101
|
Li B, Yang Y, Cai J, Liu X, Shi T, Li C, Chen Y, Xu P, Huang G. Genomic Characteristics and Comparative Genomics Analysis of Two Chinese Corynespora cassiicola Strains Causing Corynespora Leaf Fall (CLF) Disease. J Fungi (Basel) 2021; 7:485. [PMID: 34208763 PMCID: PMC8235470 DOI: 10.3390/jof7060485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023] Open
Abstract
Rubber tree Corynespora leaf fall (CLF) disease, caused by the fungus Corynespora cassiicola, is one of the most damaging diseases in rubber tree plantations in Asia and Africa, and this disease also threatens rubber nurseries and young rubber plantations in China. C. cassiicola isolates display high genetic diversity, and virulence profiles vary significantly depending on cultivar. Although one phytotoxin (cassicolin) has been identified, it cannot fully explain the diversity in pathogenicity between C. cassiicola species, and some virulent C. cassiicola strains do not contain the cassiicolin gene. In the present study, we report high-quality gapless genome sequences, obtained using short-read sequencing and single-molecule long-read sequencing, of two Chinese C. cassiicola virulent strains. Comparative genomics of gene families in these two stains and a virulent CPP strain from the Philippines showed that all three strains experienced different selective pressures, and metabolism-related gene families vary between the strains. Secreted protein analysis indicated that the quantities of secreted cell wall-degrading enzymes were correlated with pathogenesis, and the most aggressive CCP strain (cassiicolin toxin type 1) encoded 27.34% and 39.74% more secreted carbohydrate-active enzymes (CAZymes) than Chinese strains YN49 and CC01, respectively, both of which can only infect rubber tree saplings. The results of antiSMASH analysis showed that all three strains encode ~60 secondary metabolite biosynthesis gene clusters (SM BGCs). Phylogenomic and domain structure analyses of core synthesis genes, together with synteny analysis of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) gene clusters, revealed diversity in the distribution of SM BGCs between strains, as well as SM polymorphisms, which may play an important role in pathogenic progress. The results expand our understanding of the C. cassiicola genome. Further comparative genomic analysis indicates that secreted CAZymes and SMs may influence pathogenicity in rubber tree plantations. The findings facilitate future exploration of the molecular pathogenic mechanism of C. cassiicola.
Collapse
Affiliation(s)
- Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xianbao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tao Shi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chaoping Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yipeng Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pan Xu
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Beijing 100020, China;
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
102
|
Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front Microbiol 2021; 12:670135. [PMID: 34122383 PMCID: PMC8192705 DOI: 10.3389/fmicb.2021.670135] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Phytopathogenic fungi decrease crop yield and quality and cause huge losses in agricultural production. To prevent the occurrence of crop diseases and insect pests, farmers have to use many synthetic chemical pesticides. The extensive use of these pesticides has resulted in a series of environmental and ecological problems, such as the increase in resistant weed populations, soil compaction, and water pollution, which seriously affect the sustainable development of agriculture. This review discusses the main advances in research on plant-pathogenic fungi in terms of their pathogenic factors such as cell wall-degrading enzymes, toxins, growth regulators, effector proteins, and fungal viruses, as well as their application as biocontrol agents for plant pests, diseases, and weeds. Finally, further studies on plant-pathogenic fungal resources with better biocontrol effects can help find new beneficial microbial resources that can control diseases.
Collapse
Affiliation(s)
- Yan Peng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shi J Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, Schools of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yong Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jian P Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - An J Gao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jing J Ruan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Bing L Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
103
|
Bertazzoni S, Jones DAB, Phan HT, Tan KC, Hane JK. Chromosome-level genome assembly and manually-curated proteome of model necrotroph Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome. BMC Genomics 2021; 22:382. [PMID: 34034667 PMCID: PMC8146201 DOI: 10.1186/s12864-021-07699-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Background The fungus Parastagonospora nodorum causes septoria nodorum blotch (SNB) of wheat (Triticum aestivum) and is a model species for necrotrophic plant pathogens. The genome assembly of reference isolate Sn15 was first reported in 2007. P. nodorum infection is promoted by its production of proteinaceous necrotrophic effectors, three of which are characterised – ToxA, Tox1 and Tox3. Results A chromosome-scale genome assembly of P. nodorum Australian reference isolate Sn15, which combined long read sequencing, optical mapping and manual curation, produced 23 chromosomes with 21 chromosomes possessing both telomeres. New transcriptome data were combined with fungal-specific gene prediction techniques and manual curation to produce a high-quality predicted gene annotation dataset, which comprises 13,869 high confidence genes, and an additional 2534 lower confidence genes retained to assist pathogenicity effector discovery. Comparison to a panel of 31 internationally-sourced isolates identified multiple hotspots within the Sn15 genome for mutation or presence-absence variation, which was used to enhance subsequent effector prediction. Effector prediction resulted in 257 candidates, of which 98 higher-ranked candidates were selected for in-depth analysis and revealed a wealth of functions related to pathogenicity. Additionally, 11 out of the 98 candidates also exhibited orthology conservation patterns that suggested lateral gene transfer with other cereal-pathogenic fungal species. Analysis of the pan-genome indicated the smallest chromosome of 0.4 Mbp length to be an accessory chromosome (AC23). AC23 was notably absent from an avirulent isolate and is predominated by mutation hotspots with an increase in non-synonymous mutations relative to other chromosomes. Surprisingly, AC23 was deficient in effector candidates, but contained several predicted genes with redundant pathogenicity-related functions. Conclusions We present an updated series of genomic resources for P. nodorum Sn15 – an important reference isolate and model necrotroph – with a comprehensive survey of its predicted pathogenicity content. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07699-8.
