101
|
den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett 2014; 162:103-12. [DOI: 10.1016/j.imlet.2014.10.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
102
|
Locke BA, Dasu T, Verbsky JW. Laboratory diagnosis of primary immunodeficiencies. Clin Rev Allergy Immunol 2014; 46:154-68. [PMID: 24569953 DOI: 10.1007/s12016-014-8412-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary immune deficiency disorders represent a highly heterogeneous group of disorders with an increased propensity to infections and other immune complications. A careful history to delineate the pattern of infectious organisms and other complications is important to guide the workup of these patients, but a focused laboratory evaluation is essential to the diagnosis of an underlying primary immunodeficiency. Initial workup of suspected immune deficiencies should include complete blood counts and serologic tests of immunoglobulin levels, vaccine titers, and complement levels, but these tests are often insufficient to make a diagnosis. Recent advancements in the understanding of the immune system have led to the development of novel immunologic assays to aid in the diagnosis of these disorders. Classically utilized to enumerate lymphocyte subsets, flow cytometric-based assays are increasingly utilized to test immune cell function (e.g., neutrophil oxidative burst, NK cytotoxicity), intracellular cytokine production (e.g., TH17 production), cellular signaling pathways (e.g., phosphor-STAT analysis), and protein expression (e.g., BTK, Foxp3). Genetic testing has similarly expanded greatly as more primary immune deficiencies are defined, and the use of mass sequencing technologies is leading to the identification of novel disorders. In order to utilize these complex assays in clinical care, one must have a firm understanding of the immunologic assay, how the results are interpreted, pitfalls in the assays, and how the test affects treatment decisions. This article will provide a systematic approach of the evaluation of a suspected primary immunodeficiency, as well as provide a comprehensive list of testing options and their results in the context of various disease processes.
Collapse
Affiliation(s)
- Bradley A Locke
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | | |
Collapse
|
103
|
Bin Dhuban K, Kornete M, S Mason E, Piccirillo CA. Functional dynamics of Foxp3⁺ regulatory T cells in mice and humans. Immunol Rev 2014; 259:140-58. [PMID: 24712464 DOI: 10.1111/imr.12168] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forkhead box protein 3 (Foxp3)(+) regulatory T (Treg) cells are critical mediators for the establishment of self-tolerance and immune homeostasis and for the control of pathology in various inflammatory responses. While Foxp3(+) Treg cells often control immune responses in secondary lymphoid tissues, they must also traffic to and persist within non-lymphoid tissues, where they integrate various environmental cues to coordinate and adapt their effector acitvities in these sites. In recent years, our group has made use of several mouse models, including the non-obese diabetic model of type 1 diabetes, to characterize the factors, which impact the homeostasis, function, and reprogramming potential of Foxp3(+) Treg cells in situ. In addition, our recent work shows that Foxp3(+) Treg cells possess distinct post-transcriptional mechanisms of gene regulation, namely mRNA translation, to modulate tissue-specific inflammatory responses. In humans, there is a pressing need for reliable markers of FOXP3(+) Treg cells and their related function in blood and tissue. Experimental progress in our group has enabled us to discover novel markers of FOXP3(+) Treg cell (dys)function and unique gene signatures that discriminate effector and Treg cells, as well as functional and dysfunctional FOXP3(+) Treg cells.
Collapse
Affiliation(s)
- Khalid Bin Dhuban
- Department of Microbiology and Immunology, FOCIS Center of Excellence in Translational Immunology, Microbiome and Disease Tolerance Centre, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | | | | |
Collapse
|
104
|
Martinez-Torres F, Nochi T, Wahl A, Garcia JV, Denton PW. Hypogammaglobulinemia in BLT humanized mice--an animal model of primary antibody deficiency. PLoS One 2014; 9:e108663. [PMID: 25271886 PMCID: PMC4182704 DOI: 10.1371/journal.pone.0108663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/24/2014] [Indexed: 12/29/2022] Open
Abstract
Primary antibody deficiencies present clinically as reduced or absent plasma antibodies without another identified disorder that could explain the low immunoglobulin levels. Bone marrow-liver-thymus (BLT) humanized mice also exhibit primary antibody deficiency or hypogammaglobulinemia. Comprehensive characterization of B cell development and differentiation in BLT mice revealed other key parallels with primary immunodeficiency patients. We found that B cell ontogeny was normal in the bone marrow of BLT mice but observed an absence of switched memory B cells in the periphery. PC-KLH immunizations led to the presence of switched memory B cells in immunized BLT mice although plasma cells producing PC- or KLH- specific IgG were not detected in tissues. Overall, we have identified the following parallels between the humoral immune systems of primary antibody deficiency patients and those in BLT mice that make this in vivo model a robust and translational experimental platform for gaining a greater understanding of this heterogeneous array of humoral immunodeficiency disorders in humans: (i) hypogammaglobulinemia; (ii) normal B cell ontogeny in bone marrow; and (iii) poor antigen-specific IgG response to immunization. Furthermore, the development of strategies to overcome these humoral immune aberrations in BLT mice may in turn provide insights into the pathogenesis of some primary antibody deficiency patients which could lead to novel clinical interventions for improved humoral immune function.
Collapse
Affiliation(s)
- Francisco Martinez-Torres
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Tomonori Nochi
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Angela Wahl
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - J. Victor Garcia
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail: (JVG); (PWD)
| | - Paul W. Denton
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail: (JVG); (PWD)
| |
Collapse
|
105
|
Early preservation of CXCR5+ PD-1+ helper T cells and B cell activation predict the breadth of neutralizing antibody responses in chronic HIV-1 infection. J Virol 2014; 88:13310-21. [PMID: 25210168 DOI: 10.1128/jvi.02186-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Much is known about the characteristics of broadly neutralizing antibodies (bNAbs) generated during HIV-1 infection, but little is known about immunological mechanisms responsible for their development in only a minority of those infected by HIV-1. By monitoring longitudinally a cohort of HIV-1-infected subjects, we observed that the preservation of CXCR5(+) CD4(+) T helper cell frequencies and activation status of B cells during the first year of infection correlates with the maximum breadth of plasma neutralizing antibody responses during chronic infection independently of viral load. Although, during the first year of infection, no differences were observed in the abilities of peripheral CXCR5(+) CD4(+) T helper cells to induce antibody secretion by autologous naive B cells, higher frequencies of class-switched antibodies were detected in cocultures of CXCR5(+) CD4(+) T and B cells from the subjects who later developed broadly neutralizing antibody responses than those who did not. Furthermore, B cells from the former subjects had higher expression of AICDA than B cells from the latter subjects, and transcript levels correlated with the frequency of CXCR5(+) CD4(+) T cells. Thus, the early preservation of CXCR5(+) CD4(+) T cells and B cell function are central to the development of bNAbs. Our study provides a possible explanation for their infrequent generation during HIV-1 infection. IMPORTANCE Broadly neutralizing antibodies are developed by HIV-1-infected subjects, but so far (and despite intensive efforts over the past 3 decades) they have not been elicited by immunization. Understanding how bNAbs are generated during natural HIV-1 infection and why only some HIV-1-infected subjects generate such antibodies will assist our efforts to elicit bNAbs by immunization. CXCR5(+) PD-1(+) CD4(+) T cells are critical for the development of high-affinity antigen-specific antibody responses. In our study, we found that the HIV-1-infected subjects who develop bNAbs have a higher frequency of peripheral CXCR5(+) PD-1(+) CD4(+) T cells in early infection and also that this frequency mirrored what was observed in uninfected subjects and correlated with the level of B cell activation across subjects. Our study highlights the critical role helper T cell function has in the elicitation of broadly neutralizing antibody responses in the context of HIV infection.
