101
|
Martinez-Barbera JP. 60 YEARS OF NEUROENDOCRINOLOGY: Biology of human craniopharyngioma: lessons from mouse models. J Endocrinol 2015; 226:T161-72. [PMID: 25926515 DOI: 10.1530/joe-15-0145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 01/29/2023]
Abstract
Adamantinomatous craniopharyngiomas (ACP) are clinically relevant tumours that are associated with high morbidity, poor quality of life and occasional mortality. Human and mouse studies have provided important insights into the biology of these aggressive tumours, and we are starting to understand why, how and when these tumours develop in humans. Mutations in β-catenin that result in the over-activation of the WNT/β-catenin signalling pathway are critical drivers of most, perhaps of all, human ACPs. Mouse studies have shown that only pituitary embryonic precursors or adult stem cells are able to generate tumours when targeted with oncogenic β-catenin, which suggests that the cell context is critical in order for mutant β-catenin to exert its oncogenic effect. Interestingly, mutant stem cells do not generate the bulk of the tumour cells; instead, they induce tumours in a paracrine manner. Combining basic studies in mice and humans will provide further insights into the biology of these neoplasms and will reveal pathogenic pathways that could be targeted with specific inhibitors for the benefit of patients. These benign tumours may additionally represent a unique model for investigating the early steps that lead to oncogenesis.
Collapse
Affiliation(s)
- Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer ProgrammeInstitute of Child Health, Birth Defects Research Centre, University College London, 30 Guilford Street, WC1N 1EH London, UK
| |
Collapse
|
102
|
Abstract
Dendritic cells (DCs) are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c, and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification.
Collapse
Affiliation(s)
- Mateusz Pawel Poltorak
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München , Munich , Germany
| | - Barbara Ursula Schraml
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München , Munich , Germany
| |
Collapse
|
103
|
Chen Z, Yi W, Morita Y, Wang H, Cong Y, Liu JP, Xiao Z, Rudolph KL, Cheng T, Ju Z. Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways. Nat Commun 2015; 6:6808. [DOI: 10.1038/ncomms7808] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/27/2015] [Indexed: 12/15/2022] Open
|
104
|
Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 2015; 125:2605-13. [PMID: 25762175 DOI: 10.1182/blood-2014-12-570200] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/03/2015] [Indexed: 12/25/2022] Open
Abstract
Hematopoietic stem cell (HSC) research took hold in the 1950s with the demonstration that intravenously injected bone marrow cells can rescue irradiated mice from lethality by reestablishing blood cell production. Attempts to quantify the cells responsible led to the discovery of serially transplantable, donor-derived, macroscopic, multilineage colonies detectable on the spleen surface 1 to 2 weeks posttransplant. The concept of self-renewing multipotent HSCs was born, but accompanied by perplexing evidence of great variability in the outcomes of HSC self-renewal divisions. The next 60 years saw an explosion in the development and use of more refined tools for assessing the behavior of prospectively purified subsets of hematopoietic cells with blood cell-producing capacity. These developments have led to the formulation of increasingly complex hierarchical models of hematopoiesis and a growing list of intrinsic and extrinsic elements that regulate HSC cycling status, viability, self-renewal, and lineage outputs. More recent examination of these properties in individual, highly purified HSCs and analyses of their perpetuation in clonally generated progeny HSCs have now provided definitive evidence of linearly transmitted heterogeneity in HSC states. These results anticipate the need and use of emerging new technologies to establish models that will accommodate such pluralistic features of HSCs and their control mechanisms.
Collapse
|
105
|
Abstract
The demonstrated presence in adult tissues of cells with sustained tissue regenerative potential has given rise to the concept of tissue stem cells. Assays to detect and measure such cells indicate that they have enormous proliferative potential and usually an ability to produce all or many of the mature cell types that define the specialized functionality of the tissue. In the hematopoietic system, one or only a few cells can restore lifelong hematopoiesis of the whole organism. To what extent is the maintenance of hematopoietic stem cells required during normal hematopoiesis? How does the constant maintenance of hematopoiesis occur and what is the behavior of the hematopoietic stem cells in the normal organism? How many of the hematopoietic stem cells are created during the development of the organism? How many hematopoietic stem cells are generating more mature progeny at any given moment? What happens to the population of hematopoietic stem cells in aging? This review will attempt to describe the results of recent research which contradict some of the ideas established over the past 30 years about how hematopoiesis is regulated.
