in the Asymmetry Index for temporalis and masseter muscle rest activity in the TMD-P group. Conclusion Cleft children diagnosed with TMD-P have altered masticatory muscle activity, and this can affect their muscle function.
Collapse
|
118
|
Töle J, Stolzenburg A, Tyree SM, Stähler F, Meyerhof W. Tastant-Evoked Arc Expression in the Nucleus of the Solitary Tract and Nodose/Petrosal Ganglion of the Mouse Is Specific for Bitter Compounds. Chem Senses 2018. [PMID: 29514200 DOI: 10.1093/chemse/bjy017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite long and intense research, some fundamental questions regarding representation of taste information in the brain still remain unanswered. This might in part be due to shortcomings of the established methods that limit the researcher either to thorough characterization of few elements or to analyze the response of the entirety of neurons to only one stimulus. To overcome these restrictions, we evaluate the use of the immediate early gene Arc as a neuronal activity marker in the early neural structures of the taste pathway, the nodose/petrosal ganglion (NPG) and the nucleus of the solitary tract (NTS). Responses of NPG and NTS neurons were limited to substances that taste bitter to humans and are avoided by mice. Arc-expressing cells were concentrated in the rostromedial part of the dorsal NTS suggesting a role in gustatory processing. The use of Arc as a neuronal activity marker has several advantages, primarily the possibility to analyze the response of large numbers of neurons while using more than one stimulus makes Arc an interesting new tool for research in the early stages of taste processing.
Collapse
Affiliation(s)
- Jonas Töle
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | | | | | | | | |
Collapse
|
119
|
Gil-Martínez A, Paris-Alemany A, López-de-Uralde-Villanueva I, La Touche R. Management of pain in patients with temporomandibular disorder (TMD): challenges and solutions. J Pain Res 2018; 11:571-587. [PMID: 29588615 PMCID: PMC5859913 DOI: 10.2147/jpr.s127950] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Thanks to advances in neuroscience, biopsychosocial models for diagnostics and treatment (including physical, psychological, and pharmacological therapies) currently have more clinical support and scientific growth. At present, a conservative treatment approach prevails over surgery, given it is less aggressive and usually results in satisfactory clinical outcomes in mild–moderate temporomandibular disorder (TMD). The aim of this review is to evaluate the recent evidence, identify challenges, and propose solutions from a clinical point of view for patients with craniofacial pain and TMD. The treatment we propose is structured in a multi-modal approach based on a biobehavioral approach that includes medical, physiotherapeutic, psychological, and dental treatments. We also propose a new biobehavioral model regarding pain perception and motor behavior for the diagnosis and treatment of patients with painful TMD.
Collapse
Affiliation(s)
- Alfonso Gil-Martínez
- Department of Physiotherapy.,Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid.,Hospital La Paz Institute for Health Research, IdiPAZ
| | - Alba Paris-Alemany
- Department of Physiotherapy.,Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid.,Hospital La Paz Institute for Health Research, IdiPAZ.,Institute of Neuroscience and Craniofacial Pain (INDCRAN), Madrid, Spain
| | - Ibai López-de-Uralde-Villanueva
- Department of Physiotherapy.,Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid.,Hospital La Paz Institute for Health Research, IdiPAZ
| | - Roy La Touche
- Department of Physiotherapy.,Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid.,Hospital La Paz Institute for Health Research, IdiPAZ.,Institute of Neuroscience and Craniofacial Pain (INDCRAN), Madrid, Spain
| |
Collapse
|
120
|
Velásquez C, Tambirajoo K, Franceschini P, Eldridge PR, Farah JO. Upper Cervical Spinal Cord Stimulation as an Alternative Treatment in Trigeminal Neuropathy. World Neurosurg 2018; 114:e641-e646. [PMID: 29548953 DOI: 10.1016/j.wneu.2018.03.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To describe the indications and outcomes of upper cervical cord stimulation in trigeminal neuropathy. METHODS A consecutive single-center series of patients was retrospectively reviewed. It included 12 patients with trigeminal neuropathy treated with upper cervical spinal cord stimulation. Clinical features, complications, and outcomes were reviewed. RESULTS All patients had a successful trial before the definitive implantation of a spinal cord stimulator at the level of the craniocervical junction. The mean follow-up period was 4.4 years (range, 0.3-21.1 years). The average coverage in the pain zone was 72% and the median baseline, trial, and postoperative numeric rating scale (NRS) was 7, 3, and 3, respectively. When compared with the baseline, the mean reduction achieved in the postoperative average numeric rating scale was 4 points, accounting for a 57.1% pain reduction. The long-term failure rate was 25%. CONCLUSIONS Despite there being enough evidence to consider upper cervical spinal cord stimulation as an effective treatment for patients with neuropathic trigeminal pain, a randomized controlled trial is needed to fully assess its indications and outcomes and compare it with other therapeutic approaches.