Collapse
|
106
|
Duraisingham SS, Buckland M, Dempster J, Lorenzo L, Grigoriadou S, Longhurst HJ. Primary vs. secondary antibody deficiency: clinical features and infection outcomes of immunoglobulin replacement. PLoS One 2014; 9:e100324. [PMID: 24971644 PMCID: PMC4074074 DOI: 10.1371/journal.pone.0100324] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/23/2014] [Indexed: 12/04/2022] Open
Abstract
Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment.
Collapse
Affiliation(s)
| | - Matthew Buckland
- Immunology Department, Barts Health NHS Trust, London, United Kingdom
| | - John Dempster
- Immunology Department, Barts Health NHS Trust, London, United Kingdom
| | - Lorena Lorenzo
- Immunology Department, Barts Health NHS Trust, London, United Kingdom
| | - Sofia Grigoriadou
- Immunology Department, Barts Health NHS Trust, London, United Kingdom
| | | |
Collapse
|
107
|
Ahearne MJ, Allchin RL, Fox CP, Wagner SD. Follicular helper T-cells: expanding roles in T-cell lymphoma and targets for treatment. Br J Haematol 2014; 166:326-35. [PMID: 24815671 DOI: 10.1111/bjh.12941] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 01/02/2023]
Abstract
Follicular helper T-cells (Tfh cells) are a subset of CD4(+) T-cells that are essential for normal production of high affinity antibodies. Tfh cells characteristically produce IL21 and IL4 and show high expression of surface markers CXCR5, ICOS, PDCD1 (PD-1) and the chemokine CXCL13. In this review we will focus on the emerging links between Tfh cells and subtypes of T-cell non-Hodgkin lymphoma: angioimmunoblastic T-cell lymphoma (AITL) and ~20% of peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) have surface marker features of Tfh cells and share a spectrum of genetic abnormalities. The recurrent genetic abnormalities associated with AITL include mutations in epigenetic modifiers such as TET2 and DNMT3A and the motility and adhesion gene, RHOA, is mutated in up to 70% of cases. ~20% of PTCL-NOS demonstrate RHOA mutations and have other characteristics suggesting an origin in Tfh cells. The recognition that specific genetic and surface markers are associated with malignant Tfh cells suggests that the next few years will bring major changes in diagnostic and treatment possibilities. For example, antibodies against IL21, PDCD1 and ICOS are already in clinical trials for autoimmune disease or other malignancies and antibodies against CXCL13 are in pre-clinical development.
Collapse
Affiliation(s)
- Matthew J Ahearne
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK; Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
108
|
Unger S, Seidl M, Schmitt-Graeff A, Böhm J, Schrenk K, Wehr C, Goldacker S, Dräger R, Gärtner BC, Fisch P, Werner M, Warnatz K. Ill-defined germinal centers and severely reduced plasma cells are histological hallmarks of lymphadenopathy in patients with common variable immunodeficiency. J Clin Immunol 2014; 34:615-26. [PMID: 24789743 DOI: 10.1007/s10875-014-0052-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
Given the severely reduced numbers of circulating class-switched memory B cells and plasmablasts in patients with common variable immunodeficiency (CVID) the germinal center (GC) reaction as the source of both populations is expected to be disturbed in many CVID patients. Therefore immunohistochemical studies were performed on lymph node (LN) biopsies from ten CVID patients with benign lymphoproliferation. According to the Sander classification the majority of patients presented with reactive lymphoid hyperplasia (7/10), 6/10 showed granulomatous inflammation. All cases showed some normal GCs but in 9/10 these concurred to a varying degree with hyperplastic, ill-defined GCs in the same LN. The percentage of ill-defined GCs correlated significantly with the percentage of circulating CD21(low) B cells suggesting a common origin of both immune reactions. In 9/10 CVID LNs significantly higher numbers of infiltrating CD8+ T cells were found in GCs of CVID patients compared to controls, but no HHV-8 and only in 2/10 LNs EBV infection was detected. Class switched plasma cells (PCs) were severely reduced in 8/10 LNs and if present, rarely found in the medulla of the LN. Based on the presence of large GCs in all examined patients, the reduction of circulating memory B cells and PCs points towards a failure of GC output rather than GC formation in CVID patients with lymphadenopathy.
Collapse
Affiliation(s)
- Susanne Unger
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Breisacher Str.117, 79106, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Inducible costimulator facilitates T-dependent B cell activation by augmenting IL-4 translation. Mol Immunol 2014; 59:46-54. [DOI: 10.1016/j.molimm.2014.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022]
|
110
|
Chen X, Yang X, Li Y, Zhu J, Zhou S, Xu Z, He L, Xue X, Zhang W, Dong X, Wu H, Li CJ, Hsu HT, Kong W, Liu F, Tripathi PB, Yu MS, Chang J, Zhou L, Su C. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog 2014; 10:e1004097. [PMID: 24788758 PMCID: PMC4006917 DOI: 10.1371/journal.ppat.1004097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Following Schistosoma japonicum (S. japonicum) infection, granulomatous responses are induced by parasite eggs trapped in host organs, particular in the liver, during the acute stage of disease. While excessive liver granulomatous responses can lead to more severe fibrosis and circulatory impairment in chronically infected host. However, the exact mechanism of hepatic granuloma formation has remained obscure. In this study, we for the first time showed that follicular helper T (Tfh) cells are recruited to the liver to upregulate hepatic granuloma formation and liver injury in S. japonicum-infected mice, and identified a novel function of macrophages in Tfh cell induction. In addition, our results showed that the generation of Tfh cells driven by macrophages is dependent on cell–cell contact and the level of inducible costimulator ligand (ICOSL) on macrophages which is regulated by CD40–CD40L signaling. Our findings uncovered a previously unappreciated role for Tfh cells in liver pathology caused by S. japonicum infection in mice. Schistosomiasis is a chronic helminthic disease that affects approximately 200 million people. After S. japonicum infection, parasite eggs are trapped in host liver and granulomas are induced to form around eggs. Severe granuloma subsequently results in serious liver fibrosis and circulatory impairment chronically. It is important to fully elucidate the mechanism of the granuloma formation. Here, we show that Tfh cells play a novel role of promoting the hepatic granuloma formation and liver injury, and identified a novel function of macrophages in Tfh cells induction in S. japonicum-infected mouse model. In addition, we show that the generation of Tfh cells driven by macrophages is cell–cell contact dependent and regulated by CD40-CD40L signaling. Our findings revealed a novel role and mechanism of macrophages in Tfh cell generation and the liver pathogenesis in S. japonicum-infected mouse model.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xiaowei Yang
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Yong Li
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jifeng Zhu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Sha Zhou
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Zhipeng Xu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Lei He
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Department of Pathology, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xue Xue
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Weiwei Zhang
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xiaoxiao Dong
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Henry Wu
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Carrie J. Li
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Hsiang-Ting Hsu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Wenjun Kong
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Feng Liu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Prem B. Tripathi
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Michelle S. Yu
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Jason Chang
- Department of General Surgery, Kaiser LAMC, Los Angeles, California, United States of America
| | - Liang Zhou
- Department of Pathology, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chuan Su
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- * E-mail:
| |
Collapse
|
111
|
Randall KL. Generating humoral immune memory following infection or vaccination. Expert Rev Vaccines 2014; 9:1083-93. [DOI: 10.1586/erv.10.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
112
|
Yazdani R, Hakemi MG, Sherkat R, Homayouni V, Farahani R. Genetic defects and the role of helper T-cells in the pathogenesis of common variable immunodeficiency. Adv Biomed Res 2014; 3:2. [PMID: 24600593 PMCID: PMC3929019 DOI: 10.4103/2277-9175.124627] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficfiiency (CVID) is a primary immunodeficiency syndrome representing a heterogeneous set of disorders resulting mostly in antibody deficiency and recurrent infections. However, inflammatory and autoimmune disorders and some kinds of malignancies are frequently reported as a part of the syndrome. Although it is one of the most widespread primary immunodeficiency, only recently some genetic defects in CVID have been identified. Mutations have been detected in inducible T-cell costimulator (ICOS), transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), B-cell activating factor-receptor (BAFF-R), B-cell receptor complex (CD19, CD21 and CD81) and CD20. On the other hand, recent studies have shown a decrease in T-helper-17 cells frequency and their characteristic cytokines in CVID patients and this emphasis on the vital role of the T-cells in immunopathogenesis of the CVID. Furthermore, in the context of autoimmune diseases accompanying CVID, interleukin 9 has recently attracted a plenty of considerations. However, the list of defects is expanding as exact immunologic pathways and genetic disorders in CVID are not yet defined. In this review, we have a special focus on the immunopathogenesis of CVID, recent advances in understanding the underlying etiology and genetics for patients.
