101
|
Huang W, Zhu W, Chen H, Li F, Huang J, Zhou Y, Sun X, Lan Y. Longitudinal association between depressive symptoms and cognitive decline among middle-aged and elderly population. J Affect Disord 2022; 303:18-23. [PMID: 35108603 DOI: 10.1016/j.jad.2022.01.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/24/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Depression is considered a risk factor for cognitive decline. The long-term impact of depressive symptoms on cognitive performance has not been established thus far. OBJECTIVES This study aimed to determine the longitudinal associations between depressive symptoms and cognitive performance among middle-aged and elderly population. METHODS We included 10,387 adults aged ≥45 years from the Health and Retirement Study (2004 to 2014) in this study. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression (CESD) scale. Participant's cognitive function was assessed via the telephone interview for cognitive status (TICS); the total cognitive score ranged from 0 to 35. We classified the participants into four clusters according to the quartile of the total cognitive score (TCS). We examined the change of depressive symptoms and cognitive performance by using the unconditional latent growth curve modeling (LGCM) method, and a parallel LGCM method was used to examine the longitudinal associations between depressive symptoms and cognitive performance among middle-aged and elderly adults in each cluster. RESULTS Participants with lower levels of cognitive performance were associated with a greater risk of high depressive symptoms. Results from unconditional LGCM showed a sustained decline in cognitive performance and an increasing trend in depressive symptoms per 2 years for each cluster of participants. The parallel LGCM indicated that baseline levels of depression showed a significant negative correlation with the cognitive performance at baseline (β [95% CI] of intercept(Dep) predicting intercept(TCS) were -0.33 [-0.41, -0.26], -0.03[-0.06, -0.00], -0.05 [-0.07, -0.02] and -0.64 [-0.70,-0.58], for clusters of Q1 to Q3 and the entire population, respectively). Further, a significant positive prospective association was observed between baseline levels of depression and changes in cognitive performance (intercept(Dep) predicting slope(TCS) were -0.05 [-0.08, -0.02], -0.09[-0.13, -0.05], -0.12 [-0.15, -0.08], -0.11 [-0.15, -0.06] and -0.04 [-0.06,-0.02] for clusters of Q1 to Q4 and the entire population, respectively). Moreover, for participants with the highest quartile of TCS, the rising trend of depressive symptoms accelerated the decline of cognitive performance during the follow-up period (Slope(Dep) predicting Slope(TCS): -0.44 [-0.86, -0.01]). CONCLUSION Our results suggest that depressive symptoms were associated with lower cognitive performance and larger subsequent decline during follow-up period. Adults with depression may require more medical attention, and early intervention is required to delay the development of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Wentao Huang
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China.
| | - Wenjing Zhu
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China
| | - Hongyan Chen
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China
| | - Feng Li
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China
| | - Jingxin Huang
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China
| | - Ye Zhou
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China
| | - Xibin Sun
- School of Public Health, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China
| | - Yutao Lan
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China.
| |
Collapse
|
102
|
Chen S, Tang Y, Gao Y, Nie K, Wang H, Su H, Wang Z, Lu F, Huang W, Dong H. Antidepressant Potential of Quercetin and its Glycoside Derivatives: A Comprehensive Review and Update. Front Pharmacol 2022; 13:865376. [PMID: 35462940 PMCID: PMC9024056 DOI: 10.3389/fphar.2022.865376] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is a global health problem with growing prevalence rates and serious impacts on the daily life of patients. However, the side effects of currently used antidepressants greatly reduce the compliance of patients. Quercetin is a flavonol present in fruits, vegetables, and Traditional Chinese medicine (TCM) that has been proved to have various pharmacological effects such as anti-depressant, anti-cancer, antibacterial, antioxidant, anti-inflammatory, and neuroprotective. This review summarizes the evidence for the pharmacological application of quercetin to treat depression. We clarified the mechanisms of quercetin regulating the levels of neurotransmitters, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and reducing inflammatory states and anti-oxidative stress. We also summarized the antidepressant effects of some quercetin glycoside derivatives to provide a reference for further research and clinical application.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Grade 2017 of Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Dong,
| |
Collapse
|
103
|
Wang YH, Zhou HH, Luo Q, Cui S. The effect of physical exercise on circulating brain-derived neurotrophic factor in healthy subjects: A meta-analysis of randomized controlled trials. Brain Behav 2022; 12:e2544. [PMID: 35274832 PMCID: PMC9014996 DOI: 10.1002/brb3.2544] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To investigate how physical exercise (PE) would affect brain-derived neurotrophic factor (BDNF) in randomized controlled trials (RCTs) of healthy subjects. METHODS Seven databases (PubMed, Web of Science, Cochrane, Embase, PsycINFO, CINAHL, SPORTDiscus) were searched for RCTs assessing the effects of PE on serum and/or plasma BDNF until December 18, 2021. Meta-analysis was performed by random-effects method with standardized mean difference (SMD) and 95% confidence intervals (CIs). Subgroup analysis and meta-regression analysis were conducted to investigate the potential source of heterogeneity. Trim and fill method, and leave-one-out cross-validation were conducted. RESULTS Eventually, 21 articles, involving 809 participants, were included in the meta-analysis. Overall, both acute (5 trials, SMD: 1.20, 95% CI: 0.36 to 2.04, p = .005) and long-term (17 trials, SMD: 0.68, 95% CI: 0.27 to 1.08, p = .001) PE had significant positive effects on BDNF levels. Via subgroup analysis, studies of long-term PE with larger sample sizes, female participants, participants older than 60 years, and aerobic exercise contributed to a more pronounced improvement on BDNF levels than that found when all studies were combined. CONCLUSION Both acute and long-term PE had significant positive effects on circulating BDNF in healthy subjects. This review suggests that acute exercise and long-term aerobic exercise are powerful forms of PE to enhance neurotrophic effect, especially for female subjects or subjects over 60 years.
Collapse
Affiliation(s)
- Ya-Hai Wang
- Physical Education College, Yunnan Normal University, Kunming, China
| | - Huan-Huan Zhou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qiang Luo
- Department of Orthopedics and Traumatology, Pu'er Hospital of Traditional Chinese Medicine, Pu'er, China
| | - Sidong Cui
- Physical Education College, Yunnan Normal University, Kunming, China
| |
Collapse
|
104
|
Zarza-Rebollo JA, Molina E, López-Isac E, Pérez-Gutiérrez AM, Gutiérrez B, Cervilla JA, Rivera M. Interaction Effect between Physical Activity and the BDNF Val66Met Polymorphism on Depression in Women from the PISMA-ep Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042068. [PMID: 35206257 PMCID: PMC8872527 DOI: 10.3390/ijerph19042068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
The relationship between depression and the Val66Met polymorphism at the brain-derived neurotrophic factor gene (BDNF), has been largely studied. It has also been related to physical activity, although the results remain inconclusive. The aim of this study is to investigate the relationship between this polymorphism, depression and physical activity in a thoroughly characterised sample of community-based individuals from the PISMA-ep study. A total of 3123 participants from the PISMA-ep study were genotyped for the BDNF Val66Met polymorphism, of which 209 had depression. Our results are in line with previous studies reporting a protective effect of physical activity on depression, specifically in light intensity. Interestingly, we report a gene-environment interaction effect in which Met allele carriers of the BDNF Val66Met polymorphism who reported more hours of physical activity showed a decreased prevalence of depression. This effect was observed in the total sample (OR = 0.95, 95%CI = 0.90–0.99, p = 0.027) and was strengthened in women (OR = 0.93, 95%CI = 0.87–0.98, p = 0.019). These results highlight the potential role of physical activity as a promising therapeutic strategy for preventing and adjuvant treatment of depression and suggest molecular and genetic particularities of depression between sexes.
Collapse
Affiliation(s)
- Juan Antonio Zarza-Rebollo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Esther Molina
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Elena López-Isac
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Ana M. Pérez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Blanca Gutiérrez
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Psychiatry, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jorge A. Cervilla
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Psychiatry, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Mental Health Service, University Hospital San Cecilio, 18016 Granada, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| |
Collapse
|
105
|
Sohroforouzani AM, Shakerian S, Ghanbarzadeh M, Alaei H. Effect of forced treadmill exercise on stimulation of BDNF expression, depression symptoms, tactile memory and working memory in LPS-treated rats. Behav Brain Res 2022; 418:113645. [PMID: 34743949 DOI: 10.1016/j.bbr.2021.113645] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Neuroinflammation has been implicated in cognitive dysfunction and the occurrence of depression in neurodegenerative diseases. Brain-derived neurotrophic factor (BDNF) is believed to be involved with the benefits of exercise training in boosting memory and learning processes and antidepressant therapies. This study aimed to investigate the effect of forced treadmill exercise on hippocampal BDNF expression levels, depression symptoms, tactile memory and working memory in lipopolysaccharide (LPS)-treated rats. For this purpose, 40 male Wistar rats received 0.25 mg/kg of LPS or saline intraperitoneally for 9 consecutive days before exercise. They again received a single injection of 0.5 mg/kg of LPS or saline on days 20 and 41 after exercise. Exercise groups had to run on a motorized treadmill 5 days a week for 8 weeks. Following the last exercise training session, forced swim test (FST), Y maze and novel object recognition (NOR) task were performed. Finally, the hippocampus of rats was removed and used for determination of BDNF expression levels by real-time polymerase chain reaction (real-time PCR). The data showed that LPS decreased BDNF expression levels, Y maze score, and recognition index in NOR and increased immobility time in FST (p < 0.05). In contrast, forced treadmill exercise increased BDNF expression levels and improved the percentage of spontaneous alternation, recognition index, and immobility time in LPS-treated rats (p < 0.05). There was a significant correlation between BDNF expression levels with immobility time and recognition index (p < 0.05) but not with the percentage of spontaneous alternation (p > 0.05). The findings suggest that forced treadmill exercise may protect the brain of LPS-treated rats by improving the symptoms of depression and cognitive function through its effect on BDNF expression levels.
Collapse
Affiliation(s)
| | - Saeed Shakerian
- Department of Exercise Physiology, Sport Sciences Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Ghanbarzadeh
- Department of Exercise Physiology, Sport Sciences Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
106
|
Moore D, Jung M, Hillman CH, Kang M, Loprinzi PD. Interrelationships between exercise, functional connectivity, and cognition among healthy adults: A systematic review. Psychophysiology 2022; 59:e14014. [PMID: 35122693 DOI: 10.1111/psyp.14014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
The main purpose of this systematic review was to examine past literature focusing on the potential relationship between exercise (or physical activity or cardiorespiratory fitness [CRF]) and functional brain connectivity in healthy adults. Among the studies meeting this purpose, we also evaluated studies investigating whether, and how, functional connectivity may influence the exercise-cognition relationship. A systematic review was employed through several electronic databases (PsychInfo, PubMed, and Google Scholar) in accordance with PRISMA guidelines. The literature search identified 656 records, and a total of 12 studies met the inclusion criteria. Among these 12 studies, there were 4, 7, and 1 study, respectively, examining the relationship between exercise and frontal lobe connectivity, temporal lobe connectivity, and whole-brain connectivity. Also, 7 studies examined the relationship between functional connectivity and cognitive performance across multiple brain regions as a function of exercise. Existing literature suggests that CRF, habitual physical activity, and varying intensities of acute exercise can strengthen functional connections among a wide variety of regions and subcortical structures of the human brain. These exercise-induced functional connectivity changes within and between specific brain structures/networks supporting cognitive processing may improve various domains of cognitive function. Given these complex associations, a thorough understanding of how functional connectivity plays a mediating role in the exercise-cognition interaction is needed in future studies.
