101
|
Zhou X, Brenner MK. Improving the safety of T-Cell therapies using an inducible caspase-9 gene. Exp Hematol 2016; 44:1013-1019. [PMID: 27473568 PMCID: PMC5083205 DOI: 10.1016/j.exphem.2016.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/12/2022]
Abstract
Adoptive transfer of T cells can be an effective anticancer treatment. However, uncontrolled or unpredictable immediate or persistent toxic effects are a source of concern. The ability to conditionally eliminate aberrant cells in vivo is therefore becoming a critical step for the successful translation of this approach to the clinic. We review the evolution of safety systems, focusing on a suicide switch that can be expressed stably and efficiently in human T cells without impairing phenotype, function, or antigen specificity. This system is based on the fusion of human caspase-9 to a modified human FK-binding protein, allowing conditional dimerization in the presence of an otherwise bio-inert small molecule drug. When exposed to the synthetic dimerizing drug, the inducible caspase-9 becomes activated, resulting in the rapid apoptosis of cells expressing this construct. We have illustrated the clinical feasibility and efficacy of this approach after haploidentical hematopoietic stem cell transplant. Here we review the benefits and limitations of the approach.
Collapse
Affiliation(s)
- Xiaoou Zhou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX; USA
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX; USA
| |
Collapse
|
102
|
Cellular Engineering for the Production of New Blood Components. Transfus Med 2016. [DOI: 10.1002/9781119236504.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
103
|
Martelli MF, Aversa F. Haploidentical transplants using ex vivo T-cell depletion. Semin Hematol 2016; 53:252-256. [DOI: 10.1053/j.seminhematol.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/20/2016] [Indexed: 02/02/2023]
|
104
|
Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy 2016; 18:1515-1524. [PMID: 27692559 DOI: 10.1016/j.jcyt.2016.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND AIMS Human parainfluenza virus-3 (HPIV) is a common cause of respiratory infection in immunocompromised patients and currently has no effective therapies. Virus-specific T-cell therapy has been successful for the treatment or prevention of viral infections in immunocompromised patients but requires determination of T-cell antigens on targeted viruses. METHODS HPIV3-specific T cells were expanded from peripheral blood of healthy donors using a rapid generation protocol targeting four HPIV3 proteins. Immunophenotyping was performed by flow cytometry. Viral specificity was determined by interferon (IFN)-γ ELISpot, intracellular cytokine staining and cytokine measurements from culture supernatants by Luminex assay. Cytotoxic activity was tested by 51Cr release and CD107a mobilization assays. Virus-specific T cells targeting six viruses were then produced by rapid protocol, and the phenotype of HPIV3-specific T cells was determined by immunomagnetic sorting for IFN-γ-producing cells. RESULTS HPIV3-specific T cells were expanded from 13 healthy donors. HPIV3-specific T cells showed a CD4+ predominance (mean CD4:CD8 ratio 2.89) and demonstrated specificity for multiple HPIV3 antigens. The expanded T cells were polyfunctional based on cytokine production but only had a minor cytotoxic component. T cells targeting six viruses in a single product similarly showed HPIV3 specificity, with a predominant effector memory phenotype (CD3+/CD45RA-/CCR7-) in responder cells. DISCUSSION HPIV3-specific T cells can be produced using a rapid ex vivo protocol from healthy donors and are predominantly CD4+ T cells with Th1 activity. HPIV3 epitopes can also be successfully targeted alongside multiple other viral epitopes in production of six-virus T cells, without loss of HPIV3 specificity. These products may be clinically beneficial to combat HPIV3 infections by adoptive T-cell therapy in immune-compromised patients.
Collapse
|
105
|
Potential use of lymph node-derived HPV-specific T cells for adoptive cell therapy of cervical cancer. Cancer Immunol Immunother 2016; 65:1451-1463. [PMID: 27619514 PMCID: PMC5099359 DOI: 10.1007/s00262-016-1892-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
Adoptive transfer of tumor-specific T cells, expanded from tumor-infiltrating lymphocytes or from peripheral blood, is a promising immunotherapeutic approach for the treatment of cancer. Here, we studied whether the tumor-draining lymph nodes (TDLN) of patients with human papillomavirus (HPV)-induced cervical cancer can be used as a source for ACT. The objectives were to isolate lymph node mononuclear cells (LNMC) from TDLN and optimally expand HPV-specific CD4+ and CD8+ T cells under clinical grade conditions. TDLN were isolated from 11 patients with early-stage cervical cancer during radical surgery. Isolated lymphocytes were expanded in the presence of HPV16 E6 and E7 clinical grade synthetic long peptides and IL-2 for 22 days and then analyzed for HPV16 specificity by proliferation assay, multiparameter flow cytometry and cytokine analysis as well as for CD25 and FoxP3 expression. Stimulation of LNMC resulted in expansion of polyclonal HPV-specific T cells in all patients. On average a 36-fold expansion of a CD4+ and/or CD8+ HPV16-specific T cell population was observed, which maintained its capacity for secondary expansion. The T helper type 1 cytokine IFNγ was produced in all cell cultures and in some cases also the Th2 cytokines IL-10 and IL-5. The procedure was highly reproducible, as evidenced by complete repeats of the stimulation procedures under research and under full good manufacturing practice conditions. In conclusion, TDLN represent a rich source of polyclonal HPV16 E6- and E7-specific T cells, which can be expanded under clinical grade conditions for adoptive immunotherapy in patients with cervical cancer.
Collapse
|
106
|
Occurrence, risk factors and outcome of adenovirus infection in adult recipients of allogeneic hematopoietic stem cell transplantation. J Clin Virol 2016; 82:33-40. [DOI: 10.1016/j.jcv.2016.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/25/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
107
|
Abraham A, Jacobsohn DA, Bollard CM. Cellular therapy for sickle cell disease. Cytotherapy 2016; 18:1360-1369. [PMID: 27421743 DOI: 10.1016/j.jcyt.2016.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/25/2016] [Accepted: 06/16/2016] [Indexed: 02/02/2023]
Abstract
Sickle cell disease (SCD) is a monogenic red cell disorder affecting more than 300 000 annual births worldwide and leading to significant organ toxicity and premature mortality. Although chronic therapies such as hydroxyurea have improved outcomes, more durable therapeutic and curative options are still being investigated. Newer understanding of the disease has implicated invariant natural killer T cells as a critical immune profile that potentiates SCD. Hence, targeting this cell population may offer a new approach to disease management. Hematopoietic stem cell transplant is a curative option for patients with SCD, but the under-representation of minorities on the unrelated donor registry means that this is not a feasible option for more than 75% of patients. Work in this area has therefore focused on increasing the donor pool and decreasing transplant-related toxicities to make this a treatment option for the majority of patients with SCD. This review focuses on the currently available cell and gene therapies for patients with SCD and acknowledges that newer gene-editing approaches to improve gene therapy efficiency and safety are the next wave of potentially curative approaches.
Collapse
Affiliation(s)
- Allistair Abraham
- Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System and The George Washington University, Washington, DC, USA.
| | - David A Jacobsohn
- Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System and The George Washington University, Washington, DC, USA
| |
Collapse
|
108
|
Horlock C, Skulte A, Mitra A, Stansfield A, Bhandari S, Ip W, Qasim W, Lowdell MW, Patel S, Friedetzky A, Purbhoo MA, Newton K. Manufacture of GMP-compliant functional adenovirus-specific T-cell therapy for treatment of post-transplant infectious complications. Cytotherapy 2016; 18:1209-18. [PMID: 27424147 DOI: 10.1016/j.jcyt.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND AIMS In pediatric patients, adenovirus (ADV) reactivation after allogeneic hematopoietic stem cell transplantation (allo HSCT) is a major cause of morbidity and mortality. For patients who do not respond to antiviral drug therapy, a new treatment approach using ADV-specific T cells can present a promising alternative. Here we describe the clinical scale Good Manufacturing Practice (GMP)-compliant manufacture and characterization of 40 ADV-specific T-cell products, Cytovir ADV, which are currently being tested in a multi-center phase I/IIa clinical trial. This process requires minimal intervention, is high yield, and results in a pure T-cell product that is functional. METHODS Mononuclear cells (2 × 10(7)) were cultured in a closed system in the presence of GMP-grade ADV peptide pool and cytokines for 10 days. On day 10, the T-cell product was harvested, washed in a closed system, counted and assessed for purity and potency. Additional characterization was carried out where cell numbers allowed. RESULTS Thirty-eight of 40 products (95%) met all release criteria. Median purity of the cell product was 88.3% CD3+ cells with a median yield of 2.9 × 10(7) CD3+ cells. Potency analyses showed a median ADV-specific interferon (IFN)γ response of 5.9% of CD3+ and 2345 IFNγ spot-forming cells/million. CD4 and CD8 T cells were capable of proliferating in response to ADV (63.3 and 56.3%, respectively). These virus-specific T cells (VST) were heterogenous, containing both effector memory and central memory T cells. In an exemplar patient with ADV viremia treated in the open ASPIRE trial, ADV-specific T-cell response was detected by IFNγ enzyme-linked immunospot from 13 days post-infusion. ADV DNA levels declined following cellular therapy and were below level of detection from day 64 post-infusion onward. CONCLUSIONS The clinical-scale GMP-compliant One Touch manufacturing system is feasible and yields functional ADV-specific T cells at clinically relevant doses.