Collapse
Affiliation(s)
- Reza Yazdani
- Department of Immunology, Faculty of Medicine, Isfahan, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan, Iran ; Department of Immunology, Faculty of Medicine, Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Homayouni
- Department of Immunology, Faculty of Medicine, Isfahan, Iran
| | - Rahim Farahani
- Department of Immunology, Faculty of Medicine, Isfahan, Iran
| |
Collapse
|
113
|
Tfh Cell Differentiation and Their Function in Promoting B-Cell Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:153-80. [DOI: 10.1007/978-94-017-9487-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
114
|
Tellier J, Nutt SL. The unique features of follicular T cell subsets. Cell Mol Life Sci 2013; 70:4771-84. [PMID: 23852544 PMCID: PMC11113495 DOI: 10.1007/s00018-013-1420-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022]
Abstract
The germinal center (GC) reaction is critical for humoral immunity, but also contributes adversely to a variety of autoimmune diseases. While the major protective function of GCs is mediated by plasma cells and memory B cells, follicular helper T (TFH) cells represent a specialized T cell subset that provides essential help to the antigen-specific B cells in the form of membrane-bound ligands and secreted factors such as IL-21. Recent studies have revealed that TFH cells are capable of considerable functional diversity as well as possessing the ability to form memory cells. The molecular basis of this plasticity and heterogeneity is only now emerging. It has also become apparent that several other populations of follicular T cells exist, including natural killer T cells and regulatory T cells. In this review we will discuss the function of follicular T cells and interaction of these populations within the GC response.
Collapse
Affiliation(s)
- Julie Tellier
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia,
| | | |
Collapse
|
115
|
Deenick EK, Avery DT, Chan A, Berglund LJ, Ives ML, Moens L, Stoddard JL, Bustamante J, Boisson-Dupuis S, Tsumura M, Kobayashi M, Arkwright PD, Averbuch D, Engelhard D, Roesler J, Peake J, Wong M, Adelstein S, Choo S, Smart JM, French MA, Fulcher DA, Cook MC, Picard C, Durandy A, Klein C, Holland SM, Uzel G, Casanova JL, Ma CS, Tangye SG. Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. ACTA ACUST UNITED AC 2013; 210:2739-53. [PMID: 24218138 PMCID: PMC3832925 DOI: 10.1084/jem.20130323] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Long-lived antibody memory is mediated by the combined effects of long-lived plasma cells (PCs) and memory B cells generated in response to T cell-dependent antigens (Ags). IL-10 and IL-21 can activate multiple signaling pathways, including STAT1, STAT3, and STAT5; ERK; PI3K/Akt, and potently promote human B cell differentiation. We previously showed that loss-of-function mutations in STAT3, but not STAT1, abrogate IL-10- and IL-21-mediated differentiation of human naive B cells into plasmablasts. We report here that, in contrast to naive B cells, STAT3-deficient memory B cells responded to these STAT3-activating cytokines, differentiating into plasmablasts and secreting high levels of IgM, IgG, and IgA, as well as Ag-specific IgG. This was associated with the induction of the molecular machinery necessary for PC formation. Mutations in IL21R, however, abolished IL-21-induced responses of both naive and memory human B cells and compromised memory B cell formation in vivo. These findings reveal a key role for IL-21R/STAT3 signaling in regulating human B cell function. Furthermore, our results indicate that the threshold of STAT3 activation required for differentiation is lower in memory compared with naive B cells, thereby identifying an intrinsic difference in the mechanism underlying differentiation of naive versus memory B cells.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Control of TFH cell numbers: why and how? Immunol Cell Biol 2013; 92:40-8. [DOI: 10.1038/icb.2013.69] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022]
|
117
|
Romberg N, Chamberlain N, Saadoun D, Gentile M, Kinnunen T, Ng YS, Virdee M, Menard L, Cantaert T, Morbach H, Rachid R, Martinez-Pomar N, Matamoros N, Geha R, Grimbacher B, Cerutti A, Cunningham-Rundles C, Meffre E. CVID-associated TACI mutations affect autoreactive B cell selection and activation. J Clin Invest 2013; 123:4283-93. [PMID: 24051380 DOI: 10.1172/jci69854] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/25/2013] [Indexed: 01/11/2023] Open
Abstract
Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6-expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications.
Collapse
|
118
|
Waldenström macroglobulinemia: clinical and immunological aspects, natural history, cell of origin, and emerging mouse models. ISRN HEMATOLOGY 2013; 2013:815325. [PMID: 24106612 PMCID: PMC3782845 DOI: 10.1155/2013/815325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
Abstract
Waldenström macroglobulinemia (WM) is a rare and currently incurable neoplasm of IgM-expressing B-lymphocytes that is characterized by the occurrence of a monoclonal IgM (mIgM) paraprotein in blood serum and the infiltration of the hematopoietic bone marrow with malignant lymphoplasmacytic cells. The symptoms of patients with WM can be attributed to the extent and tissue sites of tumor cell infiltration and the magnitude and immunological specificity of the paraprotein. WM presents fascinating clues on neoplastic B-cell development, including the recent discovery of a specific gain-of-function mutation in the MYD88 adapter protein. This not only provides an intriguing link to new findings that natural effector IgM+IgD+ memory B-cells are dependent on MYD88 signaling, but also supports the hypothesis that WM derives from primitive, innate-like B-cells, such as marginal zone and B1 B-cells. Following a brief review of the clinical aspects and natural history of WM, this review discusses the thorny issue of WM's cell of origin in greater depth. Also included are emerging, genetically engineered mouse models of human WM that may enhance our understanding of the biologic and genetic underpinnings of the disease and facilitate the design and testing of new approaches to treat and prevent WM more effectively.
Collapse
|
119
|
French MA, Abudulai LN, Fernandez S. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection. Vaccines (Basel) 2013; 1:328-42. [PMID: 26344116 PMCID: PMC4494226 DOI: 10.3390/vaccines1030328] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/11/2013] [Accepted: 07/23/2013] [Indexed: 01/05/2023] Open
Abstract
The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.