Collapse
Affiliation(s)
- Nina Drize
- Federal Government Budget Institution National Research Center for Hematology, Ministry of Health, Moscow, Russian Federation
| | - Nataliya Petinati
- Federal Government Budget Institution National Research Center for Hematology, Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
106
|
Abstract
Analysis of the mechanisms underlying cell fates requires the molecular quantification of cellular features. Classical techniques use population average readouts at single time points. However, these approaches mask cellular heterogeneity and dynamics and are limited for studying rare and heterogeneous cell populations like stem cells. Techniques for single-cell analyses, ideally allowing non-invasive quantification of molecular dynamics and cellular behaviour over time, are required for studying stem cells. Here, we review the development and application of these techniques to stem cell research.
Collapse
|
107
|
Kim S, Kim N, Presson AP, Metzger ME, Bonifacino AC, Sehl M, Chow SA, Crooks GM, Dunbar CE, An DS, Donahue RE, Chen ISY. Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study. Cell Stem Cell 2014; 14:473-85. [PMID: 24702996 DOI: 10.1016/j.stem.2013.12.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/13/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023]
Abstract
In mice, clonal tracking of hematopoietic stem cells (HSCs) has revealed variations in repopulation characteristics. However, it is unclear whether similar properties apply in primates. Here, we examined this issue through tracking of thousands of hematopoietic stem and progenitor cells (HSPCs) in rhesus macaques for up to 12 years. Approximately half of the clones analyzed contributed to long-term repopulation (over 3-10 years), arising in sequential groups and likely representing self-renewing HSCs. The remainder contributed primarily for the first year. The long-lived clones could be further subdivided into functional groups contributing primarily to myeloid, lymphoid, or both myeloid and lymphoid lineages. Over time, the 4%-10% of clones with robust dual lineage contribution predominated in repopulation. HSPCs expressing a CCR5 shRNA transgene behaved similarly to controls. Our study therefore documents HSPC behavior in a clinically relevant model over a long time frame and provides a substantial system-level data set that is a reference point for future work.
Collapse
Affiliation(s)
- Sanggu Kim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Namshin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Angela P Presson
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark E Metzger
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Aylin C Bonifacino
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Mary Sehl
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biomathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samson A Chow
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Dong Sung An
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert E Donahue
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
108
|
Wu C, Li B, Lu R, Koelle SJ, Yang Y, Jares A, Krouse AE, Metzger M, Liang F, Loré K, Wu CO, Donahue RE, Chen ISY, Weissman I, Dunbar CE. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 2014; 14:486-499. [PMID: 24702997 DOI: 10.1016/j.stem.2014.01.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 12/09/2013] [Accepted: 01/30/2014] [Indexed: 01/15/2023]
Abstract
Analysis of hematopoietic stem cell function in nonhuman primates provides insights that are relevant for human biology and therapeutic strategies. In this study, we applied quantitative genetic barcoding to track the clonal output of transplanted autologous rhesus macaque hematopoietic stem and progenitor cells over a time period of up to 9.5 months. We found that unilineage short-term progenitors reconstituted myeloid and lymphoid lineages at 1 month but were supplanted over time by multilineage clones, initially myeloid restricted, then myeloid-B clones, and then stable myeloid-B-T multilineage, long-term repopulating clones. Surprisingly, reconstitution of the natural killer (NK) cell lineage, and particularly the major CD16(+)/CD56(-) peripheral blood NK compartment, showed limited clonal overlap with T, B, or myeloid lineages, and therefore appears to be ontologically distinct. Thus, in addition to providing insights into clonal behavior over time, our analysis suggests an unexpected paradigm for the relationship between NK cells and other hematopoietic lineages in primates.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Li
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samson J Koelle
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Jares
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan E Krouse
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Metzger
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank Liang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin Loré
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert E Donahue
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Irvin S Y Chen
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Cynthia E Dunbar
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
109
|
Babovic S, Eaves CJ. Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res 2014; 329:185-91. [DOI: 10.1016/j.yexcr.2014.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/02/2014] [Indexed: 02/06/2023]
|
110
|
Blundell JR, Levy SF. Beyond genome sequencing: Lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer. Genomics 2014; 104:417-30. [DOI: 10.1016/j.ygeno.2014.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
|
111
|
Klauke K, Broekhuis MJC, Weersing E, Dethmers-Ausema A, Ritsema M, González MV, Zwart E, Bystrykh LV, de Haan G. Tracing dynamics and clonal heterogeneity of Cbx7-induced leukemic stem cells by cellular barcoding. Stem Cell Reports 2014; 4:74-89. [PMID: 25434821 PMCID: PMC4297865 DOI: 10.1016/j.stemcr.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities, where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model is of general relevance for the understanding of tumor dynamics and clonal evolution.