Collapse
Affiliation(s)
| | - Darcy A B Jones
- Centre for Crop & Disease Management, Curtin University, Perth, Australia
| | - Huyen T Phan
- Centre for Crop & Disease Management, Curtin University, Perth, Australia.
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, Curtin University, Perth, Australia.
| | - James K Hane
- Centre for Crop & Disease Management, Curtin University, Perth, Australia. .,Curtin Institute for Computation, Curtin University, Perth, Australia.
| |
Collapse
|
104
|
Genome assembly of Scorias spongiosa and comparative genomics provide insights into ecological adaptation of honeydew-dependent sooty mould fungi. Genomics 2021; 113:2189-2198. [PMID: 34022339 DOI: 10.1016/j.ygeno.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Sooty moulds are fungi of economic importance and with unique lifestyle mainly growing on insect honeydew. However, the lack of genomic data hinders investigation of genetic mechanisms underlying their ecological adaptation. With long-read sequencing technology, we generated the genome of Scorias spongiosa, an extraordinary sooty mould fungus associated with honeydew of colony aphids and producing large fruiting bodies. A 24.21 Mb high-quality genome assembly with a N50 length of 3.37 Mb was obtained. The genome contained 7758 protein coding genes, 97.13% of which were homologous to known genes, and approximately 0.29 Mb repeat sequences. Comparative genomics showed S. spongiosa lost relatively more gene families and contained fewer species-specific genes and gene families, with many CAZyme families and sugar transporters reduced or absent. This study not only promotes understanding of the ecological adaptation of sooty moulds, but also provides valuable genomic data resource for future comparative genomic and genetic studies.
Collapse
|
105
|
Zamora-Ballesteros C, Pinto G, Amaral J, Valledor L, Alves A, Diez JJ, Martín-García J. Dual RNA-Sequencing Analysis of Resistant ( Pinus pinea) and Susceptible ( Pinus radiata) Hosts during Fusarium circinatum Challenge. Int J Mol Sci 2021; 22:5231. [PMID: 34063405 PMCID: PMC8156185 DOI: 10.3390/ijms22105231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Fusarium circinatum causes one of the most important diseases of conifers worldwide, the pine pitch canker (PPC). However, no effective field intervention measures aiming to control or eradicate PPC are available. Due to the variation in host genetic resistance, the development of resistant varieties is postulated as a viable and promising strategy. By using an integrated approach, this study aimed to identify differences in the molecular responses and physiological traits of the highly susceptible Pinus radiata and the highly resistant Pinus pinea to F. circinatum at an early stage of infection. Dual RNA-Seq analysis also allowed to evaluate pathogen behavior when infecting each pine species. No significant changes in the physiological analysis were found upon pathogen infection, although transcriptional reprogramming was observed mainly in the resistant species. The transcriptome profiling of P. pinea revealed an early perception of the pathogen infection together with a strong and coordinated defense activation through the reinforcement and lignification of the cell wall, the antioxidant activity, the induction of PR genes, and the biosynthesis of defense hormones. On the contrary, P. radiata had a weaker response, possibly due to impaired perception of the fungal infection that led to a reduced downstream defense signaling. Fusarium circinatum showed a different transcriptomic profile depending on the pine species being infected. While in P. pinea, the pathogen focused on the degradation of plant cell walls, active uptake of the plant nutrients was showed in P. radiata. These findings present useful knowledge for the development of breeding programs to manage PPC.