Collapse
Affiliation(s)
| | | | | | | | | | - Winnie Ip
- Great Ormond Street Hospital, London, United Kingdom
| | - Waseem Qasim
- Great Ormond Street Hospital, London, United Kingdom
| | - Mark W Lowdell
- Research Department of Haematology, Cancer Institute, UCL, Royal Free Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
109
|
Rustia E, Violago L, Jin Z, Foca MD, Kahn JM, Arnold S, Sosna J, Bhatia M, Kung AL, George D, Garvin JH, Satwani P. Risk Factors and Utility of a Risk-Based Algorithm for Monitoring Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections in Pediatric Recipients after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:1646-1653. [PMID: 27252110 DOI: 10.1016/j.bbmt.2016.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Infectious complications, particularly viral infections, remain a significant cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (alloHCT). Only a handful of studies in children have analyzed the risks for and impact of viremia on alloHCT-related outcomes. We conducted a retrospective study of 140 pediatric patients undergoing alloHCT to investigate the incidence of and risk factors for cytomegalovirus (CMV), adenovirus (ADV), and Epstein-Barr virus (EBV) viremia and viral disease after alloHCT. Furthermore, we assessed the impact of viremia on days of hospitalization and develop an algorithm for routine monitoring of viremia. Patients were monitored before alloHCT and then weekly for 180 days after alloHCT. Patients were considered to have viremia if CMV were > 600 copies/mL, EBV were > 1000 copies/mL, or ADV were > 1000 copies/mL on 2 consecutive PCRs. The overall incidences of viremia and viral disease in all patients from day 0 to +180 after alloHCT were 41.4% (n = 58) and 17% (n = 24), respectively. The overall survival for patients with viremia and viral disease was significantly lower compared with those without viremia (58% versus 74.2%, P = .03) and viral disease (48.2% versus 71.2%, P = .024). We identified that pretransplantation CMV risk status, pre-alloHCT viremia, and use of alemtuzumab were associated with the risk of post-alloHCT viremia. The average hospitalization days in patients with CMV risk (P = .011), viremia (P = .024), and viral disease (P = .002) were significantly higher. The algorithm developed from our data can potentially reduce viral PCR testing by 50% and is being studied prospectively at our center. Improved preventative treatment strategies for children at risk of viremia after alloHCT are needed.
Collapse
Affiliation(s)
- Evelyn Rustia
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Leah Violago
- Department of Nursing, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Zhezhen Jin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Marc D Foca
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Justine M Kahn
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Staci Arnold
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Jean Sosna
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Monica Bhatia
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Andrew L Kung
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Diane George
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - James H Garvin
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Prakash Satwani
- Department of Pediatrics, Columbia University Medical Center, New York, New York.
| |
Collapse
|
110
|
T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood 2016; 127:3331-40. [PMID: 27207801 DOI: 10.1182/blood-2016-01-628982] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Despite recent advances in the field of allogeneic hematopoietic stem cell transplantation (HSCT), viral infections are still a major complication during the period of immune suppression that follows the procedure. Adoptive transfer of donor-derived virus-specific cytotoxic T cells (VSTs) is a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after HSCT. Early proof of principle studies demonstrated that the administration of donor-derived T cells specific for cytomegalovirus or Epstein-Barr virus (EBV) could effectively restore virus-specific immunity and control viral infections. Subsequent studies using different expansion or direct selection techniques have shown that donor-derived VSTs confer protection in vivo after adoptive transfer in 70% to 90% of recipients. Because a major cause of failure is lack of immunity to the infecting virus in a naïve donor, more recent studies have infused closely matched third-party VSTs and reported response rates of 60% to 70%. Current efforts have focused on broadening the applicability of this approach by: (1) extending the number of viral antigens being targeted, (2) simplifying manufacture, (3) exploring strategies for recipients of virus-naïve donor grafts, and (4) developing and optimizing "off the shelf" approaches.
Collapse
|
111
|
A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy. Sci Rep 2016; 6:25852. [PMID: 27181409 PMCID: PMC4867645 DOI: 10.1038/srep25852] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023] Open
Abstract
Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy.
Collapse
|
112
|
Naik S, Nicholas SK, Martinez CA, Leen AM, Hanley PJ, Gottschalk SM, Rooney CM, Hanson IC, Krance RA, Shpall EJ, Cruz CR, Amrolia P, Lucchini G, Bunin N, Heimall J, Klein OR, Gennery AR, Slatter MA, Vickers MA, Orange JS, Heslop HE, Bollard CM, Keller MD. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol 2016; 137:1498-1505.e1. [PMID: 26920464 PMCID: PMC4860050 DOI: 10.1016/j.jaci.2015.12.1311] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Viral infections are a leading fatal complication for patients with primary immunodeficiencies (PIDs) who require hematopoietic stem cell transplantation (HSCT). Use of virus-specific T lymphocytes (VSTs) has been successful for the treatment and prevention of viral infections after HSCT for malignant and nonmalignant conditions. Here we describe the clinical use of VSTs in patients with PIDs at 4 centers. OBJECTIVE We sought to evaluate the safety and efficacy of VSTs for treatment of viral infections in patients with PIDs. METHODS Patients with PIDs who have received VST therapy on previous or current protocols were reviewed in aggregate. Clinical information, including transplantation details, viral infections, and use of antiviral and immunosuppressive pharmacotherapy, were evaluated. Data regarding VST production, infusions, and adverse reactions were compared. RESULTS Thirty-six patients with 12 classes of PID diagnoses received 37 VST products before or after HSCT. Twenty-six (72%) patients had received a diagnosis of infection with cytomegalovirus, EBV, adenovirus, BK virus, and/or human herpesvirus 6. Two patients were treated before HSCT because of EBV-associated lymphoproliferative disease. Partial or complete responses against targeted viruses occurred in 81% of patients overall. Time to response varied from 2 weeks to 3 months (median, 28 days). Overall survival at 6 months after therapy was 80%. Four patients had graft-versus-host disease in the 45 days after VST infusion, which in most cases was therapy responsive. CONCLUSION VSTs derived from either stem cell donors or third-party donors are likely safe and effective for the treatment of viral infections in patients with PIDs.
Collapse
Affiliation(s)
- Swati Naik
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Sarah K Nicholas
- Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Tex; Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Tex
| | - Caridad A Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC; Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, DC
| | - Steven M Gottschalk
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex
| | - I Celine Hanson
- Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Tex
| | - Robert A Krance
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Conrad R Cruz
- Sheikh Zayed Institute, Children's National Medical Center, Washington, DC
| | - Persis Amrolia
- Bone Marrow Transplantation Department, Great Ormond Street Hospital, London, United Kingdom
| | - Giovanna Lucchini
- Bone Marrow Transplantation Department, Great Ormond Street Hospital, London, United Kingdom
| | - Nancy Bunin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Jennifer Heimall
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Orly R Klein
- Department of Oncology, Division of Pediatric Hematology/Oncology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A Slatter
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark A Vickers
- Scottish National Blood Transfusion Service, Aberdeen, United Kingdom; University of Aberdeen, Aberdeen, United Kingdom
| | - Jordan S Orange
- Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Tex; Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Tex
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Tex; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC; Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, DC
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC; Division of Allergy and Immunology, Children's National Medical Center, Washington, DC.
| |
Collapse
|
113
|
Montoro J, Sanz J, Sanz GF, Sanz MA. Advances in haploidentical stem cell transplantation for hematologic malignancies. Leuk Lymphoma 2016; 57:1766-75. [PMID: 27424663 DOI: 10.3109/10428194.2016.1167204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One of the most important advances in allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the use of alternative donors and cell sources, such as haploidentical transplants (haplo-HSCT) from family donors. Several approaches have been developed to overcome the challenging bidirectional alloreactivity. We discuss these approaches, including ex vivo T-cell-depleted grafts with megadose of CD34(+) cells, not requiring immunosuppression after allogeneic transplantation for graft-versus-host disease (GVHD) prophylaxis, and other strategies using unmanipulated T-cell-replete grafts with intensive immunosuppression or post-transplantation cyclophosphamide to minimize the GVHD. We also address the role of other strategies developed in the context of the haplo-HSCT platforms, such as ex vivo selective depletion of alloreactive donor T-cell subpopulations, infusion of antigen-specific T-cells against several pathogens, and infusion of regulatory T-cells, among other experimental approaches. Finally, some considerations about the selection of the most suitable donor, when more than one family member is available, are also addressed.