Collapse
Affiliation(s)
- Karin Klauke
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands.
| | - Mathilde J C Broekhuis
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Ellen Weersing
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Albertina Dethmers-Ausema
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Martha Ritsema
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Marta Vilà González
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Erik Zwart
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Leonid V Bystrykh
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Gerald de Haan
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands.
| |
Collapse
|
112
|
Limited niche availability suppresses murine intrathymic dendritic-cell development from noncommitted progenitors. Blood 2014; 125:457-64. [PMID: 25411428 DOI: 10.1182/blood-2014-07-592667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The origins of dendritic cells (DCs) and other myeloid cells in the thymus have remained controversial. In this study, we assessed developmental relationships between thymic dendritic cells and thymocytes, employing retrovirus-based cellular barcoding and reporter mice, as well as intrathymic transfers coupled with DC depletion. We demonstrated that a subset of early T-lineage progenitors expressed CX3CR1, a bona fide marker for DC progenitors. However, intrathymic transfers into nonmanipulated mice, as well as retroviral barcoding, indicated that thymic dendritic cells and thymocytes were largely of distinct developmental origin. In contrast, intrathymic transfers after in vivo depletion of DCs resulted in intrathymic development of non-T-lineage cells. In conclusion, our data support a model in which the adoption of T-lineage fate by noncommitted progenitors at steady state is enforced by signals from the thymic microenvironment unless niches promoting alternative lineage fates become available.
Collapse
|
113
|
Etzrodt M, Endele M, Schroeder T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 2014; 15:546-58. [PMID: 25517464 DOI: 10.1016/j.stem.2014.10.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the molecular control of cell fates is central to stem cell research. Such insight requires quantification of molecular and cellular behavior at the single-cell level. Recent advances now permit high-throughput molecular readouts from single cells as well as continuous, noninvasive observation of cell behavior over time. Here, we review current state-of-the-art approaches used to query stem cell fate at the single-cell level, including advances in lineage tracing, time-lapse imaging, and molecular profiling. We also offer our perspective on the advantages and drawbacks of available approaches, key technical limitations, considerations for data interpretation, and future innovation.
Collapse
Affiliation(s)
- Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Max Endele
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
114
|
Geiger H, Zheng Y. Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42. Exp Cell Res 2014; 329:214-9. [PMID: 25220425 DOI: 10.1016/j.yexcr.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022]
Abstract
Aging of stem cells might be the underlying cause of tissue aging in tissue that in the adult heavily rely on stem cell activity, like the blood forming system. Hematopoiesis, the generation of blood forming cells, is sustained by hematopoietic stem cells. In this review article, we introduce the canonical set of phenotypes associated with aged HSCs, focus on the novel aging-associated phenotype apolarity caused by elevated activity of the small RhoGTPase in aged HSCs, discuss the role of Cdc42 in hematopoiesis and describe that pharmacological inhibition of Cdc42 activity in aged HSCs results in functionally young and thus rejuvenated HSCs.
Collapse
Affiliation(s)
- Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children׳s Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA; Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, Ulm 89091, Germany; aging research center, Ulm University, Ulm, Germany.