Collapse
Affiliation(s)
- Damien Moore
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA
| | - Myungjin Jung
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA.,Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA
| | - Charles H Hillman
- Center for Cognitive & Brain Health, Department of Psychology, Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Minsoo Kang
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA
| | - Paul D Loprinzi
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, Mississippi, USA
| |
Collapse
|
107
|
Zhang H, Liu L, Cheng S, Jia Y, Wen Y, Yang X, Meng P, Li C, Pan C, Chen Y, Zhang Z, Zhang J, Zhang F. Assessing the joint effects of brain aging and gut microbiota on the risks of psychiatric disorders. Brain Imaging Behav 2022; 16:1504-1515. [PMID: 35076893 DOI: 10.1007/s11682-022-00630-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
We aim to explore the potential interaction effects of brain aging and gut microbiota on the risks of sleep, anxiety and depression disorders. The genome-wide association study (GWAS) datasets of brain aging (N = 21,407) and gut microbiota (N = 3,890) were obtained from published studies. Individual level genotype and phenotype data of psychiatric traits (including sleep, anxiety and depression) were all from the UK Biobank (N = 107,947-374,505). We first calculated the polygenic risk scores (PRS) of 62 brain aging modes and 114 gut microbiota taxa as the instrumental variables, and then constructed linear and logistic regression analyses to systematically explore the potential interaction effects of brain aging and gut microbiota on psychiatric disorders. We observed the interaction effects of brain aging and gut microbiota on sleep, anxiety and depression disorders, such as Putamen/caudate T2* vs. Rhodospirillales (β = -0.012, P = 8.4 × 10-4) was negatively associated with chronotype, Fornix MD vs. Holdemanella (β = -0.007, P = 1.76 × 10-2) was negatively related to general anxiety disorder (GAD) scores, and White matter lesions vs. Acidaminococcaceae (β = 0.019, P = 1.29 × 10-3) was positively correlated with self-reported depression. Interestingly, Putamen volume vs. Intestinibacter was associated with all three psychiatric disorders, including chronotype (negative correlation), GAD scores (positive correlation) and self-reported depression (positive correlation). Our study results suggest the significant impacts of brain aging and gut microbiota on the development of sleep, anxiety and depression disorders, providing new clues for clarifying the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China.
| |
Collapse
|
108
|
Benfato ID, Quintanilha ACS, Henrique JS, Souza MA, Rosário BDA, Beserra Filho JIA, Santos RLO, Ribeiro AM, Le Sueur Maluf L, de Oliveira CAM. Effects of long-term social isolation on central, behavioural and metabolic parameters in middle-aged mice. Behav Brain Res 2022; 417:113630. [PMID: 34656691 PMCID: PMC8516156 DOI: 10.1016/j.bbr.2021.113630] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Social isolation gained discussion momentum due to the COVID-19 pandemic. Whereas many studies address the effects of long-term social isolation in post-weaning and adolescence and for periods ranging from 4 to 12 weeks, little is known about the repercussions of adult long-term social isolation in middle age. Thus, our aim was to investigate how long-term social isolation can influence metabolic, behavioural, and central nervous system-related areas in middle-aged mice. Adult male C57Bl/6 mice (4 months-old) were randomly divided into Social (2 cages, n = 5/cage) and Isolated (10 cages, n = 1/cage) housing groups, totalizing 30 weeks of social isolation, which ended concomitantly with the onset of middle age of mice. At the end of the trial, metabolic parameters, short-term memory, anxiety-like behaviour, and physical activity were assessed. Immunohistochemistry in the hippocampus (ΔFosB, BDNF, and 8OHDG) and hypothalamus (ΔFosB) was also performed. The Isolated group showed impaired memory along with a decrease in hippocampal ΔFosB at dentate gyrus and in BDNF at CA3. Food intake was also affected, but the direction depended on how it was measured in the Social group (individually or in the group) with no alteration in ΔFosB at the hypothalamus. Physical activity parameters increased with chronic isolation, but in the light cycle (inactive phase), with some evidence of anxiety-like behaviour. Future studies should better explore the timepoint at which the alterations found begin. In conclusion, long-term social isolation in adult mice contributes to alterations in feeding, physical activity pattern, and anxiety-like behaviour. Moreover, short-term memory deficit was associated with lower levels of hippocampal ΔFosB and BDNF in middle age.
Collapse
Affiliation(s)
- Izabelle Dias Benfato
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | | | - Jessica Salles Henrique
- Neurology / Neuroscience Graduate Program, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Melyssa Alves Souza
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Barbara Dos Anjos Rosário
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | | | | | - Alessandra Mussi Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Luciana Le Sueur Maluf
- Department of Biosciences, Institute of Health and Society, Federal University of Sao Paulo (UNIFESP), Brazil
| | | |
Collapse
|
109
|
Erickson KI, Donofry SD, Sewell KR, Brown BM, Stillman CM. Cognitive Aging and the Promise of Physical Activity. Annu Rev Clin Psychol 2022; 18:417-442. [PMID: 35044793 DOI: 10.1146/annurev-clinpsy-072720-014213] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Is the field of cognitive aging irretrievably concerned with decline and deficits, or is it shifting to emphasize the hope of preservation and enhancement of cognitive function in late life? A fragment of an answer comes from research attempting to understand the reasons for individual variability in the extent and rate of cognitive decline. This body of work has created a sense of optimism based on evidence that there are some health behaviors that amplify cognitive performance or mitigate the rate of age-related cognitive decline. In this context, we discuss the role of physical activity on neurocognitive function in late adulthood and summarize how it can be conceptualized as a constructive approach both for the maintenance of cognitive function and as a therapeutic for enhancing or optimizing cognitive function in late life. In this way, physical activity research can be used to shape perceptions of cognitive aging. Expected final online publication date for the Annual Review of Clinical Psychology, Volume 18 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kirk I Erickson
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Shannon D Donofry
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Psychiatry and Behavioral Health Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Chelsea M Stillman
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
110
|
Adult Hippocampal Neurogenesis in Alzheimer’s Disease: An Overview of Human and Animal Studies with Implications for Therapeutic Perspectives Aimed at Memory Recovery. Neural Plast 2022; 2022:9959044. [PMID: 35075360 PMCID: PMC8783751 DOI: 10.1155/2022/9959044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
The mammalian hippocampal dentate gyrus is a niche for adult neurogenesis from neural stem cells. Newborn neurons integrate into existing neuronal networks, where they play a key role in hippocampal functions, including learning and memory. In the ageing brain, neurogenic capability progressively declines while in parallel increases the risk for developing Alzheimer's disease (AD), the main neurodegenerative disorder associated with memory loss. Numerous studies have investigated whether impaired adult neurogenesis contributes to memory decline in AD. Here, we review the literature on adult hippocampal neurogenesis (AHN) and AD by focusing on both human and mouse model studies. First, we describe key steps of AHN, report recent evidence of this phenomenon in humans, and describe the specific contribution of newborn neurons to memory, as evinced by animal studies. Next, we review articles investigating AHN in AD patients and critically examine the discrepancies among different studies over the last two decades. Also, we summarize researches investigating AHN in AD mouse models, and from these studies, we extrapolate the contribution of molecular factors linking AD-related changes to impaired neurogenesis. Lastly, we examine animal studies that link impaired neurogenesis to specific memory dysfunctions in AD and review treatments that have the potential to rescue memory capacities in AD by stimulating AHN.
Collapse
|
111
|
Fleitas JC, Hammuod SFP, Kakuta E, Loreti EH. A Meta-analysis of the effects of physical exercise on peripheral levels of a brain-derived neurotrophic factor in the elderly. Biomarkers 2022; 27:205-214. [DOI: 10.1080/1354750x.2021.2024602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | - Eduardo Henrique Loreti
- Department of Physiotherapy. University Center of Grande Dourados.
- Federal University of Grande Dourados
| |
Collapse
|
112
|
Burman DD. Topography of hippocampal connectivity with sensorimotor cortex revealed by optimizing smoothing kernel and voxel size. PLoS One 2021; 16:e0260245. [PMID: 34874961 PMCID: PMC8651104 DOI: 10.1371/journal.pone.0260245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Studies of the hippocampus use smaller voxel sizes and smoothing kernels than cortical activation studies, typically using a multivoxel seed with specified radius for connectivity analysis. This study identified optimal processing parameters for evaluating hippocampal connectivity with sensorimotor cortex (SMC), comparing effectiveness by varying parameters during both activation and connectivity analysis. Using both 3mm and 4mm isovoxels, smoothing kernels of 0-10mm were evaluated on the amplitude and extent of motor activation and hippocampal connectivity with SMC. Psychophysiological interactions (PPI) identified hippocampal connectivity with SMC during volitional movements, and connectivity effects from multivoxel seeds were compared with alternate methods; a structural seed represented the mean connectivity map from all voxels within a region, whereas a functional seed represented the regional voxel with maximal SMC connectivity. With few exceptions, the same parameters were optimal for activation and connectivity. Larger isovoxels showed larger activation volumes in both SMC and the hippocampus; connectivity volumes from structural seeds were also larger, except from the posterior hippocampus. Regardless of voxel size, the 10mm smoothing kernel generated larger activation and connectivity volumes from structural seeds, as well as larger beta estimates at connectivity maxima; structural seeds also produced larger connectivity volumes than multivoxel seeds. Functional seeds showed lesser effects from voxel size and smoothing kernels. Optimal parameters revealed topography in structural seed connectivity along both the longitudinal axis and mediolateral axis of the hippocampus. These results indicate larger voxels and smoothing kernels can improve sensitivity for detecting both cortical activation and hippocampal connectivity.
Collapse
Affiliation(s)
- Douglas D. Burman
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
113
|
Ding Q, Huang L, Chen J, Dehghani F, Du J, Li Y, Li Q, Zhang H, Qian Z, Shen W, Yin X, Liang P. Sports Augmented Cognitive Benefits: An fMRI Study of Executive Function with Go/NoGo Task. Neural Plast 2021; 2021:7476717. [PMID: 34917143 PMCID: PMC8670897 DOI: 10.1155/2021/7476717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Exercise is believed to have significant cognitive benefits. Although an array of experimental paradigms have been employed to test the cognitive effects on exercising individuals, the mechanism as to how exercise induces cognitive benefits in the brain remains unclear. This study explores the effect of dynamic neural network processing with the classic Go/NoGo task with regular exercisers. We used functional magnetic resonance imaging to analyze the brain activation of areas involved in executive function, especially inhibitory control. Nineteen regular joggers and twenty-one subjects as a control group performed the task, and their brain imaging data were analyzed. The results showed that at the attentive visual period, the frontal and parietal areas, including the prefrontal cortex, putamen, thalamus, lingual, fusiform, and caudate, were significantly enhanced in positive activities than the control group. On the other hand, in the following inhibitory control processing period, almost the same areas of the brains of the exercise group have shown stronger negative activation in comparison to the control group. Such dynamic temporal response patterns indicate that sports augment cognitive benefits; i.e., regular jogging increases the brain's visual attention and inhibitory control capacities.
Collapse
Affiliation(s)
- Qingguo Ding
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Lina Huang
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Jie Chen
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
| | - Farzaneh Dehghani
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
- Department of Psychiatry, Research Center of Addiction and Behavioral Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Juan Du
- The School of Education, Soochow University, Soochow, China
| | - Yingli Li
- The School of Education, Soochow University, Soochow, China
| | - Qin Li
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Hongqiang Zhang
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Zhen Qian
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Wenbin Shen
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Xiaowei Yin
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Pei Liang
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
- Brain and Cognition Research Center, Faculty of Education, Hubei University, Wuhan, China
| |
Collapse
|
114
|
Zheng J, Hu S, Wang J, Zhang X, Yuan D, Zhang C, Liu C, Wang T, Zhou Z. Icariin improves brain function decline in aging rats by enhancing neuronal autophagy through the AMPK/mTOR/ULK1 pathway. PHARMACEUTICAL BIOLOGY 2021; 59:183-191. [PMID: 33556283 PMCID: PMC8871627 DOI: 10.1080/13880209.2021.1878238] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT Icariin (ICA) is the main active ingredient of Epimedium brevicornu Maxim (Berberidaceae), which is used in the immune, reproductive, neuroendocrine systems, and anti-aging. OBJECTIVE To evaluate the effect of ICA on natural aging rat. MATERIALS AND METHODS 16-month-old Sprague-Dawley (SD) rats were randomly divided into aging, low and high-dose ICA groups (n = 8); 6-month-old rats were taken as the adult control (n = 8). Rats were fed regular feed (aging and adult control) or feed containing ICA (ICA 2 and 6 mg/kg group) for 4 months. HE and Nissl staining were used to assess pathological changes. Western blot was used to test the expression of autophagy (LC3B, p62, Atg5, Beclin1) and p-AMPK, p-mTOR and p-ULK1 (ser 757). Immunofluorescence was used to detect the co-localization of LC3 and neurons. RESULTS ICA improved neuronal degeneration associated with aging and increased the staining of Nissl bodies. Western blot showed that ICA up-regulated autophagy-related proteins LC3B (595%), Beclin1 (73.5%), p-AMPK (464%) protein (p < 0.05 vs. 20 M) in the cortex and hippocampus of aging rats, down-regulated the expression of p62 (56.9%), p-mTOR (53%) and p-ULK1 (ser 757) (65.4%) protein (p < 0.05 vs. 20 M). Immunofluorescence showed that the fluorescence intensity of LC3 decreased in the aging rat brain, but increased and mainly co-localized with neurons after ICA intervention. CONCLUSIONS Further research needs to verify the expression changes of AMPK/mTOR/ULK1 and the improvement effect of ICA in elderly. These results will further accelerate the applications of ICA and the treatment for senescence.
