101
|
Anderson AE, Galko MJ. Will the wound-healing field earn its wings? Exp Dermatol 2016; 23:809-10. [PMID: 25040854 DOI: 10.1111/exd.12498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 12/25/2022]
Abstract
In a recently published issue of Experimental Dermatology, Dr. Nuria Paricio and colleagues review recent advances using the fruit fly, Drosophila melanogaster, as a wound-healing model. They describe many of the advantages of the fly model for gene discovery and functional analysis, highlighting its particular strengths and limitations for studies of wound healing. This commentary assumes that dermatologist-scientists and fly wound-healing researchers share a common field-wide goal of discovering all of the clinically relevant wound-healing genes and understanding in molecular detail how those genes work. We ask: how can we cooperate to achieve this shared goal?
Collapse
Affiliation(s)
- Aimee E Anderson
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
102
|
Kordbacheh F, Bhatia N, Farah CS. Patterns of differentially expressed genes in oral mucosal lesions visualised under autofluorescence (VELscope™). Oral Dis 2016; 22:285-96. [DOI: 10.1111/odi.12438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Affiliation(s)
- F Kordbacheh
- Oral Oncology Research Program; UQ Centre for Clinical Research; University of Queensland; Herston Qld Australia
| | - N Bhatia
- Oral Oncology Research Program; UQ Centre for Clinical Research; University of Queensland; Herston Qld Australia
| | - CS Farah
- Oral Oncology Research Program; UQ Centre for Clinical Research; University of Queensland; Herston Qld Australia
- Australian Centre for Oral Oncology Research & Education; School of Dentistry; University of Western Australia; Nedlands WA Australia
| |
Collapse
|
103
|
Zhao Y, Bao L, Chan LS, DiPietro LA, Chen L. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis. PLoS One 2016; 11:e0146451. [PMID: 26752054 PMCID: PMC4709197 DOI: 10.1371/journal.pone.0146451] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/17/2015] [Indexed: 01/13/2023] Open
Abstract
Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei Bao
- Departments of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lawrence S. Chan
- Departments of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Departments of Immunology and Microbiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Medicine Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
104
|
Carbohydrate-derived fulvic acid is a highly promising topical agent to enhance healing of wounds infected with drug-resistant pathogens. J Trauma Acute Care Surg 2016; 79:S121-9. [PMID: 26406424 DOI: 10.1097/ta.0000000000000737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND This work was intended as a proof-of-principle study to help establish carbohydrate-derived fulvic acid (CHD-FA) as a safe and effective agent that can be deployed to prevent the onset of drug-resistant bacterial and fungal infections in military and civilian personnel experiencing traumatic wound. METHODS Minimum inhibitory concentrations for CHD-FA were established on a total of 500 clinical isolates representing wound-associated drug-sensitive and drug-resistant bacterial and fungal pathogens. The efficacy of early use of CHD-FA to enhance healing of wounds infected with methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa was evaluated in an in vivo rat model. RESULTS CHD-FA showed strong activity against a variety of bacterial and fungal pathogens with minimum inhibitory concentration values equal or less than 0.5%. Compared with infected but untreated wounds, improved wound healing upon CHD-FA treatment was observed in both infection models, demonstrated by wound surface area measurement, histopathologic examination, and expression profiling of wound healing genes. Up-regulation of proinflammatory cytokine interleukin 6 (IL-6) at Day 3 after infection was significantly dampened at Days 6 and 10 in the CHD-FA-treated wounds in both infection models, displaying an improved and accelerated wound healing. CONCLUSION CHD-FA is a promising topical remedy for drug-resistant wound infections. It accelerated the healing process of wounds infected with methicillin-resistant S. aureus and multidrug-resistant P. aeruginosa in rats, which is linked to both its antimicrobial and anti-inflammatory properties.
Collapse
|
105
|
Zhong A, Xu W, Zhao J, Xie P, Jia S, Sun J, Galiano RD, Mustoe TA, Hong SJ. S100A8 and S100A9 Are Induced by Decreased Hydration in the Epidermis and Promote Fibroblast Activation and Fibrosis in the Dermis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:109-22. [DOI: 10.1016/j.ajpath.2015.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022]
|
106
|
Calenic B, Greabu M, Caruntu C, Tanase C, Battino M. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses. Periodontol 2000 2015; 69:68-82. [DOI: 10.1111/prd.12097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 12/18/2022]
|
107
|
Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121575. [PMID: 26339586 PMCID: PMC4538314 DOI: 10.1155/2015/121575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/03/2015] [Accepted: 04/10/2015] [Indexed: 01/27/2023]
Abstract
Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.
Collapse
|
108
|
Kurose T, Hashimoto M, Ozawa J, Kawamata S. Analysis of Gene Expression in Experimental Pressure Ulcers in the Rat with Special Reference to Inflammatory Cytokines. PLoS One 2015; 10:e0132622. [PMID: 26177082 PMCID: PMC4503587 DOI: 10.1371/journal.pone.0132622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/16/2015] [Indexed: 11/24/2022] Open
Abstract
Pressure ulcers have been investigated in a few animal models, but the molecular mechanisms of pressure ulcers are not well understood. We hypothesized that pressure results in up-regulation of inflammatory cytokines and those cytokines contribute to the formation of pressure ulcers. We measured genome-wide changes in transcript levels after compression, and focused especially on inflammatory cytokines. The abdominal wall of rats was compressed at 100 mmHg for 4 hours by two magnets. Specimens were obtained 12 hours, 1, or 3 days after compression, and analyzed by light microscopy, microarray, Real-Time PCR, and ELISA. The skin and subcutaneous tissue in the compressed area were markedly thickened. The microarray showed that numerous genes were up-regulated after the compression. Up-regulated genes were involved in apoptosis, inflammation, oxidative stress, proteolysis, hypoxia, and so on. Real-Time PCR showed the up-regulation of granulocyte-macrophage colony stimulating factor (GM-CSF), interferon γ (IFN-γ), interleukin 1β (IL-1β), interleukin 1 receptor antagonist gene (IL1Ra), interleukin 6 (IL-6), interleukin 10 (IL-10), matrix metalloproteinase 3 (MMP-3), tissue inhibitor of metalloproteinase 1 (TIMP-1), and tumor necrosis factor α (TNF-α) at 12 hours, IFN-γ, IL-6, IL-10, MMP-3, and TIMP-1 at 1 day, and IFN-γ, IL-6, and MMP-3 at 3 days. Some genes from subcutaneous tissue were up-regulated temporarily, and others were kept at high levels of expression. ELISA data showed that the concentrations of IL-1β and IL-6 proteins were most notably increased following compression. Prolonged up-regulation of IL-1β, and IL-6 might enhance local inflammation, and continuous local inflammation may contribute to the pressure ulcer formation. In addition, GM-CSF, IFN-γ, MMP-3, and TIMP-1 were not reported previously in the wound healing process, and those genes may have a role in development of the pressure ulcers. Expression data from Real-Time PCR were generally in good agreement with those of the microarray. Our microarray data were useful for identifying genes involved in pressure ulcer formation. However, the expression levels of the genes didn’t necessarily correspond with protein production. As such, the functions of these cytokines need to be further investigated.