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children׳s Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
115
|
Schmitt CE, Lizama CO, Zovein AC. From transplantation to transgenics: Mouse models of developmental hematopoiesis. Exp Hematol 2014; 42:707-16. [DOI: 10.1016/j.exphem.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/13/2014] [Accepted: 06/30/2014] [Indexed: 01/03/2023]
|
116
|
Wojtowicz EE, Walasek MA, Broekhuis MJC, Weersing E, Ritsema M, Ausema A, Bystrykh LV, de Haan G. MicroRNA-125 family members exert a similar role in the regulation of murine hematopoiesis. Exp Hematol 2014; 42:909-18.e1. [PMID: 25092555 DOI: 10.1016/j.exphem.2014.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are crucial for proper functioning of hematopoietic stem and progenitor cells (HSPCs). Members of the miRNA-125 family (consisting of miR-125a, miR-125b1, and miR-125b2) are known to confer a proliferative advantage on cells upon overexpression, to decrease the rate of apoptosis by targeting proapoptotic genes, and to promote differentiation toward the myeloid lineage in mice. However, many distinct biological effects of the three miR-125 species have been reported as well. In the current study, we set out to assess whether the three miRNA-125s that carry identical seed sequences could be functionally different. Our data show that overexpression of each of the three miR-125 family members preserves HSPCs in a primitive state in vitro, results in a competitive advantage upon serial transplantation, and promotes skewing toward the myeloid lineage. All miR-125 family members decreased the pool of phenotypically defined Lin(-)Sca(+)Kit(+)CD48(-)CD150(+) long-term hematopoietic stem cells, simultaneously increasing the self-renewal activity upon secondary transplantation. The downregulation of miR-125s in hematopoietic stem cells abolishes these effects and impairs long-term contribution to blood cell production. The introduction of a point mutation within the miRNA-125 seed sequence abolishes all abovementioned effects and leads to the restoration of normal hematopoiesis. Our results show that all miR-125 family members are similar in function, they likely operate in a seed-sequence-dependent manner, and they induce a highly comparable hematopoietic phenotype.
Collapse
Affiliation(s)
- Edyta E Wojtowicz
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| | - Marta A Walasek
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Mathilde J C Broekhuis
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ellen Weersing
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Martha Ritsema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Leonid V Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
117
|
Deakin CT, Deakin JJ, Ginn SL, Young P, Humphreys D, Suter CM, Alexander IE, Hallwirth CV. Impact of next-generation sequencing error on analysis of barcoded plasmid libraries of known complexity and sequence. Nucleic Acids Res 2014; 42:e129. [PMID: 25013183 PMCID: PMC4176369 DOI: 10.1093/nar/gku607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Barcoded vectors are promising tools for investigating clonal diversity and dynamics in hematopoietic gene therapy. Analysis of clones marked with barcoded vectors requires accurate identification of potentially large numbers of individually rare barcodes, when the exact number, sequence identity and abundance are unknown. This is an inherently challenging application, and the feasibility of using contemporary next-generation sequencing technologies is unresolved. To explore this potential application empirically, without prior assumptions, we sequenced barcode libraries of known complexity. Libraries containing 1, 10 and 100 Sanger-sequenced barcodes were sequenced using an Illumina platform, with a 100-barcode library also sequenced using a SOLiD platform. Libraries containing 1 and 10 barcodes were distinguished from false barcodes generated by sequencing error by a several log-fold difference in abundance. In 100-barcode libraries, however, expected and false barcodes overlapped and could not be resolved by bioinformatic filtering and clustering strategies. In independent sequencing runs multiple false-positive barcodes appeared to be represented at higher abundance than known barcodes, despite their confirmed absence from the original library. Such errors, which potentially impact barcoding studies in an application-dependent manner, are consistent with the existence of both stochastic and systematic error, the mechanism of which is yet to be fully resolved.
Collapse
Affiliation(s)
- Claire T Deakin
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Jeffrey J Deakin
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Paul Young
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, Darlinghurst, New South Wales 2010, Australia
| | - David Humphreys
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Catherine M Suter
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, Darlinghurst, New South Wales 2010, Australia Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead Clinical School, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| |
Collapse
|
118
|
Naik SH, Schumacher TN, Perié L. Cellular barcoding: a technical appraisal. Exp Hematol 2014; 42:598-608. [PMID: 24996012 DOI: 10.1016/j.exphem.2014.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
Abstract
Cellular barcoding involves the tagging of individual cells of interest with unique genetic heritable identifiers or barcodes and is emerging as a powerful tool to address individual cell fates on a large scale. However, as with many new technologies, diverse technical and analytical challenges have emerged. Here, we review those challenges and highlight both the power and limitations of cellular barcoding. We then illustrate the contribution of cellular barcoding to the understanding of hematopoiesis and outline the future potential of this technology.