Collapse
Affiliation(s)
- Juan Montoro
- a Hematology Department , University Hospital La Fe and Department of Medicine, University of Valencia , Valencia , Spain
| | - Jaime Sanz
- a Hematology Department , University Hospital La Fe and Department of Medicine, University of Valencia , Valencia , Spain
| | - Guillermo F Sanz
- a Hematology Department , University Hospital La Fe and Department of Medicine, University of Valencia , Valencia , Spain
| | - Miguel A Sanz
- a Hematology Department , University Hospital La Fe and Department of Medicine, University of Valencia , Valencia , Spain
| |
Collapse
|
114
|
Barth MJ, Chu Y, Hanley PJ, Cairo MS. Immunotherapeutic approaches for the treatment of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol 2016; 173:597-616. [PMID: 27062282 DOI: 10.1111/bjh.14078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the introduction of the anti-CD20 monoclonal antibody rituximab, B-cell non-Hodgkin lymphoma was the first malignancy successfully treated with an immunotherapeutic agent. Since then, numerous advances have expanded the repertoire of immunotherapeutic agents available for the treatment of a variety of malignancies, including many lymphoma subtypes. These include the introduction of monoclonal antibodies targeting a variety of cell surface proteins, including the successful targeting of immunoregulatory checkpoint receptors present on T-cells or tumour cells. Additionally, cellular immunotherapeutic approaches utilize T- or Natural Killer-cells generated with chimeric antigen receptors against cell surface proteins or Epstein-Barr virus-associated latent membrane proteins. The following review describes the current state of immunotherapy for non-Hodgkin lymphoma including a summary of currently available data and promising agents currently in clinical development with future promise in the treatment of childhood, adolescent and young adult non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Matthew J Barth
- Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Division of Pediatric Hematology/Oncology, University at Buffalo, Buffalo, NY, USA
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Division of Blood and Marrow Transplantation, Sheikhz Zayed Institute for Pediatric Surgical Innovation, Washington, D.C., USA.,Center for Cancer and Immunology Research, Children's National Health System, The George Washington University, Washington, D.C., USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
115
|
|
116
|
Mellon G, Henry B, Aoun O, Boutolleau D, Laparra A, Mayaux J, Sanson M, Caumes E. Adenovirus related lymphohistiocytic hemophagocytosis: Case report and literature review. J Clin Virol 2016; 78:53-6. [PMID: 26985594 DOI: 10.1016/j.jcv.2016.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/26/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Adenoviral infection is a classic cause of lymphohistiocytic hemophagocytosis (LH) in bone marrow transplantation but is rare outside this setting. CASE REPORT A 31-year-old female, with a history of treated mesencephalic astrocytoma, was hospitalized for fever, pancytopenia, elevated liver enzymes, hyperferritinemia and hypertriglyceridemia. Adenovirus viral load in blood was 7.3×10(9) copies/mL. Bone marrow aspirate examination confirmed LH. The patient recovered without specific LH or adenovirus-directed treatment. CONCLUSION Adenovirus-related LH, common in bone marrow transplant recipients, should also be considered in patients with chemotherapy in solid tumors.
Collapse
Affiliation(s)
- G Mellon
- Service des maladies infectieuses et tropicales, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France.
| | - B Henry
- Service des maladies infectieuses et tropicales, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, France
| | - O Aoun
- Antenne Médicale de Colmar, Centre Médical des armées de Strasbourg, 2 rue des Belges BP, 30446, Colmar, France
| | - D Boutolleau
- Sorbonne Universités, UPMC Univ Paris 06, France; Service de virologie, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - A Laparra
- Service des maladies infectieuses et tropicales, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - J Mayaux
- Service de pneumologie et réanimation médicale, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - M Sanson
- Sorbonne Universités, UPMC Univ Paris 06, France; Service de neurologie 2, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - E Caumes
- Service des maladies infectieuses et tropicales, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, France
| |
Collapse
|
117
|
Thompson PA, Rezvani K, Hosing CM, Oran B, Olson AL, Popat UR, Alousi AM, Shah ND, Parmar S, Bollard C, Hanley P, Kebriaei P, Cooper L, Kellner J, McNiece IK, Shpall EJ. Umbilical cord blood graft engineering: challenges and opportunities. Bone Marrow Transplant 2016; 50 Suppl 2:S55-62. [PMID: 26039209 DOI: 10.1038/bmt.2015.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We are entering a very exciting era in umbilical cord blood transplantation (UCBT), where many of the associated formidable challenges may become treatable by ex vivo graft manipulation and/or adoptive immunotherapy utilizing specific cellular products. We envisage the use of double UCBT rather than single UCBT for most patients; this allows for greater ability to treat larger patients as well as to manipulate the graft. Ex vivo expansion and/or fucosylation of one cord will achieve more rapid engraftment, minimize the period of neutropenia and also give certainty that the other cord will provide long-term engraftment/immune reconstitution. The non-expanded (and future dominant) cord could be chosen for characteristics such as better HLA matching to minimize GvHD, or larger cell counts to enable part of the unit to be utilized for the development of specific cellular therapies such as the production of virus-specific T-cells or chimeric-antigen receptor T-cells which are reviewed in this study.
Collapse
Affiliation(s)
- P A Thompson
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - K Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - C M Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - B Oran
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - A L Olson
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - U R Popat
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - A M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - N D Shah
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - S Parmar
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - C Bollard
- Center for Cell Therapy and Department of Immunology, Baylor College of Medicine, Houston, TX, USA
| | - P Hanley
- Center for Cell Therapy and Department of Immunology, Baylor College of Medicine, Houston, TX, USA
| | - P Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - L Cooper
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - J Kellner
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - I K McNiece
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - E J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
118
|
Hanley PJ, Melenhorst JJ, Nikiforow S, Scheinberg P, Blaney JW, Demmler-Harrison G, Cruz CR, Lam S, Krance RA, Leung KS, Martinez CA, Liu H, Douek DC, Heslop HE, Rooney CM, Shpall EJ, Barrett AJ, Rodgers JR, Bollard CM. CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med 2016; 7:285ra63. [PMID: 25925682 DOI: 10.1126/scitranslmed.aaa2546] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adoptive transfer of cytomegalovirus (CMV)-specific T cells derived from adult seropositive donors can effectively restore antiviral immunity after transplantation. However, CMV-seronegative donors lack CMV-specific memory T cells, which restricts the availability of virus-specific T cells for immunoprophylaxis. We demonstrate the feasibility of deriving CMV-specific T cells from naïve cells for T cell therapy. Naïve T cells primed to recognize CMV were restricted to different, atypical epitopes than T cells derived from CMV-seropositive individuals; however, these two cell populations had similar avidities. CMV-seropositive individuals also had T cells recognizing these atypical epitopes, but these cells had a lower avidity than those derived from the seronegative subjects, which suggests that high-avidity T cells to these epitopes may be lost over time. Indeed, recipients of cord blood (CB) grafts who did not develop CMV were found by clonotypic analysis to have T cells recognizing atypical CMVpp65 epitopes. Therefore, we examined unmanipulated CB units and found that T cells with T cell receptors restricted by atypical epitopes were the most common, which may explain why these T cells expanded. When infused to recipients, naïve donor-derived virus-specific T cells that recognized atypical epitopes were associated with prolonged periods of CMV-free survival and complete remission. These data suggest that naïve-derived T cells from seronegative patients may be an additional source of cells for CMV immunoprophylaxis.
Collapse
Affiliation(s)
- Patrick J Hanley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Program for Cell Enhancement and Technologies for Immunotherapy, The Sheikh Zayed Institute for Pediatric Surgical Innovation, the Center for Cancer and Immunology Research, and the Division of Blood and Marrow Transplantation, Children's National Health System and The George Washington University, Washington, DC 20052, USA
| | - Jan J Melenhorst
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Nikiforow
- Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, MA 02115, USA
| | - Phillip Scheinberg
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James W Blaney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | | | - C Russell Cruz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Program for Cell Enhancement and Technologies for Immunotherapy, The Sheikh Zayed Institute for Pediatric Surgical Innovation, the Center for Cancer and Immunology Research, and the Division of Blood and Marrow Transplantation, Children's National Health System and The George Washington University, Washington, DC 20052, USA
| | - Sharon Lam
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Program for Cell Enhancement and Technologies for Immunotherapy, The Sheikh Zayed Institute for Pediatric Surgical Innovation, the Center for Cancer and Immunology Research, and the Division of Blood and Marrow Transplantation, Children's National Health System and The George Washington University, Washington, DC 20052, USA
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathryn S Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caridad A Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hao Liu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Rodgers
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Catherine M Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Program for Cell Enhancement and Technologies for Immunotherapy, The Sheikh Zayed Institute for Pediatric Surgical Innovation, the Center for Cancer and Immunology Research, and the Division of Blood and Marrow Transplantation, Children's National Health System and The George Washington University, Washington, DC 20052, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
119
|
Mancini N, Marrone L, Clementi N, Sautto GA, Clementi M, Burioni R. Adoptive T-cell therapy in the treatment of viral and opportunistic fungal infections. Future Microbiol 2016; 10:665-82. [PMID: 25865200 DOI: 10.2217/fmb.14.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral infections and opportunistic fungal pathogens represent a major menace for immunocompromised patients. Despite the availability of antifungal and antiviral drugs, mortality in these patients remains high, underlining the need of novel therapeutic options based on completely different strategies. This review describes the potential of several T-cell-based therapeutic approaches in the prophylaxis and treatment of infectious diseases with a particular focus on persistent viral infections and opportunistic fungal infections, as these mostly affect immunocompromised patients.
