101
|
Bachireddy P, Burkhardt UE, Rajasagi M, Wu CJ. Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat Rev Cancer 2015; 15:201-15. [PMID: 25786696 PMCID: PMC4511812 DOI: 10.1038/nrc3907] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent successes of cancer immunotherapies have stimulated interest in the potential widespread application of these approaches; haematological malignancies have provided both initial proofs of concept and an informative testing ground for various immune-based therapeutics. The immune-cell origin of many of the blood malignancies provides a unique opportunity both to understand the mechanisms of cancer immune responsiveness and immune evasion, and to exploit these mechanisms for therapeutic purposes.
Collapse
Affiliation(s)
- Pavan Bachireddy
- Department of Medical Oncology and the Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ute E. Burkhardt
- Department of Medical Oncology and the Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mohini Rajasagi
- Department of Medical Oncology and the Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology and the Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
102
|
Chen J, Guo XZ, Li HY, Wang D, Shao XD. Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell. Exp Biol Med (Maywood) 2015; 240:1310-8. [PMID: 25736302 DOI: 10.1177/1535370215571884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC-tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC-tumor RNA). The antitumor immune responses induced by DC-tumor hybrids and DC-tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC-tumor RNA triggered stronger autologous tumor cell lysis than DC-tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Hong-Yu Li
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Di Wang
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Xiao-Dong Shao
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| |
Collapse
|
103
|
Bhaskar S, Benson DM. Current and future immunotherapeutic approaches to multiple myeloma therapy. Int J Hematol Oncol 2015. [DOI: 10.2217/ijh.14.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Multiple myeloma (MM) is a hematologic malignancy associated with heterogeneous treatment and survival outcomes due in part to the ability of MM to evade and suppress the immune system. Research has focused on finding ways to modulate and enhance immunity while targeting the bone marrow microenvironment. Contemporary therapies include immunomodulatory drugs, proteasome inhibitors and autologous and allogeneic stem cell transplant and have improved outcomes for patients with MM. Future therapies, including monoclonal antibodies, chimeric antigen receptor cells and MM vaccines, show promise to further improved outcomes, particularly when used in combination with existing therapies. This review covers the mechanism of action of currently available and future therapies and explores ways in which treatment may be more specifically directed in the future.
Collapse
Affiliation(s)
- Shakthi Bhaskar
- Department of Internal Medicine, The Ohio State University College of Medicine, 370 West 9th Avenue, Columbus, OH 43210, USA
| | - Don M Benson
- The Division of Hematology, 898 Biomedical Research Tower, The Ohio State University Comprehensive Cancer Center, 460 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
104
|
Chiang CLL, Balint K, Coukos G, Kandalaft LE. Potential approaches for more successful dendritic cell-based immunotherapy. Expert Opin Biol Ther 2015; 15:569-82. [DOI: 10.1517/14712598.2015.1000298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
105
|
Vasaturo A, Verdoes M, de Vries J, Torensma R, Figdor CG. Restoring immunosurveillance by dendritic cell vaccines and manipulation of the tumor microenvironment. Immunobiology 2014; 220:243-8. [PMID: 25466585 DOI: 10.1016/j.imbio.2014.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/19/2022]
Abstract
Cancer cells evolve from normal cells throughout life and are usually recognized by our immune system and destroyed, a process called immunosurveillance. Unfortunately, in some instances cancer cells paralyze our immune system, resulting in outgrowth and spreading of the tumor. Understanding the complexity of immunomodulation by tumors is important for the development of therapeutical strategies. Nowadays, various approaches have been developed to enhance anti-tumor immune responses and abrogate the immune dampening effect of the tumor and its surrounding environment, including dendritic cell-based vaccines, therapies to counteract myeloid derived suppressor cell function within the tumor and antagonists of inhibitory signaling pathways to overcome 'immune checkpoints'. The challenge is now to find the right combination of immune based therapies to fully restore immune function and provide a more efficacious and enduring anti-tumor response.
Collapse
Affiliation(s)
- Angela Vasaturo
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Jolanda de Vries
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Ruurd Torensma
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Carl G Figdor
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
106
|
Bianchi G, Anderson KC. Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. CA Cancer J Clin 2014; 64:422-44. [PMID: 25266555 DOI: 10.3322/caac.21252] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma (MM) is a cancer of antibody-producing plasma cells. The pathognomonic laboratory finding is a monoclonal immunoglobulin or free light chain in the serum and/or urine in association with bone marrow infiltration by malignant plasma cells. MM develops from a premalignant condition, monoclonal gammopathy of undetermined significance (MGUS), often via an intermediate stage termed smoldering multiple myeloma (SMM), which differs from active myeloma by the absence of disease-related end-organ damage. Unlike MGUS and SMM, active MM requires therapy. Over the past 6 decades, major advancements in the care of MM patients have occurred, in particular, the introduction of novel agents (ie, proteasome inhibitors, immunomodulatory agents) and the implementation of hematopoietic stem cell transplantation in suitable candidates. The effectiveness and good tolerability of novel agents allowed for their combined use in induction, consolidation, and maintenance therapy, resulting in deeper and more sustained clinical response and extended progression-free and overall survival. Previously a rapidly lethal cancer with few therapeutic options, MM is the hematologic cancer with the most novel US Food and Drug Administration-approved drugs in the past 15 years. These advances have resulted in more frequent long-term remissions, transforming MM into a chronic illness for many patients.
Collapse
Affiliation(s)
- Giada Bianchi
- Hematology Oncology Fellow, Jerome Lipper Multiple Myeloma Center and LeBow Institute for Myeloma Therapeutics, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
107
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Henig I, Zuckerman T. Hematopoietic stem cell transplantation-50 years of evolution and future perspectives. Rambam Maimonides Med J 2014; 5:e0028. [PMID: 25386344 PMCID: PMC4222417 DOI: 10.5041/rmmj.10162] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hematopoietic stem cell transplantation is a highly specialized and unique medical procedure. Autologous transplantation allows the administration of high-dose chemotherapy without prolonged bone marrow aplasia. In allogeneic transplantation, donor-derived stem cells provide alloimmunity that enables a graft-versus-tumor effect to eradicate residual disease and prevent relapse. The first allogeneic transplantation was performed by E. Donnall Thomas in 1957. Since then the field has evolved and expanded worldwide. New indications beside acute leukemia and aplastic anemia have been constantly explored and now include congenital disorders of the hematopoietic system, metabolic disorders, and autoimmune disease. The use of matched unrelated donors, umbilical cord blood units, and partially matched related donors has dramatically extended the availability of allogeneic transplantation. Transplant-related mortality has decreased due to improved supportive care, including better strategies to prevent severe infections and with the incorporation of reduced-intensity conditioning protocols that lowered the toxicity and allowed for transplantation in older patients. However, disease relapse and graft-versus-host disease remain the two major causes of mortality with unsatisfactory progress. Intense research aiming to improve adoptive immunotherapy and increase graft-versus-leukemia response while decreasing graft-versus-host response might bring the next breakthrough in allogeneic transplantation. Strategies of graft manipulation, tumor-associated antigen vaccinations, monoclonal antibodies, and adoptive cellular immunotherapy have already proved clinically efficient. In the following years, allogeneic transplantation is likely to become more complex, more individualized, and more efficient.