Collapse
Affiliation(s)
- Cristina Zamora-Ballesteros
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Gloria Pinto
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Joana Amaral
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain;
| | - Artur Alves
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Julio J. Diez
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Jorge Martín-García
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
106
|
Hettiarachchige IK, Vander Jagt CJ, Mann RC, Sawbridge TI, Spangenberg GC, Guthridge KM. Global Changes in Asexual Epichloë Transcriptomes during the Early Stages, from Seed to Seedling, of Symbiotum Establishment. Microorganisms 2021; 9:microorganisms9050991. [PMID: 34064362 PMCID: PMC8147782 DOI: 10.3390/microorganisms9050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Asexual Epichloë fungi are strictly seed-transmitted endophytic symbionts of cool-season grasses and spend their entire life cycle within the host plant. Endophyte infection can confer protective benefits to its host through the production of bioprotective compounds. Inversely, plants provide nourishment and shelter to the resident endophyte in return. Current understanding of the changes in global gene expression of asexual Epichloë endophytes during the early stages of host-endophyte symbiotum is limited. A time-course study using a deep RNA-sequencing approach was performed at six stages of germination, using seeds infected with one of three endophyte strains belonging to different representative taxa. Analysis of the most abundantly expressed endophyte genes identified that most were predicted to have a role in stress and defence responses. The number of differentially expressed genes observed at early time points was greater than those detected at later time points, suggesting an active transcriptional reprogramming of endophytes at the onset of seed germination. Gene ontology enrichment analysis revealed dynamic changes in global gene expression consistent with the developmental processes of symbiotic relationships. Expression of pathway genes for biosynthesis of key secondary metabolites was studied comprehensively and fuzzy clustering identified some unique expression patterns. Furthermore, comparisons of the transcriptomes from three endophyte strains in planta identified genes unique to each strain, including genes predicted to be associated with secondary metabolism. Findings from this study highlight the importance of better understanding the unique properties of individual endophyte strains and will serve as an excellent resource for future studies of host-endophyte interactions.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Christy J. Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Ross C. Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- Correspondence:
| |
Collapse
|
107
|
The Nutritional Significance of Intestinal Fungi: Alteration of Dietary Carbohydrate Composition Triggers Colonic Fungal Community Shifts in a Pig Model. Appl Environ Microbiol 2021; 87:AEM.00038-21. [PMID: 33712429 DOI: 10.1128/aem.00038-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Carbohydrates represent the most important energy source in the diet of humans and animals. A large number of studies have shown that dietary carbohydrates (DCHO) are related to the bacterial community in the gut, but their relationship with the composition of intestinal fungi is still unknown. Here, we report the response of the colonic fungal community to different compositions of DCHO in a pig model. Three factors, ratio (2:1, 1:1, and 1:2) of amylose to amylopectin (AM/AP), level of nonstarch polysaccharides (NSP; 1%, 2%, and 3%), and mannan-oligosaccharide (MOS; 400, 800, and 1,200 mg/kg body weight), were considered according to an L9 (34) orthogonal design to form nine diets with different carbohydrate compositions. Sequencing based on an Illumina HiSeq 2500 platform targeting the internal transcribed spacer 1 region showed that the fungal community in the colon of the pigs responded to DCHO in the order of MOS, AM/AP, and NSP. A large part of some low-abundance fungal genera correlated with the composition of DCHO, represented by Saccharomycopsis, Mrakia, Wallemia, Cantharellus, Eurotium, Solicoccozyma, and Penicillium, were also associated with the concentration of glucose and fructose, as well as the activity of β-d-glucosidase in the colonic digesta, suggesting a role of these fungi in the degradation of DCHO in the colon of pigs. Our study provides direct evidence for the relationship between the composition of DCHO and the fungal community in the colon of pigs, which is helpful to understand the function of gut microorganisms in pigs.IMPORTANCE Although fungi are a large group of microorganisms along with bacteria and archaea in the gut of monogastric animals, the nutritional significance of fungi has been ignored for a long time. Our previous studies revealed a distinct fungal community in the gut of grazing Tibetan pigs (J. Li, D. Chen, B. Yu, J. He, et al., Microb Biotechnol 13:509-521, 2020, https://doi.org/10.1111/1751-7915.13507) and a close correlation between fungal species and short-chain fatty acids, the main microbial metabolites of carbohydrates in the hindgut of pigs (J. Li, Y. Luo, D. Chen, B. Yu, et al., J Anim Physiol Anim Nutr 104:616-628, 2020, https://doi.org/10.1111/jpn.13300). These groundbreaking findings indicate a potential relationship between intestinal fungi and the utilization of DCHO. However, no evidence directly proves the response of intestinal fungi to changes in DCHO. Here, we show a clear alteration of the colonic fungal community in pigs triggered by different compositions of DCHO simulated by varied concentrations of starch, nonstarch polysaccharides (NSP), and oligosaccharides. Our results highlight the potential involvement of intestinal fungi in the utilization of nutrients in monogastric animals.
Collapse
|
108
|
Peterson D, Li T, Calvo AM, Yin Y. Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity. J Fungi (Basel) 2021; 7:337. [PMID: 33925458 PMCID: PMC8146833 DOI: 10.3390/jof7050337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are also identified to have higher significance and occurrence in group-specific orthogroups. Overall, our comparative genomics analysis determined positive enrichment existing between orthogroup classes and revealed a prediction of what genomic characteristics make an Ascomycete phytopathogenic. We conclude that genes shared by multiple phytopathogenic genomes are more important for phytopathogenicity than those that are unique in each genome.