Collapse
Affiliation(s)
- Jie Zheng
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Shanshan Hu
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Jinxin Wang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Xulan Zhang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Ding Yuan
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Ting Wang
- Department of Pharmacy, College of Medicine, New Drug Innovation and Development Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- CONTACT Ting Wang Department of Pharmacy, College of Medicine, New Drug Innovation and Development Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiyong Zhou
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
- Zhiyong Zhou Medical College of China, Three Gorges University, 8 University Road, Yichang 443002, Hubei, China
| |
Collapse
|
115
|
Behrendt T, Kirschnick F, Kröger L, Beileke P, Rezepin M, Brigadski T, Leßmann V, Schega L. Comparison of the effects of open vs. closed skill exercise on the acute and chronic BDNF, IGF-1 and IL-6 response in older healthy adults. BMC Neurosci 2021; 22:71. [PMID: 34823469 PMCID: PMC8614060 DOI: 10.1186/s12868-021-00675-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulating evidence shows that physical exercise has a positive effect on the release of neurotrophic factors and myokines. However, evidence regarding the optimal type of physical exercise for these release is still lacking. The aim of this study was to assess the acute and chronic effects of open-skill exercise (OSE) compared to closed-skill exercise (CSE) on serum and plasma levels of brain derived neurotrophic factor (BDNFS, BDNFP), and serum levels of insulin like growth factor 1 (IGF-1), and interleukin 6 (IL-6) in healthy older adults. METHODS To investigate acute effects, thirty-eight participants were randomly assigned to either an intervention (badminton (aOSE) and bicycling (aCSE), n = 24, 65.83 ± 5.98 years) or control group (reading (CG), n = 14, 67.07 ± 2.37 years). Blood samples were taken immediately before and 5 min after each condition. During each condition, heart rate was monitored. The mean heart rate of aOSE and aCSE were equivalent (65 ± 5% of heart rate reserve). In a subsequent 12-week training-intervention, twenty-two participants were randomly assigned to either a sport-games (cOSE, n = 6, 64.50 ± 6.32) or a strength-endurance training (cCSE, n = 9, 64.89 ± 3.51) group to assess for chronic effects. Training intensity for both groups was adjusted to a subjective perceived exertion using the CR-10 scale (value 7). Blood samples were taken within one day after the training-intervention. RESULTS BDNFS, BDNFP, IGF-1, and IL-6 levels increased after a single exercise session of 30 min. After 12 weeks of training BDNFS and IL-6 levels were elevated, whereas IGF-1 levels were reduced in both groups. However, only in the cOSE group these changes were significant. We could not find any significant differences between the exercise types. CONCLUSION Our results indicate that both exercise types are efficient to acutely increase BDNFS, BDNFP, IGF-1 and IL-6 serum levels in healthy older adults. Additionally, our results tend to support that OSE is more effective for improving basal BDNFS levels after 12 weeks of training.
Collapse
Affiliation(s)
- Tom Behrendt
- Chair for Health and Physical Activity, Department of Sport Science, Faculty of Humanities, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Franziska Kirschnick
- Department of Internal Medicine, Division of Cardiology and Angiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Lasse Kröger
- Chair for Health and Physical Activity, Department of Sport Science, Faculty of Humanities, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Phillip Beileke
- Chair for Health and Physical Activity, Department of Sport Science, Faculty of Humanities, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Maxim Rezepin
- Chair for Health and Physical Activity, Department of Sport Science, Faculty of Humanities, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Chair for Health and Physical Activity, Department of Sport Science, Faculty of Humanities, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
116
|
Fink A, Koschutnig K, Zussner T, Perchtold-Stefan CM, Rominger C, Benedek M, Papousek I. A two-week running intervention reduces symptoms related to depression and increases hippocampal volume in young adults. Cortex 2021; 144:70-81. [PMID: 34653905 DOI: 10.1016/j.cortex.2021.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study examined the effects of a two-week running intervention on depressive symptoms and structural changes of different subfields of the hippocampus in young adults from the general population. The intervention was realized in small groups of participants in a mostly forested area and was organized into seven units of about 60 min each. The study design included two intervention groups which were tested at three time points and which received the intervention time-delayed: The first group between the first and the second time point, and the second group between the second and the third time point (waiting control group). At each test session, magnetic resonance imaging (MRI) was performed and symptoms related to depression were measured by means of the Center for Epidemiological Studies Depression (CES-D) Scale. Results revealed a significant reduction of CES-D scores after the running intervention. The intervention also resulted in significant increases in the volume of the hippocampus, and reductions of CES-D scores right after the intervention were associated with increases in hippocampal volume. These findings add important new evidence on the beneficial role of aerobic exercise on depressive symptoms and related structural alterations of the hippocampus.
Collapse
Affiliation(s)
- Andreas Fink
- Institute of Psychology, University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
117
|
Brain-Derived Neurotrophic Factor and Psychophysiological Response in Youth Badminton Athletes During the Season. Int J Sports Physiol Perform 2021; 17:296-306. [PMID: 34653961 DOI: 10.1123/ijspp.2020-0911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To analyze peripheral brain-derived neurotrophic factor (BDNF) levels and psychophysiological parameters in youth badminton athletes during the season and to determine the relationship between variables. METHODS Fourteen young badminton athletes were assessed over the season (preseason, middle season, and final season). Serum BDNF (sBDNF) was determined during the preseason and final season. Sleep time, total physical activity, and time in vigorous activity were measured using an accelerometer. The fat-free mass, skeletal muscle mass, fat mass, handgrip strength, cardiorespiratory fitness (VO2max), and dietary intake were evaluated during the season. The Stroop Color and Word Test was employed to assess cognitive tasks. To evaluate the mood, the Brunel Mood Scale was used. RESULTS There were lower sBDNF levels (-16.3% [46.8%]; P = .007) and sleep time (final season = 5.7 [1.1] vs preseason = 6.6 [1.1] h·night-1, P = .043) during the end of the season. The total calories and carbohydrate intake decreased across the season (P < .05). Conversely, better cognitive function was found in the final season with respect to the preseason (P < .05). There were significant correlations between BDNF and VO2max only in the preseason (r = .61, P = .027), but no significant relationship was found among sBDNF and cognitive performance, sleep time, and percentage of won games. CONCLUSIONS Youth badminton athletes decreased their sBDNF levels, sleep time, carbohydrate, and calorie intake across the season. The athletes improved in cognitive function; however, only the females improved in body composition, and the males improved their VO2max in the middle season. The sBDNF levels were positively correlated with the VO2max in the preseason, and no correlations were observed among the sBDNF and psychological parameters, sleep time, and sport performance during the season.
Collapse
|
118
|
Walsh JJ, Caldwell HG, Neudorf H, Ainslie PN, Little JP. Short-term ketone monoester supplementation improves cerebral blood flow and cognition in obesity: A randomized cross-over trial. J Physiol 2021; 599:4763-4778. [PMID: 34605026 DOI: 10.1113/jp281988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Adults with obesity are at increased risk of neurocognitive impairments, partly as a result of reduced cerebral blood flow and brain-derived neurotrophic factor (BDNF). Ketone supplements containing β-hydroxybutyrate (β-OHB) are a purported therapeutic strategy for improving brain health in at-risk populations. We tested the hypothesis that short-term β-OHB supplementation will elevate cerebral blood flow and BDNF, as well as improve cognition in adults with obesity. In a placebo-controlled double-blind, cross-over design, 14 adults with obesity (10 females; aged 56 ± 12 years; body mass index = 33.8 ± 6.9 kg m-2 ) consumed 30 mL (12 g) of β-OHB or placebo thrice-daily for 14 days. Blood flow (Q) and cerebrovascular conductance (CVC) were measured in the common carotid (CCA), internal carotid (ICA) and vertebral (VA) arteries by duplex ultrasound. BDNF was measured by an enzyme-linked immunosorbent assay. Cognition was assessed by the digit-symbol substitution (DSST), Stroop and task-switching tests. Following 14 days of ketone supplementation, we observed significant improvements in cerebrovascular outcomes including QCCA (+12%), QVA (+11%), VACVC (+12%) and VA shear rate (+10%). DSST performance significantly improved following ketone supplementation (+2.7 correct responses) and improved DSST performance was positively associated improvements in cerebrovascular outcomes including QCCA , CCACVC , QVA and VACVC . By contrast to one hypothesis, β-OHB did not impact fasting serum and plasma BDNF. β-OHB supplementation improved cognition in adults with obesity, which may be partly facilitated by improvements in cerebral blood flow. β-OHB supplementation was well-tolerated and appears to be safe for cerebrovascular health, suggesting potential therapeutic benefits of β-OHB in a population at risk of neurocognitive impairment. KEY POINTS: People with obesity are at increased risk of neurocognitive dysfunction, partly as a result of -induced reductions in cerebral blood flow (CBF) and brain-derived neurotrophic factor (BDNF). Ketone supplements containing β-hydroxybutyrate (β-OHB) reduce postprandial hyperglycaemia, which may increase CBF and BDNF, thereby protecting against obesity-related cognitive dysfunction. We show for the first time that 14 days of thrice-daily β-OHB supplementation improves aspects of cognition and increases cerebrovascular flow, conductance and shear rate in the extracranial arteries of adults with obesity. Our preliminary data indicate a significant positive relationship between elevated CBF and improved cognition following β-OHB supplementation. This trial provides a foundation for the potential non-pharmacological therapeutic application of β-OHB supplementation in patient groups at risk of hyperglycaemic cerebrovascular disease and cognitive dysfunction.
Collapse
Affiliation(s)
- Jeremy J Walsh
- School of Health and Exercise Sciences, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada.,Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Hannah G Caldwell
- School of Health and Exercise Sciences, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- School of Health and Exercise Sciences, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- School of Health and Exercise Sciences, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
119
|
Li X, Wang Z, Wang Y, Li X, Li D. Effect of exercise on inhibitory control in adolescents is dose-dependent. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 4:54-60. [PMID: 35782777 PMCID: PMC9219311 DOI: 10.1016/j.smhs.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
Adolescence is an important stage for brain maturation. To investigate the effect of different exercise doses on inhibitory control in adolescents aged 12 to 14-year old, an after-school exercise program was offered 5 days per week for 12 weeks during a school semester. Thirsty-four adolescents (17 boys) from the first six classes were randomly divided into low-dose exercise group (LE group, one 30-min aerobic exercise bout per day, n = 16) and high-dose exercise group (HE group, two 30-min aerobic exercise bouts per day, n = 18), while 23 adolescents (10 boys) in the control group (CON, zero 30-min exercise bout, n = 23) were from the last two classes. All the participants in different classes received the same physical education with the same contents, duration, and intensity at class. All the participants completed flanker tests and cardiorespiratory tests before and after exercise intervention. The HE group showed more significant improvements on inhibitory control and V˙O2peak than CON (p < 0.05). Changes in physical activity (PA) were significantly correlated with changes in interference scores (Spearman rho = -0.30, p < 0.05), V˙O2peak (Spearman rho = 0.31, p < 0.05), and BF percentage (Spearman rho = -0.32, p < 0.05). This study demonstrated that effect of exercise on inhibitory control in adolescents is dose-dependent, which highlights the need to focus on the exercise dose in daily life for improving cognition among adolescents.