Collapse
Affiliation(s)
- Tomoyuki Kurose
- Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Masakazu Hashimoto
- Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junya Ozawa
- Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
| | - Seiichi Kawamata
- Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
109
|
Wietecha MS, Król MJ, Michalczyk ER, Chen L, Gettins PG, DiPietro LA. Pigment epithelium-derived factor as a multifunctional regulator of wound healing. Am J Physiol Heart Circ Physiol 2015; 309:H812-26. [PMID: 26163443 DOI: 10.1152/ajpheart.00153.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/08/2015] [Indexed: 01/12/2023]
Abstract
During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Mateusz J Król
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Elizabeth R Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Peter G Gettins
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
110
|
Félez-Sánchez M, Trösemeier JH, Bedhomme S, González-Bravo MI, Kamp C, Bravo IG. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses. Genome Biol Evol 2015; 7:2117-35. [PMID: 26139833 PMCID: PMC4558848 DOI: 10.1093/gbe/evv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response.
Collapse
Affiliation(s)
- Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jan-Hendrik Trösemeier
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe University, Frankfurt am Main, Germany Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Stéphanie Bedhomme
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain Département d'Ecologie Evolutive Centre d'Ecologie Fonctionnelle et Evolutive, CNRS - UMR 5175, Montpellier, France
| | | | - Christel Kamp
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
111
|
Genome-wide expression analysis of wounded skin reveals novel genes involved in angiogenesis. Angiogenesis 2015; 18:361-71. [DOI: 10.1007/s10456-015-9472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/20/2015] [Indexed: 01/29/2023]
|
112
|
Chen L, DiPietro LA. Production and function of pigment epithelium-derived factor in isolated skin keratinocytes. Exp Dermatol 2015; 23:436-8. [PMID: 24698153 DOI: 10.1111/exd.12411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2014] [Indexed: 01/02/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional factor with potent anti-angiogenic activity that may play a role in skin homoeostasis and wound healing. Analysis of PEDF levels demonstrated that PEDF levels are high in normal skin but quite low in early wounds. As previous studies have suggested that keratinocytes can produce PEDF, we investigated how conditions that mimic those found at sites of injury influence PEDF production by keratinocytes in vitro. Both injury by mechanical disruption (scratch assay) and treatment of human keratinocytes with inflammatory cytokines (IL-1β, IL-6 and TNF-α) inhibited PEDF expression. We next examined how PEDF affects keratinocyte functions that are important in tissue repair. Treatment of keratinocytes with exogenous PEDF enhanced keratinocyte adhesion, therefore impairing migration, while having no effect on cell proliferation. The results suggest that modulation of PEDF levels may play a pivotal role in skin homoeostasis and the response of keratinocytes to injury or inflammatory insults.
Collapse
Affiliation(s)
- Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
113
|
Xu F, Othman B, Lim J, Batres A, Ponugoti B, Zhang C, Yi L, Liu J, Tian C, Hameedaldeen A, Alsadun S, Tarapore R, Graves DT. Foxo1 inhibits diabetic mucosal wound healing but enhances healing of normoglycemic wounds. Diabetes 2015; 64:243-56. [PMID: 25187373 PMCID: PMC4274809 DOI: 10.2337/db14-0589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Re-epithelialization is an important part in mucosal wound healing. Surprisingly little is known about the impact of diabetes on the molecular events of mucosal healing. We examined the role of the transcription factor forkhead box O1 (Foxo1) in oral wounds of diabetic and normoglycemic mice with keratinocyte-specific Foxo1 deletion. Diabetic mucosal wounds had significantly delayed healing with reduced cell migration and proliferation. Foxo1 deletion rescued the negative impact of diabetes on healing but had the opposite effect in normoglycemic mice. Diabetes in vivo and in high glucose conditions in vitro enhanced expression of chemokine (C-C motif) ligand 20 (CCL20) and interleukin-36γ (IL-36γ) in a Foxo1-dependent manner. High glucose-stimulated Foxo1 binding to CCL20 and IL-36γ promoters and CCL20 and IL-36γ significantly inhibited migration of these cells in high glucose conditions. In normal healing, Foxo1 was needed for transforming growth factor-β1 (TGF-β1) expression, and in standard glucose conditions, TGF-β1 rescued the negative effect of Foxo1 silencing on migration in vitro. We propose that Foxo1 under diabetic or high glucose conditions impairs healing by promoting high levels of CCL20 and IL-36γ expression but under normal conditions, enhances it by inducing TGF-β1. This finding provides mechanistic insight into how Foxo1 mediates the impact of diabetes on mucosal wound healing.
Collapse
Affiliation(s)
- Fanxing Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Badr Othman
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jason Lim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Angelika Batres
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bhaskar Ponugoti
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chenying Zhang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Leah Yi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jian Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA Department of Stomatology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Tian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alhassan Hameedaldeen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarah Alsadun
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rohinton Tarapore
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
114
|
Le Bras GF, Taylor C, Koumangoye RB, Revetta F, Loomans HA, Andl CD. TGFβ loss activates ADAMTS-1-mediated EGF-dependent invasion in a model of esophageal cell invasion. Exp Cell Res 2015; 330:29-42. [PMID: 25064463 PMCID: PMC4267897 DOI: 10.1016/j.yexcr.2014.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022]
Abstract
The TGFβ signaling pathway is essential to epithelial homeostasis and is often inhibited during progression of esophageal squamous cell carcinoma. Recently, an important role for TGFβ signaling has been described in the crosstalk between epithelial and stromal cells regulating squamous tumor cell invasion in mouse models of head-and-neck squamous cell carcinoma (HNSCC). Loss of TGFβ signaling, in either compartment, leads to HNSCC however, the mechanisms involved are not well understood. Using organotypic reconstruct cultures (OTC) to model the interaction between epithelial and stromal cells that occur in dysplastic lesions, we show that loss of TGFβ signaling promotes an invasive phenotype in both fibroblast and epithelial compartments. Employing immortalized esophageal keratinocytes established to reproduce common mutations of esophageal squamous cell carcinoma, we show that treatment of OTC with inhibitors of TGFβ signaling (A83-01 or SB431542) enhances invasion of epithelial cells into a fibroblast-embedded Matrigel/collagen I matrix. Invasion induced by A83-01 is independent of proliferation but relies on protease activity and expression of ADAMTS-1 and can be altered by matrix density. This invasion was associated with increased expression of pro-inflammatory cytokines, IL1 and EGFR ligands HB-EGF and TGFα. Altering EGF signaling prevented or induced epithelial cell invasion in this model. Loss of expression of the TGFβ target gene ROBO1 suggested that chemorepulsion may regulate keratinocyte invasion. Taken together, our data show increased invasion through inhibition of TGFβ signaling altered epithelial-fibroblasts interactions, repressing markers of activated fibroblasts, and altering integrin-fibronectin interactions. These results suggest that inhibition of TGFβ signaling modulates an array of pathways that combined promote multiple aspects of tumor invasion.