Collapse
Affiliation(s)
- Martyn A French
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia.
- Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth 6000, Australia.
| | - Laila N Abudulai
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia
| | - Sonia Fernandez
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
120
|
Costimulatory pathways: physiology and potential therapeutic manipulation in systemic lupus erythematosus. Clin Dev Immunol 2013; 2013:245928. [PMID: 24000287 PMCID: PMC3755444 DOI: 10.1155/2013/245928] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
System lupus erythematosus (SLE) is an immune-complex-mediated autoimmune condition with protean immunological and clinical manifestation. While SLE has classically been advocated as a B-cell or T-cell disease, it is unlikely that a particular cell type is more pathologically predominant than the others. Indeed, SLE is characterized by an orchestrated interplay amongst different types of immunopathologically important cells participating in both innate and adaptive immunity including the dendritic cells, macrophages, neutrophils and lymphocytes, as well as traditional nonimmune cells such as endothelial, epithelial, and renal tubular cells. Amongst the antigen-presenting cells and lymphocytes, and between lymphocytes, the costimulatory pathways which involve mutual exchange of information and signalling play an essential role in initiating, perpetuating, and, eventually, attenuating the proinflammatory immune response. In this review, advances in the knowledge of established costimulatory pathways such as CD28/CTLA-4-CD80/86, ICOS-B7RP1, CD70-CD27, OX40-OX40L, and CD137-CD137L as well as their potential roles involved in the pathophysiology of SLE will be discussed. Attempts to target these costimulatory pathways therapeutically will pave more potential treatment avenues for patients with SLE. Preliminary laboratory and clinical evidence of the potential therapeutic value of manipulating these costimulatory pathways in SLE will also be discussed in this review.
Collapse
|
121
|
Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, Cohen S, Shachar I, Miosge LA, Schlesier M, Fuchs I, Enders A, Eibel H, Grimbacher B, Warnatz K. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol 2013; 131:477-85.e1. [PMID: 23374270 DOI: 10.1016/j.jaci.2012.11.050] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Profound combined immunodeficiency can present with normal numbers of T and B cells, and therefore the functional defect of the cellular and humoral immune response is often not recognized until the first severe clinical manifestation. Here we report a patient of consanguineous descent presenting at 13 months of age with hypogammaglobulinemia, Pneumocystis jirovecii pneumonia, and a suggestive family history. OBJECTIVE We sought to identify the genetic alteration in a patient with combined immunodeficiency and characterize human caspase recruitment domain family, member 11 (CARD11), deficiency. METHODS Molecular, immunologic, and functional assays were performed. RESULTS The immunologic characterization revealed only subtle changes in the T-cell and natural killer cell compartment, whereas B-cell differentiation, although normal in number, was distinctively blocked at the transitional stage. Genetic evaluation revealed a homozygous deletion of exon 21 in CARD11 as the underlying defect. This deletion abrogated protein expression and activation of the canonical nuclear factor κB (NF-κB) pathway in lymphocytes after antigen receptor or phorbol 12-myristate 13-acetate stimulation, whereas CD40 signaling in B cells was preserved. The abrogated activation of the canonical NF-κB pathway was associated with severely impaired upregulation of inducible T-cell costimulator, OX40, cytokine production, proliferation of T cells, and B cell-activating factor receptor expression on B cells. CONCLUSION Thus in patients with CARD11 deficiency, the combination of impaired activation and especially upregulation of inducible T-cell costimulator on T cells, together with severely disturbed peripheral B-cell differentiation, apparently leads to a defective T-cell/B-cell cooperation and probably germinal center formation and clinically results in severe immunodeficiency. This report discloses the crucial and nonredundant role of canonical NF-κB activation and specifically CARD11 in the antigen-specific immune response in human subjects.
Collapse
Affiliation(s)
- Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Primary antibody deficiencies (PADs) are the most common inherited immunodeficiencies in humans. The use of novel approaches, such as whole-exome sequencing and mouse genetic engineering, has helped to identify new genes that are involved in the pathogenesis of PADs and has enabled the characterization of the molecular pathways that are involved in B cell development and function. Here, we review the different PADs in terms of their known or putative mechanisms, which can be B cell intrinsic, B cell extrinsic or not defined so far. We also describe the clinical manifestations (including susceptibility to infections, autoimmunity and cancer) that have been associated with the various PADs.
Collapse
Affiliation(s)
- Anne Durandy
- National Institute of Health and Medical Research, INSERM U768, Necker Children's Hospital, F-75015 Paris, France.
| | | | | |
Collapse
|
123
|
Blood CD4+CD45RO+CXCR5+ T cells are decreased but partially functional in signal transducer and activator of transcription 3 deficiency. J Allergy Clin Immunol 2013; 131:1146-56, 1156.e1-5. [DOI: 10.1016/j.jaci.2012.12.1519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 02/08/2023]
|
124
|
WANG DONGSHENG, ZHOU DING, DU QIN, LIANG QI, WANG QIANG, FANG LI, WANG GUANGRONG, FAN QUMING, LIU BEIZHONG, ZHOU JINGGUO, TANG ZHONG, WU HAO, GUO XIAOLAN, JIAO YANMEI, ZHANG GUOYUAN. Aberrant production of soluble inducible T-cell co-stimulator (sICOS) and soluble programmed cell death protein 1 (sPD-1) in patients with chronic hepatitis C. Mol Med Rep 2013; 7:1197-202. [DOI: 10.3892/mmr.2013.1326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/16/2013] [Indexed: 11/06/2022] Open
|
125
|
Piątosa B, Pac M, Siewiera K, Pietrucha B, Klaudel-Dreszler M, Heropolitańska-Pliszka E, Wolska-Kuśnierz B, Dmeńska H, Gregorek H, Sokolnicka I, Rękawek A, Tkaczyk K, Bernatowska E. Common variable immune deficiency in children--clinical characteristics varies depending on defect in peripheral B cell maturation. J Clin Immunol 2013; 33:731-41. [PMID: 23389235 PMCID: PMC3631512 DOI: 10.1007/s10875-013-9875-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/29/2013] [Indexed: 12/20/2022]
Abstract
Common variable immune deficiency (CVID) is a heterogeneous disease associated with ineffective production of antibodies. It is usually diagnosed in adulthood, but a variable proportion of children develop CVID. Early identification of patients with potentially worse prognosis may help to avoid serious complications. The goal of this study was to associate the clinical phenotype of patients with early onset CVID with peripheral B-cell maturation profile. Four color flow cytometry was used to define distribution of peripheral B-cell subsets in 49 children with early-onset CVID. All clinical data were extracted from medical records. A proportion of patients demonstrated diminishing with time total B-lymphocytes pool, beyond physiological age-related changes. Irrespective from duration of the follow-up period the B-cell maturation profile in individual patients remained unchanged. We identified six different aberrant peripheral B cell maturation profiles associated with different clinical characteristics. Patients with an early B-cell maturation block earlier required replacement therapy and were at significantly greater risk of enteropathy, granuloma formation, cytopenia, and lymphoproliferation. B-cell maturation inhibited at the natural effector stage was associated with higher risk of autoimmune manifestations other than autoimmune cytopenia. Prevalence of male patients was observed among patients with B-cell maturation inhibited at naïve B-cell stage. In conclusion, the diagnostic process in patients with suspected early-onset CVID shall include routine analysis of peripheral B-cell maturation to provide surrogate markers identifying patients at greater risk of developing certain complications.