Collapse
Affiliation(s)
- Shalin H Naik
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Ton N Schumacher
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Leïla Perié
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
119
|
Geiger H, Denkinger M, Schirmbeck R. Hematopoietic stem cell aging. Curr Opin Immunol 2014; 29:86-92. [PMID: 24905894 DOI: 10.1016/j.coi.2014.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
Abstract
Aging is organized in a hierarchy, in which aging of cells results in aged tissues, ultimately limiting lifespan. For organ systems that also in the adult depend on stem cells for tissue homeostasis like the hematopoietic system that forms immune cells, it is believed that aging of the stem cells strongly contributes to aging-associated dysfunction. In this review, we summarize current aspects on cellular and molecular mechanisms that are associated with aging of hematopoietic stem cells, the role of the stem cell niche for stem cell aging as well as novel and encouraging experimental approaches to attenuate aging of hematopoietic stem cells to target immunosenescence.
Collapse
Affiliation(s)
- Hartmut Geiger
- Institute for Molecular Medicine, Stem Cell and Aging, Ulm University, Ulm, Germany; Aging Research Center, Ulm University, Ulm, Germany; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA.
| | - Michael Denkinger
- AGAPLESION Bethesda Clinic, Geriatric Center Ulm University, Ulm, Germany
| | | |
Collapse
|
120
|
Porter SN, Baker LC, Mittelman D, Porteus MH. Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo. Genome Biol 2014; 15:R75. [PMID: 24886633 PMCID: PMC4073073 DOI: 10.1186/gb-2014-15-5-r75] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 05/30/2014] [Indexed: 12/03/2022] Open
Abstract
Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents.
Collapse
|
121
|
Paul F, Amit I. Plasticity in the transcriptional and epigenetic circuits regulating dendritic cell lineage specification and function. Curr Opin Immunol 2014; 30:1-8. [PMID: 24820527 DOI: 10.1016/j.coi.2014.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DC) are critical and functionally versatile innate immune sentinels. Here, we coarsely partition the adult DC lineage into three developmental subtypes and argue that pioneer transcription factors and chromatin remodeling are responsible for specification and plasticity between the DC subsets. Subsequently, intricate signaling-dependent transcription factor networks generate different functional states in response to pathogen stimuli within a specified DC subtype. To expand our understanding of lineage heterogeneity and functional activation states, we discuss the use of single cell genomics approaches in the context of a newly emerging systems immunology era, complementing the dichotomous definition of immune cells based solely on their surface marker expression. Rapid developments in single cell genomics are beginning to provide us with robust tools to potentially revise the working models of DC specification and the common hematopoietic tree.
Collapse
Affiliation(s)
- Franziska Paul
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
122
|
Przybilla J, Rohlf T, Loeffler M, Galle J. Understanding epigenetic changes in aging stem cells--a computational model approach. Aging Cell 2014; 13:320-8. [PMID: 24428552 PMCID: PMC4331773 DOI: 10.1111/acel.12177] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
During aging, a decline in stem cell function is observed in many tissues. This decline is accompanied by complex changes of the chromatin structure among them changes in histone modifications and DNA methylation which both affect transcription of a tissue-specific subset of genes. A mechanistic understanding of these age-associated processes, their interrelations and environmental dependence is currently lacking. Here, we discuss related questions on the molecular, cellular, and population level. We combine an individual cell-based model of stem cell populations with a model of epigenetic regulation of transcription. The novel model enables to simulate age-related changes of trimethylation of lysine 4 at histone H3 and of DNA methylation. These changes entail expression changes of genes that induce age-related phenotypes (ARPs) of cells. We compare age-related changes of regulatory states in quiescent stem cells occupying a niche with those observed in proliferating cells. Moreover, we analyze the impact of the activity of the involved epigenetic modifiers on these changes. We find that epigenetic aging strongly affects stem cell heterogeneity and that homing at stem cell niches retards epigenetic aging. Our model provides a mechanistic explanation how increased stem cell proliferation can lead to progeroid phenotypes. Adapting our model to properties observed for aged hematopoietic stem cell (HSC) clones, we predict that the hematopoietic ARP activates young HSCs and thereby retards aging of the entire HSC population. In addition, our model suggests that the experimentally observed high interindividual variance in HSC numbers originates in a variance of histone methyltransferase activity.