Collapse
Affiliation(s)
- Nicasio Mancini
- Laboratorio di Microbiologia e Virologia, Università 'Vita-Salute' San Raffaele, DIBIT2, via Olgettina 58, 20132, Milan, Italy
| | | | | | | | | | | |
Collapse
|
120
|
Tailoring steroid-sensitive virus-specific T cells with TALEN. Blood 2015; 126:2767-8. [PMID: 26705336 DOI: 10.1182/blood-2015-11-679837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
121
|
Popescu I, Pipeling MR, Mannem H, Shah PD, Orens JB, Connors M, Migueles SA, McDyer JF. IL-12-Dependent Cytomegalovirus-Specific CD4+ T Cell Proliferation, T-bet Induction, and Effector Multifunction during Primary Infection Are Key Determinants for Early Immune Control. THE JOURNAL OF IMMUNOLOGY 2015; 196:877-90. [PMID: 26663780 DOI: 10.4049/jimmunol.1501589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 01/10/2023]
Abstract
CMV remains an important opportunistic pathogen in solid organ and hematopoietic cell transplantation, particularly in lung transplant recipients (LTRs). LTRs mismatched for CMV (donor(+)/recipient(-); D(+)R(-)) are at high risk for active CMV infection and increased mortality; however, the immune correlates of viral control remain incompletely understood. We prospectively studied 27 D(+)R(-) LTRs during primary CMV infection to determine whether acute CD4(+) T cell parameters differentiated the capacity for viral control during early chronic infection. Unexpectedly, the T-box transcription factor, T-bet, was expressed at low levels in CD4(+) compared with CD8(+) T cells during acute primary infection. However, the capacity for in vitro CMV phosphoprotein 65-specific proliferation and CD4(+)T-bet(+) induction differentiated LTR controllers from early viremic relapsers, correlating with granzyme B loading and effector multifunction. Furthermore, impaired CMV-specific proliferative responses from relapsers, along with T-bet, and effector function could be significantly rescued, most effectively with phosphoprotein 65 Ag and combined exogenous IL-2 and IL-12. Acute CD4(+) T cell CMV-specific proliferative and effector responses were highly IL-12-dependent in blocking studies. In addition, we generated monocyte-derived dendritic cells using PBMC obtained during primary infection from relapsers and observed impaired monocyte-derived dendritic cell differentiation, a reduced capacity for IL-12 production, but increased IL-10 production compared with controls, suggesting an APC defect during acute CMV viremia. Taken together, these data show an important role for CMV-specific CD4(+) effector responses in differentiating the capacity of high-risk LTRs to establish durable immune control during early chronic infection and provide evidence for IL-12 as a key factor driving these responses.
Collapse
Affiliation(s)
- Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Matthew R Pipeling
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Hannah Mannem
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Pali D Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Jonathan B Orens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213;
| |
Collapse
|
122
|
Anti-CD45 radioimmunotherapy without TBI before transplantation facilitates persistent haploidentical donor engraftment. Blood 2015; 127:352-9. [PMID: 26576864 DOI: 10.1182/blood-2014-12-617019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 10/19/2015] [Indexed: 01/01/2023] Open
Abstract
Many patients with hematologic malignancies cannot tolerate hematopoietic cell transplantation (HCT), whereas others may not have a compatible human leukocyte antigen-matched donor. To overcome these limitations, we optimized a conditioning regimen employing anti-CD45 radioimmunotherapy (RIT) replacing total body irradiation (TBI) before haploidentical HCT in a murine model. Mice received 200 to 400 μCi (90)Y-anti-CD45 antibody (30F11), with or without fludarabine (5 days starting day -8), with cyclophosphamide (CY; days -2 and +2) for graft-versus-host disease prophylaxis, and 1.5 × 10(7) haploidentical donor bone marrow cells (day 0). Haploidentical bone marrow transplantation (BMT) with 300 μCi (90)Y-anti-CD45 RIT and CY, without TBI or fludarabine, led to mixed chimeras with 81.3 ± 10.6% mean donor origin CD8(+) cells detected 1 month after BMT, and remained stable (85.5 ± 11% mean donor origin CD8(+) cells) 6 months after haploidentical BMT. High chimerism levels were induced across multiple hematopoietic lineages 28 days after haploidentical BMT with 69.3 ± 14.1%, 75.6 ± 20.2%, and 88.5 ± 11.8% CD3(+) T cells, B220(+) B cells, and CD11b(+) myeloid cells, respectively. Fifty percent of SJL leukemia-bearing mice treated with 400 μCi (90)Y-DOTA-30F11, CY, and haploidentical BMT were cured and lived >200 days. Mice treated with 200 μCi (90)Y-DOTA-30F11 had a median overall survival of 73 days, while untreated leukemic mice had a median overall survival of 34 days (P < .001, Mantel-Cox test). RIT-mediated haploidentical BMT without TBI may increase treatment options for aggressive hematologic malignancies.
Collapse
|
123
|
Abdel-Azim H, Mahadeo KM, Zhao Q, Khazal S, Kohn DB, Crooks GM, Shah AJ, Kapoor N. Unrelated donor hematopoietic stem cell transplantation for the treatment of non-malignant genetic diseases: An alemtuzumab based regimen is associated with cure of clinical disease; earlier clearance of alemtuzumab may be associated with graft rejection. Am J Hematol 2015; 90:1021-6. [PMID: 26242764 DOI: 10.1002/ajh.24141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) with matched unrelated donors (MUD), offers potentially curative therapy for patients with non-malignant genetic diseases. In this pilot study conducted from 2006 to 2014, we report the outcomes of 15 patients with non-malignant genetic diseases who received a myeloablative regimen with a reduced cyclophosphamide dose, adjunctive serotherapy and MUD HSCT [intravenous alemtuzumab (52 mg/m(2) ), busulfan (16 mg/kg), fludarabine (140mg/m(2) ), and cyclophosphamide (105 mg/kg)]. Graft-versus-host-disease (GVHD) prophylaxis consisted of tacrolimus/cyclosporine and methylprednisolone. Median (range) time to neutrophil engraftment (>500 cells/µL) and platelet engraftment (>20,000/mm(3) ) were 15 (12-28) and 25 (17-30) days, respectively. At a median follow-up of 2 (0.2-5.4) years, the overall survival (OS) was 93.3% (95% CI: 0.61-0.99) and disease-free survival (DFS) was 73.3% (95% CI: 0.44-0.89). Among this small sample, earlier alemtuzumab clearance was significantly associated with graft rejection (P = 0.047), earlier PHA response (P = 0.009) and a trend toward earlier recovery of recent thymic emigrants (RTE) (P = 0.06). This regimen was associated with durable donor engraftment and relatively low rates of regimen related toxicity (RRT); future alemtuzumab pharmacokinetic studies may improve outcomes, by allowing targeted alemtuzumab clearance to reduce graft rejection and promote more rapid immune reconstitution.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Division of Hematology; Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California; Los Angeles California
| | - Kris Michael Mahadeo
- Department of Pediatrics; Pediatric Blood and Marrow Transplantation Program; Children's Hospital at Montefiore, Albert Einstein College of Medicine; Bronx New York
| | - Quan Zhao
- Division of Hematology; Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California; Los Angeles California
| | - Sajad Khazal
- Division of Hematology; Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California; Los Angeles California
| | - Donald B. Kohn
- Division of Hematology/Oncology; Mattel Children's Hospital, University of California; Los Angeles Los Angeles California
| | - Gay M. Crooks
- Division of Hematology/Oncology; Mattel Children's Hospital, University of California; Los Angeles Los Angeles California
| | - Ami J. Shah
- Division of Hematology/Oncology; Mattel Children's Hospital, University of California; Los Angeles Los Angeles California
| | - Neena Kapoor
- Division of Hematology; Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California; Los Angeles California
| |
Collapse
|
124
|
Prostaglandin E2 Production and T Cell Function in Mouse Adenovirus Type 1 Infection following Allogeneic Bone Marrow Transplantation. PLoS One 2015; 10:e0139235. [PMID: 26407316 PMCID: PMC4583312 DOI: 10.1371/journal.pone.0139235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022] Open
Abstract
Adenovirus infections are important complications of bone marrow transplantation (BMT). We demonstrate delayed clearance of mouse adenovirus type 1 (MAV-1) from lungs of mice following allogeneic BMT. Virus-induced prostaglandin E2 (PGE2) production was greater in BMT mice than in untransplanted controls, but BMT using PGE2-deficient donors or recipients failed to improve viral clearance, and treatment of untransplanted mice with the PGE2 analog misoprostol did not affect virus clearance. Lymphocyte recruitment to the lungs was not significantly affected by BMT. Intracellular cytokine staining of lung lymphocytes demonstrated impaired production of INF-γ and granzyme B by cells from BMT mice, and production of IFN-γ, IL-2, IL-4, and IL-17 following ex vivo stimulation was impaired in lymphocytes obtained from lungs of BMT mice. Viral clearance was not delayed in untransplanted INF-γ-deficient mice, suggesting that delayed viral clearance in BMT mice was not a direct consequence of impaired IFN-γ production. However, lung viral loads were higher in untransplanted CD8-deficient mice than in controls, suggesting that delayed MAV-1 clearance in BMT mice is due to defective CD8 T cell function. We did not detect significant induction of IFN-β expression in lungs of BMT mice or untransplanted controls, and viral clearance was not delayed in untransplanted type I IFN-unresponsive mice. We conclude that PGE2 overproduction in BMT mice is not directly responsible for delayed viral clearance. PGE2-independent effects on CD8 T cell function likely contribute to the inability of BMT mice to clear MAV-1 from the lungs.