Collapse
Affiliation(s)
- Israel Henig
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Tsila Zuckerman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
109
|
Katz T, Avivi I, Benyamini N, Rosenblatt J, Avigan D. Dendritic cell cancer vaccines: from the bench to the bedside. Rambam Maimonides Med J 2014; 5:e0024. [PMID: 25386340 PMCID: PMC4222413 DOI: 10.5041/rmmj.10158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both "passive" (e.g. strategies relying on the administration of specific T cells) and "active" vaccines (e.g. peptide-directed or whole-cell vaccines) have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines) are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target "immunosuppressive checkpoints" (anti-CTLA-4, PD-1, etc.) is likely to improve and maintain immune response induced by vaccination.
Collapse
Affiliation(s)
- Tamar Katz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Irit Avivi
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Noam Benyamini
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Jacalyn Rosenblatt
- Hematological Malignancies and Bone Marrow Transplantation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Avigan
- Hematological Malignancies and Bone Marrow Transplantation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
110
|
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res 2014; 59:188-202. [PMID: 24845460 PMCID: PMC4209159 DOI: 10.1007/s12026-014-8528-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM.
Collapse
Affiliation(s)
- Timothy R Rosean
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Richardson P. Allogeneic Transplantation in Multiple Myeloma: A Potential Renaissance in the Era of Novel Therapies? Biol Blood Marrow Transplant 2014; 20:1078-9. [DOI: 10.1016/j.bbmt.2014.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
112
|
Pascutti F, Cunha LL, Rizzatti EG, Colleoni GWB. Understanding myeloma cancer stem cells. Immunotherapy 2014; 5:1291-4. [PMID: 24283839 DOI: 10.2217/imt.13.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
113
|
Tesfatsion DA. Dendritic cell vaccine against leukemia: advances and perspectives. Immunotherapy 2014; 6:485-96. [PMID: 24815786 DOI: 10.2217/imt.14.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As with many other types of malignancies, sustainable eradication of leukemia has been a challenge. This is related to the inevitable failure of conventional chemotherapeutic agents and radiation therapy to target the relatively quiescent leukemia stem cells, which are believed to have multidrug resistance, antiapoptotic capacity and enhanced DNA repair mechanisms allowing them to evade the immune system. Considering other therapeutic options that are minimally toxic to normal cells and effectively target not only the majority and more differentiated cancer cells, but also the rare residual leukemia cells, is of paramount importance. A number of immunotherapeutic options have been proposed to counter this challenge. One of the remarkable achievements in the field of immunotherapy has been the successful use of antigen presenting cells as vehicles of tumor/pathogenic antigens to the T-cell compartments. This review will focus on advances and perspectives of this arm of immunotherapy against leukemia.
Collapse
|
114
|
Lasek W, Zagożdżon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother 2014; 63:419-35. [PMID: 24514955 PMCID: PMC3994286 DOI: 10.1007/s00262-014-1523-1] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022]
Abstract
Interleukin 12 (IL-12) seemed to represent the ideal candidate for tumor immunotherapy, due to its ability to activate both innate (NK cells) and adaptive (cytotoxic T lymphocytes) immunities. However, despite encouraging results in animal models, very modest antitumor effects of IL-12 in early clinical trials, often accompanied by unacceptable levels of adverse events, markedly dampened hopes of the successful use of this cytokine in cancer patients. Recently, several clinical studies have been initiated in which IL-12 is applied as an adjuvant in cancer vaccines, in gene therapy including locoregional injections of IL-12 plasmid and in the form of tumor-targeting immunocytokines (IL-12 fused to monoclonal antibodies). The near future will show whether this renewed interest in the use of IL-12 in oncology will result in meaningful therapeutic effects in a select group of cancer patients.
Collapse
Affiliation(s)
- Witold Lasek
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1a, "F" Bldg, 02-097, Warsaw, Poland,
| | | | | |
Collapse
|
115
|
Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2014; 119:421-75. [PMID: 23870514 DOI: 10.1016/b978-0-12-407190-2.00007-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines represent a viable option for active immunotherapy of cancers that aim to treat late stage disease by using a patient's own immune system. The promising results from clinical trials recently led to the approval of the first therapeutic cancer vaccine by the U.S. Food and Drug Administration. This major breakthrough not only provides a new treatment modality for cancer management but also paves the way for rationally designing and optimizing future vaccines with improved anticancer efficacy. Numerous vaccine strategies are currently being evaluated both preclinically and clinically. This review discusses therapeutic cancer vaccines from diverse platforms or targets as well as the preclinical and clinical studies employing these therapeutic vaccines. We also consider tumor-induced immune suppression that hinders the potency of therapeutic vaccines, and potential strategies to counteract these mechanisms for generating more robust and durable antitumor immune responses.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
116
|
Ocio EM, Mitsiades CS, Orlowski RZ, Anderson KC. Future agents and treatment directions in multiple myeloma. Expert Rev Hematol 2014; 7:127-41. [PMID: 24350987 PMCID: PMC4157182 DOI: 10.1586/17474086.2014.858595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of bortezomib and immunomodulatory agents resulted in a revolution in the treatment of multiple myeloma (MM). Moreover, second-generation proteasome inhibitors (carfilzomib) and immunomodulatory agents (pomalidomide) have recently been approved. Nevertheless, the incurability of this disease requires other drugs with different mechanisms of action to either prolong the survival of patients refractory to current therapies, or achieve cure. Active research has been done exploring the pathogenesis of MM and searching for novel, druggable targets. In this regard, some of these novel agents seem promising, such as monoclonal antibodies (anti-CD38 - daratumumab or anti-CS1 - elotuzumab) or the kinesin protein inhibitor Arry-520. Other agents under investigation are kinase inhibitors, signaling pathways inhibitors or deacetylase inhibitors. With so many novel agents under investigation, future therapy in MM will probably involve the combined use of the already approved drugs with some of those newly discovered.
Collapse
Affiliation(s)
- Enrique M Ocio
- Department of Hematology, University Hospital of Salamanca-IBSAL, IBMCC (USAL-CSIC),University Hospital & Cancer Research Center, P. San Vicente, 58-182, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
117
|
Purified dendritic cell-tumor fusion hybrids supplemented with non-adherent dendritic cells fraction are superior activators of antitumor immunity. PLoS One 2014; 9:e86772. [PMID: 24466232 PMCID: PMC3900640 DOI: 10.1371/journal.pone.0086772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
Background Strong evidence supports the DC-tumor fusion hybrid vaccination strategy, but the best fusion product components to use remains controversial. Fusion products contain DC-tumor fusion hybrids, unfused DCs and unfused tumor cells. Various fractions have been used in previous studies, including purified hybrids, the adherent cell fraction or the whole fusion mixture. The extent to which the hybrids themselves or other components are responsible for antitumor immunity or which components should be used to maximize the antitumor immunity remains unknown. Methods Patient-derived breast tumor cells and DCs were electro-fused and purified. The antitumor immune responses induced by the purified hybrids and the other components were compared. Results Except for DC-tumor hybrids, the non-adherent cell fraction containing mainly unfused DCs also contributed a lot in antitumor immunity. Purified hybrids supplemented with the non-adherent cell population elicited the most powerful antitumor immune response. After irradiation and electro-fusion, tumor cells underwent necrosis, and the unfused DCs phagocytosed the necrotic tumor cells or tumor debris, which resulted in significant DC maturation. This may be the immunogenicity mechanism of the non-adherent unfused DCs fraction. Conclusions The non-adherent cell fraction (containing mainly unfused DCs) from total DC/tumor fusion products had enhanced immunogenicity that resulted from apoptotic/necrotic tumor cell phagocytosis and increased DC maturation. Purified fusion hybrids supplemented with the non-adherent cell population enhanced the antitumor immune responses, avoiding unnecessary use of the tumor cell fraction, which has many drawbacks. Purified hybrids supplemented with the non-adherent cell fraction may represent a better approach to the DC-tumor fusion hybrid vaccination strategy.