Collapse
Affiliation(s)
- Daniel Peterson
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA;
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA;
| |
Collapse
|
109
|
An insight into transcriptome of Cyathus bulleri for lignocellulase expression on wheat bran. Arch Microbiol 2021; 203:3727-3736. [PMID: 33877388 DOI: 10.1007/s00203-021-02326-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
To identify enzymes that can be effectively used for hydrolysis of lignocellulosic biomass, an attractive carbon source in biorefineries, transcriptome analysis was carried out of wheat bran grown fungus, Cyathus bulleri. A comprehensive set of transcripts, encoding carbohydrate active enzymes, were identified. These belonged to 55, 32, 12, 11 and 7 different families of the enzyme classes of Glycoside Hydrolases (GHs), Glycosyl Transferases (GTs), Auxiliary Activities (AAs), Carbohydrate Esterases (CEs) and Polysaccharide Lyases (PLs) respectively. Higher levels of transcripts were obtained for proteins encoding cellulose and hemicellulose degrading activities (of the GH class) with the highest diversity found in the transcripts encoding the hemicellulases. Several transcripts encoding pectin degrading activity were also identified indicating close association of the pectin with the cellulose/hemicellulose in the cell wall of this fungus. Transcripts encoding ligninases were categorized into Cu radical oxidase, Glucose-Methanol-Choline oxidoreductase (with 37 different transcripts in the AA3 sub-family), Laccase and Manganese peroxidases. Temporal gene expression profile for laccase isoforms was studied to understand their role in lignin degradation. To our knowledge, this is the first analysis of the transcriptome of a member belonging to the family Nidulariaceae.
Collapse
|
110
|
de Vries S, de Vries J, Archibald JM, Slamovits CH. Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression. FEMS Microbiol Ecol 2021; 96:5904760. [PMID: 32918444 PMCID: PMC7585586 DOI: 10.1093/femsec/fiaa184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them with (i) 22 oomycete genomes and (ii) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions. We obtained a global perspective on gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use similar molecular mechanisms for colonization but exhibit distinct expression patterns. We identify a S. sapeloensis-specific array and expression of carbohydrate-active enzymes and putative regulatory differences, highlighted by distinct expression levels of transcription factors. Salisapilia sapeloensis expresses only a small repertoire of candidates for virulence-associated genes. Our analyses suggest lifestyle-specific gene regulatory signatures and that, in addition to variation in gene content, shifts in gene regulatory networks underpin the evolution of oomycete lifestyles.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada.,Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.,Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany.,Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
111
|
Lee DY, Jeon J, Kim KT, Cheong K, Song H, Choi G, Ko J, Opiyo SO, Correll JC, Zuo S, Madhav S, Wang GL, Lee YH. Comparative genome analyses of four rice-infecting Rhizoctonia solani isolates reveal extensive enrichment of homogalacturonan modification genes. BMC Genomics 2021; 22:242. [PMID: 33827423 PMCID: PMC8028249 DOI: 10.1186/s12864-021-07549-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
Abstract
Background Plant pathogenic isolates of Rhizoctonia solani anastomosis group 1-intraspecific group IA (AG1-IA) infect a wide range of crops causing diseases such as rice sheath blight (ShB). ShB has become a serious disease in rice production worldwide. Additional genome sequences of the rice-infecting R. solani isolates from different geographical regions will facilitate the identification of important pathogenicity-related genes in the fungus. Results Rice-infecting R. solani isolates B2 (USA), ADB (India), WGL (India), and YN-7 (China) were selected for whole-genome sequencing. Single-Molecule Real-Time (SMRT) and Illumina sequencing were used for de novo sequencing of the B2 genome. The genomes of the other three isolates were then sequenced with Illumina technology and assembled using the B2 genome as a reference. The four genomes ranged from 38.9 to 45.0 Mbp in size, contained 9715 to 11,505 protein-coding genes, and shared 5812 conserved orthogroups. The proportion of transposable elements (TEs) and average length of TE sequences in the B2 genome was nearly 3 times and 2 times greater, respectively, than those of ADB, WGL and YN-7. Although 818 to 888 putative secreted proteins were identified in the four isolates, only 30% of them were predicted to be small secreted proteins, which is a smaller proportion than what is usually found in the genomes of cereal necrotrophic fungi. Despite a lack of putative secondary metabolite biosynthesis gene clusters, the rice-infecting R. solani genomes were predicted to contain the most carbohydrate-active enzyme (CAZyme) genes among all 27 fungal genomes used in the comparative analysis. Specifically, extensive enrichment of pectin/homogalacturonan modification genes were found in all four rice-infecting R. solani genomes. Conclusion Four R. solani genomes were sequenced, annotated, and compared to other fungal genomes to identify distinctive genomic features that may contribute to the pathogenicity of rice-infecting R. solani. Our analyses provided evidence that genomic conservation of R. solani genomes among neighboring AGs was more diversified than among AG1-IA isolates and the presence of numerous predicted pectin modification genes in the rice-infecting R. solani genomes that may contribute to the wide host range and virulence of this necrotrophic fungal pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07549-7.