Collapse
|
125
|
Detrait M, De Prophetis S, Delville JP, Komuta M. Fulminant isolated adenovirus hepatitis 5 months after haplo-identical HSCT for AML. Clin Case Rep 2015; 3:802-5. [PMID: 26509010 PMCID: PMC4614643 DOI: 10.1002/ccr3.347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/25/2015] [Accepted: 07/29/2015] [Indexed: 11/12/2022] Open
Abstract
The principal limitation of allogeneic hematopoietic stem cell transplantation except relapse remains the transplant-related mortality (TRM). In addition to graft-versus-host disease (GvHD), infections contribute to TRM in many patients. We describe herein a case of an adult patient presenting 5 months after haplo-identical transplantation an isolated fulminant hepatitis due to adenovirus.
Collapse
Affiliation(s)
- Marie Detrait
- Onco-Hematology Department, Notre-Dame Hospital, Grand Hopital De Charleroi Charleroi, Belgium ; Bone Marrow Transplantation Program, Hematology Department, CHU de Nancy, Hôpitaux de Brabois Vandoeuvre les Nancy, France
| | - Stephanie De Prophetis
- Onco-Hematology Department, Notre-Dame Hospital, Grand Hopital De Charleroi Charleroi, Belgium
| | - Jean-Pierre Delville
- Onco-Hematology Department, Notre-Dame Hospital, Grand Hopital De Charleroi Charleroi, Belgium
| | - Mina Komuta
- Division of Pathology, Hepatology, Cliniques Universitaires St-Luc, UCL Brussels, Belgium
| |
Collapse
|
126
|
Abstract
Allogeneic blood or bone-marrow transplantation (alloBMT) is a potentially curative treatment for a variety of haematological malignancies and nonmalignant diseases. Historically, human leukocyte antigen (HLA)-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with alloBMT using other donors. Although only approximately one-third of patients have an HLA-matched sibling, nearly all patients have HLA-haploidentical related donors. Early studies using HLA-haploidentical alloBMT resulted in unacceptably high rates of graft rejection and graft-versus-host disease (GVHD), leading to high nonrelapse mortality and consequently poor survival. Several novel approaches to HLA-haploidentical alloBMT have yielded encouraging results with high rates of successful engraftment, effective GVHD control and favourable outcomes. In fact, outcomes of several retrospective comparative studies seem similar to those seen using other allograft sources, including those of HLA-matched-sibling alloBMT. In this Review, we provide an overview of the three most-developed approaches to HLA-haploidentical alloBMT: T-cell depletion with 'megadose' CD34(+) cells; granulocyte colony-stimulating factor-primed allografts combined with intensive pharmacological immunosuppression, including antithymocyte globulin; and high-dose, post-transplantation cyclophosphamide. We review the preclinical and biological data supporting each approach, results from major clinical studies, and completed or ongoing clinical studies comparing these approaches with other alloBMT platforms.
Collapse
|
127
|
Abstract
The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise novel strategies that exploit the patient's immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematologic malignancies, including (i) conventional monoclonal therapies like rituximab; (ii) engineered monoclonal antibodies called bispecific T-cell engagers; (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4, and IDO); and (iv) adoptive cell transfer therapy with T cells engineered to express chimeric antigen receptors or T-cell receptors. We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients.
Collapse
Affiliation(s)
- Michelle H Nelson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
128
|
Tzannou I, Leen AM. Preventing stem cell transplantation-associated viral infections using T-cell therapy. Immunotherapy 2015; 7:793-810. [PMID: 26250410 DOI: 10.2217/imt.15.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell transplantation is the treatment of choice for many hematologic malignancies and genetic diseases. However, viral infections continue to account for substantial post-transplant morbidity and mortality. While antiviral drugs are available against some viruses, they are associated with significant side effects and are frequently ineffective. This review focuses on the immunotherapeutic strategies that have been used to prevent and treat infections over the past 20 years and outlines different refinements that have been introduced with the goal of moving this therapy beyond specialized academic centers.
Collapse
Affiliation(s)
- Ifigeneia Tzannou
- Center for Cell & Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital & Texas Children's Hospital, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| | - Ann M Leen
- Center for Cell & Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital & Texas Children's Hospital, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| |
Collapse
|
129
|
Bejanyan N, Haddad H, Brunstein C. Alternative Donor Transplantation for Acute Myeloid Leukemia. J Clin Med 2015; 4:1240-68. [PMID: 26239557 PMCID: PMC4484998 DOI: 10.3390/jcm4061240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative therapy for adult patients with acute myeloid leukemia (AML), but its use for consolidation therapy after first remission with induction chemotherapy used to be limited to younger patients and those with suitable donors. The median age of AML diagnosis is in the late 60s. With the introduction of reduced-intensity conditioning (RIC), many older adults are now eligible to receive allo-HCT, including those who are medically less fit to receive myeloablative conditioning. Furthermore, AML patients commonly have no human leukocyte antigen (HLA)-identical or medically suitable sibling donor available to proceed with allo-HCT. Technical advances in donor matching, suppression of alloreactivity, and supportive care have made it possible to use alternative donors, such as unrelated umbilical cord blood (UCB) and partially HLA-matched related (haploidentical) donors. Outcomes after alternative donor allo-HCT are now approaching the outcomes observed for conventional allo-HCT with matched related and unrelated donors. Thus, with both UCB and haploidentical donors available, lack of donor should rarely be a limiting factor in offering an allo-HCT to adults with AML.
Collapse
Affiliation(s)
- Nelli Bejanyan
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 480, Minneapolis, MN 55455, USA.
| | - Housam Haddad
- Hematology and Oncology Department, Staten Island University Hospital, 475 Seaview Ave, Staten Island, NY 10305, USA.
| | - Claudio Brunstein
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 480, Minneapolis, MN 55455, USA.
| |
Collapse
|
130
|
Barrett AJ, Bollard CM. The coming of age of adoptive T-cell therapy for viral infection after stem cell transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:62. [PMID: 25992361 DOI: 10.3978/j.issn.2305-5839.2015.01.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Austin John Barrett
- 1 National Heart Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA ; 2 Children's National Health System and The George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- 1 National Heart Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA ; 2 Children's National Health System and The George Washington University, Washington, DC, USA
| |
Collapse
|
131
|
Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood 2015; 125:4103-13. [PMID: 25977584 DOI: 10.1182/blood-2015-02-628354] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/04/2015] [Indexed: 12/15/2022] Open
Abstract
To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >10(4) alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3(+)CD19(+) T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103.
Collapse
|
132
|
Adenovirus infection and disease in paediatric haematopoietic stem cell transplant patients: clues for antiviral pre-emptive treatment. Clin Microbiol Infect 2015; 21:701-9. [PMID: 25882354 DOI: 10.1016/j.cmi.2015.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 02/05/2023]
Abstract
Human adenovirus (HAdV) infections constitute a major cause of morbidity in paediatric haematopoietic stem cell transplant (HSCT) patients. New antiviral treatments offer promising perspectives. However, it remains challenging to identify patients at risk for disseminated infection, and who should receive early antiviral intervention. We conducted a longitudinal study of allogeneic HSCT recipients, including weekly HAdV monitoring, to determine the risks factors associated with HAdV infection and dissemination, and to assess whether HAdV loads in stools may be used as surrogate markers for HAdV dissemination. Between September 2010 and December 2011, out of 72 patients, the cumulative incidence rates at day 100 of HAdV digestive infection, systemic infection and related disease were 35.9%, 24.0%, and 18.3%, respectively. In multivariate analysis, the risk factors for HAdV digestive and systemic infection were cord blood and in vitro T-cell depletion. Graft-versus-host disease (GVHD) grade >2 was also associated with systemic infection. In patients with HAdV digestive shedding, GVHD grade >2 and HAdV load in stools were the only risk factors for systemic infection. The median peak levels of HAdV in stool were 7.9 and 4.0 log10 copies/mL, respectively, in patients with HAdV systemic infection and in those without. HAdV monitoring in stools of paediatric HSCT recipients receiving cord blood or in vitro T-cell depleted transplants helps to predict patients at risk for HAdV systemic infection. Our results provide a rationale for randomized controlled trials to evaluate the benefit of anti-HAdV pre-emptive treatments based on HAdV DNA levels in stools.