Collapse
|
118
|
Rosenblatt J, Bar-Natan M, Munshi NC, Avigan DE. Immunotherapy for multiple myeloma. Expert Rev Hematol 2014; 7:91-6. [DOI: 10.1586/17474086.2014.878226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
119
|
Pyzer AR, Avigan DE, Rosenblatt J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum Vaccin Immunother 2014; 10:3125-31. [PMID: 25625926 PMCID: PMC4514037 DOI: 10.4161/21645515.2014.982993] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies.
Collapse
Key Words
- AML, Acute Myeloid Leukemia
- ASCT, Autologous Stem Cell Transplant
- Apo-DC, Apoptotic body loaded- dendritic cells
- CML, Chronic Myeloid Leukemia
- CR, Complete response
- CTLA-4, Cytotoxic T-Lymphocyte Antigen 4
- DC/AML, Dendritic cell Acute Myeloid Leukemia fusion vaccine
- DC/MM, Dendritic cell Multiple Myeloma fusion vaccine
- DNA Deoxyribonucleic acid
- FLT-ITD, Fms-like Tyrosine Kinase with Internal Tandem Duplication
- GMCSF, Granulocyte macrophage colony-stimulating factor
- GVHD, Graft vs Host Disease
- HLA-A*2402, Human Leukocyte antigen A*2402
- IFN, Interferon
- IFNg, Interferon gamma
- IL, Interleukin
- Id, Idiotype
- KLH, Keyhole limpet hemocyanin
- MDS, Myelodysplastic syndrome
- MHC, Major histocompatibility complex
- OS, Overall Survival
- PD-1, Programmed death 1
- PD-L1, Programmed death-ligand 1
- PR, Partial response
- PRR, Pathogen recognition receptor
- RNA, Ribonucleic acid
- SCT, Stem cell transplant
- TGFB, Transforming growth factor β
- TNFα, Tumor necrosis factor α
- VEGF, Vascular endothelial growth factor
- VGPR, Very good partial response
- WT-1, Wilm's tumor suppressor gene 1
- cancer
- dendritic cell
- immunotherapy
- leukemia
- mRNA, mRNA
- myeloma
- pDCs, Plasmacytoid Dendritic cell
- trial
- vaccine
Collapse
Affiliation(s)
- Athalia R Pyzer
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - David E Avigan
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| |
Collapse
|
120
|
Kitawaki T. DC-based immunotherapy for hematological malignancies. Int J Hematol 2013; 99:117-22. [DOI: 10.1007/s12185-013-1496-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 12/29/2022]
|
121
|
Roeven MWH, Hobo W, Schaap N, Dolstra H. Immunotherapeutic approaches to treat multiple myeloma. Hum Vaccin Immunother 2013; 10:896-910. [PMID: 24335570 PMCID: PMC4896532 DOI: 10.4161/hv.27380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/21/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022] Open
Abstract
Cellular immunotherapy can be an effective adjuvant treatment for multiple myeloma (MM), as demonstrated by induction of durable remissions after allogeneic stem cell transplantation. However, anti-myeloma immunity is often hampered by suppressive mechanisms in the tumor micro-environment resulting in relapse or disease progression. To overcome this immunosuppression, new cellular immunotherapies have been developed, based on the important effector cells in anti-myeloma immunity, namely T cells and natural killer cells. These effectors can be modulated to improve their functionality, activated by dendritic cell vaccines, or combined with immune stimulating antibodies or immunomodulatory drugs to enhance their efficacy. In this review, we discuss promising pre-clinical and clinical data in the field of cellular immunotherapy in MM. In addition, we address the potential of combining these strategies with other therapies to maximize clinical effects without increasing toxicity. The reviewed therapies might pave the way to effective personalized treatments for MM patients.
Collapse
Affiliation(s)
- Mieke WH Roeven
- Department of Hematology; Radboud University Medical Center; Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine—Laboratory of Hematology Radboud; University Medical Center; Nijmegen, The Netherlands
| | - Nicolaas Schaap
- Department of Hematology; Radboud University Medical Center; Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine—Laboratory of Hematology Radboud; University Medical Center; Nijmegen, The Netherlands
| |
Collapse
|
122
|
Avigan D, Hari P, Battiwalla M, Bishop MR, Giralt SA, Hardy NM, Kröger N, Wayne AS, Hsu KC. Proceedings from the National Cancer Institute's Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation: part II. Autologous Transplantation-novel agents and immunomodulatory strategies. Biol Blood Marrow Transplant 2013; 19:1661-9. [PMID: 24018393 PMCID: PMC3914636 DOI: 10.1016/j.bbmt.2013.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022]
Abstract
In the National Cancer Institute's Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation, the Scientific/Educational Session on Autologous Transplantation addressed the role of novel agents and immunomodulatory strategies in management of relapse after autologous hematopoietic stem cell transplantation (AHSCT). Concepts were illustrated through in-depth discussion of multiple myeloma, with broader discussion of areas relevant for relapse of other malignancies as well as in the setting of allogeneic transplantation. Dr. Hari provided an overview of the epidemiology of relapse after AHSCT in multiple myeloma, addressing clinical patterns, management implications, and treatment options at relapse, highlighting the implications of novel therapeutic agents in initial, maintenance, and relapse treatment. Dr. Avigan discussed current concepts in tumor vaccine design, including whole cell and antigen-specific strategies, use of an AHSCT platform to reverse tumor-associated immunosuppression and tolerance, and combining vaccines with immunomodulatory agents to promote establishment of durable antitumor immunity. Dr. Hsu reviewed the immunogenetics of natural killer (NK) cells and general NK biology, the clinical importance of autologous NK activity (eg, lymphoma and neuroblastoma), the impact of existing therapies on promotion of NK cell activity (eg, immunomodulatory drugs, monoclonal antibodies), and strategies for enhancing autologous and allogeneic NK cell effects through NK cell gene profiling.
Collapse
Affiliation(s)
- David Avigan
- Division of Hematology Oncology, Hematologic Malignancies/Bone Marrow Transplant Program, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Benencia F. RNA vaccines for anti-tumor therapy. World J Exp Med 2013; 3:62-73. [DOI: 10.5493/wjem.v3.i4.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
The immune system is able to recognize tumor antigens and this has been the basis for the development of cancer immunotherapies. The immune system can be instructed to recognize and attack tumor cells by means of vaccination strategies. One such strategy involves the delivery of tumor antigen as genetic material. Herewith we describe the use of RNA encoding tumor antigens for vaccination purposes in tumor settings. RNA has features that are interesting for vaccination. Upon transfection, the RNA has no possibility of integration into the genome, and the tumor translated proteins enter the intrinsic antigen processing pathway thus enabling presentation by MHC-I molecules. This can specifically activate cytotoxic CD8 T cells that can attack and kill tumor cells. RNA can be delivered as a naked molecule for vaccination purposes or can be used to transfect dendritic cells. The combination of RNA technology with dendritic cell vaccination provides a powerful tool for cancer immunotherapies.