Collapse
Affiliation(s)
| | - Chase Taylor
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | | | - Frank Revetta
- Department of Pathology, Vanderbilt University, Nashville, TN, USA
| | - Holli A Loomans
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Claudia D Andl
- Department of Surgery, Vanderbilt University, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
115
|
Johnson A, Francis M, DiPietro LA. Differential Apoptosis in Mucosal and Dermal Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:751-761. [PMID: 25493209 DOI: 10.1089/wound.2012.0418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase-polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; p<0.05), Casp7 (at D5; p<0.05), Trp53 (at 24 h and D5; p<0.05), Tnfrsf1b (at 24 h; p<0.05), FasR (at 24 h, D5, and D7; p<0.05), and Casp8 (at 24 h; p<0.05) and significantly lower gene expression of Tradd (at 24 h; p<0.05). Innovation: Our observations indicate differential execution of apoptosis in oral wound healing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing.
Collapse
Affiliation(s)
- Ariel Johnson
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Marybeth Francis
- Department of Oral Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa Ann DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
116
|
Campos K, Franscisconi CF, Okehie V, de Souza LC, Trombone APF, Letra A, Garlet GP, Gomez RS, Silva RM. FOXP3 DNA methylation levels as a potential biomarker in the development of periapical lesions. J Endod 2014; 41:212-8. [PMID: 25459573 DOI: 10.1016/j.joen.2014.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Epigenetic mechanisms, such as DNA methylation, can modify gene expression patterns without changing the DNA sequence, comprising a tool that cells use to lock genes in the "off" position. Variations in the methylation profile have been correlated to a variety of human diseases. Here, we hypothesize that DNA methylation in immune response-related genes may contribute to the development of periapical lesions. METHODS The DNA methylation patterns of 22 immune response-related gene promoters were evaluated in 137 human periapical granulomas, 8 apical cysts, and 31 healthy gingival tissues from 2 independent cohorts using a pathway-specific real-time polymerase chain reaction array (EpiTect Methyl II; Qiagen Inc, Valencia, CA). Messenger RNA expression analysis by qualitative polymerase chain reaction was also performed. SABiosciences's hierarchical clustering and methylation (Qiagen, Valencia, CA) and Prism6 software (GraphPad Software, Inc, La Jolla, CA) were used for data analysis. RESULTS FOXP3 gene promoter showed the highest level of methylation in both periapical granulomas and apical cysts (P < .001), and methylation levels were inversely correlated with FOXP3 messenger RNA expression in the lesions. Furthermore, FOXP3 expression was prevalent in inactive lesions and was positively correlated with interleukin-10 and transforming growth factor beta levels. CONCLUSIONS Our results suggest that FOXP3 acts as a master switch governing the development and function of T-regulatory cells, whose functions include the inhibition of immune responses and temper inflammation. The observed differential methylation patterns of FOXP3 in periapical lesions may be crucial in determining its suppressive activity and may be involved in periapical lesion development.
Collapse
Affiliation(s)
- Kelma Campos
- Department of Oral Surgery and Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina F Franscisconi
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, São Paulo, Brazil
| | - Valerie Okehie
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Letícia C de Souza
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ana Paula F Trombone
- Department of Biological and Allied Health Sciences, Sacred Heart University, Bauru, Brazil
| | - Ariadne Letra
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gustavo P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, São Paulo, Brazil
| | - Ricardo S Gomez
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Renato M Silva
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
117
|
Abstract
Keratinocytes cover both the skin and some oral mucosa, but the morphology of each tissue and the behavior of the keratinocytes from these two sites are different. One significant dissimilarity between the two sites is the response to injury. Oral mucosal wounds heal faster and with less inflammation than equivalent cutaneous wounds. We hypothesized that oral and skin keratinocytes might have intrinsic differences at baseline as well as in the response to injury, and that such differences would be reflected in gene expression profiles.
Collapse
|
118
|
Park SS, Izadjoo MJ. Wound infections and healing: are they contributing factors for carcinogenesis? J Wound Care 2014; 23:314, 316-9, 321-2 passim. [PMID: 24920202 DOI: 10.12968/jowc.2014.23.6.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The link between inflammation and tumourisation has long been considered as a key event in clinical cancer development. Inflammation and inflammatory diseases can be caused by many factors including infectious agents, altered genetics and various degrees of injuries from simple cuts to traumatic wounds, such as those suffered in battlefield. Improved management of all wound types is critical in protecting affected individuals against the development of tumourisation cues, which may potentially lead to cancer development. There have been numerous studies on the mechanism of inflammation-induced tumourisation. Thus, in this mini review, we summarised evidence demonstrating the potential link between infectious agents and their moonlight proteins, wounding, trauma, overactive repair mechanisms, and carcinogenesis.
Collapse
Affiliation(s)
- S S Park
- PhD, Research Scientist, Diagnostics and Translational Research Center, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Gaithersburg, US
| | - M J Izadjoo
- PhD, Senior Distinguished Scientist, Diagnostics and Translational Research Center, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Gaithersburg, US
| |
Collapse
|
119
|
Åström P, Pirilä E, Lithovius R, Heikkola H, Korpi JT, Hernández M, Sorsa T, Salo T. Matrix metalloproteinase-8 regulates transforming growth factor-β1 levels in mouse tongue wounds and fibroblasts in vitro. Exp Cell Res 2014; 328:217-227. [PMID: 25036555 DOI: 10.1016/j.yexcr.2014.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 11/28/2022]
Abstract
Matrix metalloproteinase-8 (MMP-8)-deficient mice (Mmp8-/-) exhibit delayed dermal wound healing, but also partly contradicting results have been reported. Using the Mmp8-/- mice we investigated the role of MMP-8 in acute wound healing of the mobile tongue, and analyzed the function of tongue fibroblasts in vitro. Interestingly, in the early phase the tongue wounds of Mmp8-/- mice healed faster than those of wild type (wt) mice resulting in significant difference in wound widths (P=0.001, 6-24h). The Mmp8-/- wounds showed no change in myeloperoxidase positive myeloid cell count, but the level of transforming growth factor (TGF)-β1 was significantly increased (P=0.007) compared to the wt tongues. Fibroblasts cultured from wt tongues expressed MMP-8 and TGF-β1. However, higher TGF-β1 levels were detected in Mmp8-/- fibroblasts, and MMP-8 treatment decreased phosphorylated Smad-2 levels and α-smooth muscle actin expression in these fibroblasts suggesting reduced TGF-β1 signaling. Consistently, a degradation of recombinant TGF-β1 by MMP-8 decreased its ability to activate the signaling cascade in fibroblasts. Moreover, collagen gels with Mmp8-/- fibroblasts reduced more in size. We conclude that MMP-8 regulates tongue wound contraction rate and TGF-β1 levels. In vitro analyses suggest that MMP-8 may also play a role in regulating TGF-β1 signaling of stromal fibroblasts.