Collapse
|
120
|
Teng Z, Wang L, Li S, Tan Y, Qiu Y, Wu C, Jin K, Chen J, Huang J, Tang H, Xiang H, Wang B, Yuan H, Wu H. Low BDNF levels in serum are associated with cognitive impairments in medication-naïve patients with current depressive episode in BD II and MDD. J Affect Disord 2021; 293:90-96. [PMID: 34175594 DOI: 10.1016/j.jad.2021.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/09/2021] [Accepted: 06/13/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of Brain-derived neurotrophic factor (BDNF) in clinical and cognitive outcomes in medication-naïve patients with Bipolar type II disorder (BD II) and Major depressive disorder (MDD). METHODS 45 outpatients with BD II, 40 outpatients with MDD and 40 healthy controls (HCs) were recruited, and sociodemographic and clinical data were collected. Their BDNF serum levels were measured and analyzed with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS BDNF levels were significantly lower in BD II patients than in MDD patients and HCs (p = 0.001). BD II and MDD patients had similar cognitive performance deficits shown on Attention (p = 0.001), Delayed memory (p = 0.001), and RBANS total score (p = 0.001). BDNF levels were positively associated with Visuospatial / constructional and Stroop color-word in BD II group, and with language in MDD group. The area under the curve (AUC) of the ROC analysis in BD II vs. MDD was 0.664, therefore, BDNF levels could not distinguish BD II from MDD. CONCLUSION Our study showed the decreased serum BDNF in MDD and BD II patients, suggesting BDNF may be involved in the pathophysiology of MDD and BD II. BDNF and cognitive deficits are both of low efficiency in distinguishing BD II from MDD. Decrease of BDNF may potentially indicate cognitive dysfunction in BD II and MDD patients with a current depressive episode.
Collapse
Affiliation(s)
- Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lu Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuxi Tan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chujun Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kun Jin
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Ultrasound Dltrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
121
|
Effects of Training with Different Modes of Strength Intervention on Psychosocial Disorders in Adolescents: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189477. [PMID: 34574400 PMCID: PMC8471285 DOI: 10.3390/ijerph18189477] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
Physical exercise has a positive impact on anxiety and depression. However, the evidence that associates strength training with a decrease in adolescents' psychosocial disorders is scarce. Consequently, the objective was to analyze the effects of training with different modes of strength intervention on anxiety, stress, and depression in adolescents. The search was designed according to PRISMA®. We searched WoS, Scopus, SPORTDiscus, PubMed, and MEDLINE (2010-2020). Methodological quality and risk of bias were assessed with the Cochrane Collaboration. The analysis was carried out with a standardized mean difference (SMD) pooled using the Hedges g test (95% CI). The Main Outcome Measures were: anxiety, stress, and depression in adolescents post strength training. Nine studies were included in the systematic review and seven in the meta-analysis. These studies showed a large and significant effect of strength training on anxiety (SMD = -1.75; CI = 95%: -3.03, -0.48; p = 0.007) and depression (SMD = -1.61; CI = 95%: -2.54, -0.67, p = 0.0007). In conclusion, training with different modes of strength intervention have shown control over anxiety and depression in adolescents. However, conventional strength training seems to have better results than other modes of strength intervention.
Collapse
|
122
|
A Role of BDNF in the Depression Pathogenesis and a Potential Target as Antidepressant: The Modulator of Stress Sensitivity "Shati/Nat8l-BDNF System" in the Dorsal Striatum. Pharmaceuticals (Basel) 2021; 14:ph14090889. [PMID: 34577589 PMCID: PMC8469819 DOI: 10.3390/ph14090889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is one of the most common mental diseases, with increasing numbers of patients globally each year. In addition, approximately 30% of patients with depression are resistant to any treatment and do not show an expected response to first-line antidepressant drugs. Therefore, novel antidepressant agents and strategies are required. Although depression is triggered by post-birth stress, while some individuals show the pathology of depression, others remain resilient. The molecular mechanisms underlying stress sensitivity remain unknown. Brain-derived neurotrophic factor (BDNF) has both pro- and anti-depressant effects, dependent on brain region. Considering the strong region-specific contribution of BDNF to depression pathogenesis, the regulation of BDNF in the whole brain is not a beneficial strategy for the treatment of depression. We reviewed a novel finding of BDNF function in the dorsal striatum, which induces vulnerability to social stress, in addition to recent research progress regarding the brain regional functions of BDNF, including the prefrontal cortex, hippocampus, and nucleus accumbens. Striatal BDNF is regulated by Shati/Nat8l, an N-acetyltransferase through epigenetic regulation. Targeting of Shati/Nat8l would allow BDNF to be striatum-specifically regulated, and the striatal Shati/Nat8l-BDNF pathway could be a promising novel therapeutic agent for the treatment of depression by modulating sensitivity to stress.
Collapse
|
123
|
Therapeutic Potential of Curcumin in Reversing the Depression and Associated Pseudodementia via Modulating Stress Hormone, Hippocampal Neurotransmitters, and BDNF Levels in Rats. Neurochem Res 2021; 46:3273-3285. [PMID: 34409523 DOI: 10.1007/s11064-021-03430-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023]
Abstract
Depressive state adversely affects the memory functions, especially in the geriatric population. The initial stage of memory deficits associated with depression is particularly called as pseudodementia. It is the starting point of memory disturbance before dementia. The purpose of this research was to study depression and its consequent pseudodementia. For this purpose 24 male albino Wistar rats were divided into four groups. Depression was induced by 14 days of chronic restraint stress (CRS) daily for 4 h. After developing a depression model, pattern separation test was conducted to monitor pseudodementia in rats. Morris water maze test (MWM) was also performed to observe spatial memory. It was observed that model animals displayed impaired pattern separation and spatial memory. Treatment was started after the development of pseudodementia in rats. Curcumin at a dose of 200 mg/kg was given to model rats for one week along with the stress procedure. Following the treatment with curcumin, rats were again subjected to the aforementioned behavioral tests before decapitation. Corticosterone levels, brain derived neurotrophic factor (BDNF) and neurochemical analysis were conducted. Model rats showed depressogenic behavior and impaired memory performance. In addition to this, high corticosterone levels and decreased hippocampal BDNF, 5-HT, dopamine (DA), and acetylcholine (ACh) levels were also observed in depressed animals. These behavioral biochemical and neurochemical changes were effectively restored following treatment with curcumin. Hence, it is suggested from this study that pseudodementia can be reversed unlike true dementia by controlling the factors such as depression which induce memory impairment.
Collapse
|
124
|
Puhlmann LMC, Linz R, Valk SL, Vrticka P, Vos de Wael R, Bernasconi A, Bernasconi N, Caldairou B, Papassotiriou I, Chrousos GP, Bernhardt BC, Singer T, Engert V. Association between hippocampal structure and serum Brain-Derived Neurotrophic Factor (BDNF) in healthy adults: A registered report. Neuroimage 2021; 236:118011. [PMID: 33852941 PMCID: PMC8280951 DOI: 10.1016/j.neuroimage.2021.118011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023] Open
Abstract
The hippocampus is a highly plastic brain structure supporting functions central to human cognition. Morphological changes in the hippocampus have been implicated in development, aging, as well as in a broad range of neurological and psychiatric disorders. A growing body of research suggests that hippocampal plasticity is closely linked to the actions of brain-derived neurotrophic factor (BDNF). However, evidence on the relationship between hippocampal volume (HCV) and peripheral BDNF levels is scarce and limited to elderly and patient populations. Further, despite evidence that BDNF expression differs throughout the hippocampus and is implicated in adult neurogenesis specifically in the dentate gyrus, no study has so far related peripheral BDNF levels to the volumes of individual hippocampal subfields. Besides its clinical implications, BDNF-facilitated hippocampal plasticity plays an important role in regulating cognitive and affective processes. In the current registered report, we investigated how serum BDNF (sBDNF) levels relate to volumes of the hippocampal formation and its subfields in a large sample of healthy adults (N = 279, 160 f) with a broad age range (20-55 years, mean 40.5) recruited in the context of the ReSource Project. We related HCV to basal sBDNF and, in a subsample (n = 103, 57 f), to acute stress-reactive change in sBDNF. We further tested the role of age as a moderator of both associations. Contrary to our hypotheses, neither basal sBDNF levels nor stress-reactive sBDNF change were associated with total HCV or volume of the dentate gyrus/cornu ammonis 4 (DG/CA4) subfield. We also found no evidence for a moderating effect of age on any of these associations. Our null results provide a first point of reference on the relationship between sBDNF and HCV in healthy mid-age, in contrast to patient or aging populations. We suggest that sBDNF levels have limited predictive value for morphological differences of the hippocampal structure when notable challenge to its neuronal integrity or to neurotrophic capacity is absent.
Collapse
Affiliation(s)
- L M C Puhlmann
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Leibniz Institute for Resilience Research, Mainz, Germany.
| | - R Linz
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S L Valk
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Otto Hahn Research Group "Cognitive Neurogenetics", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - P Vrticka
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | - R Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - A Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - N Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - B Caldairou
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - I Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - G P Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - B C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - T Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| | - V Engert
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
125
|
Wang WK, Zhou Y, Fan L, Sun Y, Ge F, Xue M. The antidepressant-like effects of Danggui Buxue Decoction in GK rats by activating CREB/BDNF/TrkB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153600. [PMID: 34130073 DOI: 10.1016/j.phymed.2021.153600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND High rates of co-morbidity have been reported in patients with diabetes mellitus with depression (DD). Danggui Buxue Decoction (DBD), a Traditional Chinese Medicine formula composed of Angelica and Astragalus, has been historically used for the treatment of diabetes. PURPOSE This study aimed to investigated whether DBD and its main active component, ferulic acid (FA) from Angelica, could ameliorate depression-like behavior in DD and the underlying mechanisms. METHODS Goto-Kakizaki (GK) rats were administered DBD (4 or 8 g/kg) by oral gavage during a 4-week period of chronic unpredictable mild stress. After 4 weeks, blood glucose, glycated serum protein, serum insulin, oral glucose tolerance and depression-like behavior were examined, along with brain-derived neurotrophic factor (BDNF)-related signaling pathway proteins and the ultrastructure of hippocampal tissues. UPLC-QTOF-MS was adopted to detect the absorption of FA in the serum and hippocampus. Rat primary hippocampal cells were cultured in a DD model. Protein and mRNA levels of genes involved in BDNF-related signaling and neuroplasticity were analyzed. RESULTS DBD effectively improved glucose tolerance in DD rats and relieved depression-like behavior. Upregulation of cAMP response element binding protein (CREB), BDNF, and tropomyosin receptor kinase B (TrkB) and improvement of the hippocampal neuron ultrastructure supported the antidepressant-Like effects of DBD on the hippocampal neurons. In addition, DBD enhanced the protein and mRNA levels of components of the CREB/BDNF/TrkB pathway in rat primary hippocampal cells induced by elevated glycemia and cortisol. Interestingly, FA, the main component of DBD absorbed in the blood and hippocampus, showed similar effects as DBD on primary hippocampal cells. CONCLUSION This study suggests that the TCM formula DBD effectively serves as a potential therapeutic agent for prevention of DD through regulatory effects on the CREB/BDNF/TrkB pathway to protect and remodel hippocampal neurons. Moreover, FA contributes significantly to the treatment effects of DBD.
Collapse
Affiliation(s)
- Wen-Kai Wang
- College of Traditional Chinese Medicine•College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, China
| | - Yuan Zhou
- School of Medicine•Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 138 Xianlin Rd, Nanjing, China
| | - Lu Fan
- School of Medicine•Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 138 Xianlin Rd, Nanjing, China
| | - Yue Sun
- College of Traditional Chinese Medicine•College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, China
| | - Fan Ge
- College of Traditional Chinese Medicine•College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, China
| | - Mei Xue
- College of Traditional Chinese Medicine•College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, China.
| |
Collapse
|
126
|
Role of Quercetin in Depressive-Like Behaviors: Findings from Animal Models. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Depressive-like behavior is a highly prevalent worldwide neuropsychiatric disorder that owns a complex pathophysiologic mechanism. The available pharmacotherapy is ineffective for most patients and shown several adverse effects. Therefore, it is important to find efficacy and safe antidepressive compounds. Some phytochemicals compounds regulate the same genes and pathways targeted by drugs; therefore, diets rich in fruits and vegetables could be considered novel treatment approaches. Currently, the functional properties of quercetin acquired great interest, due to its beneficial effects on health. Quercetin is a flavonoid ubiquitously present in vegetables and fruits, interestingly for its strong antioxidant properties. The purpose of this review is to summarize the preclinical studies present in the literature, in the last ten years, aimed at illustrating the effects of quercetin pre-treatment in depressive-like behaviors. Quercetin resulted in antidepressant-like actions due to its antioxidant, anti-inflammatory, and neuroprotective effects. This pointed out the usefulness of this flavonoid as a nutraceutical compound against the development of psychological stress-induced behavioral perturbation. Therefore, quercetin or a diet containing it may become a prospective supplementation or an efficient adjuvant therapy for preventing stress-mediated depressive-like behavior.