Collapse
Affiliation(s)
- Barbara Piątosa
- Histocompatibility Laboratory, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood 2013; 121:734-44. [PMID: 23223433 PMCID: PMC3563361 DOI: 10.1182/blood-2012-10-385591] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/19/2012] [Indexed: 02/07/2023] Open
Abstract
The B7 family consists of structurally related, cell-surface proteins that regulate immune responses by delivering costimulatory or coinhibitory signals through their ligands. Eight family members have been identified to date including CD80 (B7-1), CD86 (B7-2), CD274 (programmed cell death-1 ligand [PD-L1]), CD273 (programmed cell death-2 ligand [PD-L2]), CD275 (inducible costimulator ligand [ICOS-L]), CD276 (B7-H3), B7-H4, and B7-H6. B7 ligands are expressed on both lymphoid and nonlymphoid tissues. The importance of the B7 family in regulating immune responses is clear from their demonstrated role in the development of immunodeficiency and autoimmune diseases. Manipulation of the signals delivered by B7 ligands shows great potential in the treatment of cancers including leukemias and lymphomas and in regulating allogeneic T-cell responses after stem cell transplantation.
Collapse
Affiliation(s)
- Paul Greaves
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
127
|
Luo C, Li Y, Liu W, Feng H, Wang H, Huang X, Qiu L, Ouyang J. Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J Neuroimmunol 2013; 256:55-61. [PMID: 23305745 DOI: 10.1016/j.jneuroim.2012.12.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/02/2012] [Accepted: 12/03/2012] [Indexed: 12/23/2022]
Abstract
Growing evidence has demonstrated that dysfunction of follicular helper T (TFH) cells results in an abnormal positive selection of autoreactive B cells, which contributes to the development of autoimmune diseases. This study reveals that the frequency of circulating counterparts of TFH cells in myasthenia gravis (MG) patients is significantly higher compared to healthy controls. Interestingly, the frequencies of circulating TFH cells were positively correlated with the levels of serum anti-AChR Ab in MG patients. Our data suggest the presence of overactivation and expansion of circulating counterparts of TFH cells in MG patients, which may contribute to the immunopathogenesis of MG.
Collapse
Affiliation(s)
- Chuanming Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Toapanta FR, Bernal PJ, Sztein MB. Diverse phosphorylation patterns of B cell receptor-associated signaling in naïve and memory human B cells revealed by phosphoflow, a powerful technique to study signaling at the single cell level. Front Cell Infect Microbiol 2012; 2:128. [PMID: 23087912 PMCID: PMC3473368 DOI: 10.3389/fcimb.2012.00128] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/01/2012] [Indexed: 11/13/2022] Open
Abstract
Following interaction with cognate antigens, B cells undergo cell activation, proliferation, and differentiation. Ligation of the B cell receptor (BCR) leads to the phosphorylation of BCR-associated signaling proteins within minutes of antigen binding, a process with profound consequences for the fate of the cells and development of effector immunity. Phosphoflow allows a rapid evaluation of various signaling pathways in complex heterogenous cell subsets. This novel technique was used in combination with multi-chromatic flow cytometry (FC) and fluorescent-cell barcoding (FCB) to study phosphorylation of BCR-associated signaling pathways in naïve and memory human B cell subsets. Proteins of the initiation (Syk), propagation (Btk, Akt), and integration (p38MAPK and Erk1/2) signaling units were studied. Switched memory (Sm) CD27+ and Sm CD27- phosphorylation patterns were similar when stimulated with anti-IgA or -IgG. In contrast, naïve and unswitched memory (Um) cells showed significant differences following IgM stimulation. Enhanced phosphorylation of Syk was observed in Um cells, suggesting a lower activation threshold. This is likely the result of higher amounts of IgM on the cell surface, higher pan-Syk levels, and enhanced susceptibility to phosphatase inhibition. All other signaling proteins evaluated also showed some degree of enhanced phosphorylation in Um cells. Furthermore, both the phospholipase C-γ2 (PLC-γ2) and phosphatidylinositol 3-kinase (PI3K) pathways were activated in Um cells, while only the PI3K pathway was activated on naïve cells. Um cells were the only ones that activated signaling pathways when stimulated with fluorescently labeled S. Typhi and S. pneumoniae. Finally, simultaneous evaluation of signaling proteins at the single cell level (multiphosphorylated cells) revealed that interaction with gram positive and negative bacteria resulted in complex and diverse signaling patterns. Phosphoflow holds great potential to accelerate vaccine development by identifying signaling profiles in good/poor responders.
Collapse
Affiliation(s)
- Franklin R Toapanta
- Department of Medicine, Center for Vaccine Development, University of Maryland Baltimore, MD, USA
| | | | | |
Collapse
|
129
|
Abstract
Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.
Collapse
|
130
|
Warnatz K, Voll RE. Pathogenesis of autoimmunity in common variable immunodeficiency. Front Immunol 2012; 3:210. [PMID: 22826712 PMCID: PMC3399211 DOI: 10.3389/fimmu.2012.00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/01/2012] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency (CVID) presents in up to 25% of patients with autoimmune (AI) manifestations. Given the frequency and early onset in some patients with CVID, AI dysregulation seems to be an integral part of the immunodeficiency. Antibody-mediated AI cytopenias, most often affecting erythrocytes and platelets make up over 50% of these patients. This seems to be distinct from mainly cell-mediated organ-specific autoimmunity. Some patients present like patients with AI lymphoproliferative syndrome. Interestingly, in the majority of patients with AI cytopenias the immunological examination reveals a dysregulated B and T cell homeostasis. These phenotypic changes are associated with altered signaling through the antigen receptor which may well be a potential risk factor for disturbed immune tolerance as has been seen in STIM1 deficiency. In addition, elevated B cell-activating factor serum levels in CVID patients may contribute to survival of autoreactive B cells. Of all genetic defects associated with CVID certain alterations in TACI, CD19, and CD81 deficiency have most often been associated with AI manifestations. In conclusion, autoimmunity in CVID offers opportunities to gain insights into general mechanisms of human autoimmunity.
Collapse
Affiliation(s)
- Klaus Warnatz
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
131
|
Peperzak V, Vikstrom IB, Tarlinton DM. Through a glass less darkly: apoptosis and the germinal center response to antigen. Immunol Rev 2012; 247:93-106. [DOI: 10.1111/j.1600-065x.2012.01123.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
132
|
Kroenke MA, Eto D, Locci M, Cho M, Davidson T, Haddad EK, Crotty S. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2012; 188:3734-44. [PMID: 22427637 DOI: 10.4049/jimmunol.1103246] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Follicular helper CD4 T (Tfh) cells provide B cells with signals that are important for the generation of high-affinity Abs and immunological memory and, therefore, are critical for the protective immunity elicited by most human vaccines. Transcriptional regulators of human Tfh cell differentiation are poorly understood. In this article, we demonstrate that Bcl6 controls specific gene modules for human Tfh cell differentiation. The introduction of Bcl6 expression in primary human CD4 T cells resulted in the regulation of a core set of migration genes that enable trafficking to germinal centers: CXCR4, CXCR5, CCR7, and EBI2. Bcl6 expression also induced a module of protein expression critical for T-B interactions, including SAP, CD40L, PD-1, ICOS, and CXCL13. This constitutes direct evidence for Bcl6 control of most of these functions and includes three genes known to be loci of severe human genetic immunodeficiencies (CD40L, SH2D1A, and ICOS). Introduction of Bcl6 did not alter the expression of IL-21 or IL-4, the primary cytokines of human Tfh cells. We show in this article that introduction of Maf (c-Maf) does induce the capacity to express IL-21. Surprisingly, Maf also induced CXCR5 expression. Coexpression of Bcl6 and Maf revealed that Bcl6 and Maf cooperate in the induction of CXCR4, PD-1, and ICOS. Altogether, these findings reveal that Bcl6 and Maf collaborate to orchestrate a suite of genes that define core characteristics of human Tfh cell biology.