Collapse
|
133
|
Selection of adenovirus-specific and Epstein-Barr virus-specific T cells with major histocompatibility class I streptamers under Good Manufacturing Practice (GMP)-compliant conditions. Cytotherapy 2015; 17:989-1007. [PMID: 25866178 DOI: 10.1016/j.jcyt.2015.03.613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/11/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND AIMS Despite antiviral drug therapies, human adenovirus (HAdV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections still contribute substantially to transplant-related death of patients after hematopoietic stem cell transplantation. Earlier clinical studies demonstrated successful adoptive transfer of magnetically selected CMV-specific T cells via removable, and thus Good Manufacturing Practice-compliant, major histocompatibility class I streptamers. Thus, the primary focus of the present study was the selection of HAdV-streptamer+ T cells, although in three experiments, EBV-streptamer+ T cells were also selected. METHODS Cells from leukaphereses of healthy donors were prepared in large (1-6 × 10(9)) and small (25 × 10(6)) cell batches. Whereas the larger batch was directly labeled with streptamers to select HAdV- and/or EBV-specific T cells (large-scale), the smaller batch was used to generate in vitro virus-specific T-cell lines before streptamer labeling for streptamer selection (small-scale). Isolation of HAdV- and/or EBV-specific T cells was performed with the use of the CliniMACS device. RESULTS The purity of HAdV- and EBV-streptamer+ T cells among CD3+ cells, obtained from large-scale selection, was up to 6.7% and 44%, respectively. If HAdV- and EBV-streptamers were applied simultaneously, the purity of antigen-specific T cells reached up to 50.7%. A further increase in purity reaching up to 98% was achieved by small-scale selection of HAdV-specific T cells. All final products fulfilled the microbiological and chemical release criteria. Interferon-γ-response indicating functional activity was seen in 6 of 9 HAdV and 2 of 3 EBV large-scale selections and in 2 of 3 HAdV small-scale selections. CONCLUSIONS HAdV-streptamers were shown to be clinically feasible for few patients after the large-scale approach but for larger patient numbers if combined with EBV-streptamers or after the small-scale approach.
Collapse
|
134
|
Wang X, Wong CW, Urak R, Mardiros A, Budde LE, Chang WC, Thomas SH, Brown CE, La Rosa C, Diamond DJ, Jensen MC, Nakamura R, Zaia JA, Forman SJ. CMVpp65 Vaccine Enhances the Antitumor Efficacy of Adoptively Transferred CD19-Redirected CMV-Specific T Cells. Clin Cancer Res 2015; 21:2993-3002. [PMID: 25838392 DOI: 10.1158/1078-0432.ccr-14-2920] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/16/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE T cells engineered with chimeric antigen receptors (CAR) recognizing CD19 can induce complete remission of B-cell malignancies in clinical trials; however, in some disease settings, CAR therapy confers only modest clinical benefit due to attenuated persistence of CAR T cells. The purpose of this study was to enhance persistence and augment the antitumor activity of adoptively transferred CD19CAR T cells by restimulating CAR(+) T cells through an endogenous cytomegalovirus (CMV)-specific T-cell receptor. EXPERIMENTAL DESIGN CMV-specific T cells from CMV seropositive healthy donors were selected after stimulation with pp65 protein and transduced with clinical-grade lentivirus expressing the CD19R:CD28:ζ/EGFRt CAR. The resultant bispecific T cells, targeting CMV and CD19, were expanded via CD19 CAR-mediated signals using CD19-expressing cells. RESULTS The bispecific T cells proliferated vigorously after engagement with either endogenous CMVpp65 T-cell receptors or engineered CD19 CARs, exhibiting specific cytolytic activity and IFNγ secretion. Upon adoptive transfer into immunodeficient mice bearing human lymphomas, the bispecific T cells exhibited proliferative response and enhanced antitumor activity following CMVpp65 peptide vaccine administration. CONCLUSIONS We have redirected CMV-specific T cells to recognize and lyse tumor cells via CD19CARs, while maintaining their ability to proliferate in response to CMV antigen stimulation. These results illustrate the clinical applications of CMV vaccine to augment the antitumor activity of adoptively transferred CD19CAR T cells in patients with B-cell malignancies.
Collapse
Affiliation(s)
- Xiuli Wang
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - ChingLam W Wong
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ryan Urak
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Armen Mardiros
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Lihua E Budde
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Wen-Chung Chang
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Sandra H Thomas
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Christine E Brown
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Corinna La Rosa
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Michael C Jensen
- Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Ryotaro Nakamura
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - John A Zaia
- Department of Virology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Stephen J Forman
- Departments of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| |
Collapse
|
135
|
Shook DR, Triplett BM, Eldridge PW, Kang G, Srinivasan A, Leung W. Haploidentical stem cell transplantation augmented by CD45RA negative lymphocytes provides rapid engraftment and excellent tolerability. Pediatr Blood Cancer 2015; 62:666-73. [PMID: 25559618 DOI: 10.1002/pbc.25352] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Haploidentical donors are being increasingly used for allogeneic hematopoietic cell transplantation (HCT). However, the requisite T-cell depletion results in a profound and often long-lasting immunocompromised state, and donor lymphocyte infusions bring a risk of graft-versus-host disease (GVHD). Naïve T-cells are believed to be among the most alloreactive T-cell subset and can be identified by CD45RA expression. Allogeneic HCT using CD45RA depletion has not been previously described for haploidentical donors. PROCEDURE Eight children with relapsed or refractory solid tumors were transplanted following myeloablative conditioning. Each patient received two cell products, one created by CD3 depletion and the other through CD45RA depletion. RESULTS Median CD34 recovery was 59.2% with CD45RA depletion, compared to 82.4% using CD3 depletion. Median CD3+ T-cell dose after CD45RA reduction was 99.2 × 10(6) cells/kg, yet depletion of CD3+ CD45RA+ cells exceeded 4.5 log. CD45RA depletion also resulted in substantial depletion of B-cells (median 2.45 log). All eight patients engrafted within 14 days and rapidly achieved 100% donor chimerism. No acute GVHD or secondary graft failure was observed. CONCLUSIONS CD45RA depletion is a novel approach to haploidentical HCT that offers rapid engraftment with minimal risk of GVHD.
Collapse
Affiliation(s)
- David R Shook
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163
| | | | | | | | | | | |
Collapse
|
136
|
Infectious Prophylaxis in Paediatric Oncology and Stem Cell Transplantation. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-015-0076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
137
|
Pharmacokinetics and safety of intravenous cidofovir for life-threatening viral infections in pediatric hematopoietic stem cell transplant recipients. Antimicrob Agents Chemother 2015; 59:3718-25. [PMID: 25733509 DOI: 10.1128/aac.04348-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/08/2015] [Indexed: 11/20/2022] Open
Abstract
Children undergoing hematopoietic stem cell transplantation (HSCT) are at risk for life-threatening viral infections. Cidofovir is often used as a first-line agent for adenovirus infections, despite the absence of randomized controlled trials with HSCT patients, and as a second-line agent for resistant herpesvirus infections. The frequency and severity of adverse effects, particularly nephrotoxicity, in pediatric HSCT recipients are unclear, and pharmacokinetics (PK) of cidofovir in children have not previously been reported. This study was an open-label, nonrandomized, single-dose pilot study to determine the safety and PK of cidofovir in pediatric HSCT recipients with symptomatic adenovirus, nucleoside-resistant cytomegalovirus (CMV) or herpes simplex virus (HSV), and/or human papovavirus infections. Subsequent dosing and frequency were determined by clinical response and side effects, as assessed by the treating physician. Blood and urine samples were obtained from patients for PK studies and assessment of toxicity and virologic response. Twelve patients were enrolled (median age, 9 years; 33.5 days posttransplantation). Four of seven patients with adenovirus infection were successfully treated and eventually cleared their infections. Four of twelve patients died of disseminated viral disease and multiorgan failure. Two of twelve patients had evidence of acute kidney injury after the first dose, and one of these patients developed chronic kidney disease; two other patients developed late nephrotoxicity. The mean drug half-life was 9.5 h. There was no correlation between nephrotoxicity and plasma maximum concentration, clearance, or half-life. PK were similar to those reported for adults, although the drug half-life was significantly longer than that for adults. Cidofovir was well tolerated in the majority of patients. However, effective therapeutic strategies are urgently needed to support patients until immune reconstitution is achieved.
Collapse
|
138
|
Abstract
Serious viral infections are a common cause of morbidity and mortality after allogeneic stem cell transplantation. They occur in the majority of allograft recipients and are fatal in 17–20%. These severe infections may be prolonged or recurrent and add substantially to the cost, both human and financial, of the procedure. Many features of allogeneic stem cell transplantation contribute to this high rate of viral disease. The cytotoxic and immunosuppressive drugs administered pretransplant to eliminate the host hematopoietic/immune system and any associated malignancy, the delay in recapitulating immune ontogeny post‐transplant, the immunosuppressive drugs given to prevent graft versus host disease (GvHD), and the effects of GvHD itself, all serve to make stem cell transplant recipients vulnerable to disease from endogenous (latent) and exogenous (community) viruses, and to be incapable of controlling them as quickly and effectively as most normal individuals.
Collapse
Affiliation(s)
- Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | |
Collapse
|
139
|
Abstract
Human adenoviruses (HAdVs) are an important cause of infections in both immunocompetent and immunocompromised individuals, and they continue to provide clinical challenges pertaining to diagnostics and treatment. The growing number of HAdV types identified by genomic analysis, as well as the improved understanding of the sites of viral persistence and reactivation, requires continuous adaptions of diagnostic approaches to facilitate timely detection and monitoring of HAdV infections. In view of the clinical relevance of life-threatening HAdV diseases in the immunocompromised setting, there is an urgent need for highly effective treatment modalities lacking major side effects. The present review summarizes the recent progress in the understanding and management of HAdV infections.