Collapse
Affiliation(s)
- Carlos Velásquez
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| | - Kantharuby Tambirajoo
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Paulo Franceschini
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Paul R Eldridge
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Jibril Osman Farah
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
121
|
Yao D, Sessle BJ. Face sensorimotor cortex undergoes neuroplastic changes in a rat model of trigeminal neuropathic pain. Exp Brain Res 2018. [PMID: 29520443 DOI: 10.1007/s00221-018-5226-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Trigeminal nerve injury can result in neuropathic pain behavior and alterations in motor function, but it is unclear if such injury produces neuroplastic alterations in face sensorimotor cortex that could contribute to the alterations in motor function. Therefore, this study aimed to determine if trigeminal nerve injury in a rat neuropathic pain model induces neuroplastic changes in jaw and tongue motor representations in face sensorimotor cortex in association with facial nociceptive behavior. Right infraorbital nerve transection was performed in adult male Sprague-Dawley rats; sham-operated rats served as controls. Nociceptive behavior was assessed by testing facial mechanical sensitivity pre-operatively and post-operatively (1-28 days). Intracortical microstimulation was also applied post-operatively in a series of microelectrode penetrations to map jaw and tongue motor representations in the face sensorimotor cortex by analyzing anterior digastric and genioglossus electromyographic activities evoked by microstimulation at histologically verified sites in face primary somatosensory cortex (face-SI) as well as face primary motor cortex (face-MI). Compared to sham, infraorbital nerve injury induced a significant (2-way repeated-measures analysis of variance, P < 0.001) bilateral decrease in facial mechanical threshold that lasted up to 28 days post-operatively. Nerve injury also induced a significant bilateral decrease compared to sham (P < 0.05) in the number of anterior digastric and/or genioglossus sites in face-MI and in face-SI. These findings indicate that trigeminal nerve injury induces neuroplastic alterations in jaw and tongue motor representations in face sensorimotor cortex that are associated with facial nociceptive behavior and that may contribute to sensorimotor changes following trigeminal nerve injury.
Collapse
Affiliation(s)
- Dongyuan Yao
- School of Pharmaceutical Science and Jiangxi Mental Hospital, Nanchang University, 461 Bayi Road, Nanchang, 330006, Jiangxi, China. .,Department of Physiology, Faculty of Dentistry, and Faculty of Medicine, University of Toronto, 124 Edward St., Toronto, ON, M5G 1G6, Canada.
| | - Barry J Sessle
- Department of Physiology, Faculty of Dentistry, and Faculty of Medicine, University of Toronto, 124 Edward St., Toronto, ON, M5G 1G6, Canada
| |
Collapse
|
122
|
Takehana S, Kubota Y, Uotsu N, Yui K, Iwata K, Shimazu Y, Takeda M. The dietary constituent resveratrol suppresses nociceptive neurotransmission via the NMDA receptor. Mol Pain 2017; 13:1744806917697010. [PMID: 28326937 PMCID: PMC5407661 DOI: 10.1177/1744806917697010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Although we have previously reported that intravenous resveratrol administration inhibits the nociceptive neuronal activity of spinal trigeminal nucleus caudalis neurons, the site of the central effect remains unclear. The aim of the present study was to examine whether acute intravenous resveratrol administration in the rat attenuates central glutamatergic transmission of spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation in vivo, using extracellular single-unit recordings and microiontophoretic techniques. Results Extracellular single-unit recordings using multibarrel electrodes were made from the spinal trigeminal nucleus caudalis wide dynamic range neurons responding to orofacial mechanical stimulation in pentobarbital anesthetized rats. These neurons also responded to iontophoretic application of glutamate, and the evoked neuronal discharge frequency was significantly increased in a current-dependent and reversible manner. The mean firing frequency evoked by the iontophoretic application of glutamate (30, 50, and 70 nA) was mimicked by the application of 10 g, 60 g, and noxious pinch mechanical stimulation, respectively. The mean firing frequency of spinal trigeminal nucleus caudalis wide dynamic range neurons responding to iontophoretic application of glutamate and N-methyl-D-aspartate were also significantly inhibited by intravenous administration of resveratrol (2 mg/kg) and the maximal inhibition of discharge frequency was observed within 10 min. These inhibitory effects lasted approximately 20 min. The relative magnitude of inhibition by resveratrol of the glutamate-evoked spinal trigeminal nucleus caudalis wide dynamic range neuronal discharge frequency was similar to that for N-methyl-D-aspartate iontophoretic application. Conclusion These results suggest that resveratrol suppresses glutamatergic neurotransmission of the spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation via the N-methyl-D-aspartate receptor in vivo, and resveratrol may be useful as a complementary or alternative therapeutic agent for the treatment of trigeminal nociceptive pain.