Collapse
|
124
|
Chen X, Liu Z, Huang Y, Li R, Zhang H, Dong S, Ge C, Zhang Z, Wang Y, Wang Y, Xue Y, Li Z, Song X. Superior anti-tumor protection and therapeutic efficacy of vaccination with dendritic cell/tumor cell fusion hybrids for murine Lewis lung carcinoma. Autoimmunity 2013; 47:46-56. [PMID: 24191684 DOI: 10.3109/08916934.2013.850080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research into their potential use in immunotherapy in the treatment of cancer. In this study, we examined the efficacy of dendritic cell-tumor cell fusion hybrid vaccines in eliciting an immune response against Lewis lung carcinoma (LLC) cells, as compared to other types of tumor vaccines. In addition, we also tested whether the efficacy of the vaccines was affected by the route of administration. Four different tumor vaccines were compared: (1) HC (hybrid cell), consisting of DC/LLC hybrids; (2) DC+LLC (DCs pulsed with apoptotic LLCs); (3) DC without antigen loading/pulsing; (4) LLC (apoptotic/irradiated tumor cells). We also compared four different routes of administration for each vaccine: (1) Preimmunization; (2) Vaccination therapy; (3) Adoptive immunotherapy; (4) Vaccination therapy combined with adoptive immunotherapy. Anti-tumor immunity was assessed in vivo and the CTL (cytotoxic T lymphocyte) response as well as the expression of key cytokines, IFN-γ and IL-10 were further evaluated using in vitro assays. RESULTS Our data demonstrate that vaccination with HC hybrids provides more effective anti-tumor protective immunity and significantly greater therapeutic immunity than vaccination with DC+LLC, DC or LLC. Most remarkably, vaccination therapy with HC hybrids was more successful than combination (vaccination + adoptive) therapy for the induction of anti-tumor responses. Splenocytes harvested from mice immunized with HC hybrids demonstrated the greatest cytotoxic T lymphocyte (CTL) activity and their production of IFN-γ was high, while their production of IL-10 was very low. CONCLUSIONS Our results suggest that vaccination therapy with DC-tumor cell fusion hybrids provides more effective protection against lung cancer.
Collapse
|
125
|
Garcia-Marquez MA, Shimabukuro-Vornhagen A, Theurich S, von Bergwelt-Baildon M. Vaccination with dendritic cell–tumor fusion cells in multiple myeloma patients: a promising strategy? Immunotherapy 2013; 5:1039-42. [DOI: 10.2217/imt.13.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Evaluation of: Rosenblatt J, Avivi I, Vasir B et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin. Cancer Res. 19(13), 3640–3648 (2013). Recently, dendritic cell (DC)–tumor fusion vaccines have been explored as a promising therapeutic approach for the treatment of cancer. Fusion vaccines offer several advantages that distinguish them from other DC-based vaccines. In this Phase II clinical trial, Rosenblatt et al. demonstrate that repeated immunization with a DC–tumor fusion vaccine after autologous stem cell transplantation induces myeloma-specific immunity and improves clinical response. They showed that generation of an autologous fusion vaccine with dendritic and myeloma cells was feasible and that vaccination was well tolerated without grade 3–4 toxicities. The results of this study suggest that the time after autologous stem cell transplantation represents a unique setting for cancer vaccination and that combining autologous stem cell transplantation with post-transplant vaccination increases the immunogenicity.
Collapse
Affiliation(s)
- Maria A Garcia-Marquez
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, D-50937, Cologne, Germany
| | - Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, D-50937, Cologne, Germany
- Stem Cell Transplantation Program, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, D-50937, Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, D-50937, Cologne, Germany
- Stem Cell Transplantation Program, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, D-50937, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, D-50937, Cologne, Germany
- Stem Cell Transplantation Program, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, D-50937, Cologne, Germany
| |
Collapse
|
126
|
Locke FL, Nishihori T, Alsina M, Kharfan-Dabaja MA. Immunotherapy strategies for multiple myeloma: the present and the future. Immunotherapy 2013; 5:1005-20. [PMID: 23998734 PMCID: PMC4905571 DOI: 10.2217/imt.13.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Growing knowledge of the complexities of the immune system have led to a better understanding of how it can be harnessed for the purpose of anticancer therapy. Moreover, recent success with immunotherapies for solid tumors, combined with novel therapeutic strategies against myeloma, heighten excitement at the prospect of improving clinical outcomes for myeloma by improving antitumor immunity. Increased understanding of myeloma tumor-associated antigens, availability of more potent vaccines, expanded immune-modulating therapies, development of agents that block immune-suppressive pathways, increased sophistication of adoptive cell therapy techniques and capitalization upon standard autologous transplant are all important standalone or combination strategies that might ultimately improve prognosis of patients with multiple myeloma.
Collapse
Affiliation(s)
- Frederick L Locke
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Taiga Nishihori
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Melissa Alsina
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Mohamed A Kharfan-Dabaja
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
127
|
Kang YJ, Zeng W, Song W, Reinhold B, Choi J, Brusic V, Yamashita T, Munshi A, Li C, Minvielle S, Anderson KC, Munshi N, Reinherz EL, Sasada T. Identification of human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T lymphocyte epitopes derived from HLA-DOβ as a novel target for multiple myeloma. Br J Haematol 2013; 163:343-51. [PMID: 24032635 DOI: 10.1111/bjh.12544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023]
Abstract
Despite the recent development of effective therapeutic agents against multiple myeloma (MM), new therapeutic approaches, including immunotherapies, remain to be developed. Here we identified novel human leucocyte antigen (HLA)-A*0201 (HLA-A2)-restricted cytotoxic T lymphocyte (CTL) epitopes from a B cell specific molecule HLA-DOβ (DOB) as a potential target for MM. By DNA microarray analysis, the HLA-DOB expression in MM cells was significantly higher than that in normal plasma cells. Twenty-five peptides were predicted to bind to HLA-A2 from the amino acid sequence of HLA-DOB. When screened for the immunogenicity in HLA-A2-transgenic mice immunized with HLA-DOB cDNA, 4 peptides were substantially immunogenic. By mass spectrometry analysis of peptides eluted from HLA-A2-immunoprecipitates of MM cell lines, only two epitopes, HLA-DOB232-240 (FLLGLIFLL) and HLA-DOB185-193 (VMLEMTPEL), were confirmed for their physical presence on cell surface. When healthy donor blood was repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific γ-interferon secretion, HLA-DOB232-240 was more immunogenic than HLA-DOB185-193 . Additionally, the HLA-DOB232-240 -specific CTLs, but not the HLA-DOB185-193 -specific CTLs, displayed an major histocompatibility complex class I-restricted reactivity against MM cell lines expressing both HLA-A2 and HLA-DOB. Taken together, based on the physical presence on tumour cell surface and high immunogenicity, HLA-DOB232-240 might be useful for developing a novel immunotherapy against MM.