Collapse
Affiliation(s)
- Da-Young Lee
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Jongbum Jeon
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, South Korea
| | - Kyeongchae Cheong
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Jaeho Ko
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Stephen O Opiyo
- Ohio Agricultural Research and Development Center (OARDC) Molecular & Cellular Imaging Center (MCIC)-Columbus, The Ohio State University, Columbus, OH, 43210, USA
| | - James C Correll
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AK, 72701, USA
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Sheshu Madhav
- Indian Council of Agricultural Research-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, 500030, Telangana, India
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Yong-Hwan Lee
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, 08826, South Korea. .,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea. .,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea. .,Center for Fungal Genetic Resources, Plant Immunity Research Center, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea.
| |
Collapse
|
112
|
The Secretomes of Aspergillus japonicus and Aspergillus terreus Supplement the Rovabio ® Enzyme Cocktail for the Degradation of Soybean Meal for Animal Feed. J Fungi (Basel) 2021; 7:jof7040278. [PMID: 33917144 PMCID: PMC8067802 DOI: 10.3390/jof7040278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
One of the challenges of the 21st century will be to feed more than 10 billion people by 2050. In animal feed, one of the promising approaches is to use agriculture by-products such as soybean meal as it represents a rich source of proteins. However, soybean meal proteins are embedded in a complex plant cell wall matrix, mostly composed of pectic polysaccharides, which are recalcitrant to digestion for animals and can cause digestive disorders in poultry breeding. In this study, we explored fungal diversity to find enzymes acting on soybean meal components. An exploration of almost 50 fungal strains enabled the identification of two strains (Aspergillus terreus and Aspergillus japonicus), which improved the solubilization of soybean meal in terms of polysaccharides and proteins. The two Aspergilli strains identified in the frame of this study offer a promising solution to process industrial food coproducts into suitable animal feed solutions.
Collapse
|
113
|
Meng H, Wang S, Yang W, Ding X, Li N, Chu Z, Li X. Identification of virulence associated milRNAs and their bidirectional targets in Rhizoctonia solani and maize during infection. BMC PLANT BIOLOGY 2021; 21:155. [PMID: 33771101 PMCID: PMC8004440 DOI: 10.1186/s12870-021-02930-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Anastomosis group 1 IA (AG1-IA) of Rhizoctonia solani is the major agent of banded leaf and sheath blight (BLSB) disease that causes severe yield loss in many worldwide crops. MicroRNAs (miRNAs) are ~ 22 nt non-coding RNAs that negatively regulate gene expression levels by mRNA degradation or translation inhibition. A better understanding of miRNA function during AG1-IA infection can expedite to elucidate the molecular mechanisms of fungi-host interactions. RESULTS In this study, we sequenced three small RNA libraries obtained from the mycelium of AG1-IA isolate, non-infected maize sheath and mixed maize sheath 3 days after inoculation. In total, 137 conserved and 34 novel microRNA-like small RNAs (milRNAs) were identified from the pathogen. Among these, one novel and 17 conserved milRNAs were identified as potential virulence-associated (VA) milRNAs. Subsequently, the prediction of target genes for these milRNAs was performed in both AG1-IA and maize, while functional annotation of these targets suggested a link to pathogenesis-related biological processes. Further, expression patterns of these virulence-associated milRNAs demonstrated that theyparticipate in the virulence of AG1-IA. Finally, regulation of one maize targeting gene, GRMZM2G412674 for Rhi-milRNA-9829-5p, was validated by dual-luciferase assay and identified to play a positive role in BLSB resistance in two maize mutants. These results suggest the global differentially expressed milRNAs of R. solani AG1-IA that participate in the regulation of target genes in both AG1-IA and maize to reinforce its pathogenicity. CONCLUSIONS Our data have provided a comprehensive overview of the VA-milRNAs of R. solani and identified that they are probably the virulence factors by directly interfered in host targeting genes. These results offer new insights on the molecular mechanisms of R.solani-maize interactions during the process of infection.
Collapse
Affiliation(s)
- Hongxu Meng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Shaoli Wang
- Yantai Academy of Agricultural Sciences, Yan'tai, 265500, Shandong, People's Republic of China
| | - Wei Yang
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Xinhua Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Ning Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xiaoming Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
114
|
Brandt SC, Brognaro H, Ali A, Ellinger B, Maibach K, Rühl M, Wrenger C, Schlüter H, Schäfer W, Betzel C, Janssen S, Gand M. Insights into the genome and secretome of Fusarium metavorans DSM105788 by cultivation on agro-residual biomass and synthetic nutrient sources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:74. [PMID: 33743779 PMCID: PMC7981871 DOI: 10.1186/s13068-021-01927-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The transition to a biobased economy involving the depolymerization and fermentation of renewable agro-industrial sources is a challenge that can only be met by achieving the efficient hydrolysis of biomass to monosaccharides. In nature, lignocellulosic biomass is mainly decomposed by fungi. We recently identified six efficient cellulose degraders by screening fungi from Vietnam. RESULTS We characterized a high-performance cellulase-producing strain, with an activity of 0.06 U/mg, which was identified as a member of the Fusarium solani species complex linkage 6 (Fusarium metavorans), isolated from mangrove wood (FW16.1, deposited as DSM105788). The genome, representing nine potential chromosomes, was sequenced using PacBio and Illumina technology. In-depth secretome analysis using six different synthetic and artificial cellulose substrates and two agro-industrial waste products identified 500 proteins, including 135 enzymes assigned to five different carbohydrate-active enzyme (CAZyme) classes. The F. metavorans enzyme cocktail was tested for saccharification activity on pre-treated sugarcane bagasse, as well as untreated sugarcane bagasse and maize leaves, where it was complemented with the commercial enzyme mixture Accellerase 1500. In the untreated sugarcane bagasse and maize leaves, initial cell wall degradation was observed in the presence of at least 196 µg/mL of the in-house cocktail. Increasing the dose to 336 µg/mL facilitated the saccharification of untreated sugarcane biomass, but had no further effect on the pre-treated biomass. CONCLUSION Our results show that F. metavorans DSM105788 is a promising alternative pre-treatment for the degradation of agro-industrial lignocellulosic materials. The enzyme cocktail promotes the debranching of biopolymers surrounding the cellulose fibers and releases reduced sugars without process disadvantages or loss of carbohydrates.