Collapse
|
140
|
Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood 2015; 125:1986-94. [PMID: 25617426 DOI: 10.1182/blood-2014-06-573725] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) has improved over the last few decades. However, viral infections are often refractory to pharmacologic treatment and require alternative treatment strategies such as immunotherapy. Adenovirus (AdV) is th predominant disease-causing pathogen in pediatric HSCT. In a clinical trial, we analyzed safety and efficacy of ex vivo adoptive T-cell transfer (ACT) with hexon-specific T cells, predominantly of the T-helper cell 1 (Th1) phenotype, in 30 patients with AdV disease or viremia. ACT was feasible with no acute toxicities or significant onset of graft-versus-host disease. ACT led to in vivo antiviral immunity for up to 6 months with viral control, resulting in complete clearance of viremia in 86% of patients with antigen-specific T-cell responses. After ACT and a follow-up of 6 months, overall survival was markedly increased in responders (mean, 122 days; 15 survivors) compared with nonresponders who all died shortly after ACT (mean, 24 days; no survivors). AdV-related mortality was 100% in nonresponders compared with 9.5% in responders (≥1 log reduction of DNA copies per milliliter after ACT). In summary, ex vivo ACT of AdV-specific Th1 cells was well tolerated and led to successful and sustained restoration of T-cell immunity correlated with virologic response and protection from virus-related mortality. This cellular immunotherapy is a short-term available and broadly applicable treatment. The study is registered at European Union Clinical Trials Register as 2005-001092-35.
Collapse
|
141
|
Abstract
Epstein-Barr virus (EBV) is associated with a range of malignancies involving B cells, T cells, natural killer (NK) cells, epithelial cells, and smooth muscle. All of these are associated with the latent life cycles of EBV, but the pattern of latency-associated viral antigens expressed in tumor cells depends on the type of tumor. EBV-specific T cells (EBVSTs) have been explored as prophylaxis and therapy for EBV-associated malignancies for more than two decades. EBVSTs have been most successful as prophylaxis and therapy for post-transplant lymphoproliferative disease (PTLD) , which expresses the full array of latent EBV antigens (type 3 latency), in hematopoietic stem-cell transplant (HSCT) recipients. While less effective, clinical studies have also demonstrated their therapeutic potential for PTLD post-solid organ transplant and for EBV-associated malignancies such as Hodgkin's lymphoma, non-Hodgkin's lymphoma, and nasopharyngeal carcinoma (NPC) that express a limited array of latent EBV antigens (type 2 latency). Several approaches are actively being pursued to improve the antitumor activity of EBVSTs including activation and expansion of T cells specific for the EBV antigens expressed in type 2 latency, genetic approaches to render EBVSTs resistant to the immunosuppressive tumor environment, and combination approaches with other immune-modulating modalities. Given the recent advances and renewed interest in cell therapy, we hope that EBVSTs will become an integral part of our treatment armamentarium against EBV-positive malignancies in the near-future.
Collapse
|
142
|
Tischer S, Priesner C, Heuft HG, Goudeva L, Mende W, Barthold M, Kloeß S, Arseniev L, Aleksandrova K, Maecker-Kolhoff B, Blasczyk R, Koehl U, Eiz-Vesper B. Rapid generation of clinical-grade antiviral T cells: selection of suitable T-cell donors and GMP-compliant manufacturing of antiviral T cells. J Transl Med 2014; 12:336. [PMID: 25510656 PMCID: PMC4335407 DOI: 10.1186/s12967-014-0336-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 02/04/2023] Open
Abstract
Background The adoptive transfer of allogeneic antiviral T lymphocytes derived from seropositive donors can safely and effectively reduce or prevent the clinical manifestation of viral infections or reactivations in immunocompromised recipients after hematopoietic stem cell (HSCT) or solid organ transplantation (SOT). Allogeneic third party T-cell donors offer an alternative option for patients receiving an allogeneic cord blood transplant or a transplant from a virus-seronegative donor and since donor blood is generally not available for solid organ recipients. Therefore we established a registry of potential third-party T-cell donors (allogeneic cell registry, alloCELL) providing detailed data on the assessment of a specific individual memory T-cell repertoire in response to antigens of cytomegalovirus (CMV), Epstein-Barr virus (EBV), adenovirus (ADV), and human herpesvirus (HHV) 6. Methods To obtain a manufacturing license according to the German Medicinal Products Act, the enrichment of clinical-grade CMV-specific T cells from three healthy CMV-seropositive donors was performed aseptically under GMP conditions using the CliniMACS cytokine capture system (CCS) after restimulation with an overlapping peptide pool of the immunodominant CMVpp65 antigen. Potential T-cell donors were selected from alloCELL and defined as eligible for clinical-grade antiviral T-cell generation if the peripheral fraction of IFN-γ+ T cells exceeded 0.03% of CD3+ lymphocytes as determined by IFN-γ cytokine secretion assay. Results Starting with low concentration of IFN-γ+ T cells (0.07-1.11%) we achieved 81.2%, 19.2%, and 63.1% IFN-γ+CD3+ T cells (1.42 × 106, 0.05 × 106, and 1.15 × 106) after enrichment. Using the CMVpp65 peptide pool for restimulation resulted in the activation of more CMV-specific CD8+ than CD4+ memory T cells, both of which were effectively enriched to a total of 81.0% CD8+IFN-γ+ and 38.4% CD4+IFN-γ+ T cells. In addition to T cells and NKT cells, all preparations contained acceptably low percentages of contaminating B cells, granulocytes, monocytes, and NK cells. The enriched T-cell products were stable over 72 h with respect to viability and ratio of T lymphocytes. Conclusions The generation of antiviral CD4+ and CD8+ T cells by CliniMACS CCS can be extended to a broad spectrum of common pathogen-derived peptide pools in single or multiple applications to facilitate and enhance the efficacy of adoptive T-cell immunotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0336-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Tischer
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Christoph Priesner
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Institute of Cellular Therapeutics, Hannover Medical School, Feodor-Lynen Strasse 21, 30625, Hannover, Germany.
| | - Hans-Gert Heuft
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Lilia Goudeva
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Wolfgang Mende
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Marc Barthold
- Staff office for Quality Management in Clinical Research, Hannover Medical School, Feodor-Lynen Strasse 21, 30625, Hannover, Germany.
| | - Stephan Kloeß
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Institute of Cellular Therapeutics, Hannover Medical School, Feodor-Lynen Strasse 21, 30625, Hannover, Germany.
| | - Lubomir Arseniev
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Institute of Cellular Therapeutics, Hannover Medical School, Feodor-Lynen Strasse 21, 30625, Hannover, Germany.
| | - Krasimira Aleksandrova
- Institute of Cellular Therapeutics, Hannover Medical School, Feodor-Lynen Strasse 21, 30625, Hannover, Germany.
| | - Britta Maecker-Kolhoff
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Department of Paediatric Haematology and Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Ulrike Koehl
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Institute of Cellular Therapeutics, Hannover Medical School, Feodor-Lynen Strasse 21, 30625, Hannover, Germany.
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
143
|
Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy. Mol Ther 2014; 23:387-95. [PMID: 25366030 DOI: 10.1038/mt.2014.207] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022] Open
Abstract
Antiretroviral therapy (ART) is unable to eradicate human immunodeficiency virus type 1 (HIV-1) infection. Therefore, there is an urgent need to develop novel therapies for this disease to augment anti-HIV immunity. T cell therapy is appealing in this regard as T cells have the ability to proliferate, migrate, and their antigen specificity reduces the possibility of off-target effects. However, past human studies in HIV-1 infection that administered T cells with limited specificity failed to provide ART-independent, long-term viral control. In this study, we sought to expand functional, broadly-specific cytotoxic T cells (HXTCs) from HIV-infected patients on suppressive ART as a first step toward developing cellular therapies for implementation in future HIV eradication protocols. Blood samples from seven HIV+ patients on suppressive ART were used to derive HXTCs. Multiantigen specificity was achieved by coculturing T cells with antigen-presenting cells pulsed with peptides representing Gag, Pol, and Nef. All but two lines were multispecific for all three antigens. HXTCs demonstrated efficacy as shown by release of proinflammatory cytokines, specific lysis of antigen-pulsed targets, and the ability to suppress HIV replication in vitro. In conclusion, we are able to generate broadly-specific cytotoxic T cell lines that simultaneously target multiple HIV antigens and show robust antiviral function.
Collapse
|
144
|
Iampietro M, Morissette G, Gravel A, Dubuc I, Rousseau M, Hasan A, O'Reilly RJ, Flamand L. Human herpesvirus 6B immediate-early I protein contains functional HLA-A*02, HLA-A*03, and HLA-B*07 class I restricted CD8(+) T-cell epitopes. Eur J Immunol 2014; 44:3573-84. [PMID: 25243920 DOI: 10.1002/eji.201444931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 09/18/2014] [Indexed: 11/07/2022]
Abstract
Human herpesvirus 6B (HHV-6B) is a ubiquitous pathogen with frequent reactivation observed in immunocompromised patients such as BM transplant (BMT) recipients. Adoptive immunotherapy is a promising therapeutic avenue for the treatment of opportunistic infections, including herpesviruses. While T-cell immunotherapy can successfully control CMV and EBV reactivations in BMT recipients, such therapy is not available for HHV-6 infections, in part due to a lack of identified protective CD8(+) T-cell epitopes. Our goal was to identify CD8(+) T-cell viral epitopes derived from the HHV-6B immediate-early protein I and presented by common human leukocyte Ag (HLA) class I alleles including HLA-A*02, HLA-A*03, and HLA-B*07. These epitopes were functionally tested for their ability to induce CD8(+) T-cell expansion and kill HHV-6-infected autologous cells. Cross-reactivity of specific HHV-6B-expanded T cells against HHV-6A-infected cells was also confirmed for a conserved epitope presented by HLA-A*02 molecule. Our findings will help push forward the field of adoptive immunotherapy for the treatment and/or the prevention of HHV-6 reactivation in BMT recipients.