Collapse
Affiliation(s)
- Pirjo Åström
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, PO Box 5281, Oulu 90014, Finland; Medical Research Center (MRC), Oulu, Finland.
| | - Emma Pirilä
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, PO Box 5281, Oulu 90014, Finland; Medical Research Center (MRC), Oulu, Finland.
| | - Riitta Lithovius
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, PO Box 5281, Oulu 90014, Finland.
| | - Heidi Heikkola
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland.
| | - Jarkko T Korpi
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Oulu, Oulu University Hospital, Oulu, Finland.
| | - Marcela Hernández
- Department of Pathology and Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland; Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, PO Box 5281, Oulu 90014, Finland; Oulu University Hospital, Oulu, Finland, Institute of Dentistry, University of Helsinki, Helsinki, Finland; Graduate Program in Estomatopatologia, Piracicaba Dental School, University of Campinas, Piracicaba-São Paulo, Brazil; Medical Research Center (MRC), Oulu, Finland.
| |
Collapse
|
120
|
Wise LM, Stuart GS, Real NC, Fleming SB, Mercer AA. Orf virus IL-10 accelerates wound healing while limiting inflammation and scarring. Wound Repair Regen 2014; 22:356-67. [DOI: 10.1111/wrr.12169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 02/20/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Lyn M. Wise
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Gabriella S. Stuart
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Nicola C. Real
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Stephen B. Fleming
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Andrew A. Mercer
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| |
Collapse
|
121
|
Pyter LM, Yang L, McKenzie C, da Rocha JM, Carter CS, Cheng B, Engeland CG. Contrasting mechanisms by which social isolation and restraint impair healing in male mice. Stress 2014; 17:256-65. [PMID: 24689778 DOI: 10.3109/10253890.2014.910761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress modulates vital aspects of immune functioning in both human and non-human animals, including tissue repair. For example, dermal wounds heal more slowly and are associated with prolonged inflammation and increased bacterial load in mice that experience chronic physical restraint. Social stressors also negatively affect healing; however, previous studies suggest that the affected healing mechanisms may be stress model-specific. Here, the effects of either social isolation or physical restraint on dermal wound healing (3.5 mm wounds on the dorsum) were compared in hairless male mice. Social isolation beginning 3 weeks prior to wounding delayed healing comparably to physical restraint (12 h/day for eight days), in spite of marked differences in metabolic and hormonal consequences (i.e. body mass) between the two stress models. Additionally, isolated mice exhibited reductions in wound bacterial load and inflammatory gene expression (interleukin-1beta [IL-1β], monocyte chemoattractant protein [MCP]), whereas restraint significantly increased both of these parameters relative to controls. Experimentally augmenting bacterial concentrations in wounds of isolated mice did not ameliorate healing, whereas this treatment accelerated healing in controls. This work indicates that social isolation and restraint stressors comparably impair healing, but do so through disparate mechanisms and at different phases of healing.
Collapse
Affiliation(s)
- Leah M Pyter
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago (UIC) , Chicago, IL , USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Koppel AC, Kiss A, Hindes A, Burns CJ, Marmer BL, Goldberg G, Blumenberg M, Efimova T. Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice. Am J Physiol Cell Physiol 2014; 306:C899-909. [PMID: 24598361 DOI: 10.1152/ajpcell.00331.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capacities of primary keratinocytes from Pyk2-KO and wild-type (WT) littermates to heal scratch wounds in vitro were compared. The rate of scratch wound repair was decreased in Pyk2-KO keratinocytes compared with WT cells. Moreover, cultured human epidermal keratinocytes overexpressing the dominant-negative mutant of Pyk2 failed to heal scratch wounds. Conversely, stimulation of Pyk2-dependent signaling via WT Pyk2 overexpression induced accelerated scratch wound closure and was associated with increased expression of matrix metalloproteinase (MMP)-1, MMP-9, and MMP-10. The Pyk2-stimulated increase in the rate of scratch wound repair was abolished by coexpression of the dominant-negative mutant of PKCδ and by GM-6001, a broad-spectrum inhibitor of MMP activity. These results suggest that Pyk2 is essential for skin wound reepithelialization in vivo and in vitro and that it regulates epidermal keratinocyte migration via a pathway that requires PKCδ and MMP functions.
Collapse
Affiliation(s)
- Aaron C Koppel
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Alexi Kiss
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Anna Hindes
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Carole J Burns
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Barry L Marmer
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Gregory Goldberg
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Miroslav Blumenberg
- R. O. Perelman Department of Dermatology, NYU Langone Medical Center, New York, New York
| | - Tatiana Efimova
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
123
|
Nuutila K, Katayama S, Vuola J, Kankuri E. Human Wound-Healing Research: Issues and Perspectives for Studies Using Wide-Scale Analytic Platforms. Adv Wound Care (New Rochelle) 2014; 3:264-271. [PMID: 24761360 DOI: 10.1089/wound.2013.0502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/26/2013] [Indexed: 11/13/2022] Open
Abstract
Significance: Revealing the basic mechanisms in the healing process and then regulating these processes for faster healing or to avoid negative outcomes such as infection or scarring are fundamental to wound research. The normal healing process is basically known, but to thoroughly understand the very complex aspects involved, it is necessary to characterize the course of events at a higher resolution with the latest molecular techniques and methodologies. Recent Advances: Various animal models are used in wound-healing research. Rodent and pig models are the ones most often used, probably because of pre-existing sophisticated research methodologies and as the proper care and ethical use of these species are highly developed and organized to serve science throughout the world. Critical Issues: Since several animal models are used, their anatomical and physiological differences varyingly affect the translation of results on healing mechanisms. Hence, to avoid species-specific misinformation, more ways to study wound healing directly in humans are needed. Future Directions: Fortunately, novel techniques have enabled high-end molecular-level research even from small samples of tissue. Since these methods require only a small amount of patient skin, they make it possible to study wound healing directly in humans.
Collapse
Affiliation(s)
- Kristo Nuutila
- Institute of Biomedicine, Pharmacology, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Jyrki Vuola
- Helsinki Burn Center, Töölö Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Esko Kankuri
- Institute of Biomedicine, Pharmacology, Biomedicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
124
|
The effects of social isolation on wound healing mechanisms in female mice. Physiol Behav 2014; 127:64-70. [PMID: 24486329 DOI: 10.1016/j.physbeh.2014.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/23/2013] [Accepted: 01/14/2014] [Indexed: 12/30/2022]
Abstract
Various stressors impair wound healing in humans and rodents. For example, social isolation delays wound closure in rodents, but the healing mechanisms that underlie this delay have yet to be identified. Here, the effects of three weeks of social isolation on hypothalamic-pituitary-adrenal axis responses and healing factors involved in the inflammatory and proliferative phases of wound healing were assessed in adult female hairless mice. Social isolation reduced basal circulating corticosterone concentrations and increased body and thymus weights compared with group-housed controls. Isolation impaired dermal wound closure by up to 30% and reduced initial total wound bacterial load relative to controls. Inflammatory gene expression in the wounds was not affected by the observed differences in wound bacterial load. However, isolation reduced wound gene expression of keratinocyte growth factor and vascular endothelial growth factor, which are involved in keratinocyte proliferation/migration and angiogenesis during the proliferative phase of healing. These data indicate that social isolation induces healing impairments that may be attributed to reductions in growth factors necessary for proper skin cell proliferation and blood vessel growth during healing. This healing impairment occurred in the absence of both high wound bacterial load and elevated circulating glucocorticoids, which have previously been hypothesized to be required for stress-impaired healing in mice.