Collapse
Affiliation(s)
- Sophie C Brandt
- Faculty of Mathematics, Computer Science and Natural Science, Department of Biology, Biozentrum Klein Flottbek, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Hévila Brognaro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, CEP, 05508-000, Brazil
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
| | - Arslan Ali
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, University Road, Karachi, 75270, Pakistan
- Institute of Clinical Chemistry and Laboratory Medicine Diagnostic Center, Campus Research. Martinistr. 52, N27, 20246, Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Department ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Katharina Maibach
- Department Biology and Chemistry, Algorithmic Bioinformatics, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Martin Rühl
- Department Biology and Chemistry, Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, CEP, 05508-000, Brazil
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
- Institute of Clinical Chemistry and Laboratory Medicine Diagnostic Center, Campus Research. Martinistr. 52, N27, 20246, Hamburg, Germany
| | - Wilhelm Schäfer
- Faculty of Mathematics, Computer Science and Natural Science, Department of Biology, Biozentrum Klein Flottbek, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
| | - Stefan Janssen
- Department Biology and Chemistry, Algorithmic Bioinformatics, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Martin Gand
- Faculty of Mathematics, Computer Science and Natural Science, Department of Biology, Biozentrum Klein Flottbek, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
- Department Biology and Chemistry, Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany.
| |
Collapse
|
115
|
Garcia JF, Lawrence DP, Morales-Cruz A, Travadon R, Minio A, Hernandez-Martinez R, Rolshausen PE, Baumgartner K, Cantu D. Phylogenomics of Plant-Associated Botryosphaeriaceae Species. Front Microbiol 2021; 12:652802. [PMID: 33815343 PMCID: PMC8012773 DOI: 10.3389/fmicb.2021.652802] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
The Botryosphaeriaceae is a fungal family that includes many destructive vascular pathogens of woody plants (e.g., Botryosphaeria dieback of grape, Panicle blight of pistachio). Species in the genera Botryosphaeria, Diplodia, Dothiorella, Lasiodiplodia, Neofusicoccum, and Neoscytalidium attack a range of horticultural crops, but they vary in virulence and their abilities to infect their hosts via different infection courts (flowers, green shoots, woody twigs). Isolates of seventeen species, originating from symptomatic apricot, grape, pistachio, and walnut were tested for pathogenicity on grapevine wood after 4 months of incubation in potted plants in the greenhouse. Results revealed significant variation in virulence in terms of the length of the internal wood lesions caused by these seventeen species. Phylogenomic comparisons of the seventeen species of wood-colonizing fungi revealed clade-specific expansion of gene families representing putative virulence factors involved in toxin production and mobilization, wood degradation, and nutrient uptake. Statistical analyses of the evolution of the size of gene families revealed expansions of secondary metabolism and transporter gene families in Lasiodiplodia and of secreted cell wall degrading enzymes (CAZymes) in Botryosphaeria and Neofusicoccum genomes. In contrast, Diplodia, Dothiorella, and Neoscytalidium generally showed a contraction in the number of members of these gene families. Overall, species with expansions of gene families, such as secreted CAZymes, secondary metabolism, and transporters, were the most virulent (i.e., were associated with the largest lesions), based on our pathogenicity tests and published reports. This study represents the first comparative phylogenomic investigation into the evolution of possible virulence factors from diverse, cosmopolitan members of the Botryosphaeriaceae.
Collapse
Affiliation(s)
- Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | | | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
116
|
Lin J, Yan H, Zhao L, Li Y, Nahidian B, Zhu M, Hu Q, Han D. Interaction between the cell walls of microalgal host and fungal carbohydrate-activate enzymes is essential for the pathogenic parasitism process. Environ Microbiol 2021; 23:5114-5130. [PMID: 33723900 DOI: 10.1111/1462-2920.15465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/07/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
Fungi can parasitize microalgae, exerting profound impacts on both the aquatic ecosystems and microalgal mass cultures. In this study, the unicellular green alga Haematococcus pluvialis and the blastocladialean fungus Paraphysoderma sedebokerense were used as a model system to address the mechanisms underlying the fungal parasitism on the algal host. High-throughput metabolic assay indicated that P. sedebokerense can utilize several carbon sources with a preference for mannose, glucose and their oligosaccharides, which was compatible with the profile of the host algal cell walls enriched with glucan and mannan. The results of dual transcriptomics analysis suggested that P. sedebokerense can upregulate a large number of putative carbohydrate-activate enzymes (CAZymes) encoding genes, including those coding for the endo-1,4-β-glucanase and endo-1,4-β-mannanase during the infection process. The cell walls of H. pluvialis can be decomposed by both P. sedebokerense and commercial CAZymes (e.g. cellulase and endo-1,4-β-mannanase) to produce mannooligomers, while several putative parasitism-related genes of P. sedebokerense can be in turn upregulated by mannooligomers. In addition, the parasitism can be blocked by interfering the selected CAZymes including glucanase, mannanase and lysozyme with the specific inhibitors, which provided a framework for screening suitable compounds for pathogen mitigation in algal mass culture.