Collapse
|
127
|
Effects of Functional Fitness Enhancement through Taekwondo Training on Physical Characteristics and Risk Factors of Dementia in Elderly Women with Depression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157961. [PMID: 34360254 PMCID: PMC8345697 DOI: 10.3390/ijerph18157961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this research is to identify the correlations between functional fitness enhancement through a long-term Taekwondo training program and the physical characteristics and risk factors of dementia among elderly women with depression. The study has found that conducting three 60-min Taekwondo training sessions a week for the duration of 12 weeks has enhanced a number of functional fitness indexes, including hand grip strength/weight (p < 0.01), 4-m gait speed (p < 0.001), 3-m timed up and go (p < 0.05), and figure-of-eight track (p < 0.05), and significantly improved general health condition indexes as well, including percent fat (p < 0.05), appendicular skeletal muscle mass index (p < 0.01), systolic blood pressure (p < 0.01), and diastolic blood pressure (p < 0.001). Furthermore, the arteriosclerosis index and cognitive function have been found to be improved with an increase of brain-derived neurotrophic factor (BDNF; which prevents dementia) and a significant decrease of β-amyloid—a risk factor of dementia—as a result of enhancements in serum lipids and adiponectin, confirming the positive effects of functional fitness enhancement on fighting depression, promoting physical characteristics, and reducing the risk factors of dementia.
Collapse
|
128
|
BDNF Impact on Biological Markers of Depression-Role of Physical Exercise and Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147553. [PMID: 34300001 PMCID: PMC8307197 DOI: 10.3390/ijerph18147553] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022]
Abstract
Depression is the most common and devastating psychiatric disorder in the world. Its symptoms, especially during the pandemic, are observed in all age groups. Exercise training (ET) is well known as a non-pharmacological strategy to alleviate clinical depression. The brain-derived neurotrophic factor (BDNF) is one of the biological factors whose expression and secretion are intensified in response to ET. BDNF is also secreted by contracted skeletal muscle that likely exerts para-, auto- and endocrine effects, supporting the crosstalk between skeletal muscle and other distant organs/tissues, such as the nervous system. This finding suggests that they communicate and work together to induce improvements on mood, cognition, and learning processes as BDNF is the main player in the neurogenesis, growth, and survival of neurons. Therefore, BDNF has been recognized as a therapeutic factor in clinical depression, especially in response to ET. The underlying mechanisms through which ET impacts depression are varied. The aim of this review was to provide information of the biological markers of depression such as monoamines, tryptophan, endocannabinoids, markers of inflammatory processes (oxidative stress and cytokines) stress and sex hormones and their relationship to BDNF. In addition, we reviewed the effects of ET on BNDF expression and how it impacts depression as well as the potential mechanisms mediating this process, providing a better understanding of underlying ET-related mechanisms in depression.
Collapse
|
129
|
Arafa A, Eshak ES, Shirai K, Cadar D, Iso H, Tsuji T, Kanamori S, Kondo K. Impact of various intensities and frequencies of non-occupational physical activity on the risk of dementia among physically independent older adults: the Japan Gerontological Evaluation Study. Public Health 2021; 196:204-210. [PMID: 34274694 DOI: 10.1016/j.puhe.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the association between different intensities and frequencies of non-occupational physical activity (PA) and the risk of dementia among Japanese older adults. STUDY DESIGN This was a prospective cohort study. METHODS A total of 2194 participants aged ≥65 years from the Japan Gerontological Evaluation Study were followed up between 2010 and 2016. The standardised dementia scale of the long-term care insurance system was used to identify incident dementia, whereas non-occupational PA (<2 or ≥2 times/week on each intensity: light, moderate and vigorous) was assessed using a questionnaire. Cox regression was used to compute the hazard ratios (HRs) and 95% confidence intervals (CIs) for incident dementia. RESULTS After adjustment for sociodemographic and medical characteristics, the following frequencies and intensities of non-occupational PA, compared with no non-occupational PA at all, were associated with a reduced risk of dementia: light PA ≥2 times/week (HR = 0.61, 95% CI: 0.38-0.97), moderate PA <2 times/week (HR = 0.46, 95% CI: 0.28-0.76), moderate PA ≥2 times/week (HR = 0.57, 95% CI: 0.36-0.91), vigorous PA <2 times/week (HR = 0.40, 95% CI: 0.21-0.74) and vigorous PA ≥2 times/week (HR = 0.29, 95% CI: 0.15-0.57). In the sex-specific analysis, moderate PA <2 times/week and vigorous PA ≥2 times/week were associated with a reduced risk of dementia in men, whereas light and moderate PA ≥2 times/week and all frequencies of vigorous PA were associated with a reduced risk of dementia in women. CONCLUSIONS Practicing non-occupational PA was associated with a reduced risk of dementia among Japanese older adults.
Collapse
Affiliation(s)
- A Arafa
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Public Health, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - E S Eshak
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Public Health, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - K Shirai
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - D Cadar
- Department of Behavioral Science and Health, University College London, London, UK
| | - H Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - T Tsuji
- Faculty of Health and Sport Sciences, University of Tsukuba, Tokyo, Japan
| | - S Kanamori
- Teikyo University Graduate School of Public Health, Tokyo, Japan; Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo, Japan
| | - K Kondo
- Department of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan; Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
130
|
Liu L, Liu M, Zhao W, Zhao YL, Wang Y. Levo-tetrahydropalmatine: A new potential medication for methamphetamine addiction and neurotoxicity. Exp Neurol 2021; 344:113809. [PMID: 34256045 DOI: 10.1016/j.expneurol.2021.113809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Levo-tetrahydropalmatine (l-THP) is mainly derived from the dried tuber of the Papaveraceae plant Corydalis, also called Corydalis B, which is a drug with analgesic, hypnotic, sedative and other effects. Methamphetamine (METH) belongs to the central nervous stimulant and is a highly addictive drug. It is an urgent problem to study the mechanism of methamphetamine neurotoxicity and to search for the therapeutic targets of the METH addiction. This review is aimed to discuss the pharmacological mechanism and the protective effects of l-THP on METH-induced neurotoxicity, and to explore the therapeutic prospects of l-THP for METH addiction to provide an innovative application of l-THP in clinic. It was found that exposure to METH leads to the compulsive drug-seeking and drug-taking behavior, which is ultimately resulted in METH addiction and neurotoxicity. L-THP has the inhibitory effects on the incidence, maintenance and relapse of METH addiction. L-THP can effectively enhance the plasticity of nerve cells and improve the function of nerve cells where brain-derived neurotrophic factor (BDNF) and its pathways play a protective role. Therefore, l-THP has the potential to become an important therapeutic drug for METH addiction and neurotoxicity.
Collapse
Affiliation(s)
- Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
131
|
Almulla AYH, Mogulkoc R, Baltaci AK, Dasdelen D. Learning, Neurogenesis, and Effects of Flavonoids on Learning. Mini Rev Med Chem 2021; 22:355-364. [PMID: 34238155 DOI: 10.2174/1389557521666210707120719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Learning and memory are two of our mind's most magical abilities. Different brain regions have roles in processing and storing different types of memories. The hippocampus is the part of the brain responsible for receiving information and storing it in the neocortex. One of the most impressive characteristics of the hippocampus is its capacity for neurogenesis, which is a process in which new neurons are produced and then transformed into mature neurons and finally integrated into neural circuits. The neurogenesis process in the hippocampus, an example of neuroplasticity in the adult brain, is believed to aid hippocampal-dependent learning and memory. New neurons are constantly produced in the hippocampus and integrated into the pre-existing neuronal network; this allows old memories already stored in the neocortex to be removed from the hippocampus and replaced with new ones. Factors affecting neurogenesis in the hippocampus may also affect hippocampal-dependent learning and memory. The flavonoids can particularly exert powerful actions in mammalian cognition and improve hippocampal-dependent learning and memory by positively affecting hippocampal neurogenesis.
Collapse
Affiliation(s)
| | - Rasim Mogulkoc
- Selcuk University, Medical School Department of Physiology, 42075, Konya, Turkey
| | | | - Dervis Dasdelen
- Selcuk University, Medical School Department of Physiology, 42075, Konya, Turkey
| |
Collapse
|
132
|
McGurk SR, Otto MW, Fulford D, Cutler Z, Mulcahy LP, Talluri SS, Qiu WQ, Gan Q, Tran I, Turner L, DeTore NR, Zawacki SA, Khare C, Pillai A, Mueser KT. A randomized controlled trial of exercise on augmenting the effects of cognitive remediation in persons with severe mental illness. J Psychiatr Res 2021; 139:38-46. [PMID: 34022474 DOI: 10.1016/j.jpsychires.2021.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Preliminary evidence suggests that aerobic exercise may augment the effects of cognitive remediation on improving cognitive functioning in severe mental illness. It has also been hypothesized that increases in cognitive functioning associated with adding exercise are mediated by increases in brain derived neurotrophic factor (BDNF). However, rigorous controlled trials are lacking. METHODS A randomized controlled trial was conducted to explore whether adding a 30-h aerobic exercise program over 10 weeks to an equally intensive cognitive remediation program (CR + E) improved cognitive functioning more than cognitive remediation alone (CR-Only). Thirty-four participants with schizophrenia or bipolar disorder were randomly assigned to CR + E or CR-Only, and cognitive functioning was assessed at baseline and post-treatment. Total and mature BDNF were measured in blood serum at baseline, Week-5 pre- and post-exercise, and Week-10 pre- and post-exercise. RESULTS Participants in both conditions had high levels of engagement in the interventions and improved significantly in cognitive functioning, but did not differ in amount of cognitive change. The groups also did not differ in changes in BDNF from pre-to post-exercise at Weeks 5 or 10, nor in resting BDNF levels. Exploratory analyses indicated that higher body mass index (BMI) significantly predicted attenuated improvement in cognitive functioning for both groups. DISCUSSION Exercise did not augment the effects of cognitive remediation in persons with severe mental illness, possibly because the cognitive remediation program resulted in strong gains in cognitive functioning. Moderate aerobic exercise does not appear to reliably increase BDNF levels in persons with severe mental illness. CLINICALTRIALS. GOV IDENTIFIER NCT02326389.