Collapse
Affiliation(s)
- Mark A Kroenke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Morio T. [Common variable immunodeficiency: an update on etiology, pathophysiology, and classification]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2012; 35:14-22. [PMID: 22374438 DOI: 10.2177/jsci.35.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Common variable immunodeficiency is one of the most common primary immunodeficiency that is categorized into primary antibody deficiency. The responsible genes identified so far include ICOS, TACI, CD19, CD20, CD21, CD81 and BAFF-R; and most of the CVID-causing genes are yet to be identified. TACI mutation is the most common one; however the direct contribution of TACI mutation to pathogenesis of CVID is not yet clear. One third to a half of the patients with CVID shows autoimmunity as well as malignancy in their course. It is of importance to develop diagnostic measure, to identify the disease causing genes, and to develop the optimal therapy.
Collapse
Affiliation(s)
- Tomohiro Morio
- Department of Developmental Biology and Pediatrics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| |
Collapse
|
134
|
Salzer U, Unger S, Warnatz K. Common variable immunodeficiency (CVID): exploring the multiple dimensions of a heterogeneous disease. Ann N Y Acad Sci 2012; 1250:41-9. [DOI: 10.1111/j.1749-6632.2011.06377.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
135
|
Tangye SG, Deenick EK, Palendira U, Ma CS. T cell-B cell interactions in primary immunodeficiencies. Ann N Y Acad Sci 2012; 1250:1-13. [PMID: 22288566 DOI: 10.1111/j.1749-6632.2011.06361.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | | | | | |
Collapse
|
136
|
Kornete M, Sgouroudis E, Piccirillo CA. ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:1064-74. [PMID: 22227569 DOI: 10.4049/jimmunol.1101303] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A progressive waning in Foxp3(+) regulatory T cell (Treg) functions is thought to provoke autoimmunity in the NOD model of type 1 diabetes (T1D). A deficiency in IL-2 is one of the main triggers for the defective function of Tregs in islets. Notably, abrogation of the ICOS pathway in NOD neonates or BDC2.5-NOD (BDC2.5) mice exacerbates T1D, suggesting an important role for this costimulatory pathway in tolerance to islet Ags. Thus, we hypothesize that ICOS selectively promotes Foxp3(+) Treg functions in BDC2.5 mice. We show that ICOS expression discriminates effector Foxp3(-) T cells from Foxp3(+) Tregs and specifically designates a dominant subset of intra-islet Tregs, endowed with an increased potential to expand, secrete IL-10, and mediate suppressive activity in vitro and in vivo. Consistently, Ab-mediated blockade or genetic deficiency of ICOS selectively abrogates Treg-mediated functions and T1D protection and exacerbates disease in BDC2.5 mice. Moreover, T1D progression in BDC2.5 mice is associated with a decline in ICOS expression in and expansion and suppression by intra-islet Foxp3(+) Tregs. We further show that the ICOS(+) Tregs, in contrast to their ICOS(-) counterparts, are more sensitive to IL-2, a critical signal for their survival and functional stability. Lastly, the temporal loss in ICOS(+) Tregs is readily corrected by IL-2 therapy or protective Il2 gene variation. Overall, ICOS is critical for the homeostasis and functional stability of Foxp3(+) Tregs in prediabetic islets and maintenance of T1D protection.
Collapse
Affiliation(s)
- Mara Kornete
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | |
Collapse
|
137
|
Aghamohammadi A, Abolhassani H, Eibl MM, Espanol T, Kanegane H, Miyawaki T, Mohammadinejad P, Pourhamdi S, Wolf HM, Parvaneh N, Al-Herz W, Durandy A, Stiehm ER, Plebani A. Predominantly Antibody Deficiency. CLINICAL CASES IN PRIMARY IMMUNODEFICIENCY DISEASES 2012:113-192. [DOI: 10.1007/978-3-642-31785-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
138
|
van der Burg M, van Zelm MC, Driessen GJA, van Dongen JJM. New frontiers of primary antibody deficiencies. Cell Mol Life Sci 2012; 69:59-73. [PMID: 22042269 PMCID: PMC11114824 DOI: 10.1007/s00018-011-0836-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 02/02/2023]
Abstract
Primary antibody deficiencies (PAD) form the largest group of inherited disorders of the immune system. They are characterized by a marked reduction or absence of serum immunoglobulins (Ig) due to disturbed B cell differentiation and by a poor response to vaccination. PAD can be divided into agammaglobulinemia, Ig class switch recombination deficiencies, and idiopathic hypogammaglobulinemia. Over the past 20 years, defects have been identified in 18 different genes, but in many PAD patients the underlying gene defects have not been found. Diagnosis of known PAD and discovery of new PAD is important for good patient care. In this review, we present the effects of genetic defects in the context of normal B cell differentiation, and we discuss how new technical developments can support understanding and discovering new genetic defects in PAD.
Collapse
Affiliation(s)
- Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
139
|
Lipopolysaccharide mediated mast cells induce IL-10 producing regulatory T cells through the ICOSL/ICOS axis. Clin Immunol 2011; 142:269-79. [PMID: 22154192 DOI: 10.1016/j.clim.2011.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/15/2011] [Accepted: 11/02/2011] [Indexed: 01/27/2023]
Abstract
The mechanisms by which mast cells (MCs) regulate immune responses are still largely unknown. Here, we showed that MCs induced interleukin (IL)-10 producing T cells to regulate inflammatory responses. To gain insight into the molecules involved, we set up an in vitro system in which lipopolysaccharide (LPS) stimulated MCs and CD4(+) T cells were co-cultured. Induction of IL-10 producing regulatory T cells mainly relied on the inducible costimulator ligand (ICOSL)/ICOS axis. MCs stimulated with LPS for more than 6 weeks upregulated ICOSL expression, while icosl(-/-) BMMCs failed to induce IL-10 producing T cells. The LPS effect was mediated through NF-κB activation via the TLR4 signaling pathway. Ex vivo analysis of bronchoalveolar lavage fluid from mice with LPS-mediated pneumonia revealed ICOSL(+) MCs and IL-10 producing T cell induction. Additionally, adaptive transfer of ICOSL(+) BMMCs attenuated LPS-mediated inflammation in MC-deficient mice. This study provided new evidence for the regulatory role of MCs.