Collapse
Affiliation(s)
- Shiori Takehana
- 1 Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| | - Yoshiko Kubota
- 2 FANCL Health Science Research Center, Research Institute, FANCL Corporation, Kanagawa, Japan
| | - Nobuo Uotsu
- 2 FANCL Health Science Research Center, Research Institute, FANCL Corporation, Kanagawa, Japan
| | - Kei Yui
- 2 FANCL Health Science Research Center, Research Institute, FANCL Corporation, Kanagawa, Japan
| | - Koichi Iwata
- 3 Department of Physiology, School of Dentistry, Nihon University, Tokyo, Japan
| | - Yoshihito Shimazu
- 1 Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| | - Mamoru Takeda
- 1 Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| |
Collapse
|
123
|
Avivi-Arber L, Sessle BJ. Jaw sensorimotor control in healthy adults and effects of ageing. J Oral Rehabil 2017; 45:50-80. [DOI: 10.1111/joor.12554] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
Affiliation(s)
- L. Avivi-Arber
- Faculty of Dentistry; University of Toronto; Toronto ON Canada
| | - B. J. Sessle
- Faculty of Dentistry; University of Toronto; Toronto ON Canada
| |
Collapse
|
124
|
Hossain MZ, Unno S, Ando H, Masuda Y, Kitagawa J. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region. Int J Mol Sci 2017; 18:ijms18102051. [PMID: 28954391 PMCID: PMC5666733 DOI: 10.3390/ijms18102051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023] Open
Abstract
Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Yuji Masuda
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
125
|
Multimodal Frequency Treatment for Facial Pain Caused by Chronic Rhinosinusitis: A Pilot Study. SINUSITIS 2017. [DOI: 10.3390/sinusitis2030005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
126
|
Matsumoto Y, Komatsu K, Shimazu Y, Takehana S, Syouji Y, Kobayashi A, Takeda M. Effect of resveratrol onc-fosexpression of rat trigeminal spinal nucleus caudalis and C1 dorsal horn neurons following mustard oil-induced acute inflammation. Eur J Oral Sci 2017; 125:338-344. [DOI: 10.1111/eos.12362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhiro Matsumoto
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Kyouhei Komatsu
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Shiori Takehana
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Yumiko Syouji
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Ayumu Kobayashi
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences; Department of Life and Food Sciences; School of Life and Environmental Sciences; Azabu University; Sagamihara Kanagawa Japan
| |
Collapse
|
127
|
Hirahara M, Fujiwara N, Seo K. Novel trigeminal slice preparation method for studying mechanisms of nociception transmission. J Neurosci Methods 2017; 286:6-15. [PMID: 28522210 DOI: 10.1016/j.jneumeth.2017.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The trigeminal subnucleus caudalis (Vc) plays a critical role in transmission and modulation of nociceptive afferent inputs, and exhibits a similar layer construction to the spinal dorsal horn. However, afferent inputs enter the brainstem and project to a separately located nucleus. It has previously been difficult to record responses of the Vc to afferent fiber activation in a brainstem slice preparation. The aim of the present study was to establish a novel brainstem slice preparation method to study trigeminal nociceptive transmission mechanisms. NEW METHOD Thirty adult 6-7-week-old C57/BL6J male mice were included in the study. Obliquely sliced brainstem sections at a thickness of 600μm, which included the Vc and the root entry zone to the brainstem, were prepared. The Vc response to electrical stimulation of afferent fibers was observed as a change in intracellular calcium concentration by fluorescence intensity response. RESULTS Electrical stimulation of afferent inputs to the trigeminal nerve increased fluorescent intensity in the Vc, which was completely diminished by tetrodotoxin and significantly suppressed by the AMPA/kainate antagonist CNQX (paired t-test, P<0.001), although the non-competitive NMDA antagonist (+)-MK801 maleate resulted in no changes. These results suggested a glutamate receptor-mediated response. COMPARISON WITH EXISTING METHODS/CONCLUSION This brainstem slice preparation will be useful for investigating nociceptive transmission mechanisms of the trigeminal nerve.
Collapse
Affiliation(s)
- Mikiko Hirahara
- Division of Dental Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata City 951-8514, Japan
| | - Naoshi Fujiwara
- Division of Medical Technology, Niigata University Graduate School of Health Sciences, Japan
| | - Kenji Seo
- Division of Dental Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata City 951-8514, Japan.
| |
Collapse
|
128
|
Lee HI, Park BR, Chun SW. Reactive oxygen species increase neuronal excitability via activation of nonspecific cation channel in rat medullary dorsal horn neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:371-376. [PMID: 28706450 PMCID: PMC5507775 DOI: 10.4196/kjpp.2017.21.4.371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/10/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The caudal subnucleus of the spinal trigeminal nucleus (medullary dorsal horn; MDH) receives direct inputs from small diameter primary afferent fibers that predominantly transmit nociceptive information in the orofacial region. Recent studies indicate that reactive oxygen species (ROS) is involved in persistent pain, primarily through spinal mechanisms. In this study, we aimed to investigate the role of xanthine/xanthine oxidase (X/XO) system, a known generator of superoxide anion (O2·−), on membrane excitability in the rat MDH neurons. For this, we used patch clamp recording and confocal imaging. An application of X/XO (300 µM/30 mU) induced membrane depolarization and inward currents. When slices were pretreated with ROS scavengers, such as phenyl N-tert-butylnitrone (PBN), superoxide dismutase (SOD), and catalase, X/XO-induced responses decreased. Fluorescence intensity in the DCF-DA and DHE-loaded MDH cells increased on the application of X/XO. An anion channel blocker, 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), significantly decreased X/XO-induced depolarization. X/XO elicited an inward current associated with a linear current-voltage relationship that reversed near −40 mV. X/XO-induced depolarization reduced in the presence of La3+, a nonselective cation channel (NSCC) blocker, and by lowering the external sodium concentration, indicating that membrane depolarization and inward current are induced by influx of Na+ ions. In conclusion, X/XO-induced ROS modulate the membrane excitability of MDH neurons, which was related to the activation of NSCC.