Collapse
Affiliation(s)
- Jens Przybilla
- Interdisciplinary Center for Bioinformatics University Leipzig Haertelstr. 16‐1804107Leipzig Germany
| | - Thimo Rohlf
- Interdisciplinary Center for Bioinformatics University Leipzig Haertelstr. 16‐1804107Leipzig Germany
- Max‐Planck‐Institute for Mathematics in the Sciences Inselstr. 2204103 Leipzig Germany
| | - Markus Loeffler
- Interdisciplinary Center for Bioinformatics University Leipzig Haertelstr. 16‐1804107Leipzig Germany
- Institute for Medical Informatics, Statistics and Epidemiology University Leipzig Haertelstr. 16‐1804107Leipzig Germany
| | - Joerg Galle
- Interdisciplinary Center for Bioinformatics University Leipzig Haertelstr. 16‐1804107Leipzig Germany
| |
Collapse
|
123
|
Verovskaya E, Broekhuis MJC, Zwart E, Weersing E, Ritsema M, Bosman LJ, van Poele T, de Haan G, Bystrykh LV. Asymmetry in skeletal distribution of mouse hematopoietic stem cell clones and their equilibration by mobilizing cytokines. ACTA ACUST UNITED AC 2014; 211:487-97. [PMID: 24567446 PMCID: PMC3949563 DOI: 10.1084/jem.20131804] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Upon transplant, functional HSC clones preferentially expand in certain skeletal locations, exhibiting only limited migration toward other niches. Hematopoietic stem cells (HSCs) are able to migrate through the blood stream and engraft bone marrow (BM) niches. These features are key factors for successful stem cell transplantations that are used in cancer patients and in gene therapy protocols. It is unknown to what extent transplanted HSCs distribute throughout different anatomical niches in the BM and whether this changes with age. Here we determine the degree of hematopoietic migration at a clonal level by transplanting individual young and aged mouse HSCs labeled with barcoded viral vector, followed by assessing the skeletal distribution of hundreds of HSC clones. We detected highly skewed representation of individual clones in different bones at least 11 mo after transplantation. Importantly, a single challenge with the clinically relevant mobilizing agent granulocyte colony-stimulating factor (G-CSF) caused rapid redistribution of HSCs across the skeletal compartments. Old and young HSC clones showed a similar level of migratory behavior. Clonal make-up of blood of secondary recipients recapitulates the barcode composition of HSCs in the bone of origin. These data demonstrate a previously unanticipated high skeletal disequilibrium of the clonal composition of HSC pool long-term after transplantation. Our findings have important implications for experimental and clinical and stem cell transplantation protocols.
Collapse
Affiliation(s)
- Evgenia Verovskaya
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014; 32:252-60. [PMID: 24561556 DOI: 10.1038/nbt.2816] [Citation(s) in RCA: 1044] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/19/2013] [Indexed: 02/07/2023]
Abstract
The diverse immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) may be exploited for treatment of a multitude of inflammatory conditions. MSCs have long been reported to be hypoimmunogenic or 'immune privileged'; this property is thought to enable MSC transplantation across major histocompatibility barriers and the creation of off-the-shelf therapies consisting of MSCs grown in culture. However, recent studies describing generation of antibodies against and immune rejection of allogeneic donor MSCs suggest that MSCs may not actually be immune privileged. Nevertheless, whether rejection of donor MSCs influences the efficacy of allogeneic MSC therapies is not known, and no definitive clinical advantage of autologous MSCs over allogeneic MSCs has been demonstrated to date. Although MSCs may exert therapeutic function through a brief 'hit and run' mechanism, protecting MSCs from immune detection and prolonging their persistence in vivo may improve clinical outcomes and prevent patient sensitization toward donor antigens.
Collapse
|
125
|
Pollock JD, Wu DY, Satterlee JS. Molecular neuroanatomy: a generation of progress. Trends Neurosci 2014; 37:106-23. [PMID: 24388609 PMCID: PMC3946666 DOI: 10.1016/j.tins.2013.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 11/22/2022]
Abstract
The neuroscience research landscape has changed dramatically over the past decade. Specifically, an impressive array of new tools and technologies have been generated, including but not limited to: brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity, and new methods for imaging and mapping circuits. However, despite these technological advances, several significant challenges must be overcome to enable a better understanding of brain function and to develop cell type-targeted therapeutics to treat brain disorders. This review provides an overview of some of the tools and technologies currently being used to advance the field of molecular neuroanatomy, and also discusses emerging technologies that may enable neuroscientists to address these crucial scientific challenges over the coming decade.