Collapse
|
125
|
Chen L, Schrementi ME, Ranzer MJ, Wilgus TA, DiPietro LA. Blockade of mast cell activation reduces cutaneous scar formation. PLoS One 2014; 9:e85226. [PMID: 24465509 PMCID: PMC3898956 DOI: 10.1371/journal.pone.0085226] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound.
Collapse
Affiliation(s)
- Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Megan E. Schrementi
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Matthew J. Ranzer
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Traci A. Wilgus
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
126
|
Brogden KA, Johnson GK, Vincent SD, Abbasi T, Vali S. Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses. Expert Rev Anti Infect Ther 2014; 11:1097-113. [DOI: 10.1586/14787210.2013.836059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
127
|
Calenic B, Paun IA, van Staden RI, Didilescu A, Petre A, Dinescu M, Greabu M. Novel method for proliferation of oral keratinocyte stem cells. J Periodontal Res 2013; 49:711-8. [DOI: 10.1111/jre.12153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 12/17/2022]
Affiliation(s)
- B. Calenic
- Department of Biochemistry; Faculty of Dentistry; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
- National Institute of Research for Electrochemistry and Condensed Mater; Bucharest Romania
| | - I. A. Paun
- National Institute for Laser, Plasma and Radiation Physics; Bucharest Romania
- Faculty of Applied Sciences; University Politehnica of Bucharest; Bucharest Romania
| | - R. I. van Staden
- National Institute of Research for Electrochemistry and Condensed Mater; Bucharest Romania
| | - A. Didilescu
- Department of Embryology; Faculty of Dentistry; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
| | - A. Petre
- Department of Prosthetic Dentistry; Faculty of Dentistry; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
| | - M. Dinescu
- National Institute for Laser, Plasma and Radiation Physics; Bucharest Romania
| | - M. Greabu
- Department of Biochemistry; Faculty of Dentistry; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
| |
Collapse
|
128
|
Arodz T, Bonchev D, Diegelmann RF. A Network Approach to Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:499-509. [PMID: 24527361 DOI: 10.1089/wound.2012.0386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/22/2012] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The wound healing process is well-understood on the cellular and tissue level; however, its complex molecular mechanisms are not yet uncovered in their entirety. Viewing wounds as perturbed molecular networks provides the tools for analyzing and optimizing the healing process. It helps to answer specific questions that lead to better understanding of the complexity of the process. What are the molecular pathways involved in wound healing? How do these pathways interact with each other during the different stages of wound healing? Is it possible to grasp the entire mechanism of regulatory interactions in the healing of a wound? APPROACH Networks are structures composed of nodes connected by links. A network describing the state of a cell taking part in the healing process may contain nodes representing genes, proteins, microRNAs, metabolites, and drug molecules. The links connecting nodes represent interactions such as binding, regulation, co-expression, chemical reaction, and others. Both nodes and links can be weighted by numbers related to molecular concentration and the intensity of intermolecular interactions. Proceeding from data and from molecular profiling experiments, different types of networks are built to characterize the stages of the healing process. Network nodes having a higher degree of connectivity and centrality usually play more important roles for the functioning of the system they describe. RESULTS We describe here the algorithms and software packages for building, manipulating and analyzing networks proceeding from information available from a literature or database search or directly extracted from experimental gene expression, metabolic, and proteomic data. Network analysis identifies genes/proteins most differentiated during the healing process, and their organization in functional pathways or modules, and their distribution into gene ontology categories of biological processes, molecular functions, and cellular localization. We provide an example of how network analysis can be used to reach better understanding of regulation of key wound healing mediators and microRNAs that regulate them. INNOVATION Univariate statistical tests widely used in clinical studies are not enough to improve understanding and optimize the processes of wound healing. Network methods of analysis of patients "omics" data, such as transcriptoms, proteomes, and others can provide a better insight into the healing processes and help in development of better treatment practices. We review several articles that are examples of this emergent approach to the study of wound healing. CONCLUSION Network analysis has the potential to considerably contribute to the better understanding of the molecular mechanisms of wound healing and to the discovery of means to control and optimize that process.
Collapse
Affiliation(s)
- Tomasz Arodz
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia
- VCU Reanimation, Engineering, and Science Center, Virginia Commonwealth University, Richmond, Virginia
| | - Danail Bonchev
- VCU Reanimation, Engineering, and Science Center, Virginia Commonwealth University, Richmond, Virginia
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia
| | - Robert F. Diegelmann
- VCU Reanimation, Engineering, and Science Center, Virginia Commonwealth University, Richmond, Virginia
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
129
|
Xu W, Jia S, Xie P, Zhong A, Galiano RD, Mustoe TA, Hong SJ. The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status. J Invest Dermatol 2013; 134:1044-1055. [PMID: 24226202 DOI: 10.1038/jid.2013.425] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 01/08/2023]
Abstract
Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Seok J Hong
- Laboratory for Wound Repair and Regenerative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
130
|
Kashpur O, LaPointe D, Ambady S, Ryder EF, Dominko T. FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts. BMC Genomics 2013; 14:656. [PMID: 24066673 PMCID: PMC3849719 DOI: 10.1186/1471-2164-14-656] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/24/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury - by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. RESULTS We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules, matrix remodelling, cytoskeleton, and cytokines were determined to be affected by FGF2 treatment. CONCLUSIONS Transcriptome analysis comparing control adult human fibroblasts with FGF2-treated fibroblasts identified functional groups of genes that reflect transcriptional changes potentially contributing to their regeneration competence. This comparative transcriptome analysis should contribute new insights into genes that characterize cells with greater regenerative potential.
Collapse
Affiliation(s)
- Olga Kashpur
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | | | | | | |
Collapse
|
131
|
Yang L, Engeland CG, Cheng B. Social isolation impairs oral palatal wound healing in sprague-dawley rats: a role for miR-29 and miR-203 via VEGF suppression. PLoS One 2013; 8:e72359. [PMID: 23951316 PMCID: PMC3739786 DOI: 10.1371/journal.pone.0072359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/15/2013] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate the effects of social isolation on oral mucosal healing in rats, and to determine if wound-associated genes and microRNAs (miRNAs) may contribute to this response. Methods Rats were group housed or socially isolated for 4 weeks before a 3.5 mm wound was placed on the hard oral palate. Wound closure was assessed daily and tissues were collected for determination of gene expression levels and miRNAs (i.e., miR-29a,b,c and miR-203). The predicted target of these microRNAs (i.e., vascular endothelial growth factor A, VEGFA) was functionally validated. Results Social isolation stress delayed the healing process of oral palatal mucosal wounds in rats. Lower mRNA levels of interleukin-1β (IL1β), macrophage inflammatory protein-1α (MIP1α), fibroblast growth factor 7 (FGF7), and VEGFA were found in the biopsied tissues of isolated animals on days 1 and/or 3 post-wounding. Intriguingly, the isolated rats persistently exhibited higher levels of miR-29 family members and miR-203. Our results confirmed that VEGFA is a direct target of these miRNAs, as both miR-29a,c and miR-203 strongly and specifically suppressed endogenous VEGFA expression in vitro. Conclusions This study in rats demonstrates for the first time that social isolation delays oral mucosal healing, and suggests a potential role for healing-associated gene and miRNA interactions during this process via modulation of VEGF expression.