Collapse
Affiliation(s)
- Mathieu Iampietro
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec City, Canada
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Popescu I, Pipeling MR, Shah PD, Orens JB, McDyer JF. T-bet:Eomes balance, effector function, and proliferation of cytomegalovirus-specific CD8+ T cells during primary infection differentiates the capacity for durable immune control. THE JOURNAL OF IMMUNOLOGY 2014; 193:5709-5722. [PMID: 25339676 DOI: 10.4049/jimmunol.1401436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CMV remains an important opportunistic pathogen in solid organ transplantation, particularly in lung transplant recipients (LTRs). LTRs mismatched for CMV (donor+/recipient-; D+R-) are at high-risk for active CMV infection and increased mortality, however the immune correlates of viral control remain incompletely understood. We prospectively studied 23 D+R- LTRs during primary CMV infection to determine whether acute CD8(+) T cell parameters differentiated the capacity for viral control in early chronic infection. T-box transcription factors expression patterns of T-bet > Eomesodermin (Eomes) differentiated LTR controllers from viremic relapsers and reciprocally correlated with granzyme B loading, and CMV phosphoprotein 65 (pp65)-specific CD8(+)IFN-γ(+) and CD107a(+) frequencies. LTR relapsers demonstrated reduced CD8(+)Ki67(+) cells ex vivo and substantially impaired CD8(+)pp65-specific in vitro proliferative responses at 6 d, with concomitantly lower pp65-specific CD4(+)IL-2(+) frequencies, as compared with LTR controllers. However, CMV-specific in vitro proliferative responses could be significantly rescued, most effectively with pp65 Ag and exogenous IL-2, resulting in an increased T-bet:Eomes balance, and enhanced effector function. Using class I CMV tetramers, we observed similar frequencies between relapsers and controllers, although reduced T-bet:Eomes balance in tetramer(+) cells from relapsers, along with impaired CD8(+) effector responses to tetramer-peptide restimulation. Taken together, these data show impaired CMV-specific CD8(+) effector responses is not for complete lack of CMV-specific cells but rather underscores the importance of the T-bet:Eomes balance, with CMV-specific proliferation a key factor driving early T-bet expression and effector function in CD8(+) T cells during primary infection and differentiating the capacity of high-risk LTRs to establish immune control during early chronic infection.
Collapse
Affiliation(s)
- Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R Pipeling
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pali D Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan B Orens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
146
|
Dörrie J, Krug C, Hofmann C, Müller I, Wellner V, Knippertz I, Schierer S, Thomas S, Zipperer E, Printz D, Fritsch G, Schuler G, Schaft N, Geyeregger R. Human adenovirus-specific γ/δ and CD8+ T cells generated by T-cell receptor transfection to treat adenovirus infection after allogeneic stem cell transplantation. PLoS One 2014; 9:e109944. [PMID: 25289687 PMCID: PMC4188623 DOI: 10.1371/journal.pone.0109944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/05/2014] [Indexed: 12/01/2022] Open
Abstract
Human adenovirus infection is life threatening after allogeneic haematopoietic stem cell transplantation (HSCT). Immunotherapy with donor-derived adenovirus-specific T cells is promising; however, 20% of all donors lack adenovirus-specific T cells. To overcome this, we transfected α/β T cells with mRNA encoding a T-cell receptor (TCR) specific for the HLA-A*0101-restricted peptide LTDLGQNLLY from the adenovirus hexon protein. Furthermore, since allo-reactive endogenous TCR of donor T lymphocytes would induce graft-versus-host disease (GvHD) in a mismatched patient, we transferred the TCR into γ/δ T cells, which are not allo-reactive. TCR-transfected γ/δ T cells secreted low quantities of cytokines after antigen-specific stimulation, which were increased dramatically after co-transfection of CD8α-encoding mRNA. In direct comparison with TCR-transfected α/β T cells, TCR-CD8α-co-transfected γ/δ T cells produced more tumor necrosis factor (TNF), and lysed peptide-loaded target cells as efficiently. Most importantly, TCR-transfected α/β T cells and TCR-CD8α-co-transfected γ/δ T cells efficiently lysed adenovirus-infected target cells. We show here, for the first time, that not only α/β T cells but also γ/δ T cells can be equipped with an adenovirus specificity by TCR-RNA electroporation. Thus, our strategy offers a new means for the immunotherapy of adenovirus infection after allogeneic HSCT.
Collapse
MESH Headings
- Adenoviridae Infections/etiology
- Adenoviridae Infections/immunology
- Adenoviridae Infections/prevention & control
- Adenoviruses, Human/immunology
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD8 Antigens/chemistry
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cloning, Molecular
- Cytokines/biosynthesis
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Electroporation
- Gene Expression
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Jurkat Cells
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Peptides/pharmacology
- Primary Cell Culture
- RNA/genetics
- RNA/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Transfection
- Transplantation, Homologous
- Unrelated Donors
Collapse
Affiliation(s)
- Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Krug
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Hofmann
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ina Müller
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Wellner
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation at the Dept. of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Schierer
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Elke Zipperer
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| | - Dieter Printz
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| | - Gerhard Fritsch
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| | - Rene Geyeregger
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
147
|
Feucht J, Leibold J, Halder A, Kayser S, Hartl L, Rammensee HG, Handgretinger R, Feuchtinger T. Differential expression of THELPER 1 cytokines upon antigen stimulation predicts ex vivo proliferative potential and cytokine production of virus-specific T cells following re-stimulation. Transpl Infect Dis 2014; 16:713-23. [PMID: 25200928 DOI: 10.1111/tid.12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/28/2014] [Accepted: 06/18/2014] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) and human adenovirus (ADV) infections are causes of morbidity after stem cell transplantation. Antigen (Ag)-specific T cells are essential for the control of viral infections. However, in vivo expansion potential of T-cell subpopulations is hardly predictable in humans. Furthermore, ex vivo identification of human T cells with repopulating capacity for adoptive T-cell transfer has been difficult. METHODS We analyzed Ag-specific T-cell populations, subdivided according to the expression of different THELPER- 1 (Th1) cytokines. Isolation by flow cytometry was based on interferon-gamma (IFN)-γ, interleukin (IL)-2, or tumor necrosis factor-alpha (TNF-α) secretion of T cells after ex vivo stimulation with the Ags hexon (for ADV) and pp65 (for CMV). Isolated T cells were expanded and examined for functional characteristics, expansion/differentiation potential, and naïve, effector memory, central memory, and late effector phenotypes. RESULTS Isolation based on IFN-γ production provides a T-cell population with a mixture of early, central memory, and effector memory T cells, high expansion potential, and effective cytokine production. Selection of T cells with Ag-specific expression of IL-2 or TNF-α, however, results in a T-cell population with reduced proliferation and lower effector potential after expansion. CONCLUSION We conclude that the exclusive secretion of IFN-γ in the human antiviral T-cell responses preferentially leads to higher repopulation capacities of antiviral T cells, compared to IL-2 or TNF-α secreting T-cell populations.
Collapse
Affiliation(s)
- J Feucht
- Department of Pediatric Hematology/Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
In this issue of Blood, Zhou et al report long-term follow-up and detailed analysis of immune reconstitution associated with a different suicide gene strategy to abrogate graft-versus-host disease (GVHD).
Collapse
|
149
|
Saglio F, Hanley PJ, Bollard CM. The time is now: moving toward virus-specific T cells after allogeneic hematopoietic stem cell transplantation as the standard of care. Cytotherapy 2014; 16:149-59. [PMID: 24438896 PMCID: PMC3928596 DOI: 10.1016/j.jcyt.2013.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022]
Abstract
Adoptive immunotherapy-in particular, T-cell therapy-has recently emerged as a useful strategy with the potential to overcome many of the limitations of antiviral drugs for the treatment of viral complications after hematopietic stem cell transplantation. In this review, we briefly summarize the current methods for virus-specific T-cell isolation or selection and we report results from clinical trials that have used these techniques, focusing specifically on the strategies aimed to broaden the application of this technology.
Collapse
Affiliation(s)
- Francesco Saglio
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
| | - Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Medical Health System, Washington, DC, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Medical Health System, Washington, DC, USA.
| |
Collapse
|
150
|
Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. MOLECULAR AND CELLULAR THERAPIES 2014; 2:25. [PMID: 26056592 PMCID: PMC4452065 DOI: 10.1186/2052-8426-2-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 01/15/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Collapse
Affiliation(s)
- Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Asma Mirza
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Elizabeth A Mittendorf
- Department Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| |
Collapse
|