Collapse
Affiliation(s)
- Yoon Joong Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Biomedical Science, Jungwon University, Chungcheongbuk-do, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Hobo W, Strobbe L, Maas F, Fredrix H, Greupink-Draaisma A, Esendam B, de Witte T, Preijers F, Levenga H, van Rees B, Raymakers R, Schaap N, Dolstra H. Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother 2013; 62:1381-92. [PMID: 23728352 PMCID: PMC11028530 DOI: 10.1007/s00262-013-1438-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/10/2013] [Indexed: 01/23/2023]
Abstract
The introduction of autologous stem cell transplantation (SCT) and novel drugs has improved overall survival in multiple myeloma (MM) patients. However, minimal residual disease (MRD) remains and most patients eventually relapse. Myeloma plasma cells express tumor-associated antigens (TAA), which are interesting targets for immunotherapy. In this phase 1 study, we investigated the safety and immunological effects of TAA-mRNA-loaded dendritic cell (DC) vaccination for treatment for MRD in MM after SCT. Mature monocyte-derived DCs were pulsed with keyhole limpet hemocyanin (KLH) and electroporated with MAGE3, Survivin or B-cell maturation antigen (BCMA) mRNA. Twelve patients were vaccinated three times with intravenous (5-22 × 10(6) DCs) and intradermal vaccines (4-11 × 10(6) DCs), at biweekly intervals. Immunological responses were monitored in blood and delayed-type hypersensitivity (DTH) biopsies. All patients developed strong anti-KLH T-cell responses, but not KLH antibodies. In 2 patients, vaccine-specific T cells were detected in DTH biopsies. In one patient, we found MAGE3-specific CD4(+) and CD8(+) T cells, and CD3(+) T cells reactive against BCMA and Survivin. In the other patient, we detected low numbers of MAGE3 and BCMA-reactive CD8(+) T cells. Vaccination was well tolerated with limited toxicity. These findings illustrate that TAA-mRNA-electroporated mature DCs are capable of inducing TAA-T-cell responses in MM patients after SCT.
Collapse
Affiliation(s)
- Willemijn Hobo
- Laboratory of Hematology, Department of Laboratory Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Leonie Strobbe
- Department of Hematology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frans Maas
- Laboratory of Hematology, Department of Laboratory Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hanny Fredrix
- Laboratory of Hematology, Department of Laboratory Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Annelies Greupink-Draaisma
- Laboratory of Hematology, Department of Laboratory Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ben Esendam
- Laboratory of Hematology, Department of Laboratory Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Theo de Witte
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frank Preijers
- Laboratory of Hematology, Department of Laboratory Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henriëtte Levenga
- Department of Hematology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bas van Rees
- Department of Hematology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Reinier Raymakers
- Department of Hematology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - Nicolaas Schaap
- Department of Hematology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Harry Dolstra
- Laboratory of Hematology, Department of Laboratory Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
129
|
Vallet S, Podar K. New insights, recent advances, and current challenges in the biological treatment of multiple myeloma. Expert Opin Biol Ther 2013; 13 Suppl 1:S35-53. [PMID: 23768134 DOI: 10.1517/14712598.2013.807337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The availability of thalidomide, lenalidomide, and bortezomib has radically changed multiple myeloma (MM) treatment and significantly improved patients' outcome. Nevertheless, MM is still an incurable disease due to the development of resistance and relapse practically in all patients. Unraveling MM pathogenesis, identifying prognostically high-risk patient populations, and optimizing current treatment strategies are among the challenges we are facing to reach a cure for this disease. AREAS COVERED This article reviews recent advances of the genomic analysis of malignant plasma cells and summarizes new insights into the pathophysiologic role of the MM microenvironment and the clinical assessment of derived novel therapeutic strategies. Moreover, current efforts to improve risk stratification and drug development are discussed, and most recent results of Phase II and III clinical trials that aim to optimize existing treatment regimens and to assess the next-generation anti-MM strategies are discussed. A systematic search was conducted of the Pubmed Medline, Embase, and Cochrane Library databases for primary articles, as well as of conference abstracts (e.g., of the American Society of Hematology, the American Society of Clinical Oncology, the American Association of Cancer Research, the European Hematology Association, and the Multiple Myeloma Workshop 2013), practice guidelines, and registries of clinical trials. EXPERT OPINION Given continuing advances to overcome current treatment challenges in MM, we are confident that long-lasting responses can be expected in many of our patients within the next decade.
Collapse
Affiliation(s)
- Sonia Vallet
- University of Heidelberg, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
130
|
Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, Dey BR, Somaiya P, Mills H, Campigotto F, Weller E, Joyce R, Levine JD, Tzachanis D, Richardson P, Laubach J, Raje N, Boussiotis V, Yuan YE, Bisharat L, Held V, Rowe J, Anderson K, Kufe D, Avigan D. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 2013; 19:3640-8. [PMID: 23685836 DOI: 10.1158/1078-0432.ccr-13-0282] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A multiple myeloma vaccine has been developed whereby patient-derived tumor cells are fused with autologous dendritic cells, creating a hybridoma that stimulates a broad antitumor response. We report on the results of a phase II trial in which patients underwent vaccination following autologous stem cell transplantation (ASCT) to target minimal residual disease. EXPERIMENTAL DESIGN Twenty-four patients received serial vaccinations with dendritic cell/myeloma fusion cells following posttransplant hematopoietic recovery. A second cohort of 12 patients received a pretransplant vaccine followed by posttransplant vaccinations. Dendritic cells generated from adherent mononuclear cells cultured with granulocyte macrophage colony-stimulating factor, interleukin-4, and TNF-α were fused with autologous bone marrow-derived myeloma fusion cells using polyethylene glycol. Fusion cells were quantified by determining the percentage of cells that coexpress dendritic cell and myeloma fusion antigens. RESULTS The posttransplant period was associated with reduction in general measures of cellular immunity; however, an increase in CD4 and CD8(+) myeloma-specific T cells was observed after ASCT that was significantly expanded following posttransplant vaccination. Seventy-eight percent of patients achieved a best response of complete response (CR)+very good partial response (VGPR) and 47% achieved a CR/near CR (nCR). Remarkably, 24% of patients who achieved a partial response following transplant were converted to CR/nCR after vaccination and at more than 3 months posttransplant, consistent with a vaccine-mediated effect on residual disease. CONCLUSIONS The posttransplant period for patients with multiple myeloma provides a unique platform for cellular immunotherapy in which vaccination with dendritic cell/myeloma fusion fusions resulted in the marked expansion of myeloma-specific T cells and cytoreduction of minimal residual disease.
Collapse
|
131
|
Regulatory T cells in allogeneic stem cell transplantation. Clin Dev Immunol 2013; 2013:608951. [PMID: 23737813 PMCID: PMC3662184 DOI: 10.1155/2013/608951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/15/2013] [Indexed: 01/02/2023]
Abstract
Growing evidence suggests that cellular adoptive immunotherapy is becoming an attractive though challenging approach in regulating tumor immunity and alloresponses in clinical transplantation. Naturally arising CD4+CD25+Foxp3+ regulatory T cells (Treg) have emerged as a key component in this regard. Over the last decade, a large body of evidence from preclinical models has demonstrated their crucial role in auto- and tumor immunity and has opened the door to their “first-in-man” clinical application. Initial studies in clinical allogeneic stem cell transplantation are very encouraging and may pave the way for other applications. Further improvements in Treg ex vivo or in vivo expansion technologies will simplify their global clinical application. In this review, we discuss the current knowledge of Treg biology and their potential for cell-based immunotherapy in allogeneic stem cell transplantation.
Collapse
|
132
|
Garfall AL, Vogl DT, Weiss BM, Stadtmauer EA. Cellular immunotherapy for plasma cell myeloma. Bone Marrow Transplant 2013; 48:1377-86. [PMID: 23645169 DOI: 10.1038/bmt.2013.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic cell transplantation for plasma cell myeloma can lead to graft-vs-myeloma immunity and long-term survivorship, but limited efficacy and associated toxicities have prevented its widespread use. Cellular immunotherapies seek to induce more specific, reliable and potent antimyeloma immune responses with less treatment-related risk than is possible with allogeneic transplantation. Strategies under development include infusion of vaccine-primed and ex vivo expanded/costimulated autologous T cells after high-dose melphalan, genetic engineering of autologous T cells with receptors for myeloma-specific epitopes, administration of DC/plasma cell fusions and administration expanded marrow-infiltrating lymphocytes. In addition, novel immunomodulatory drugs such as inhibitors of the programmed death-1 T cell regulatory pathway may synergize with cellular immunotherapies.