Collapse
Affiliation(s)
- Linglan Yang
- Department of Oral Medicine, the Affiliated Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Christopher G. Engeland
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Women, Child, Family Health Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Bin Cheng
- Department of Oral Medicine, the Affiliated Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
132
|
Glim JE, van Egmond M, Niessen FB, Everts V, Beelen RHJ. Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen 2013; 21:648-60. [PMID: 23927738 DOI: 10.1111/wrr.12072] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 06/01/2013] [Indexed: 12/11/2022]
Abstract
Wounds in adults are frequently accompanied by scar formation. This scar can become fibrotic due to an imbalance between extracellular matrix (ECM) synthesis and ECM degradation. Oral mucosal wounds, however, heal in an accelerated fashion, displaying minimal scar formation. The exact mechanisms of scarless oral healing are yet to be revealed. This review highlights possible mechanisms involved in the difference between scar-forming dermal vs. scarless oral mucosal wound healing. Differences were found in expression of ECM components, such as procollagen I and tenascin-C. Oral wounds contained fewer immune mediators, blood vessels, and profibrotic mediators but had more bone marrow-derived cells, a higher reepithelialization rate, and faster proliferation of fibroblasts compared with dermal wounds. These results form a basis for further research that should be focused on the relations among ECM, immune cells, growth factors, and fibroblast phenotypes, as understanding scarless oral mucosal healing may ultimately lead to novel therapeutic strategies to prevent fibrotic scars.
Collapse
Affiliation(s)
- Judith E Glim
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands; Department of Plastic and Reconstructive Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
133
|
Cheng CH, Leferovich J, Zhang XM, Bedelbaeva K, Gourevitch D, Hatcher CJ, Basson CT, Heber-Katz E, Marx KA. Keratin gene expression profiles after digit amputation in C57BL/6 vs. regenerative MRL mice imply an early regenerative keratinocyte activated-like state. Physiol Genomics 2013; 45:409-21. [PMID: 23512742 DOI: 10.1152/physiolgenomics.00142.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse strains C57BL/6 (B6) and MRL were studied by whole mouse genome chip microarray analyses of RNA isolated from amputation sites at different times pre- and postamputation at the midsecond phalange of the middle digit. Many keratin genes were highly differentially expressed. All keratin genes were placed into three temporal response classes determined by injury/preinjury ratios. One class, containing only Krt6 and Krt16, were uniquely expressed relative to the other two classes and exhibited different temporal responses in MRL vs. B6. Immunohistochemical staining for Krt6 and Krt16 in tissue sections, including normal digit, flank skin, and small intestine, and from normal and injured ear pinna tissue exhibited staining differences in B6 (low) and MRL (high) that were consistent with the microarray results. Krt10 staining showed no injury-induced differences, consistent with microarray expression. We analyzed Krt6 and Krt16 gene association networks and observed in uninjured tissue several genes with higher expression levels in MRL, but not B6, that were associated with the keratinocyte activated state: Krt6, Krt16, S100a8, S100a9, and Il1b; these data suggest that keratinocytes in the MRL strain, but not in B6, are in an activated state prior to wounding. These expression levels decreased in MRL at all times postwounding but rose in the B6, peaking at day 3. Other keratins significantly expressed in the normal basal keratinocyte state showed no significant strain differences. These data suggest that normal MRL skin is in a keratinocyte activated state, which may provide it with superior responses to wounding.
Collapse
Affiliation(s)
- Chia-Ho Cheng
- Center for Intelligent Biomaterials, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Chernyavsky AI, Marchenko S, Phillips C, Grando SA. Auto/paracrine nicotinergic peptides participate in cutaneous stress response to wounding. DERMATO-ENDOCRINOLOGY 2013; 4:324-30. [PMID: 23467535 PMCID: PMC3583894 DOI: 10.4161/derm.22594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Restoration of epidermal barrier (epithelialization), is a major component of cutaneous response to stress imposed by wounding. Learning physiologic regulation of epithelialization may lead to novel treatments of chronic wounds. The non-canonical ligands of nicotinic acetylcholine receptors SLURP (secreted mammalian Ly-6/urokinase-type plasminogen activator receptor-related proteins)-1 and -2 are produced by keratinocytes (KCs) and inflammatory cells to augment physiologic responses to non-neuronal acetylcholine, suggesting that they can affect wound epithelialization and inflammation. In this study, recombinant (r)SLURP-1 and -2 exhibited dose dependent effects on migration of cultured KCs, and monoclonal antibodies inactivating auto/paracrine SLURPs in mouse skin delayed wound epithelialization. While effects of rSLURPs on migration were opposite, with rSLURP-1 inhibiting and rSLURP-2 stimulating migration of KCs, each anti-SLURP antibody produced a negative effect on epithelialization in vivo, suggesting their more extensive than regulation of keratinocyte migration involvement in wound repair. Since inflammation plays an important role in stress response to wounding, we measured inflammation biomarkers in wounds treated with anti-SLURP antibodies. Both anti-SLURP-1 and -2 antibodies, or their mixture, caused significant elevation of wound myeloperoxidase, IL-1β, IL-6 and TNFα. Taken together, results of this study demonstrated that SLURP-1 slows crawling locomotion of KCs, and exhibits a strong anti-inflammatory activity in wound tissue. In contrast, SLURP-2 facilitates lateral migration of KCs, but shows a lesser anti-inflammatory capacity. Thus, combined biologic activities of both SLURPs may be required for normal stress response to skin wounding, which favors clinical trial of rSLURP-1 and -2 in wounds that fail to heal.