Collapse
Affiliation(s)
- Hae In Lee
- Department of Dental Hygiene, Gwangyang Health Science University, Gwangyang 57764, Korea
| | - Byung Rim Park
- Department of Physiology, College of Medicine, Wonkwang University, Iksan 54538, Korea
| | - Sang Woo Chun
- Department of Oral Physiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
129
|
Awawdeh L, Hemaidat K, Al-Omari W. Higher Maximal Occlusal Bite Force in Endodontically Treated Teeth Versus Vital Contralateral Counterparts. J Endod 2017; 43:871-875. [DOI: 10.1016/j.joen.2016.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/25/2016] [Accepted: 12/30/2016] [Indexed: 10/19/2022]
|
130
|
Post-operative orofacial pain, temporomandibular dysfunction and trigeminal sensitivity after recent pterional craniotomy: preliminary study. Acta Neurochir (Wien) 2017; 159:799-805. [PMID: 28271298 DOI: 10.1007/s00701-017-3137-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Surgical trauma at the temporalis muscle is a potential cause of post-craniotomy headache and temporomandibular disorders (TMD). The aim of this study was to evaluate the prevalence of pain, masticatory dysfunction and trigeminal somatosensory abnormalities in patients who acquired aneurysms following pterional craniotomy. METHODS Fifteen patients were evaluated before and after the surgical procedure by a trained dentist. The evaluation consisted of the (1) research diagnostic criteria for TMD, (2) a standardized orofacial pain questionnaire and (3) a systematic protocol for quantitative sensory testing (QST) for the trigeminal nerve. RESULTS After pterional craniotomy, 80% of the subjects, 12 patients, developed orofacial pain triggered by mandibular function. The pain intensity was measured by using the visual analog scale (VAS), and the mean pain intensity was 3.7. The prevalence of masticatory dysfunction was 86.7%, and there was a significant reduction of the maximum mouth opening. The sensory evaluation showed tactile and thermal hypoesthesia in the area of pterional access in all patients. CONCLUSIONS There was a high frequency of temporomandibular dysfunction, postoperative orofacial pain and trigeminal sensory abnormalities. These findings can help to understand several abnormalities that can contribute to postoperative headache or orofacial pain complaints after pterional surgeries.
Collapse
|
131
|
Henderson LA, Keay KA. Imaging Acute and Chronic Pain in the Human Brainstem and Spinal Cord. Neuroscientist 2017; 24:84-96. [PMID: 28447501 DOI: 10.1177/1073858417703911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
While acute pain serves as a protective mechanism designed to warn an individual of potential or actual damaging stimuli, chronic pain provides no benefit and is now considered a disease in its own right. Since the advent of human brain imaging techniques, many investigations that have explored the central representation of acute and chronic pain have focused on changes in higher order brain regions. In contrast, far fewer have explored brainstem and spinal cord function, mainly due to significant technical difficulties. In this review, we present some of the recent human brain imaging studies that have specifically explored brainstem and spinal cord function during acute noxious stimuli and in individuals with chronic pain. We focus particularly on investigations that explore changes in areas that receive nociceptor afferents and compare humans and experimental animal data in an attempt to describe both microscopic and macroscopic changes associated with acute and chronic pain.
Collapse
Affiliation(s)
- Luke A Henderson
- 1 Department of Anatomy and Histology, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin A Keay
- 1 Department of Anatomy and Histology, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
132
|
Abstract
Aim To provide an overview of mechanisms underlying craniofacial pain; to highlight peripheral and central adaptations that may promote chronification of pain in craniofacial pain states such as migraine and temporomandibular disorders (TMD). Background Pain is a common symptom associated with disorders involving craniofacial tissues including the teeth and their supporting structures, the temporomandibular joint and the muscles of the head. Most acute painful craniofacial conditions are easily recognized and well managed, but others, especially those that are chronic (e.g., migraine, TMD and trigeminal neuropathies), present clinical challenges. Preclinical studies have provided substantial information about the anatomical and physiological mechanisms related to the initiation and modulation of nociceptive signals in the trigeminal system. While knowledge of the mechanisms underlying chronic craniofacial pain remains limited, both clinical and preclinical investigations suggest that changes in afferent inputs to the brain as well as in brain structure and modulatory pathways occur in chronic pain. Collectively, these changes result in amplification of nociception that promotes and sustains craniofacial chronic pain states. Conclusions The increased understanding gained of the physiological and pathological processing of nociception in the trigeminal system has provided new perspectives for the mechanistic understanding of acute craniofacial pain conditions and the peripheral and central adaptations that are related to pain chronification. Such knowledge may contribute to improvements in currently available treatments as well as to the development of novel analgesic therapies.