Collapse
Affiliation(s)
- A L Garfall
- Multiple Myeloma Program, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
133
|
Arnason J, Avigan D. Evolution of cellular immunotherapy: from allogeneic transplant to dendritic cell vaccination as treatment for multiple myeloma. Immunotherapy 2013; 4:1043-51. [PMID: 23148756 DOI: 10.2217/imt.12.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The promise of cellular therapy as treatment for multiple myeloma is highlighted by the observation that allogeneic transplantation results in durable remissions in a subset of patients. The potency of the graft-versus-myeloma effect is supported by the decreased risk of relapse seen in patients with graft-versus-host disease and disease response following donor lymphocyte infusions. However, the lack of specificity of the alloreactive lymphocytes limits their therapeutic efficacy and results in significant treatment-related morbidity and mortality. A major area of investigation is the development of cancer vaccines to generate myeloma-specific immunity that selectively targets malignant cells while minimizing toxicity to normal tissues. Critical elements required to develop an effective vaccine strategy involve the identification of myeloma-associated antigens, enhancement of antigen presentation, and reversing the immunosuppressive milieu induced by the disease. Dendritic cells are potent APCs that represent an ideal platform for vaccination. Strategies for vaccine design include the loading of individual antigens as well as the use of whole tumor cells as a source of myeloma antigens. Vaccination has been examined in the postautologous transplant setting in which disease cytoreduction and depletion of Tregs is associated with enhanced vaccine response. Recent efforts have also included exploration of immune modulatory agents that target inhibitory pathways to enhance vaccine response and create a more durable antitumor immunity.
Collapse
Affiliation(s)
- Jon Arnason
- Beth Israel Deaconess Medical Center, Hematologic Malignancies & Bone Marrow Transplantation Program, Harvard Medical School, MA, USA
| | | |
Collapse
|
134
|
Feyler S, Selby PJ, Cook G. Regulating the regulators in cancer-immunosuppression in multiple myeloma (MM). Blood Rev 2013; 27:155-64. [PMID: 23623928 DOI: 10.1016/j.blre.2013.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An effective immune response requires a prompt but measured action against the pathological insult, to prevent over-zealous inflammatory-mediated tissue destruction. In cancer, defective or incompetent immune responses may paradoxically result in disease progression despite an immune attempt at elimination. Tumour-induced immunosuppression may not only result from soluble factors and altered antigenicity, but also from cellular-mediated tumour-induced immune evasion. Multiple myeloma (MM) is associated with both cellular and humoral immune deficiencies and increased T(Reg) cells. In vitro modelling has indicated that the tumour cells directly induce functional T(Reg) cells. In light of this recent evidence, it now seems that the most promising and synergistic approaches for cancer immunotherapy would involve specific anti-tumour immunity and simultaneous reduction of tumour-induced immune-regulation. This review sets out the basic understanding of the human immune response, its dysregulation in cancer and proposes how this knowledge may influence future treatment strategies to maximise the anti-tumour immune response.
Collapse
Affiliation(s)
- Sylvia Feyler
- Transplant Immunology Group, Academic Department of Haematology & Oncology, University of Leeds, UK
| | | | | |
Collapse
|
135
|
Abstract
Multiple myeloma is the second most common hematologic malignancy affecting terminally differentiated plasma cells. Although high-dose chemotherapy and autologous stem cell transplantation have improved survival in younger patients, the natural history of multiple myeloma has been changed with the availability of six new agents approved in the past 10 years (thalidomide, bortezomib, lenalidomide, liposomal doxorubicin, carfilzomib, and pomalidomide). Despite this significant improvement in the overall outcome, multiple myeloma remains incurable in the majority of patients, prompting a continued search for additional therapeutic options. Extensive molecular and genomic characterization of multiple myeloma cells in their bone marrow milieu, which affects myeloma cell growth and survival, has provided a number of novel drugable targets and pathways. Perturbation of protein catabolism at multiple levels has become an important target in multiple myeloma. Similarly, improvements in monoclonal antibody generation and vaccine development, along with identification of a number of cell surface and cellular targets, have led to the development of various strategies, including antibodies and antibody-drug conjugates that are under investigation preclinically and in early clinical studies. We propose that eventually, molecularly informed multiagent combination therapies will be required to eliminate the multiple myeloma cell clone for long-term disease control.
Collapse
Affiliation(s)
- Nikhil C Munshi
- Veterans Administration Boston Healthcare System, Boston, Massachusetts, USA.
| | | |
Collapse
|
136
|
Browning MJ. Antigen presenting cell/ tumor cell fusion vaccines for cancer immunotherapy. Hum Vaccin Immunother 2013; 9:1545-8. [PMID: 23475129 DOI: 10.4161/hv.24235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fusions of antigen presenting cells and tumor cells have been investigated in animal models and phase I/II clinical trials as candidate cancer vaccines. In animal studies there have been numerous reports of induction of protective immunity against a wide range of tumor types. Results of clinical trials have been less dramatic, but tumor-specific immune responses have been reported in many patients, with clinical responses to the vaccination in a subset. In this commentary article, I review the current status of antigen presenting cell/tumor cell fusion vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Michael J Browning
- Department of Infection; Immunity and Inflammation; University of Leicester; Leicester, UK; Department of Immunology; Leicester Royal Infirmary; Leicester, UK
| |
Collapse
|
137
|
Mohamed YS, Dunnion D, Teobald I, Walewska R, Browning MJ. In vitro evaluation of human hybrid cell lines generated by fusion of B-lymphoblastoid cells and ex vivo tumour cells as candidate vaccines for haematological malignancies. Vaccine 2012; 30:6578-87. [DOI: 10.1016/j.vaccine.2012.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/23/2012] [Accepted: 08/15/2012] [Indexed: 02/04/2023]
|
138
|
Bianchi G, Ghobrial IM. Molecular mechanisms of effectiveness of novel therapies in multiple myeloma. Leuk Lymphoma 2012; 54:229-41. [DOI: 10.3109/10428194.2012.706287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
139
|
Abstract
A promising cancer vaccine involves the fusion of dendritic cells (DCs) with tumor cells such that a broad array of tumor antigens are presented in the context of DC-mediated costimulation and stimulatory cytokines. In diverse animal models, vaccination with DC/tumor fusions results in protection from an otherwise lethal challenge of tumor cells and eradication of established disease. In phase I clinical studies, vaccination with DC/tumor fusions was well tolerated, and induced immunologic responses in the majority of patients and clinical responses in a subset. Vaccine efficacy may be blunted by the immunosuppressive milieu characteristic of patients with malignancy, including the increased presence of regulatory T cells, and inhibitory pathways such as the PD-1/PDL-1 pathway. A current focus of research interest lies in enhancing response to cancer vaccines, by combining vaccination with tumor cytoreduction, regulatory T-cell depletion, and blockade of critical inhibitory pathways.