Collapse
Affiliation(s)
- Alex I Chernyavsky
- Departments of Dermatology and Biochemistry; University of California; Irvine, CA USA
| | | | | | | |
Collapse
|
135
|
Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/etp.12008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
136
|
Ettlin DA, Hitz T, Ramel C, Meier ML, Roos M, Gallo LM, Svensson P, Hämmerle CH. Quantitative sensory testing of intraoral open wounds. Int J Oral Maxillofac Surg 2012; 42:401-5. [PMID: 23238026 DOI: 10.1016/j.ijom.2012.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/08/2012] [Accepted: 11/12/2012] [Indexed: 11/26/2022]
Abstract
Wound healing is an important aspect of oral and maxillofacial surgery. Positive sensory signs (allodynia, hyperalgesia) and negative sensory signs (hypoesthesia, hypoalgesia) may be encountered. Quantitative sensory testing (QST) has moved from bench to bedside for the detection, therapy selection and monitoring the recovery of individuals with sensory disturbances. Tracking somatosensory changes during normal and abnormal wound healing has not previously been reported. This report presents data obtained by a novel, automated, non-contact psychophysical method for assessment of wound sensitivity after standardized oral mucosal biopsy. By directing graded air puffs towards palatal biopsy wounds, thresholds for sensory detection, pain detection and pain tolerance were repeatedly assessed across 19 days, demonstrating high reliability. Participants recorded daily spontaneous and chewing-evoked maximum pains. Pain detection and tolerance thresholds increased linearly across time. Comparison between air puff evoked pain detection threshold and chewing-evoked pain demonstrated a strong correlation. Thus, for the first time, this study tracked the time course of somatosensory sensitivity of wounds induced by oral biopsies. The psychophysical data on wound healing obtained by this automated, contact-free stimulation method can be utilized as a surrogate marker for clinical pain improvements and standardized assessment of intraoral pain sensitivity, for example in oral mucositis.
Collapse
Affiliation(s)
- D A Ettlin
- University of Zurich, Center of Dental Medicine, Clinic of Masticatory Dysorders, Removable Prosthodontics, Geriatric and Special Care Dentistry, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Chen L, Guo S, Ranzer MJ, DiPietro LA. Toll-like receptor 4 has an essential role in early skin wound healing. J Invest Dermatol 2012; 133:258-67. [PMID: 22951730 PMCID: PMC3519973 DOI: 10.1038/jid.2012.267] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Toll-like receptor 4 (TLR4) has a key role in the initiation of innate immunity and in the regulation of adaptive immune responses. Using microarray analysis and PCR, TLR4 expression was observed to increase in murine skin wounds at the early stages. The cellular location of TLR4 was primarily in keratinocytes at the wound edges. The closure of excisional wounds was significantly delayed in TLR4-deficient (C3H/HeJ) as compared with wild-type mice, and both IL-1β and IL-6 production were significantly lower in the wounds of TLR4-deficient mice. EGF also markedly decreased in the wound edge of epidermis in TLR4-deficient mice. In vitro studies confirmed that a wound stimulus induces TLR4 mRNA expression in primary normal human epidermal keratinocytes (NHEK). In vitro injury also induced the phosphorylation of p38 and JNK MAPK (Jun N-terminal kinase mitogen-activated protein kinase) and the expression of IL-1β and tumor necrosis factor-α by NHEK. Blockade of TLR4 delayed NHEK migration and abolished the phosphorylation of p38 and JNK MAPK, and blockade of TLR4 and/or p38/JNK abolished IL-1β production. The results suggest that inflammatory cytokine production by injured NHEK is stimulated via the TLR4-p38 and JNK MAPK signaling pathway. Together, the results provide evidence for a role of TLR4 at sites of injury, and suggest that TLR4 is an important regulator of wound inflammation.
Collapse
Affiliation(s)
- Lin Chen
- College of Dentistry, University of Illinois, Chicago, IL, USA
| | | | | | | |
Collapse
|
138
|
The candidate tumor suppressor gene Ecrg4 as a wound terminating factor in cutaneous injury. Arch Dermatol Res 2012; 305:141-9. [PMID: 22899245 DOI: 10.1007/s00403-012-1276-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/01/2012] [Accepted: 07/20/2012] [Indexed: 02/02/2023]
Abstract
The Esophageal cancer-related gene-4 (Ecrg4) is a candidate tumor suppressor gene whose secreted protein product has been implicated in the development and progression of epithelial cancers, neuroprogenitor cell activation after central nervous system injury, cell senescence in neurodegeneration, and the survival of hematopoietic stem cells. Here, we investigated the temporal and spatial localization of Ecrg4 expression in healthy and injured mouse skin, and evaluated the biological activity of Ecrg4 using viral-mediated gene delivery in cutaneous wound healing models. Using in situ hybridization and immunohistochemistry, we found both Ecrg4 mRNA and its protein product localized to the epidermis, dermis, and hair follicles of healthy mouse skin. Upon cutaneous injury, Ecrg4 redistributed to the wound margins where gene microarray and quantitative RT-PCR showed an increased gene expression 5-10 days post-injury as a late phase injury response gene. Ecrg4 over-expression inhibited the directional migration of fibroblasts in modified Boyden chambers in vitro, but had no effect on rates of fibroblast proliferation. Ecrg4 over-expression in vivo at the wound margins delayed the rate of wound closure at 1 and 2 days after full-thickness punch injury. These findings point to the candidate tumor suppressor gene Ecrg4 as a novel, biologically active, constituent of skin and skin injury. The possibility that Ecrg4 serves as a wound termination factor during wound resolution is discussed.
Collapse
|
139
|
Toriseva M, Laato M, Carpén O, Ruohonen ST, Savontaus E, Inada M, Krane SM, Kähäri VM. MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability. PLoS One 2012; 7:e42596. [PMID: 22880047 PMCID: PMC3413640 DOI: 10.1371/journal.pone.0042596] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/09/2012] [Indexed: 01/01/2023] Open
Abstract
Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13) in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13(-/-)) and wild type (WT) mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42%) at day 21 in Mmp13(-/-) mice. Granulation tissue in Mmp13(-/-) mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13(-/-) mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13(-/-) mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13(-/-) granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13(-/-) mice compared to WT mice. Mmp13(-/-) mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis.
Collapse
Affiliation(s)
- Mervi Toriseva
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Matti Laato
- Department of Surgery, Turku University Hospital, Turku, Finland
| | - Olli Carpén
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Suvi T. Ruohonen
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Masaki Inada
- Department of Life Science and Biotechnology, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Stephen M. Krane
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
140
|
Chen L, Gajendrareddy PK, DiPietro LA. Differential expression of HIF-1α in skin and mucosal wounds. J Dent Res 2012; 91:871-6. [PMID: 22821237 DOI: 10.1177/0022034512454435] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite accelerated epithelial closure, oral mucosal wounds exhibit lower levels of VEGF and a more refined angiogenic response than do skin wounds. The specific differences in angiogenesis suggest that skin and oral mucosal wounds may experience dissimilar levels of hypoxia and HIF-1α. Using a model of comparable wounds on murine dorsal skin and tongue, we determined levels of hypoxia and HIF-1α. Skin wounds were found to be significantly more hypoxic and had higher levels of HIF-1α than mucosal wounds. Furthermore, under stressed conditions, skin wounds, but not mucosal wounds, exhibited a further elevation of HIF-1α beyond that of non-stressed levels. To determine if manipulation of oxygen levels might equalize the repair response of each tissue, we exposed mice to hyperbaric oxygen treatment (HBOT) following wounding. HBOT did not significantly change HIF-1α or VEGF expression in either skin or mucosal wounds, nor did it alter wound bed vascularity. These studies suggest that skin wounds have higher levels of hypoxia than do mucosal wounds, along with a differential expression of HIF-1α. Interestingly, modulation of oxygen by HBOT does not ameliorate this difference. These results suggest that differential responses to hypoxia may underlie the distinctive wound-healing phenotypes seen in skin and oral mucosa.