Collapse
Affiliation(s)
- Juliana Geremias Chichorro
- 1 Departamento de Farmacologia, Universidade Federal do Parana - UFPR Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | - Frank Porreca
- 2 Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Barry Sessle
- 3 Department of Oral Physiology Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,4 Department of Physiology Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
133
|
Perturbed oral motor control due to anesthesia during intraoral manipulation of food. Sci Rep 2017; 7:46691. [PMID: 28425479 PMCID: PMC5397972 DOI: 10.1038/srep46691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
Sensory information from periodontal mechanoreceptors (PMRs) surrounding the roots of natural teeth is important for optimizing the positioning of food and adjustment of force vectors during precision biting. The present experiment was designed to test the hypothesis; that reduction of afferent inputs from the PMRs, by anesthesia, perturbs the oral fine motor control and related jaw movements during intraoral manipulation of morsels of food. Thirty healthy volunteers with a natural dentition were equally divided into experimental and control groups. The participants in both groups were asked to manipulate and split a spherical candy into two equal halves with the front teeth. An intervention was made by anesthetizing the upper and lower incisors of the experimental group while the control group performed the task without intervention. Performance of the split was evaluated and the jaw movement recorded. The experimental group demonstrated a significant decrease in measures of performance following local anesthesia. However, there was no significant changes in the duration or position of the jaw during movements in the experimental and control group. In conclusion, transient deprivation of sensory information from PMRs perturbs oral fine motor control during intraoral manipulation of food, however, no significant alterations in duration or positions of the jaw during movements can be observed.
Collapse
|
134
|
Saito H, Katagiri A, Okada S, Mikuzuki L, Kubo A, Suzuki T, Ohara K, Lee J, Gionhaku N, Iinuma T, Bereiter DA, Iwata K. Ascending projections of nociceptive neurons from trigeminal subnucleus caudalis: A population approach. Exp Neurol 2017; 293:124-136. [PMID: 28366470 DOI: 10.1016/j.expneurol.2017.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
Second-order neurons in trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1) are critical for craniofacial pain processing and project rostrally to terminate in: ventral posteromedial thalamic nucleus (VPM), medial thalamic nuclei (MTN) and parabrachial nuclei (PBN). The contribution of each region to trigeminal nociception was assessed by the number of phosphorylated extracellular signal-regulated kinase-immunoreactive (pERK-IR) neurons co-labeled with fluorogold (FG). The phenotype of pERK-IR neurons was further defined by the expression of neurokinin 1 receptor (NK1). The retrograde tracer FG was injected into VPM, MTN or PBN of the right hemisphere and after seven days, capsaicin was injected into the left upper lip in male rats. Nearly all pERK-IR neurons were found in superficial laminae of Vc-C1 ipsilateral to the capsaicin injection. Nearly all VPM and MTN FG-labeled neurons in Vc-C1 were found contralateral to the injection site, whereas FG-labeled neurons were found bilaterally after PBN injection. The percentage of FG-pERK-NK1-IR neurons was significantly greater (>10%) for PBN projection neurons than for VPM and MTN projection neurons (<3%). pERK-NK1-IR VPM projection neurons were found mainly in the middle-Vc, while pERK-NK1-immunoreactive MTN or PBN projection neurons were found in the middle-Vc and caudal Vc-C1. These results suggest that a significant percentage of capsaicin-responsive neurons in superficial laminae of Vc-C1 project directly to PBN, while neurons that project to VPM and MTN are subject to greater modulation by pERK-IR local interneurons. Furthermore, the rostrocaudal distribution differences of FG-pERK-NK1-IR neurons in Vc-C1 may reflect functional differences between these projection areas regarding craniofacial pain.
Collapse
Affiliation(s)
- Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Tatsuro Suzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Nobuhito Gionhaku
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
135
|
De Pedro-Muñoz A, Mena-Álvarez J. The effect of preoperative submucosal administration of tramadol on the success rate of inferior alveolar nerve block on mandibular molars with symptomatic irreversible pulpitis: a randomized, double-blind placebo-controlled clinical trial. Int Endod J 2017; 50:1134-1142. [DOI: 10.1111/iej.12755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Affiliation(s)
- A. De Pedro-Muñoz
- Private Practice in Endodontics; Alfonso X el Sabio University; Madrid Spain
| | - J. Mena-Álvarez
- Department of Endodontics; Faculty of Health Sciences; Alfonso X el Sabio University; Madrid Spain
| |
Collapse
|
136
|
Wieseler J, Ellis A, McFadden A, Stone K, Brown K, Cady S, Bastos LF, Sprunger D, Rezvani N, Johnson K, Rice KC, Maier SF, Watkins LR. Supradural inflammatory soup in awake and freely moving rats induces facial allodynia that is blocked by putative immune modulators. Brain Res 2017; 1664:87-94. [PMID: 28322750 DOI: 10.1016/j.brainres.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022]
Abstract
Facial allodynia is a migraine symptom that is generally considered to represent a pivotal point in migraine progression. Treatment before development of facial allodynia tends to be more successful than treatment afterwards. As such, understanding the underlying mechanisms of facial allodynia may lead to a better understanding of the mechanisms underlying migraine. Migraine facial allodynia is modeled by applying inflammatory soup (histamine, bradykinin, serotonin, prostaglandin E2) over the dura. Whether glial and/or immune activation contributes to such pain is unknown. Here we tested if trigeminal nucleus caudalis (Sp5C) glial and/or immune cells are activated following supradural inflammatory soup, and if putative glial/immune inhibitors suppress the consequent facial allodynia. Inflammatory soup was administered via bilateral indwelling supradural catheters in freely moving rats, inducing robust and reliable facial allodynia. Gene expression for microglial/macrophage activation markers, interleukin-1β, and tumor necrosis factor-α increased following inflammatory soup along with robust expression of facial allodynia. This provided the basis for pursuing studies of the behavioral effects of 3 diverse immunomodulatory drugs on facial allodynia. Pretreatment with either of two compounds broadly used as putative glial/immune inhibitors (minocycline, ibudilast) prevented the development of facial allodynia, as did treatment after supradural inflammatory soup but prior to the expression of facial allodynia. Lastly, the toll-like receptor 4 (TLR4) antagonist (+)-naltrexone likewise blocked development of facial allodynia after supradural inflammatory soup. Taken together, these exploratory data support that activated glia and/or immune cells may drive the development of facial allodynia in response to supradural inflammatory soup in unanesthetized male rats.