Collapse
Affiliation(s)
- Juan Lin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang, 332005, China
| | - Hailong Yan
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zhao
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bahareh Nahidian
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mianmian Zhu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, 51806, China.,Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
117
|
Chandra A, Singh D, Joshi D, Pathak AD, Singh RK, Kumar S. A highly contiguous reference genome assembly for Colletotrichum falcatum pathotype Cf08 causing red rot disease in sugarcane. 3 Biotech 2021; 11:148. [PMID: 33732569 DOI: 10.1007/s13205-021-02695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
Among the biotic factors, which affect the productivity and quality of sugarcane, red rot disease caused by the fungal pathogen, Colletotrichum falcatum is the most devastating that cause enormous loss to millers as well as cane growers. We present a highly contiguous genome assembly of C. falcatum pathotype Cf08 which is virulent to popular sugarcane varieties grown in more than 3 million hectares in sub-tropical India. By performing long read sequencing on PacBio RSII system, 56.06 Mb assemblies with 238 contigs having N50 of 0.51 Mb and L50 of 34 was produced. A BUSCO completeness score of 97.24% (including 4.1% fragmented) of the entire C. falcatum Cf08 nuclear genome, greatly improved contiguity compared to an existing highly fragmented draft of C. falcatum Cf671 genome (48.13 Mb) was obtained. This Cf08 assembly had 54.14% GC content and possessed < 1% repetitive elements. A total of 18,635 protein-coding genes were predicted compared with 12,270 for Cf671. Among 617 CAZymes predicted, glycoside hydrolases were the predominant (298), and among 7264 genes associated with pathogenicity/virulence, 77 genes having effector functions were identified. The assembled genome showed its similarity with the genome of C. graminicola and C. higginsianum, the causal organisms of anthracnose in maize and in members of Brassicaceae, respectively. A total of 94 large sequences (> 100 kb) of Cf08 were mapped over C. higginsianum 10 of 12 chromosomes with 106 synteny blocks. Results discussed here would provide an important tool for future studies of evolutionary and functional genomics in C. falcatum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02695-x.
Collapse
Affiliation(s)
- Amaresh Chandra
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Dinesh Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Deeksha Joshi
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Ashwini D Pathak
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Ram K Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001 India
| | - Sanjeev Kumar
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| |
Collapse
|
118
|
Li D, Li S, Wei S, Sun W. Strategies to Manage Rice Sheath Blight: Lessons from Interactions between Rice and Rhizoctonia solani. RICE (NEW YORK, N.Y.) 2021; 14:21. [PMID: 33630178 PMCID: PMC7907341 DOI: 10.1186/s12284-021-00466-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Rhizoctonia solani is an important phytopathogenic fungus with a wide host range and worldwide distribution. The anastomosis group AG1 IA of R. solani has been identified as the predominant causal agent of rice sheath blight, one of the most devastating diseases of crop plants. As a necrotrophic pathogen, R. solani exhibits many characteristics different from biotrophic and hemi-biotrophic pathogens during co-evolutionary interaction with host plants. Various types of secondary metabolites, carbohydrate-active enzymes, secreted proteins and effectors have been revealed to be essential pathogenicity factors in R. solani. Meanwhile, reactive oxygen species, phytohormone signaling, transcription factors and many other defense-associated genes have been identified to contribute to sheath blight resistance in rice. Here, we summarize the recent advances in studies on molecular interactions between rice and R. solani. Based on knowledge of rice-R. solani interactions and sheath blight resistance QTLs, multiple effective strategies have been developed to generate rice cultivars with enhanced sheath blight resistance.