Collapse
Affiliation(s)
- Susan R McGurk
- Center for Psychiatric Rehabilitation, Boston University, United States; Department of Occupational Therapy and Psychological and Brain Sciences, Boston University, United States
| | - Michael W Otto
- Department Psychological and Brain Sciences, Boston University, United States
| | - Daniel Fulford
- Department of Occupational Therapy and Psychological and Brain Sciences, Boston University, United States
| | - Zachary Cutler
- Center for Psychiatric Rehabilitation, Boston University, United States
| | - Leonard P Mulcahy
- Center for Psychiatric Rehabilitation, Boston University, United States
| | - Sai Snigdha Talluri
- Chicago Health Disparities Program, Department of Psychology, Illinois Institute of Technology, United States
| | - Wei Qiao Qiu
- Department of Psychiatry, Boston University School of Medicine, United States; Pharmacology & Experimental Therapeutics, Boston University School of Medicine, United States
| | - Qini Gan
- Pharmacology & Experimental Therapeutics, Boston University School of Medicine, United States
| | - Ivy Tran
- Department of Psychology, Hofstra University, United States
| | - Laura Turner
- Franciscan Children's Hospital, Boston, MA, United States
| | - Nicole R DeTore
- Department of Psychiatry, Massachusetts General Hospital, United States; Department of Psychiatry, Harvard Medical School, United States
| | | | - Chitra Khare
- Department of Occupational Therapy and Psychological and Brain Sciences, Boston University, United States
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, United States
| | - Kim T Mueser
- Center for Psychiatric Rehabilitation, Boston University, United States; Department of Occupational Therapy and Psychological and Brain Sciences, Boston University, United States.
| |
Collapse
|
133
|
Bender CM, Sereika SM, Gentry AL, Duquette JE, Casillo FE, Marsland A, Brufsky AM, Evans S, Gorantla VC, Grahovac TL, McAuliffe PF, Steiman JG, Zhu Y, Erickson KI. Physical activity, cardiorespiratory fitness, and cognitive function in postmenopausal women with breast cancer. Support Care Cancer 2021; 29:3743-3752. [PMID: 33210238 PMCID: PMC8131400 DOI: 10.1007/s00520-020-05865-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023]
Abstract
Physical activity may improve cognitive function in women with breast cancer. In a cross-sectional study, we explored the relationship between cognitive function and physical activity (actigraph) and cardiorespiratory fitness (sub-maximal graded exercise test) in 73 postmenopausal women with early stage breast cancer prior to the initiation of systemic adjuvant therapy. Cognitive function was assessed with a standardized battery of neurocognitive measures assessing eight domains. Data were analyzed using partial correlations, controlling for age and total hours of actigraph wear-time. Women were, on average, 63.71 (± 5.3) years of age with 15.47 (± 2.48) years of education. For physical activity, greater average number of steps per day were associated with better attention (r = .262, p = .032) and psychomotor speed (r = .301, p = .011); greater average hours of moderate and moderate/vigorous intensity physical activity were associated with better visual memory (r = .241, p = .049; r = .241, p = .049, respectively); and greater average daily energy expenditure was associated with better visual memory (r = .270, p = .027) and psychomotor speed (r = .292, p = .017). For fitness, higher peak maximum VO2 was associated with better concentration (r = .330, p = .006), verbal memory (r = .241, p = .048), and working memory (r = .281, p = .019). These results suggest that higher levels of physical activity and cardiorespiratory fitness are associated with better cognitive function in postmenopausal women with breast cancer. Randomized controlled trials (RCT) to examine whether physical activity improves cognitive function in women with breast cancer are warranted. These RCTs should also determine the mechanisms of the influence of physical activity on cognitive function. CLINICAL TRIALS REGISTRATION NUMBER: NCT02793921; Date: May 20, 2016.
Collapse
Affiliation(s)
| | - Susan M Sereika
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda L Gentry
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Anna Marsland
- School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam M Brufsky
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven Evans
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Tara L Grahovac
- Department of Surgery, St. Clair Hospital, Pittsburgh, PA, USA
| | | | | | - Yehui Zhu
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk I Erickson
- School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
134
|
Fujiwara Y, Ihara K, Hachisu M, Suzuki H, Kawai H, Sakurai R, Hirano H, Chaves PHM, Hashizume M, Obuchi S. Higher Serum Brain-Derived Neurotrophic Factor Levels Are Associated With a Lower Risk of Cognitive Decline: A 2-Year Follow Up Study in Community-Dwelling Older Adults. Front Behav Neurosci 2021; 15:641608. [PMID: 34239422 PMCID: PMC8258380 DOI: 10.3389/fnbeh.2021.641608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To assess the relationship of serum brain-derived neurotrophic factor (BDNF) levels with the subsequent short-term decline in cognitive functioning in community-dwelling older adults. DESIGN Two-year prospective, observational study. SETTING AND PARTICIPANTS The study included 405 adults aged 65-84 years, initially free of a dementia diagnosis who were living in Tokyo, Japan. METHODS Participants underwent health assessments at baseline (2011) and follow-up (2013). Serum BDNF levels and scores from the Montreal Cognitive Assessment-Japanese version (MoCA-J) were systematically measured. Logistic regression was used to estimate the odds of cognitive decline between baseline and follow-up assessments in the full MoCA-J scale (operationally defined as a decrease of two or more points), as well as in MoCA-J subscales (decline of one or more points in a specific subscale), as a function of serum BDNF level, adjusting for baseline demographics, prevalent chronic diseases, and baseline cognitive scores. RESULTS Among individuals who performed worse on the full MoCA-J at baseline (i.e., scores in the bottom quartile [≤21], which is consistent with a mild cognitive impairment status), but not among those who performed better (top 3 quartiles), those with highest baseline serum BDNF levels (top quartile) had lower odds of subsequent decline in the full MoCA-J scale than those with lowest (bottom quartile); i.e., odds ratio (OR): 0.10 (95% confidence interval [CI]: 0.02-0.62; p = 0.013). Regarding MoCA-J subscales, adjusted odds of decline in the executive function subscale, but not in the other five subscales, were substantially low among those with highest baseline serum BDNF levels (top quartile), as compared to those with the lowest (bottom quartile), i.e., OR: 0.27 (95% CI:0.13-0.60; p < 0.001). CONCLUSION AND IMPLICATIONS Higher serum BDNF levels were associated with a lower risk of decline in cognitive function in a sample of community-dwelling older Japanese adults. Risk varied across cognitive subdomains and according to baseline cognition. This warrants further research to evaluate the added-value of serum BDNF in health promotion initiatives directed toward cognitive decline prevention in community-dwelling older adults.
Collapse
Affiliation(s)
- Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazushige Ihara
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mitsugu Hachisu
- Division of Clinical Pharmacy, Department of Pharmaceutical Therapeutics, Pharmacy School, Showa University, Tokyo, Japan
| | - Hiroyuki Suzuki
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hisashi Kawai
- Research Team for Human Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ryota Sakurai
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hirohiko Hirano
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Paulo H. M. Chaves
- Benjamin Leon Center for Geriatric Research and Education, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Masahiro Hashizume
- Department of Psychosomatic Medicine, School of Medicine, Toho University, Tokyo, Japan
| | - Shuichi Obuchi
- Research Team for Human Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
135
|
Ozdurak Singin RH, Duz S, Kiraz M. Cortical and Subcortical Brain Volume Alterations Following Endurance Running at 38.6 km and 119.2 km in Male Athletes. Med Sci Monit 2021; 27:e926060. [PMID: 34155188 PMCID: PMC8234558 DOI: 10.12659/msm.926060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Although several studies have shown that ultramarathon running causes severe physical and mental stress and harms organ systems, its effect on brain tissue remains unclear. The purpose of this study was to investigate the volumetric change of cortical and subcortical brain structures following 38.6-km and 119.8-km mountain races. MATERIAL AND METHODS A total of 23 healthy male runners (age, 49.05±5.99 years) were classified as short-trail (ST; n=9) and ultra-trail (UT; n=14) endurance running. Pre- and post-test scanning of brain tissue was performed by using a 3-Tesla magnetic resonance imaging (MRI). Pre- and post-race differences in cortical and subcortical volumes in the ST and UT groups were separately determined by Wilcoxon signed-rank test. RESULTS Cortical gray matter (GM) and cerebral GM volume significantly increased after the race in both ST and UT groups, whereas the volume of the thalamus, caudate, pallidus, and hippocampus significantly increased only in the UT group. Cerebrospinal fluid (CSF) and white-matter (WM) volumes did not change after endurance running and remained unaltered in both groups. CONCLUSIONS Endurance running has a site-specific acute effect on cortical and subcortical structures and may attenuate GM volume decrease in older adult male athletes. The increased volume of subcortical structures might be a response of physical exercise and additional physical stress experienced by ultramarathon runners.
Collapse
Affiliation(s)
| | - Serkan Duz
- Faculty of Sport Sciences, Inonu University, Malatya, Turkey
| | - Murat Kiraz
- Department of Neurosurgery, Faculty of Medicine, Hitit University, Çorum, Turkey
| |
Collapse
|
136
|
White D, John CS, Kucera A, Truver B, Lepping RJ, Kueck PJ, Lee P, Martin L, Billinger SA, Burns JM, Morris JK, Vidoni ED. A methodology for an acute exercise clinical trial called dementia risk and dynamic response to exercise. Sci Rep 2021; 11:12776. [PMID: 34140586 PMCID: PMC8211849 DOI: 10.1038/s41598-021-92177-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/04/2021] [Indexed: 01/21/2023] Open
Abstract
Exercise likely has numerous benefits for brain and cognition. However, those benefits and their causes remain imprecisely defined. If the brain does benefit from exercise it does so primarily through cumulative brief, "acute" exposures over a lifetime. The Dementia Risk and Dynamic Response to Exercise (DYNAMIC) clinical trial seeks to characterize the acute exercise response in cerebral perfusion, and circulating neurotrophic factors in older adults with and without the apolipoprotein e4 genotype (APOE4), the strongest genetic predictor of sporadic, late onset Alzheimer's disease. DYNAMIC will enroll 60 older adults into a single moderate intensity bout of exercise intervention, measuring pre- and post-exercise cerebral blood flow (CBF) using arterial spin labeling, and neurotrophic factors. We expect that APOE4 carriers will have poor CBF regulation, i.e. slower return to baseline perfusion after exercise, and will demonstrate blunted neurotrophic response to exercise, with concentrations of neurotrophic factors positively correlating with CBF regulation. Preliminary findings on 7 older adults and 9 younger adults demonstrate that the experimental method can capture CBF and neurotrophic response over a time course. This methodology will provide important insight into acute exercise response and potential directions for clinical trial outcomes.ClinicalTrials.gov NCT04009629, Registered 05/07/2019.
Collapse
Affiliation(s)
- Dreu White
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Casey S John
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashley Kucera
- American Academy of Family Physicians, Leawood, KS, USA
| | - Bryce Truver
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Paul J Kueck
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Phil Lee
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura Martin
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Jill K Morris
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric D Vidoni
- University of Kansas Medical Center, Kansas City, KS, USA.
- University of Kansas Alzheimer's Disease Center, 4350 Shawnee Mission Parkway, Fairway, KS, 60205, MS6002, USA.
| |
Collapse
|
137
|
Li X, Li T, Hong XY, Liu JJ, Yang XF, Liu GP. Acer Truncatum Seed Oil Alleviates Learning and Memory Impairments of Aging Mice. Front Cell Dev Biol 2021; 9:680386. [PMID: 34055809 PMCID: PMC8160100 DOI: 10.3389/fcell.2021.680386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Aging, characterized by a time-dependent functional decline of physiological integrity, is the major independent risk factor for many neurodegeneration diseases. Therefore, it’s necessary to look for natural food supplements to extend the healthy lifespan of aging people. We here treated normal aging mice with acer truncatum seed oil, and found that the seed oil significantly improved the learning and memory ability. Proteomics revealed that the seed oil administration changed many proteins expression involving in biological processes, including complement and coagulation cascades, inflammatory response pathway and innate immune response. BDNF/TrkB signaling pathway was also activated by acer truncatum seed oil treatment. And the seed oil administration increased the expression of postsynaptic related proteins including PSD95, GluA1, and NMDAR1, and decreased the mRNA level of inflammatory factors containing IL-1β, TNF-α, and IL-6. These findings suggest that acer truncatum seed oil holds a promise as a therapeutic food supplement for delaying aging with multiple mechanisms.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jian Jun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xi Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gong Ping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
138
|
The Effect of Tai Chi Chuan on Emotional Health: Potential Mechanisms and Prefrontal Cortex Hypothesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5549006. [PMID: 34007290 PMCID: PMC8110391 DOI: 10.1155/2021/5549006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022]
Abstract
Deep involvement in the negative mood over long periods of time likely results in emotional disturbances/disorders and poor mental health. Tai Chi Chuan (TCC) is regarded as a typical mind-body practice combining aerobic exercise and meditation to prevent and treat negative mood. Although there are an increasing number of TCC studies examining anxiety, depression, and mental stress, the mechanisms underlying these negative emotions are not fully understood. This review study examined TCC studies related to emotional health from both clinical patients and healthy individuals. Next, several potential mechanisms from physiological, psychological, and neurological perspectives were evaluated based on direct and indirect research evidence. We reviewed recent functional magnetic resonance imaging studies, which demonstrated changes in brain anatomy and function, mainly in the prefrontal cortex, following TCC practice. Finally, the effects of TCC on emotion/mental health is depicted with a prefrontal cortex hypothesis that proposed “an immune system of the mind” indicating the role of the prefrontal cortex as a flexible hub in regulating an individual's mental health. The prefrontal cortex is likely a key biomarker among the multiple complex neural correlates to help an individual manage negative emotions/mental health. Future research is needed to examine TCC effects on mental health by examining the relationship between the executive control system (mainly prefrontal cortex) and limbic network (including amygdala, insula, and hippocampal gyrus).