Collapse
Affiliation(s)
- Julie Wieseler
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Amanda Ellis
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Andrew McFadden
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Kendra Stone
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Kimberley Brown
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Sara Cady
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Leandro F Bastos
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, CEP 31270-901 Minas Gerais, Brazil
| | - David Sprunger
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Niloofar Rezvani
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Kirk Johnson
- MediciNova Inc, 4350 La Jolla Village Dr., #950, San Diego, CA, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
137
|
Takehana S, Kubota Y, Uotsu N, Yui K, Shimazu Y, Takeda M. Acute intravenous administration of dietary constituent theanine suppresses noxious neuronal transmission of trigeminal spinal nucleus caudalis in rats. Brain Res Bull 2017; 131:70-77. [PMID: 28315395 DOI: 10.1016/j.brainresbull.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 11/16/2022]
Abstract
Theanine is a non-dietary amino acid linked to the modulation of synaptic transmission in the central nervous system, although the acute effects of theanine in vivo, particularly on nociceptive transmission in the trigeminal system, remain to be determined. The present study investigated whether acute intravenous theanine administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 15 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats, and responses to non-noxious and noxious mechanical stimuli were analyzed. The mean firing frequency of SpVc WDR neurons in response to all mechanical stimuli was dose-dependently inhibited by theanine (10, 50, and 100mM, i.v.) with the maximum inhibition of discharge frequency reached within 5min. These inhibitory effects were reversed after approximately 10min. The relative magnitude of theanine's inhibition of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. Iontophoretic application of l-glutamate induced the mean firing frequency of SpVc WDR neuron responding to noxious mechanical stimulation was also inhibited by intravenous administration of 100mM theanine. These results suggest that acute intravenous theanine administration suppresses glutaminergic noxious synaptic transmission in the SpVc, implicating theanine as a potential complementary and alternative therapeutic agent for the treatment of trigeminal nociceptive pain.
Collapse
Affiliation(s)
- Shiori Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yoshiko Kubota
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - Nobuo Uotsu
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - Kei Yui
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
138
|
Flores Ramos JM, Devoize L, Descheemaeker A, Molat JL, Luccarini P, Dallel R. The nitric oxide donor, isosorbide dinitrate, induces a cephalic cutaneous hypersensitivity, associated with sensitization of the medullary dorsal horn. Neuroscience 2017; 344:157-166. [DOI: 10.1016/j.neuroscience.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022]
|
139
|
Hossain MZ, Shinoda M, Unno S, Ando H, Masuda Y, Iwata K, Kitagawa J. Involvement of microglia and astroglia in modulation of the orofacial motor functions in rats with neuropathic pain. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
140
|
Kokuba S, Takehana S, Oshima K, Shimazu Y, Takeda M. Systemic administration of the dietary constituent resveratrol inhibits the nociceptive jaw-opening reflex in rats via the endogenous opioid system. Neurosci Res 2017; 119:1-6. [PMID: 28153523 DOI: 10.1016/j.neures.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to investigate whether, under in vivo conditions, systemic administration of resveratrol could attenuate the rat nociceptive jaw-opening reflex (JOR) via the endogenous opioid system. The JOR evoked by electrical stimulation of the tongue was recorded as digastric muscle electromyograms (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG increased significantly in proportion to the intensity of electrical stimulation (from 1× to 5 × threshold for the JOR). dEMG amplitude in response to 3× threshold electrical stimulation of the tongue was dose-dependently inhibited by intravenous administration of resveratrol (0.5-2mg/kg). Maximum inhibition of dEMG amplitude was seen within approximately 10min. These inhibitory effects were reversible, with dEMG responses returning to control levels after approximately 20min. Pretreatment of rats with naloxone resulted in significant, dose-dependent attenuation of the inhibitory effects of resveratrol on dEMG amplitude compared with control. These findings suggest that resveratrol inhibits the nociceptive JOR via the endogenous opioid system. Further, the findings of the present study strongly support the idea that resveratrol, which is not known to have any toxic side effects, combined with an opioid could be a potential therapeutic agent for the prevention of acute trigeminal nociception.