Collapse
Affiliation(s)
- David Avigan
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
140
|
Mohamed YS, Dunnion D, Teobald I, Walewska R, Browning MJ. Long-lived fusions of human haematological tumour cells and B-lymphoblastoid cells induce tumour antigen-specific cytotoxic T-cell responses in vitro. Immunobiology 2012; 217:719-29. [DOI: 10.1016/j.imbio.2011.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/01/2011] [Indexed: 12/11/2022]
|
141
|
Luptakova K, Rosenblatt J, Glotzbecker B, Mills H, Stroopinsky D, Kufe T, Vasir B, Arnason J, Tzachanis D, Zwicker JI, Joyce RM, Levine JD, Anderson KC, Kufe D, Avigan D. Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother 2012; 62:39-49. [PMID: 22733396 DOI: 10.1007/s00262-012-1308-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/06/2012] [Indexed: 12/31/2022]
Abstract
Lenalidomide is an effective therapeutic agent for multiple myeloma that exhibits immunomodulatory properties including the activation of T and NK cells. The use of lenalidomide to reverse tumor-mediated immune suppression and amplify myeloma-specific immunity is currently being explored. In the present study, we examined the effect of lenalidomide on T-cell activation and its ability to amplify responses to a dendritic cell-based myeloma vaccine. We demonstrate that exposure to lenalidomide in the context of T-cell expansion with direct ligation of CD3/CD28 complex results in polarization toward a Th1 phenotype characterized by increased IFN-γ, but not IL-10 expression. In vitro exposure to lenalidomide resulted in decreased levels of regulatory T cells and a decrease in T-cell expression of the inhibitory marker, PD-1. Lenalidomide also enhanced T-cell proliferative responses to allogeneic DCs. Most significantly, lenalidomide treatment potentiated responses to the dendritic cell/myeloma fusion vaccine, which were characterized by increased production of inflammatory cytokines and increased cytotoxic lymphocyte-mediated lysis of autologous myeloma targets. These findings indicate that lenalidomide enhances the immunologic milieu in patients with myeloma by promoting T-cell proliferation and suppressing inhibitory factors, and thereby augmenting responses to a myeloma-specific tumor vaccine.
Collapse
Affiliation(s)
- Katarina Luptakova
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Minai L, Yeheskely-Hayon D, Golan L, Bisker G, Dann EJ, Yelin D. Optical nanomanipulations of malignant cells: controlled cell damage and fusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1732-1739. [PMID: 22431265 DOI: 10.1002/smll.201102304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/21/2011] [Indexed: 05/31/2023]
Abstract
Specifically targeting and manipulating living cells is a key challenge in biomedicine and in cancer research in particular. Several studies have shown that nanoparticles irradiated by intense lasers are capable of conveying damage to nearby cells for various therapeutic and biological applications. In this work ultrashort laser pulses and gold nanospheres are used for the generation of localized, nanometric disruptions on the membranes of specifically targeted cells. The high structural stability of the nanospheres and the resonance pulse irradiation allow effective means for controlling the induced nanometric effects. The technique is demonstrated by inducing desired death mechanisms in epidermoid carcinoma and Burkitt lymphoma cells, and initiating efficient cell fusion between various cell types. Main advantages of the presented approach include low toxicity, high specificity, and high flexibility in the regulation of cell damage and cell fusion, which would allow it to play an important role in various future clinical and scientific applications.
Collapse
Affiliation(s)
- Limor Minai
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
143
|
Palma M, Hansson L, Choudhury A, Näsman-Glaser B, Eriksson I, Adamson L, Rossmann E, Widén K, Horváth R, Kokhaei P, Vertuani S, Mellstedt H, Österborg A. Vaccination with dendritic cells loaded with tumor apoptotic bodies (Apo-DC) in patients with chronic lymphocytic leukemia: effects of various adjuvants and definition of immune response criteria. Cancer Immunol Immunother 2012; 61:865-79. [PMID: 22086161 PMCID: PMC11029556 DOI: 10.1007/s00262-011-1149-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/28/2011] [Indexed: 01/18/2023]
Abstract
We previously demonstrated that autologous dendritic cells that have endocytosed apoptotic bodies of chronic lymphocytic leukemia (CLL) cells (Apo-DC) can stimulate antileukemic T cell responses in vitro. In this phase I study, we vaccinated 15 asymptomatic CLL patients at five time points with Apo-DC administered intradermally either alone (cohort I), or in combination with subcutaneous granulocyte-macrophage-colony-stimulating-factor (GM-CSF) (cohort II) or with GM-CSF and intravenous low-dose cyclophosphamide (cohort III). Aim of the study was to evaluate the safety and immunogenicity of Apo-DC alone or in combination with GM-CSF and low-dose cyclophosphamide in CLL patients. All patients completed the vaccination schedule without dose-limiting toxicity. No objective clinical responses were seen. Vaccine-induced leukemia-specific immune responses were evaluated by IFN-γ ELISpot and proliferation assays over a 52 weeks observation period and immune response criteria were defined. According to these criteria, 10/15 patients were defined as immune responders. The frequency of immune-responding patients was higher in cohorts II (3/5) and III (5/5) than in cohort I (2/5). In order to further characterize the induced immune response, estimation of secreted cytokines and CD107-degranulation assay were performed. Clustering of T and CLL cells was observed in CD107-degranulation assay and visualized by confocal microscopy. Additionally, assessment of regulatory T cells (T(regs)) revealed their significantly lower frequencies in immune responders versus non-responders (P < 0.0001). Cyclophosphamide did not reduce T(regs) frequency. In conclusion, vaccination with Apo-DC + GM-CSF and cyclophosphamide was safe and elicited anti-CLL immune responses that correlated inversely with T(regs) levels. Lack of clinical responses highlights the necessity to develop more potent vaccine strategies in B cell malignancies.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Adult
- Aged
- Apoptosis/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell-Derived Microparticles/immunology
- Cyclophosphamide/immunology
- Cyclophosphamide/pharmacology
- Dendritic Cells/immunology
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Vaccination
Collapse
Affiliation(s)
- Marzia Palma
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Lotta Hansson
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Aniruddha Choudhury
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Centre for Immune and Targeted Therapy, University of Queensland, Brisbane, Australia
| | - Barbro Näsman-Glaser
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Eriksson
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Lars Adamson
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Eva Rossmann
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Widén
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Rudolf Horváth
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Institute of Immunology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Parviz Kokhaei
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Semnan Medical University, Semnan, Iran
| | - Simona Vertuani
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Cancer Centre Karolinska, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Anders Österborg
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
144
|
Targeting multiple-myeloma-induced immune dysfunction to improve immunotherapy outcomes. Clin Dev Immunol 2012; 2012:196063. [PMID: 22567028 PMCID: PMC3332181 DOI: 10.1155/2012/196063] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/12/2012] [Accepted: 01/29/2012] [Indexed: 12/16/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy associated with high levels of monoclonal (M) protein in the blood and/or serum. MM can occur de novo or evolve from benign monoclonal gammopathy of undetermined significance (MGUS). Current translational research into MM focuses on the development of combination therapies directed against molecularly defined targets and that are aimed at achieving durable clinical responses. MM cells have a unique ability to evade immunosurveillance through several mechanisms including, among others, expansion of regulatory T cells (Treg), reduced T-cell cytotoxic activity and responsiveness to IL-2, defects in B-cell immunity, and induction of dendritic cell (DC) dysfunction. Immune defects could be a major cause of failure of the recent immunotherapy trials in MM. This article summarizes our current knowledge on the molecular determinants of immune evasion in patients with MM and highlights how these pathways can be targeted to improve patients' clinical outcome.