Collapse
|
140
|
Kornete M, Piccirillo CA. Critical co-stimulatory pathways in the stability of Foxp3+ Treg cell homeostasis in Type I diabetes. Autoimmun Rev 2011; 11:104-11. [PMID: 21875694 DOI: 10.1016/j.autrev.2011.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
Mechanisms of peripheral tolerance maintain a controlled balance between self-tolerance, protective immunity against a spectrum of non-self antigens, and suppressing pathology in various disorders. CD4(+) regulatory T cells (T(reg)) expressing the Foxp3 transcription factor dominantly control the activity and pathological consequences of a variety of effector T cell lineages in various inflammatory settings. This review will focus on recent advances on the roles of B7 family members in regulating Treg cell development, function and homeostasis during tolerance induction and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Mara Kornete
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
141
|
Barbosa RR, Silva SP, Silva SL, Melo AC, Pedro E, Barbosa MP, Pereira-Santos MC, Victorino RMM, Sousa AE. Primary B-cell deficiencies reveal a link between human IL-17-producing CD4 T-cell homeostasis and B-cell differentiation. PLoS One 2011; 6:e22848. [PMID: 21826211 PMCID: PMC3149619 DOI: 10.1371/journal.pone.0022848] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/01/2011] [Indexed: 11/19/2022] Open
Abstract
IL-17 is a pro-inflammatory cytokine implicated in autoimmune and inflammatory conditions. The development/survival of IL-17-producing CD4 T cells (Th17) share critical cues with B-cell differentiation and the circulating follicular T helper subset was recently shown to be enriched in Th17 cells able to help B-cell differentiation. We investigated a putative link between Th17-cell homeostasis and B cells by studying the Th17-cell compartment in primary B-cell immunodeficiencies. Common Variable Immunodeficiency Disorders (CVID), defined by defects in B-cell differentiation into plasma and memory B cells, are frequently associated with autoimmune and inflammatory manifestations but we found no relationship between these and Th17-cell frequency. In fact, CVID patients showed a decrease in Th17-cell frequency in parallel with the expansion of activated non-differentiated B cells (CD21(low)CD38(low)). Moreover, Congenital Agammaglobulinemia patients, lacking B cells due to impaired early B-cell development, had a severe reduction of circulating Th17 cells. Finally, we found a direct correlation in healthy individuals between circulating Th17-cell frequency and both switched-memory B cells and serum BAFF levels, a crucial cytokine for B-cell survival. Overall, our data support a relationship between Th17-cell homeostasis and B-cell maturation, with implications for the understanding of the pathogenesis of inflammatory/autoimmune diseases and the physiology of B-cell depleting therapies.
Collapse
Affiliation(s)
- Rita R. Barbosa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara P. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Susana L. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Alcinda Campos Melo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Elisa Pedro
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Manuel P. Barbosa
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | | | - Rui M. M. Victorino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Ana E. Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
142
|
Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, Lao C, Crotty S. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 2011; 34:932-46. [PMID: 21636296 PMCID: PMC3124577 DOI: 10.1016/j.immuni.2011.03.023] [Citation(s) in RCA: 741] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/29/2011] [Accepted: 03/18/2011] [Indexed: 12/23/2022]
Abstract
The nature of follicular helper CD4(+) T (Tfh) cell differentiation remains controversial, including the minimal signals required for Tfh cell differentiation and the time at which Tfh cell differentiation occurs. Here we determine that Tfh cell development initiates immediately during dendritic cell (DC) priming in vivo. We demonstrate that inducible costimulator (ICOS) provides a critical early signal to induce the transcription factor Bcl6, and Bcl6 then induces CXCR5, the canonical feature of Tfh cells. Strikingly, a bifurcation between Tfh and effector Th cells was measurable by the second cell division of CD4(+) T cells, at day 2 after an acute viral infection: IL2Rα(int) cells expressed Bcl6 and CXCR5 (Tfh cell program), whereas IL2Rα(hi) cells exhibited strong Blimp1 expression that repressed Bcl6 (effector Th cell program). Virtually complete polarization between Bcl6(+) Tfh cells and Blimp1(+) effector Th cell populations developed by 72 hr, even without B cells. Tfh cells were subsequently lost in the absence of B cells, demonstrating a B cell requirement for maintenance of Bcl6 and Tfh cell commitment via sequential ICOS signals.
Collapse
Affiliation(s)
- Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Robin Kageyama
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Danelle Eto
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Tania C. Escobar
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Robert J. Johnston
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Laurel Monticelli
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Christopher Lao
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037
| |
Collapse
|
143
|
Abstract
T cell help to B cells is a fundamental aspect of adaptive immunity and the generation of immunological memory. Follicular helper CD4 T (T(FH)) cells are the specialized providers of B cell help. T(FH) cells depend on expression of the master regulator transcription factor Bcl6. Distinguishing features of T(FH) cells are the expression of CXCR5, PD-1, SAP (SH2D1A), IL-21, and ICOS, among other molecules, and the absence of Blimp-1 (prdm1). T(FH) cells are important for the formation of germinal centers. Once germinal centers are formed, T(FH) cells are needed to maintain them and to regulate germinal center B cell differentiation into plasma cells and memory B cells. This review covers T(FH) differentiation, T(FH) functions, and human T(FH) cells, discussing recent progress and areas of uncertainty or disagreement in the literature, and it debates the developmental relationship between T(FH) cells and other CD4 T cell subsets (Th1, Th2, Th17, iTreg).
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
144
|
Piątosa B, Wolska-Kuśnierz B, Pac M, Siewiera K, Gałkowska E, Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. CYTOMETRY PART B-CLINICAL CYTOMETRY 2011; 78:372-81. [PMID: 20533385 DOI: 10.1002/cyto.b.20536] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The process of maturation of the immune system leads to generation of various lymphoid cell populations having the ability to react in specific way and expressing various markers on the cell surface. The study was set up to establish reference values for B lymphocyte subpopulations in peripheral blood of children and young adults to find the spectrum of their physiological age-related variation. METHODS Blood samples were taken from 292 children and young adults aged 0-31 years and tested for distribution of B cell subsets. Relative and absolute sizes of non-memory and memory, transitional, naïve, immature marginal zone-like/IgM-only memory, class-switched memory, double negative, activated, and plasmacytoid cell populations were determined by four-color flow cytometry, based on differential expression of CD19, IgM, IgD, CD21, CD27, and CD38. Significant variation both in relative, as well as in absolute numbers of individual cell populations in tested groups was observed. RESULTS The reference values for age-related B cell subsets in eleven age groups, established as result of this study, may be used in diagnostics of any pathology related to B cell maturation process, as well as in attempts of correlating laboratory results with clinical symptoms of many defects affecting antibody production in pediatric population. CONCLUSION Determination of B cell subpopulations carried in patients with antibody deficiencies may help to understand the nature of the disease and prevent its complications.