Collapse
Affiliation(s)
- Shota Kokuba
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Shiori Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Katsuo Oshima
- Department of Dental Technology, The Nippon Dental University College at Tokyo, 2-3-16, Fujimi-cho, Chiyoda-ku 102-007, Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
141
|
Kazi JA, Ibrahim BK. Gabapentin Differentially Modulate c-Fos Expression in Hypothalamus and Spinal Trigeminal Nucleus in Surgical Molar Extraction. Braz Dent J 2016; 27:744-750. [PMID: 27982189 DOI: 10.1590/0103-6440201600207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
The study on the efficacy of oral analgesics reported that no single class of drug is effective in post-surgical dental pain. Pain following removal of third molar is most commonly used and widely accepted acute pain model for assessing the analgesic effect of drugs in humans. Reports demonstrated that analgesic efficacy in the human dental model is highly predictive. The high incidence of false-negative findings in analgesic investigations hinders the process of molecular discovery. Molecular mechanism of post-surgical pain is not known. More importantly, the animal model for postoperative dental pain is not well established. In an attempt to discover an effective post-surgical dental pain blocker with acceptable side effects, it is essential to elucidate the molecular mechanism of post-operative dental pain. The present study investigated mandibular molars extraction in rat as an animal model for the post-operative dental pain in central nervous system. Using c-Fos immunohistochemistry, we demonstrated that pre administration of GBP (150 mg/kg. i.p) significantly (p< 0.01) neutralized the surgical molar extraction induced c-Fos expression bilaterally in rat hypothalamus. Present results indicate that pain after surgical molar extraction might follow novel neural pathways therefore difficult to treat with existing anti-nociceptive drugs.
Collapse
Affiliation(s)
- Jamil Ahsan Kazi
- Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Ban Kahtan Ibrahim
- Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
142
|
Ettlin DA, Zhang H, Lutz K, Järmann T, Meier D, Gallo LM, Jäncke L, Palla S. Cortical Activation Resulting from Painless Vibrotactile Dental Stimulation Measured by Functional Magnetic Resonance Imaging (fMRI). J Dent Res 2016; 83:757-61. [PMID: 15381714 DOI: 10.1177/154405910408301004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There have been few investigations on hemodynamic responses in the human cortex resulting from dental stimulation. Identification of cortical areas involved in stimulus perception may offer new targets for pain treatment. This initial study aimed at establishing a cortical map of dental representation, based on non-invasive fMRI measurements. Five right-handed subjects were studied. Eight maxillary and 8 mandibular teeth were stimulated after the vibratory perception threshold was determined for each tooth. Suprathreshold stimulation was repeated thrice per session, in a total of three sessions performed on three consecutive days. Statistical inference on cluster level identified increased blood-oxygen-level-dependent signal during vibratory dental stimulation, primarily in the insular cortex bilaterally and in the supplementary motor cortex. No significant brain activation was observed in the somatosensory cortex with this stimulation protocol. These results agree with previous findings obtained from invasive direct electrical cortical stimulation of the human insula.
Collapse
Affiliation(s)
- D A Ettlin
- Institute of Biomedical Engineering, ETH and University of Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Benoliel R, Epstein J, Eliav E, Jurevic R, Elad S. Orofacial Pain in Cancer: Part I—Mechanisms. J Dent Res 2016; 86:491-505. [PMID: 17525348 DOI: 10.1177/154405910708600604] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanisms involved, and possible treatment targets, in orofacial pain due to cancer are poorly understood. The aim of the first of this two-part series is to review the involved pathophysiological mechanisms and explore their possible roles in the orofacial region. However, there is a lack of relevant research in the trigeminal region, and we have therefore applied data accumulated from experiments on cancer pain mechanisms in rodent spinal models. In the second part, we review the clinical presentation of cancer-associated orofacial pain at various stages: initial diagnosis, during therapy (chemo-, radiotherapy, surgery), and in the post-therapy period. In the present article, we provide a brief outline of trigeminal functional neuro-anatomy and pain-modulatory pathways. Tissue destruction by invasive tumors (or metastases) induces inflammation and nerve damage, with attendant acute pain. In some cases, chronic pain, involving inflammatory and neuropathic mechanisms, may ensue. Distant, painful effects of tumors include paraneoplastic neuropathic syndromes and effects secondary to the release of factors by the tumor (growth factors, cytokines, and enzymes). Additionally, pain is frequent in cancer management protocols (surgery, chemotherapy, and radiotherapy). Understanding the mechanisms involved in cancer-related orofacial pain will enhance patient management.
Collapse
Affiliation(s)
- R Benoliel
- Department of Oral Medicine, The Hebrew University, Hadassah Faculty of Dental Medicine, PO Box 12272, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
144
|
Honda M, Baad-Hansen L, Iida T, Dagsdóttir LK, Komiyama O, Kawara M, Svensson P. Perceptual distortion of the tongue by lingual nerve block and topical application of capsaicin in healthy women. Clin Oral Investig 2016; 21:2045-2052. [PMID: 27830370 DOI: 10.1007/s00784-016-1994-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022]
Affiliation(s)
- Mika Honda
- Department of Oral Function and Rehabilitation, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan.