Collapse
|
139
|
Tommerdahl J, Biggan J, McKee F, Nesbitt M, Ray C. The Relationship between Physical Fitness and Reasoning in Community-Dwelling Older Adults. ACTIVITIES, ADAPTATION & AGING 2021. [DOI: 10.1080/01924788.2021.1910150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jodi Tommerdahl
- Southwest Center for Mind, Brain and Education, University of Texas at Arlington, Arlington, USA
| | - John Biggan
- Department of Psychology, University of Texas at Arlington, Arlington, USA
| | - Fred McKee
- Department of Kinesiology, University of Texas at Arlington, Arlington, USA
| | - Monica Nesbitt
- Department of Linguistics and TESOL, University of Texas at Arlington, Arlington, USA
| | - Christopher Ray
- Department of Kinesiology, University of Texas at Arlington, Arlington, USA
| |
Collapse
|
140
|
Imboden C, Gerber M, Beck J, Eckert A, Lejri I, Pühse U, Holsboer-Trachsler E, Hatzinger M. Aerobic Exercise and Stretching as Add-On to Inpatient Treatment for Depression Have No Differential Effects on Stress-Axis Activity, Serum-BDNF, TNF-Alpha and Objective Sleep Measures. Brain Sci 2021; 11:brainsci11040411. [PMID: 33805073 PMCID: PMC8064092 DOI: 10.3390/brainsci11040411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
(1) Background: While the antidepressant effects of aerobic exercise (AE) are well documented, fewer studies have examined impact of AE as an add-on treatment. Moreover, various effects on neurobiological variables have been suggested. This study examines effects of AE on Cortisol Awakening Reaction (CAR), serum Brain Derived Neurotrophic Factor (sBDNF), Tumor Necrosis Factor alpha (TNF-alpha) and sleep. (2) Methods: Inpatients with moderate-to-severe depression (N = 43) were randomly assigned to the AE or stretching condition (active control) taking place 3x/week for 6 weeks. CAR, sBDNF and TNF-alpha were assessed at baseline, after 2 weeks and post-intervention. The 17-item Hamilton Depression Rating Scale (HDRS17), subjective sleep quality measured by the Pittsburgh Sleep Quality Index (PSQI) and polysomnography (PSG) were obtained at baseline and post-intervention. (3) Results: Stress axis activity decreased in both groups from baseline to post-intervention. sBDNF showed a significant increase over time, whereas the number of awakenings significantly decreased. No significant time by group interactions were detected for any of the study variables. Correlational analyses showed that higher improvements in maximum oxygen capacity (VO2max) from baseline to post-intervention were associated with reduced scores on the HDRS17, PSQI and REM-latency post-intervention. (4) Conclusions: While some neurobiological variables improved during inpatient treatment (CAR, sBDNF), no evidence was found for differential effects between AE and an active control condition (stretching). However, patients in which cardiorespiratory fitness increased showed higher improvements in depression severity and depression-related sleep-parameters.
Collapse
Affiliation(s)
- Christian Imboden
- Psychiatric Services Solothurn, 4503 Solothurn, Switzerland and University of Basel, 4031 Basel, Switzerland;
- Private Clinic Wyss, 3053 Muenchenbuchsee, Switzerland
- Correspondence:
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, 4052 Basel, Switzerland; (M.G.); (U.P.)
| | - Johannes Beck
- Psychiatric University Hospital, University of Basel, 4031 Basel, Switzerland; (J.B.); (A.E.); (I.L.); (E.H.-T.)
- Private Clinic Sonnenhalde, 4125 Riehen, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, 4031 Basel, Switzerland; (J.B.); (A.E.); (I.L.); (E.H.-T.)
| | - Imane Lejri
- Psychiatric University Hospital, University of Basel, 4031 Basel, Switzerland; (J.B.); (A.E.); (I.L.); (E.H.-T.)
| | - Uwe Pühse
- Department of Sport, Exercise and Health, University of Basel, 4052 Basel, Switzerland; (M.G.); (U.P.)
| | - Edith Holsboer-Trachsler
- Psychiatric University Hospital, University of Basel, 4031 Basel, Switzerland; (J.B.); (A.E.); (I.L.); (E.H.-T.)
| | - Martin Hatzinger
- Psychiatric Services Solothurn, 4503 Solothurn, Switzerland and University of Basel, 4031 Basel, Switzerland;
| |
Collapse
|
141
|
Wilmes L, Collins JM, O'Riordan KJ, O'Mahony SM, Cryan JF, Clarke G. Of bowels, brain and behavior: A role for the gut microbiota in psychiatric comorbidities in irritable bowel syndrome. Neurogastroenterol Motil 2021; 33:e14095. [PMID: 33580895 DOI: 10.1111/nmo.14095] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The gastrointestinal microbiota has emerged as a key regulator of gut-brain axis signalling with important implications for neurogastroenterology. There is continuous bidirectional communication between the gut and the brain facilitated by neuronal, endocrine, metabolic, and immune pathways. The microbiota influences these signalling pathways via several mechanisms. Studies have shown compositional and functional alterations in the gut microbiota in stress-related psychiatric disorders. Gut microbiota reconfigurations are also a feature of irritable bowel syndrome (IBS), a gut-brain axis disorder sharing high levels of psychiatric comorbidity including both anxiety and depression. It remains unclear how the gut microbiota alterations in IBS align with both core symptoms and these psychiatric comorbidities. METHODS In this review, we highlight common and disparate features of these microbial signatures as well as the associated gut-brain axis signalling pathways. Studies suggest that patients with either IBS, depression or anxiety, alone or comorbid, present with alterations in gut microbiota composition and harbor immune, endocrine, and serotonergic system alterations relevant to the common pathophysiology of these comorbid conditions. KEY RESULTS Research has illustrated the utility of fecal microbiota transplantation in animal models, expanding the evidence base for a potential causal role of disorder-specific gut microbiota compositions in symptom set expression. Moreover, an exciting study by Constante and colleagues in this issue highlights the possibility of counteracting this microbiota-associated aberrant behavioral phenotype with a probiotic yeast, Saccharomyces boulardii CNCM I-745. CONCLUSIONS AND INFERENCES Such data highlights the potential for therapeutic targeting of the gut microbiota as a valuable strategy for the management of comorbid psychiatric symptoms in IBS.
Collapse
Affiliation(s)
- Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,Department of Psychiatry and Behavioural Science, University College Cork, Cork, Ireland
| | - James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Behavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
142
|
Creation of a gene expression portrait of depression and its application for identifying potential treatments. Sci Rep 2021; 11:3829. [PMID: 33589676 PMCID: PMC7884719 DOI: 10.1038/s41598-021-83348-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Depression is a complex mental health disorder and the goal here was to identify a consistent underlying portrait of expression that ranks all genes from most to least dysregulated and indicates direction of change relative to controls. Using large-scale neural gene expression depression datasets, a combined portrait (for men and women) was created along with one for men and one for women only. The depressed brain was characterized by a "hypo" state, that included downregulation of activity-related genes, including EGR1, FOS, and ARC, and indications of a lower brain temperature and sleep-like state. MAP kinase and BDNF pathways were enriched with overlapping genes. Expression patterns suggested decreased signaling for GABA and for neuropeptides, CRH, SST, and CCK. GWAS depression genes were among depression portrait genes and common genes of interest included SPRY2 and PSEN2. The portraits were used with the drug repurposing approach of signature matching to identify treatments that could reverse depression gene expression patterns. Exercise was identified as the top treatment for depression for the combined and male portraits. Other non-traditional treatments that scored well were: curcumin, creatine, and albiflorin. Fluoxetine scored best among typical antidepressants. The creation of the portraits of depression provides new insights into the complex landscape of depression and a novel platform for evaluating and identifying potential new treatments.
Collapse
|
143
|
Carrera J, Tomberlin J, Kurtz J, Karakaya E, Bostanciklioglu M, Albayram O. Endocannabinoid Signaling for GABAergic-Microglia (Mis)Communication in the Brain Aging. Front Neurosci 2021; 14:606808. [PMID: 33613174 PMCID: PMC7887316 DOI: 10.3389/fnins.2020.606808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The aging brain seems to be characterized by neuronal loss leading to cognitive decline and progressively worsening symptoms related to neurodegeneration. Also, pro-inflammatory states, if prolonged, may increase neuronal vulnerability via excessive activation of microglia and their pro-inflammatory by-products, which is seen as individuals increase in age. Consequently, microglial activity is tightly regulated by neuron-microglia communications. The endocannabinoid system (ECS) is emerging as a regulator of microglia and the neuronal-microglia communication system. Recently, it has been demonstrated that cannabinoid 1 (CB1) receptor signaling on GABAergic interneurons plays a crucial role in regulating microglial activity. Interestingly, if endocannabinoid signaling on GABAergic neurons are disturbed, the phenotypes mimic central nervous system insult models by activating microglia and leading to accelerated brain aging. Investigating the endocannabinoid receptors, ligands, and genetic deletions yields the potential to understand the communication system and mechanism by which the ECS regulates glial cells and aspects of aging. While there remains much to discover with the ECS, the information gathered and identified already could lead to the development of cell-specific therapeutic interventions that help in reducing the effects of age-related pro-inflammatory states and neurodegeneration.
Collapse
Affiliation(s)
- Jorge Carrera
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jensen Tomberlin
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - John Kurtz
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Eda Karakaya
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
144
|
Seyedaghamiri F, Farajdokht F, Vatandoust SM, Mahmoudi J, Khabbaz A, Sadigh-Eteghad S. Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Mol Biol Rep 2021; 48:1371-1382. [PMID: 33523373 DOI: 10.1007/s11033-021-06195-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Sericin is a protein derived from silkworm cocoons and identified as an anti-aging agent. This study aimed to examine the effects of sericin administration on episodic and avoidance memories, social interaction behavior, and molecular mechanisms including oxidative stress, inflammation, and apoptosis in the hippocampus of aged mice. Sericin was administered at 250 mg/kg/day (oral gavage) to 2-year-old BALB/c mice for a duration of 21 consecutive days. Lashley III Maze and Shuttle-Box tests were performed to assess episodic and avoidance memories, respectively. Subjects also underwent social interaction test to reveal any changes in their social behavior. Besides, markers of oxidative stress (TAC, SOD, GPx, and MDA) and neuroinflammation mediators (TNF-α, IL-1β, and IL-10) were measured in the hippocampus. The extent of apoptosis in the hippocampal tissue was further determined by TUNEL assay and histological assessment. The obtained results suggest that sericin promotes episodic and avoidance memories and social behaviors in aged mice. As of the molecular assay outcomes, it was noted that sericin regulates hippocampal inflammation by inhibiting the pro-inflammatory cytokines, TNF-α and IL-1β, and by increasing the anti-inflammatory factor IL-10. Moreover, sericin suppressed oxidative stress by enhancing antioxidant markers (TAC, SOD, and GPx) and inhibiting MDA. It was also identified that sericin can substantially suppress the apoptosis in the hippocampal tissue. Overall, sericin modulates memory and sociability behavior by tuning hippocampal antioxidant, inflammatory, and apoptotic markers in the aged mice.
Collapse
Affiliation(s)
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Aytak Khabbaz
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran.
| |
Collapse
|
145
|
Toth L, Czigler A, Horvath P, Kornyei B, Szarka N, Schwarcz A, Ungvari Z, Buki A, Toth P. Traumatic brain injury-induced cerebral microbleeds in the elderly. GeroScience 2021; 43:125-136. [PMID: 33011936 PMCID: PMC8050119 DOI: 10.1007/s11357-020-00280-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) was shown to lead to the development of cerebral microbleeds (CMBs), which are associated with long term cognitive decline and gait disturbances in patients. The elderly is one of the most vulnerable parts of the population to suffer TBI. Importantly, ageing is known to exacerbate microvascular fragility and to promote the formation of CMBs. In this overview, the effect of ageing is discussed on the development and characteristics of TBI-related CMBs, with special emphasis on CMBs associated with mild TBI. Four cases of TBI-related CMBs are described to illustrate the concept that ageing exacerbates the deleterious microvascular effects of TBI and that similar brain trauma may induce more CMBs in old patients than in young ones. Recommendations are made for future prospective studies to establish the mechanistic effects of ageing on the formation of CMBs after TBI, and to determine long-term consequences of CMBs on clinically relevant outcome measures including cognitive performance, gait and balance function.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Peter Horvath
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Balint Kornyei
- Department of Radiology, University of Pecs, Medical School, Pecs, Hungary
| | - Nikolett Szarka
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Andras Buki
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Peter Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary.