Collapse
Affiliation(s)
- Barbara Piątosa
- Histocompatibility Laboratory, Childrens' Memorial Health Institute, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
145
|
Yao S, Zhu Y, Zhu G, Augustine M, Zheng L, Goode DJ, Broadwater M, Ruff W, Flies S, Xu H, Flies D, Luo L, Wang S, Chen L. B7-h2 is a costimulatory ligand for CD28 in human. Immunity 2011; 34:729-40. [PMID: 21530327 PMCID: PMC3103603 DOI: 10.1016/j.immuni.2011.03.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 01/31/2011] [Accepted: 03/18/2011] [Indexed: 01/23/2023]
Abstract
CD28 and CTLA-4 are cell surface cosignaling molecules essential for the control of T cell activation upon the engagement of their ligands B7-1 and B7-2 from antigen-presenting cells. By employing a receptor array assay, we have demonstrated that B7-H2, best known as the ligand of inducible costimulator, was a ligand for CD28 and CTLA-4 in human, whereas these interactions were not conserved in mouse. B7-H2 and B7-1 or B7-2 interacted with CD28 through distinctive domains. B7-H2-CD28 interaction was essential for the costimulation of human T cells' primary responses to allogeneic antigens and memory recall responses. Similar to B7-1 and B7-2, B7-H2 costimulation via CD28 induced survival factor Bcl-xL, downregulated cell cycle inhibitor p27(kip1), and triggered signaling cascade of ERK and AKT kinase-dependent pathways. Our findings warrant re-evaluation of CD28 and CTLA-4's functions previously attributed exclusively to B7-1 and B7-2 and have important implications in therapeutic interventions against human diseases.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Yuwen Zhu
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gefeng Zhu
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Mathew Augustine
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Linghua Zheng
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Diana J. Goode
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Megan Broadwater
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - William Ruff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Sarah Flies
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Haiying Xu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Dallas Flies
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Liqun Luo
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Shengdian Wang
- Center of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
146
|
T and B lymphocyte abnormalities in bone marrow biopsies of common variable immunodeficiency. Blood 2011; 118:309-18. [PMID: 21576700 DOI: 10.1182/blood-2010-11-321695] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In common variable immunodeficiency (CVID) defects in early stages of B-cell development, bone marrow (BM) plasma cells and T lymphocytes have not been studied systematically. Here we report the first morphologic and flow cytometric study of B- and T-cell populations in CVID BM biopsies and aspirates. Whereas the hematopoietic compartment showed no major lineage abnormalities, analysis of the lymphoid compartment exhibited major pathologic alterations. In 94% of the patients, BM plasma cells were either absent or significantly reduced and correlated with serum immunoglobulin G levels. Biopsies from CVID patients had significantly more diffuse and nodular CD3(+) T lymphocyte infiltrates than biopsies from controls. These infiltrates correlated with autoimmune cytopenia but not with other clinical symptoms or with disease duration and peripheral B-cell counts. Nodular T-cell infiltrates correlated significantly with circulating CD4(+)CD45R0(+) memory T cells, elevated soluble IL2-receptor and neopterin serum levels indicating an activated T-cell compartment in most patients. Nine of 25 patients had a partial block in B-cell development at the pre-B-I to pre-B-II stage. Because the developmental block correlates with lower transitional and mature B-cell counts in the periphery, we propose that these patients might form a new subgroup of CVID patients.
Collapse
|
147
|
"A rose is a rose is a rose," but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol 2011; 111:47-107. [PMID: 21970952 DOI: 10.1016/b978-0-12-385991-4.00002-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Common variable immune deficiency (CVID) is the commonest symptomatic primary immunodeficiency and represents a heterogenous collection of disorders resulting mostly in antibody deficiency and recurrent infections. However, autoimmunity, granulomatous inflammation and malignancy frequently occur as part of the syndrome. The etiology of the condition has been poorly understood although in recent years, significant progress has been made in elucidating genetic mechanisms that can result in a CVID phenotype. In parallel to this, advances in treatment of the condition have also resulted in improved survival and quality of life for patients. There still remains significant work to be done in improving our understanding of the disease. In addition, recognition of the condition remains poor with significant diagnostic delays and avoidable morbidity. In this article, we review CVID with a particular focus on the areas of improving diagnosis and classification, recent developments in understanding the underlying etiology and genetics; and current treatment and monitoring recommendations for patients.
Collapse
|
148
|
Kurosaki T, Aiba Y, Kometani K, Moriyama S, Takahashi Y. Unique properties of memory B cells of different isotypes. Immunol Rev 2010; 237:104-16. [PMID: 20727032 DOI: 10.1111/j.1600-065x.2010.00939.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Memory antibody responses are typically seen to T-cell-dependent antigens and are characterized by the rapid production of high titers of high-affinity antigen-specific antibody. The hallmark of T-cell-dependent memory B cells is their expression of a somatically mutated, isotype-switched B-cell antigen receptor, features that are mainly generated in germinal centers. Classical studies have focused on isotype-switched memory B cells (mainly IgG isotype) and demonstrated their unique intrinsic properties in terms of localization and responsiveness to antigen re-exposure. However, recent advances in monitoring antigen-experienced B cells have revealed the considerable heterogeneity of memory B cells, which include unswitched IgM(+) and/or unmutated memory B cells. The IgM and IgG type memory B cells reside in distinct locations and appear to possess distinct origins and effector functions, together orchestrating humoral memory responses.
Collapse
Affiliation(s)
- Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
149
|
Bayry J, Fournier EM, Maddur MS, Vani J, Wootla B, Sibéril S, Dimitrov JD, Lacroix-Desmazes S, Berdah M, Crabol Y, Oksenhendler E, Lévy Y, Mouthon L, Sautès-Fridman C, Hermine O, Kaveri SV. Intravenous immunoglobulin induces proliferation and immunoglobulin synthesis from B cells of patients with common variable immunodeficiency: a mechanism underlying the beneficial effect of IVIg in primary immunodeficiencies. J Autoimmun 2010; 36:9-15. [PMID: 20970960 DOI: 10.1016/j.jaut.2010.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 12/28/2022]
Abstract
Common variable immunodeficiency (CVID) is associated with low serum immunoglobulin concentrations and an increased susceptibility to infections and autoimmune diseases. The treatment of choice for CVID patients is replacement intravenous immunoglobulin (IVIg) therapy. IVIg has been beneficial in preventing or alleviating the severity of infections and autoimmune and inflammatory process in majority of CVID patients. Although the mechanisms of action of IVIg given as 'therapeutic high dose' in patients with autoimmune diseases are well studied, the underlying mechanisms of beneficial effects of IVIg in primary immunodeficiencies are not completely understood. Therefore we investigated the effect of 'replacement dose' of IVIg by probing its action on B cells from CVID patients. We demonstrate that IVIg at low doses induces proliferation and immunoglobulin synthesis from B cells of CVID patients. Interestingly, B cell stimulation by IVIg is not associated with induction of B cell effector cytokine IFN-γ and of transcription factor T-bet. Together, our results indicate that in some CVID patients, IVIg rectifies the defective signaling of B cells normally provided by T cells and delivers T-independent signaling for B cells to proliferate. IVIg 'replacement therapy' in primary immunodeficiencies is therefore not a merepassive transfer of antibodies to prevent exclusively the recurrent infections; rather it has an active role in regulating autoimmune and inflammatory responses through modulating B cell functions and thus imposing dynamic equilibrium of the immune system.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité 872, F-75006 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Ma CS, Deenick EK. The role of SAP and SLAM family molecules in the humoral immune response. Ann N Y Acad Sci 2010; 1217:32-44. [PMID: 21091715 DOI: 10.1111/j.1749-6632.2010.05824.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective B cell-mediated immunity, including the formation of germinal centers and the generation of high-affinity memory B cells and long-lived plasma cells, is dependent on CD4(+) T cells. Immunodeficiencies that present with defects in the antibody response have provided insights into the molecular mechanisms of B cell responses and the provision of T cell help. One such immunodeficiency is X-linked lymphoproliferative disease (XLP), which results from mutations in SH2D1A, the gene encoding SLAM-associated protein (SAP). Patients with XLP present with humoral defects characterized by hypogammaglobulinemia. We now know that SAP, through its signaling downstream of multiple members of the signaling lymphocytic activation molecule (SLAM) family of cell surface receptors, plays a crucial role in many aspects of this immune response. Here, we discuss the role of SAP in the generation of humoral immunity, particularly T cell-dependent antibody responses and the generation of germinal centers.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | |
Collapse
|