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Aarhus, Denmark.
| | - Lene Baad-Hansen
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Aarhus, Denmark
- Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - Takashi Iida
- Department of Oral Function and Rehabilitation, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Lilja Kristín Dagsdóttir
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Aarhus, Denmark
- Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - Osamu Komiyama
- Department of Oral Function and Rehabilitation, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Misao Kawara
- Department of Oral Function and Rehabilitation, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-nishi, Matsudo, Chiba, 271-8587, Japan
| | - Peter Svensson
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Aarhus, Denmark
- Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
145
|
The role of histamine H1, H2 and H3 receptors of ventral posteromedial nucleus of thalamus in modulation of trigeminal pain. Eur J Pharmacol 2016; 791:696-702. [DOI: 10.1016/j.ejphar.2016.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/02/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022]
|
146
|
Svensson P, Kumar A. Assessment of risk factors for oro-facial pain and recent developments in classification: implications for management. J Oral Rehabil 2016; 43:977-989. [PMID: 27690281 DOI: 10.1111/joor.12447] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Oro-facial pain research has during the last decades provided important novel insights into the basic underlying mechanisms, the need for standardised diagnostic procedures and classification systems, and multiple treatment options for successful rehabilitation of the patient in pain. Notwithstanding the significant progress in our knowledge spanning from molecules to chair, there may also be limitations in our ability to integrate and interpret the tremendous amount of new data and information, in particular in terms of the clinical implications and overriding conceptual models for oro-facial pain. The aim of the present narrative review is to briefly summarise some of the current thoughts on oro-facial pain mechanisms and recent attempts to identify biomarkers and risk factors leading to the proposal of a new risk assessment diagram for oro-facial pain (RADOP) and a provocative new concept based on stochastic variation between multiple risk factors. Finally, the implications for novel management strategies will briefly be discussed.
Collapse
Affiliation(s)
- P Svensson
- Section of Orofacial Pain and Jaw Function, Institute of Odontology and Oral Health, Aarhus University, Aarhus, Denmark.,Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus University, Aarhus, Denmark
| | - A Kumar
- Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus University, Aarhus, Denmark
| |
Collapse
|
147
|
Takeda M, Takehana S, Sekiguchi K, Kubota Y, Shimazu Y. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol. Int J Mol Sci 2016; 17:ijms17101702. [PMID: 27727178 PMCID: PMC5085734 DOI: 10.3390/ijms17101702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022] Open
Abstract
Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM) candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM.
Collapse
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Shiori Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Kenta Sekiguchi
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Yoshiko Kubota
- FANCL Health Science Research Center, Research Institute, FANCL corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan.
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
148
|
Liu Q, Gao Z, Zhu X, Wu Z, Li D, He H, Huang F, Fan W. Changes in nitric oxide synthase isoforms in the trigeminal ganglion of rat following chronic tooth pulp inflammation. Neurosci Lett 2016; 633:240-245. [PMID: 27687716 DOI: 10.1016/j.neulet.2016.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) possibly plays an important role in the events resulting in hyperalgesia. NO synthase (NOS) is a key enzyme in the production of NO. Changes in NOS expression in primary sensory neurons may be involved in the persistent sensory abnormalities that can be induced by inflammation. To assess the possible roles of NOS in trigeminal sensory system, we studied changes in the expression of NOS isoforms in the trigeminal ganglion (TG) following chronic inflammation after pulp exposure (PX) in rats. The neurons innervating injured tooth in the TG were labeled by fluoro-gold (FG). Immunohistochemical staining was used to reveal the presence of NOS. The results showed that within the FG-labeled population, neuron counts revealed a significant increase in the proportion of NOS neurons following PX, in which the frequency of iNOS and nNOS-positive neurons started to increase at 3 and 7day, respectively, and peaked at 28day. There was no eNOS expression observed in the control group and PX-treated groups. The results demonstrate that PX-induced chronic pulpal inflammation results in significant increase of nNOS and iNOS in the TG. It suggests that nNOS and iNOS could be involved in mediation of peripheral processing of nociceptive information following chronic tooth pulp inflammation.
Collapse
Affiliation(s)
- Qin Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhixiong Gao
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Zhi Wu
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongpei Li
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
149
|
Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain. Chem Biol Interact 2016; 256:9-15. [DOI: 10.1016/j.cbi.2016.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 02/07/2023]
|
150
|
Lavigne G, Sessle B. The Neurobiology of Orofacial Pain and Sleep and Their Interactions. J Dent Res 2016; 95:1109-16. [DOI: 10.1177/0022034516648264] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This article provides an overview of the neurobiology of orofacial pain as well as the neural processes underlying sleep, with a particular focus on the mechanisms that underlie pain and sleep interactions including sleep disorders. Acute pain is part of a hypervigilance system that alerts the individual to injury or potential injury of tissues. It can also disturb sleep. Disrupted sleep is often associated with chronic pain states, including those that occur in the orofacial region. The article presents many insights that have been gained in the last few decades into the peripheral and central mechanisms involved in orofacial pain and its modulation, as well as the circuits and processes in the central nervous system that underlie sleep. Although it has become clear that sleep is essential to preserve and maintain health, it has also been found that pain, particularly chronic pain, is commonly associated with disturbed sleep. In the presence of chronic pain, a circular relationship may prevail, with mutual deleterious influences causing an increase in pain and a disruption of sleep. This article also reviews findings that indicate that reducing orofacial pain and improving sleep need to be targeted together in the management of acute to chronic orofacial pain states in order to improve an orofacial pain patient’s quality of life, to prevent mood alterations or exacerbation of sleep disorder (e.g., insomnia, sleep-disordered breathing) that can negatively affect their pain, and to promote healing and optimize their health.
Collapse
Affiliation(s)
- G.J. Lavigne
- Faculties of Dental Medicine and Medicine, University of Montréal, Montréal, Québec, Canada
- Centre for Advanced Research in Sleep Medicine and Trauma Unit, Surgery Department, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - B.J Sessle
- Faculties of Dentistry and Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|