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.
| |
Collapse
|
146
|
Is Serum BDNF Altered in Acute, Short- and Long-Term Recovered Restrictive Type Anorexia Nervosa? Nutrients 2021; 13:nu13020432. [PMID: 33572701 PMCID: PMC7910942 DOI: 10.3390/nu13020432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin involved in the regulation of food intake and body weight, has been implicated in the development and maintenance of Anorexia nervosa (AN). The majority of previous studies reported lower BDNF levels in acutely underweight AN patients (acAN) and increasing levels after weight rehabilitation. Here, we investigated serum BDNF concentrations in the largest known AN sample to date, both before and after weight restoration therapy. Serum BDNF was measured in 259 female volunteers: 77 in-patient acAN participants of the restrictive type (47 reassessed after short-term weight rehabilitation), 62 individuals long-term recovered from AN, and 120 healthy controls. We validated our findings in a post-hoc mega-analysis in which we reanalyzed combined data from the current sample and those from our previous study on BDNF in AN (combined sample: 389 participants). All analyses carefully accounted for known determinants of BDNF (age, sex, storage time of blood samples). We further assessed relationships with relevant clinical variables (body-mass-index, physical activity, symptoms). Contrary to our hypotheses, we found zero significant differences in either cross-sectional or longitudinal comparisons and no significant relationships with clinical variables. Together, our study suggests that BDNF may not be a reliable state- or trait-marker in AN after all.
Collapse
|
147
|
Wang KW, Liang CL, Yeh LR, Liu KY, Chen CC, Chen JS, Chen HJ, Wang HK. Simvastatin-Ezetimibe enhances growth factor expression and attenuates neuron loss in the hippocampus in a model of intracerebral hemorrhage. Fundam Clin Pharmacol 2021; 35:634-644. [PMID: 33278834 PMCID: PMC8451876 DOI: 10.1111/fcp.12635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe neurological disorder associated with high morbidity and mortality rates. Despite extensive research into its pathology, there are no clinically approved neuroprotective treatments for ICH. Increasing evidence has revealed that inflammatory responses mediate the pathophysiological processes of brain injury following ICH. Experimental ICH was induced by direct infusion of 100 μL fresh (non‐heparinized) autologous whole blood into the right basal ganglia of Sprague–Dawley rats at a constant rate (10 μL/min). The simvastatin group was administered simvastatin (15 mg/kg) and the combination therapy group was administered simvastatin (10 mg/kg) and ezetimibe (10 mg/kg). Magnetic resonance imaging (MRI), the forelimb use asymmetry test, the Morris water maze test, and two biomarkers were used to evaluate the effect of simvastatin and combination therapy. MRI imaging revealed that combination therapy resulted in significantly reduced perihematomal edema. Biomarker analyses revealed that both treatments led to significantly reduced endothelial inflammatory responses. The forelimb use asymmetry test revealed that both treatment groups had significantly improved neurological outcomes. The Morris water maze test revealed improved neurological function after combined therapy, which also led to less neuronal loss in the hippocampal CA1 region. In conclusion, simvastatin–ezetimibe combination therapy can improve neurological function, attenuate the endothelial inflammatory response and lead to less neuronal loss in the hippocampal CA1 region in a rat model of ICH.
Collapse
Affiliation(s)
- Kuo-Wei Wang
- I-Shou University School of Medicine, No. 8, Yi-Da road, Kaohsiung, 824, Taiwan.,Department of Neurosurgery, E-Da Cancer Hospital, No. 1, Yi-Da road, Kaohsiung, 824, Taiwan
| | - Cheng-Loong Liang
- I-Shou University School of Medicine, No. 8, Yi-Da road, Kaohsiung, 824, Taiwan.,Department of Neurosurgery, E-DA Hospital, No. 1, Yi-Da road, Kaohsiung, 824, Taiwan
| | - Lee-Ren Yeh
- I-Shou University School of Medicine, No. 8, Yi-Da road, Kaohsiung, 824, Taiwan.,Department of Radiology, E-DA Hospital, No. 1, Yi-Da road, Kaohsiung, 824, Taiwan
| | - Kuo-Ying Liu
- Department of Radiology, E-Da Cancer Hospital, No. 1, Yi-Da road, Kaohsiung, 824, Taiwan
| | - Chao-Chi Chen
- Department of Radiology, E-Da Cancer Hospital, No. 1, Yi-Da road, Kaohsiung, 824, Taiwan
| | - Jui-Sheng Chen
- Department of Neurosurgery, E-DA Hospital, No. 1, Yi-Da road, Kaohsiung, 824, Taiwan
| | - Han-Jung Chen
- I-Shou University School of Medicine, No. 8, Yi-Da road, Kaohsiung, 824, Taiwan.,Department of Neurosurgery, E-DA Hospital, No. 1, Yi-Da road, Kaohsiung, 824, Taiwan
| | - Hao-Kuang Wang
- I-Shou University School of Medicine, No. 8, Yi-Da road, Kaohsiung, 824, Taiwan.,Department of Neurosurgery, E-DA Hospital, No. 1, Yi-Da road, Kaohsiung, 824, Taiwan
| |
Collapse
|
148
|
Chan G, Rosic T, Pasyk S, Dehghan M, Samaan Z. Exploring the Impact of Modifiable Factors on Serum BDNF in Psychiatric Patients and Community Controls. Neuropsychiatr Dis Treat 2021; 17:545-554. [PMID: 33628025 PMCID: PMC7898784 DOI: 10.2147/ndt.s295026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been a focus of psychiatric research for the past two decades. BDNF has been shown to impact neural function and development. Studies have investigated serum BDNF as a biomarker for psychiatric disorders such as depression and schizophrenia. In some studies, investigators attempt to control for variables such as smoking status, exercise, or diet. However, the relationship between these factors and BDNF is not clearly established. Furthermore, some studies have questioned whether a difference in the impact of BDNF exists between psychiatric and healthy populations. PURPOSE We aim to examine the association between serum BDNF levels and modifiable risk factors such as body mass index (BMI), smoking, exercise levels, and diet. Subsequently, we aim to examine whether the relationship between these risk factors and serum BDNF is different between psychiatric and control populations. PATIENTS AND METHODS We use cross-sectional data from an age- and sex-matched case-control study of participants with psychiatric inpatients and community controls without psychiatric diagnoses. Participants completed comprehensive assessments at study enrolment including sociodemographic information, smoking status, exercise, diet, and BMI. Serum BDNF levels were collected from participants. Linear regression analysis was performed to determine the association between modifiable factors and serum BDNF level. RESULTS A significant association was found between sedentary activity level and lower serum BDNF levels (Beta coefficient = -2.49, 95% confidence interval [CI] -4.70, -0.28, p = 0.028). Subgroup analysis demonstrated that this association held for psychiatric inpatients but not for community controls; it also held in females (Beta coefficient = -3.18, 95% CI -6.29, -0.07, p = 0.045) but not in males (Beta coefficient = -1.42, 95% CI -4.61, 1.78, p = 0.383). Antidepressant use had a significantly different association between male (Beta coefficient = 3.20, 95% CI 0.51, 5.88, p = 0.020) and female subgroups (Beta coefficient = -3.10, 95% CI -5.75, -0.46, p = 0.022). No significant association was found between other factors and serum BDNF. CONCLUSION Sedentary activity level may lead to lower serum BDNF levels in individuals with psychiatric diagnoses. Our findings support the notion that physical activity can provide a positive impact as part of treatment for psychiatric illness.
Collapse
Affiliation(s)
- Galen Chan
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tea Rosic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Stanislav Pasyk
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Mahshid Dehghan
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
149
|
Kim H, Yoo J, Han K, Fava M, Mischoulon D, Park MJ, Jeon HJ. Associations Between Smoking, Alcohol Consumption, Physical Activity and Depression in Middle-Aged Premenopausal and Postmenopausal Women. Front Psychiatry 2021; 12:761761. [PMID: 35002797 PMCID: PMC8733565 DOI: 10.3389/fpsyt.2021.761761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Changes in lifestyle factors are known to affect mood. However, there is insufficient evidence supporting the association between smoking, alcohol consumption, physical activity and depression in middle-aged women who are likely to experience rapid hormonal changes. Methods: We used a nationwide database of medical records in South Korea. 901,721 premenopausal and 943,710 postmenopausal women aged 40 years or older included in this study. Information on smoking, alcohol consumption, physical activity was identified from health examination data and followed up for the occurrence of depression using claims data. Results: Compared with never-smokers, ex-smokers and current smokers among premenopausal and postmenopausal women showed an increased risk of depression in a dose-dependent manner (aHR 1.13 for ex-smokers; aHR 1.23 for current smokers). Compared with non-drinkers, mild drinkers showed a decreased risk of depression (aHR 0.98 for premenopausal women; aHR 0.95 for postmenopausal women), and heavy drinkers showed an increased risk of depression both among premenopausal (aHR 1.20) and postmenopausal women (aHR 1.05). The risk of depression due to smoking and heavy alcohol consumption was higher in premenopausal women than in postmenopausal women. Compared with those who had not engaged in regular physical activity, those who had engaged showed a decreased risk of depression both among premenopausal (aHR 0.96) and postmenopausal women (aHR 0.95). Conclusions: Smoking and heavy alcohol consumption increased the risk of depression, and the increased risk was prominent in premenopausal than in postmenopausal women. Regular physical activity decreased the risk of depression both in premenopausal and postmenopausal women.
Collapse
Affiliation(s)
- Hyewon Kim
- Department of Psychiatry, Hanyang University Hospital, Seoul, South Korea
| | - Juhwan Yoo
- Department of Biomedicine and Health Science, The Catholic University of Korea, Seoul, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Maurizio Fava
- Depression Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mi Jin Park
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Department of Medical Device Management and Research, and Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
150
|
Indahlastari A, Hardcastle C, Albizu A, Alvarez-Alvarado S, Boutzoukas EM, Evangelista ND, Hausman HK, Kraft J, Langer K, Woods AJ. A Systematic Review and Meta-Analysis of Transcranial Direct Current Stimulation to Remediate Age-Related Cognitive Decline in Healthy Older Adults. Neuropsychiatr Dis Treat 2021; 17:971-990. [PMID: 33824591 PMCID: PMC8018377 DOI: 10.2147/ndt.s259499] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been proposed as a possible method for remediating age-associated cognitive decline in the older adult population. While tDCS has shown potential for improving cognitive functions in healthy older adults, stimulation outcomes on various cognitive domains have been mixed. METHODS A systematic search was performed in four databases: PubMed, EMBASE, Web of Science, and PsychInfo. Search results were then screened for eligibility based on inclusion/exclusion criteria to only include studies where tDCS was applied to improve cognition in healthy older adults 65 years and above. Eligible studies were reviewed and demographic characteristics, tDCS dose parameters, study procedures, and cognitive outcomes were extracted. Reported effect sizes for active compared to sham group in representative cognitive domain were converted to Hedges' g. MAIN RESULTS A total of thirteen studies involving healthy older adults (n=532, mean age=71.2+5.3 years) were included in the meta-analysis. The majority of included studies (94%) targeted the prefrontal cortex with stimulation intensity 1-2 mA using various electrode placements with anodes near the frontal region. Across all studies, we found Hedges' g values ranged from -0.31 to 1.85 as reported group effect sizes of active stimulation compared to sham. CONCLUSION While observed outcomes varied, overall findings indicated promising effects of tDCS to remediate cognitive aging and thus deserves further exploration. Future characterization of inter-individual variability in tDCS dose response and applications in larger cohorts are warranted to further validate benefits of tDCS for cognition in healthy older adults.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stacey Alvarez-Alvarado
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jessica Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kailey Langer
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|