Collapse
Affiliation(s)
- Jonathan D Pollock
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA.
| | - Da-Yu Wu
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - John S Satterlee
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA
| |
Collapse
|
126
|
Determining Lineage Pathways from Cellular Barcoding Experiments. Cell Rep 2014; 6:617-24. [DOI: 10.1016/j.celrep.2014.01.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/09/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022] Open
|
127
|
Bystrykh LV, de Haan G, Verovskaya E. Barcoded vector libraries and retroviral or lentiviral barcoding of hematopoietic stem cells. Methods Mol Biol 2014; 1185:345-360. [PMID: 25062640 DOI: 10.1007/978-1-4939-1133-2_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellular barcoding is a relatively recent technique aimed at clonal analysis of a proliferating cell population of any kind. The method was shown to be particularly successful in monitoring clonal contributions of hematopoietic stem cells (HSCs). An essential step of the method is retroviral or lentiviral labeling of the hematopoietic cells. The unique feature of the method is the generation of a vector library containing specific artificial DNA tags, generally known as barcodes. The library must satisfy multiple essential requirements. Importantly, considering the number of possible variations within the barcode sequence, the actual size of the barcoded vector library, and the number of clonogenic (stem) cells in the given experiment should be in ratios far from saturation. Excessive bias in barcodes frequencies must be avoided, and the library size must be assessed prior to the sequencing analysis. The final sequencing results must undergo statistical filtering. If all requirements are met, the method ensures profound sensitivity and accuracy for monitoring of the clonal fluctuations in a wide range of biological experiments.
Collapse
Affiliation(s)
- Leonid V Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Antoninus Deusinglaan 1, Building 3226, 9713 AV, Groningen, The Netherlands,
| | | | | |
Collapse
|
128
|
Hoggatt J, Mohammad KS, Singh P, Pelus LM. Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness. Blood 2013; 122:2997-3000. [PMID: 24047650 PMCID: PMC3811174 DOI: 10.1182/blood-2013-07-515288] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/09/2013] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for malignant and nonmalignant hematologic diseases and metabolic disorders. Although successful, hematopoietic transplantation can be hindered by inadequate stem cell number or poor engrafting efficiency. To overcome these deficits, we and others have previously reported the HSC-enhancing ability of a short-term exposure of prostaglandin E2 (PGE2); this strategy has now progressed to phase 1 clinical trials in double cord blood transplantation. To further analyze the short- and long-term effects of HSC exposure to PGE2, we followed the repopulation kinetics of PGE2-treated hematopoietic grafts through 5 serial transplantations and compared inherent long-term competitiveness in a HSC head-to-head secondary transplantation model. Treatment with PGE2 did not result in a long-term increase in HSC competitiveness, lineage bias, or enhanced proliferative potential, demonstrating that pulse exposure to PGE2 results in transient increases in HSC homing and engraftment potential.
Collapse
Affiliation(s)
- Jonathan Hoggatt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | |
Collapse
|
129
|
Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood 2013; 122:3129-37. [PMID: 24030380 DOI: 10.1182/blood-2013-06-508432] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human cord blood (CB) offers an attractive source of cells for clinical transplants because of its rich content of cells with sustained repopulating ability in spite of an apparent deficiency of cells with rapid reconstituting ability. Nevertheless, the clonal dynamics of nonlimiting CB transplants remain poorly understood. To begin to address this question, we exposed CD34+ CB cells to a library of barcoded lentiviruses and used massively parallel sequencing to quantify the clonal distributions of lymphoid and myeloid cells subsequently detected in sequential marrow aspirates obtained from 2 primary NOD/SCID-IL2Rγ(-/-) mice, each transplanted with ∼10(5) of these cells, and for another 6 months in 2 secondary recipients. Of the 196 clones identified, 68 were detected at 4 weeks posttransplant and were often lympho-myeloid. The rest were detected later, after variable periods up to 13 months posttransplant, but with generally increasing stability throughout time, and they included clones in which different lineages were detected. However, definitive evidence of individual cells capable of generating T-, B-, and myeloid cells, for over a year, and self-renewal of this potential was also obtained. These findings highlight the caveats and utility of this model to analyze human hematopoietic stem cell control in vivo.
Collapse
|