Collapse
|
145
|
Nguyen-Pham TN, Lee YK, Lee HJ, Kim MH, Yang DH, Kim HJ, Lee JJ. Cellular immunotherapy using dendritic cells against multiple myeloma. THE KOREAN JOURNAL OF HEMATOLOGY 2012; 47:17-27. [PMID: 22479274 PMCID: PMC3317466 DOI: 10.5045/kjh.2012.47.1.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 11/17/2022]
Abstract
Cellular therapy with dendritic cells (DCs) is emerging as a useful immunotherapeutic tool to treat multiple myeloma (MM). DC-based idiotype vaccination was recently suggested to induce idiotype-specific immune responses in MM patients. However, the clinical results so far have been largely disappointing, and the clinical effectiveness of such vaccinations in MM still needs to be demonstrated. DC-based therapies against MM may need to be boosted with other sources of tumor-associated antigens, and potent DCs should be recruited to increase the effectiveness of treatment. DCs with both high migratory capacity and high cytokine production are very important for effective DC-based cancer vaccination in order to induce high numbers of Th1-type CD4+ T cells and CD8+ cytotoxic T lymphocytes. The tumor microenvironment is also important in the regulation of tumor cell growth, proliferation, and the development of therapeutic resistance after treatment. In this review, we discuss how the efficacy of DC vaccination in MM can be improved. In addition, novel treatment strategies that target not only myeloma cells but also the tumor microenvironment are urgently needed to improve treatment outcomes.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | | | | | | | | | | | | |
Collapse
|
146
|
Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J Biomed Biotechnol 2012; 2012:425476. [PMID: 22505809 PMCID: PMC3312387 DOI: 10.1155/2012/425476] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/11/2011] [Indexed: 12/23/2022] Open
Abstract
Many clinical trials have been carried out or are in progress to assess the therapeutic potential of dendritic-cell- (DC-) based vaccines on cancer patients, and recently the first DC-based vaccine for human cancer was approved by the FDA. Herewith, we describe the general characteristics of DCs and different strategies to generate effective antitumor DC vaccines. In recent years, the relevance of the tumor microenvironment in the progression of cancer has been highlighted. It has been shown that the tumor microenvironment is capable of inactivating various components of the immune system responsible for tumor clearance. In particular, the effect of the tumor microenvironment on antigen-presenting cells, such as DCs, does not only render these immune cells unable to induce specific immune responses, but also turns them into promoters of tumor growth. We also describe strategies likely to increase the efficacy of DC vaccines by reprogramming the immunosuppressive nature of the tumor microenvironment.
Collapse
|
147
|
Immunotherapy using dendritic cells against multiple myeloma: how to improve? Clin Dev Immunol 2012; 2012:397648. [PMID: 22481968 PMCID: PMC3312256 DOI: 10.1155/2012/397648] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/02/2012] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a good target disease in which one can apply cellular immunotherapy, which is based on the graft-versus-myeloma effect. This role of immune effector cells provides the framework for the development of immune-based therapeutic options that use antigen-presenting cells (APCs) with increased potency, such as dendritic cells (DCs), in MM. Current isolated idiotype (Id), myeloma cell lysates, myeloma dying cells, DC-myeloma hybrids, or DC transfected with tumor-derived RNA has been used for immunotherapy with DCs. Immunological inhibitory cytokines, such as TGF-β, IL-10, IL-6 and VEGF, which are produced from myeloma cells, can modulate antitumor host immune response, including the abrogation of DC function, by constitutive activation of STAT3. Therefore, even the immune responses have been observed in clinical trials, the clinical response was rarely improved following DC vaccinations in MM patients. We are going to discuss how to improve the efficacy of DC vaccination in MM.
Collapse
|
148
|
Abstract
Effectively treating patients with multiple myeloma is challenging. The development of therapeutic regimens over the past decade that incorporate the proteasome inhibitor bortezomib and the immunomodulatory drugs thalidomide and lenalidomide has been the cornerstone of improving the outcome of patients with myeloma. Although these treatment regimens have improved patient survival, nearly all patients eventually relapse. Our improved understanding of the biology of the disease and the importance of the microenvironment has translated into ongoing work to help overcome the challenge of relapse. Several classes of agents including next-generation proteasome inhibitors, immunomodulatory agents, selective histone-deacetylase inhibitors, antibody and antitumor immunotherapy approaches are currently undergoing preclinical and clinical evaluation. This Review provides an update on the latest advances in the treatment of multiple myeloma. In particular, we focus on novel therapies including modulating protein homeostasis, kinases inhibitors, targeting accessory cells and cytokines, and immunomodulatory agents. A discussion of the challenges associated with these therapeutic approaches is also presented.
Collapse
|
149
|
Cytotoxic chemotherapy and CD4+ effector T cells: an emerging alliance for durable antitumor effects. Clin Dev Immunol 2012; 2012:890178. [PMID: 22400040 PMCID: PMC3286900 DOI: 10.1155/2012/890178] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/01/2011] [Accepted: 11/05/2011] [Indexed: 12/18/2022]
Abstract
Standard cytotoxic chemotherapy can initially achieve high response rates, but relapses often occur in patients and represent a severe clinical problem. As increasing numbers of chemotherapeutic agents are found to have immunostimulatory effects, there is a growing interest to combine chemotherapy and immunotherapy for synergistic antitumor effects and improved clinical benefits. Findings from recent studies suggest that highly activated, polyfunctional CD4+ effector T cells have tremendous potential in strengthening and sustaining the overall host antitumor immunity in the postchemotherapy window. This review focuses on the latest progresses regarding the impact of chemotherapy on CD4+ T-cell phenotype and function and discusses the prospect of exploiting CD4+ T cells to control tumor progression and prevent relapse after chemotherapy.
Collapse
|
150
|
Anderson KC. The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. J Clin Oncol 2012; 30:445-52. [PMID: 22215754 PMCID: PMC4800820 DOI: 10.1200/jco.2011.37.8919] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma (MM) is a remarkable example of rapid bench-to-bedside translation in new drug development. The proteasome inhibitor bortezomib and immunomodulatory drug lenalidomide targeted MM cells in the bone marrow (BM) microenvironment to overcome conventional drug resistance in laboratory and animal models and were rapidly translated into clinical trials demonstrating their efficacy in patients with relapsed and then newly diagnosed MM, with a doubling of the median survival as a direct result. The future is even brighter. First, immune-based therapies are being developed (eg, elotuzumab monoclonal antibody [MoAb]; CD138DM immunotoxin; MM cell-dendritic cell vaccines; CD138, CS-1, and XBP-1 peptide vaccines; anti-17 MoAb; and other treatments to overcome causes of immune dysfunction). Second, promising next-generation agents target the MM cell in its microenvironment (eg, deubiquitinating enzyme inhibitors; chymotryptic [carfilzomib, Onyx 0912, MLN 9708] and broader [NPI-0052] proteasome inhibitors; immunoproteasome inhibitors; and pomalidamide). Moreover, agents targeting bone biology (eg, zoledronic acid, anti-DKK-1 MoAb, anti-B-cell activating factor MoAb and bortezomib, Btk inhibitor) show promise not only in preserving bone integrity but also against MM. Third, rationally based combination therapies, including bortezomib with Akt, mammalian target of rapamycin, or histone deacetylase inhibitors, are active even in bortezomib-refractory MM. Finally, genomics is currently being used in the definition of MM heterogeneity, new target discovery, and development of personalized therapy. Myeloma therefore represents a paradigm for targeting the tumor in its microenvironment, which has already markedly improved patient outcome in MM and has great potential in other hematologic malignancies and solid tumors as well.
Collapse
Affiliation(s)
- Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115-5450, USA.
| |
Collapse
|