Collapse
Affiliation(s)
- L Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina St., MC 859, Chicago, IL 60612, USA
| | | | | |
Collapse
|
141
|
Chernyavsky AI, Kalantari-Dehaghi M, Phillips C, Marchenko S, Grando SA. Novel cholinergic peptides SLURP-1 and -2 regulate epithelialization of cutaneous and oral wounds. Wound Repair Regen 2011; 20:103-13. [PMID: 22168155 DOI: 10.1111/j.1524-475x.2011.00753.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/07/2011] [Indexed: 01/03/2023]
Abstract
It is well established that auto/paracrine acetylcholine (ACh) is essential for wound epithelialization, and that the mechanisms include regulation of keratinocyte motility and adhesion via nicotinic ACh receptors (nAChRs). Keratinocyte nAChRs can be also activated by non-canonical ligands, such as secreted mammalian Ly-6/urokinase-type plasminogen activator receptor-related protein (SLURP)-1 and -2. In this study, we determined effects of recombinant (r)SLURP-1 and-2 on migration of human epidermal and oral keratinocytes under agarose and epithelialization of cutaneous and oral mucosal excisional wounds in mice, and also identified nAChRs mediating SLURP signals. Both in vitro and in vivo, rSLURP-1 decreased and SLURP-2 increased epithelialization rate. The mixture of both peptides accelerated epithelialization even further, indicating that their simultaneous signaling renders an additive physiologic response. The specificity of rSLURP actions was illustrated by similar effects on cutaneous and oral wounds, which feature distinct responses to injury, and also by abrogation of rSLURP effects with neutralizing antibodies. rSLURP-1 acted predominantly via the α7 nAChR-coupled up-regulation of the sedentary integrins α2 and α3 , whereas SLURP-2--through α3, and α9 nAChRs up-regulating migratory integrins α5 and αV . The biologic effects of rSLURPs required the presence of endogenous ACh, indicating that auto/paracrine SLURPs provide for a fine tuning of the physiologic regulation of crawling locomotion via the keratinocyte ACh axis. Since nAChRs have been shown to regulate SLURP production, cholinergic regulation of keratinocyte migration appears to be mediated by a reciprocally arranged network. The cholinergic peptides, therefore, may become prototype drugs for the treatment of wounds that fail to heal.
Collapse
|
142
|
Expression analysis of wound healing genes in human periapical granulomas of progressive and stable nature. J Endod 2011; 38:185-90. [PMID: 22244633 DOI: 10.1016/j.joen.2011.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/09/2011] [Accepted: 09/19/2011] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Wound healing process involves the activation of extracellular matrix components, remodeling enzymes, cellular adhesion molecules, growth factors, cytokines and chemokines genes. However, the molecular patterns underlying the healing process at the periapical environment remain unclear. Here we hypothesized that endodontic infection might result in an imbalance in the expression of wound healing genes involved in the pathogenesis of periapical lesions. Furthermore, we suggest that differential expression of wound healing markers in active and latent granulomas could account for different clinical outcomes for such lesions. METHODS Study samples consisted of 93 periapical granulomas collected after endodontic surgeries and 24 healthy periodontal ligament tissues collected from premolars extracted for orthodontic purposes as control samples. Of these, 10 periapical granulomas and 5 healthy periapical tissues were used for expression analysis of 84 wound healing genes by using a pathway-specific real-time polymerase chain reaction array. The remaining 83 granulomas and all 24 control specimens were used to validate the obtained array data by real-time polymerase chain reaction. Observed variations in expression of wound healing genes were analyzed according to the classification of periapical granulomas as active/progressive versus inactive/stable (as determined by receptor activator for nuclear factor kappa B ligand/osteoprotegerin expression ratio). RESULTS We observed a marked increase of 5-fold or greater in SERPINE1, TIMP1, COL1A1, COL5A1, VTN, CTGF, FGF7, TGFB1, TNF, CXCL11, ITGA4, and ITGA5 genes in the periapical granulomas when compared with control samples. SERPINE1, TIMP1, COL1A1, TGFB1, and ITGA4 mRNA expression was significantly higher in inactive compared with active periapical granulomas (P < .001), whereas TNF and CXCL11 mRNA expression was higher in active lesions (P < .001). CONCLUSIONS The identification of novel gene targets that curb the progression status of periapical lesions might contribute to a more accurate diagnosis and lead to treatment modalities more conducive to endodontic success.
Collapse
|
143
|
Gallant-Behm CL, Du P, Lin SM, Marucha PT, DiPietro LA, Mustoe TA. Epithelial regulation of mesenchymal tissue behavior. J Invest Dermatol 2011; 131:892-9. [PMID: 21228814 PMCID: PMC3137131 DOI: 10.1038/jid.2010.420] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroproliferative scars are an important clinical problem, and yet the mechanisms that regulate scar formation remain poorly understood. This study explored the hypothesis that the epithelium has a critical role in dictating scar formation, and that these interactions differ in skin and mucosa. Paired skin and vaginal mucosal wounds on New Zealand white (NZW) rabbits diverged significantly; the cutaneous epithelium exhibited a greater and prolonged response to injury when compared with the mucosa. Microarray analysis of the injured epithelium was performed, and numerous factors were identified that were more strongly upregulated in skin, including several proinflammatory cytokines and profibrotic growth factors. Analysis of the underlying mesenchymal tissue demonstrated a fibrotic response in the dermis of the skin but not the mucosal lamina propria, in the absence of a connective tissue injury. To determine if the proinflammatory factors produced by the epidermis may have a role in dermal fibrosis, an IL-1 receptor antagonist was administered locally to healing skin wounds. In the NZW rabbit model, blockade of IL-1 signaling was effective in preventing hypertrophic scar formation. These results support the idea that soluble factors produced by the epithelium in response to injury may influence fibroblast behavior and regulate scar formation in vivo.
Collapse
Affiliation(s)
- Corrie L Gallant-Behm
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
144
|
Hu H, Roqueiro D, Dai Y. Prioritizing predicted cis-regulatory elements for co-expressed gene sets based on Lasso regression models. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:6853-6856. [PMID: 22255913 DOI: 10.1109/iembs.2011.6091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Computational prediction of cis-regulatory elements for a set of co-expressed genes based on sequence analysis provides an overwhelming volume of potential transcription factor binding sites. It presents a challenge to prioritize transcription factors for regulatory functional studies. A novel approach based on the use of Lasso regression models is proposed to address this problem. We examine the ability of the Lasso model using time-course microarray data obtained from a comprehensive study of gene expression profiles in skin and mucosal wounds in mouse over all stages of wound healing.
Collapse
Affiliation(s)
- Hong Hu
- Department of Bioengineering (M/C 063), University of Illinois at Chicago, 851 S Morgan St, SEO 218, Chicago, IL 60607, USA.
| | | | | |
Collapse
|