Collapse
Affiliation(s)
- Dayong Li
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Shuai Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Songhong Wei
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
119
|
Feijóo-Vivas K, Bermúdez-Puga SA, Rebolledo H, Figueroa JM, Zamora P, Naranjo-Briceño L. Bioproductos desarrollados a partir de micelio de hongos: Una nueva cultura material y su impacto en la transición hacia una economía sostenible. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El biodiseño y biofabricación de biomateriales a partir de residuos vegetales lignocelulósicos y auto-generados por el micelio de hongos es un campo de investigación emergente desde las últimas dos décadas. Surge una nueva cultura material que se basa en los nuevos paradigmas de la fabricación alternativa partiendo de la lógica “de hacer crecer los nuevos materiales en lugar de extraerlos” e integrando los principios básicos de la economía circular y de la Biotecnología Material, asegurando la susceptibilidad de los mismos a ser biodegradados y volver a su estado original en la naturaleza. Su implementación a nivel industrial en distintas áreas de la manufactura comienza a competir con el cuero de origen animal, materiales y productos de origen petroquímico, a la vez que promueve nuevas alternativas de alimentos proteicos sustentables que contribuyan al cambio de los patrones de consumo humano de alto impacto ambiental arraigados a nivel global. La presente revisión, aborda una mirada particular que va desde lo molecular a lo global sobre la nueva cultura micelial, considerando aspectos generales del reino Fungi, la morfogénesis, composición química e integridad celular del micelio, los sistemas multienzimáticos extracelulares de degradación de lignocelulosa que poseen los hongos, pasando por los principales sustratos empleados, los biomateriales desarrollados a partir de micelio a nivel industrial, destacando los biotextiles, materiales y productos para el empaquetamiento y aislamiento, nuevas fuentes alimentarias basadas en el micelio, el arte y el diseño arquitectónico. Finalmente, se presenta el estado del arte actual de las empresas o laboratorios vanguardistas que suscitan una economía circular basada en el micelio de hongos a nivel mundial, al reemplazar recursos y productos de origen fósil por materiales amigables con el entorno, generando alternativas sostenibles y ciclos de producción con una baja demanda de energía y sin repercusiones al medio ambiente, es decir, promoviendo una nueva conciencia material.
Collapse
Affiliation(s)
- Kevin Feijóo-Vivas
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Stalin A. Bermúdez-Puga
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Hernán Rebolledo
- Spora Biotech, Fundo Santa Paulina, Rosario, Rengo, VI Región del General Libertador Bernardo O’Higgins, CP 2940000, Chile
| | - José Miguel Figueroa
- Spora Biotech, Fundo Santa Paulina, Rosario, Rengo, VI Región del General Libertador Bernardo O’Higgins, CP 2940000, Chile
| | - Pablo Zamora
- 3Spora Biotech, Fundo Santa Paulina, Rosario, Rengo, VI Región del General Libertador Bernardo O’Higgins, CP 2940000, Chile. 4Vincula S&C, Las Condes, Región Metropolitana, Chile
| | - Leopoldo Naranjo-Briceño
- 1Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador. 2Grupo de Microbiología Aplicada, Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador. 3Spora Biotech, Fundo Santa Paulina, Rosario, Rengo, VI Región del General Libertador Bernardo O’Higgins, CP 2940000, Chile
| |
Collapse
|
120
|
Cheng Q, Chen J, Zhao L. Draft genome sequence of Marssonina coronaria, causal agent of apple blotch, and comparisons with the Marssonina brunnea and Marssonina rosae genomes. PLoS One 2021; 16:e0246666. [PMID: 33544779 PMCID: PMC7864672 DOI: 10.1371/journal.pone.0246666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/24/2021] [Indexed: 11/25/2022] Open
Abstract
Marssonina coronaria Ellis & Davis is a filamentous fungus in the class Leotiomycetes that causes apple blotch, an economically important disease of apples worldwide. Here, we sequenced the whole genome of M. coronaria strain NL1. The genome contained 50.3 Mb with 589 scaffolds and 9,622 protein-coding genes. A phylogenetic analysis using multiple loci and a whole-genome alignment revealed that M. coronaria is closely related to Marssonina rosae and Marssonina brunnea. A comparison of the three genomes revealed 90 species-specific carbohydrate-active enzymes, 19 of which showed atypical distributions, and 12 species-specific secondary metabolite biosynthetic gene clusters, two of which have the potential to synthesize products analogous to PR toxin and swainsonine, respectively. We identified 796 genes encoding for small secreted proteins in Marssonina spp., many encoding for unknown hypothetical proteins. In addition, we revealed the genetic architecture of the MAT1-1 and MAT1-2 mating-type loci of M. coronaria, as well as 16 tested isolates carrying either MAT1-1 idiomorph (3) or MAT1-2 idiomorph (13). Our results showed a series of species-specific carbohydrate-active enzyme, secondary metabolite biosynthetic gene clusters and small-secreted proteins that may be involved in the adaptation of Marssonina spp. to their distinct hosts. We also confirmed that M. coronaria possesses a heterothallic mating system and has outcrossing potential in nature.
Collapse
Affiliation(s)
- Qiang Cheng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- * E-mail:
| | - Junxiang Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
121
|
Zhao J, Duan W, Xu Y, Zhang C, Wang L, Wang J, Tian S, Pei G, Zhan G, Zhuang H, Zhao J, Kang Z. Distinct Transcriptomic Reprogramming in the Wheat Stripe Rust Fungus During the Initial Infection of Wheat and Barberry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:198-209. [PMID: 33118856 DOI: 10.1094/mpmi-08-20-0244-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Puccinia striiformis f. sp. tritici is the causal agent of wheat stripe rust that causes severe yield losses all over the world. As a macrocyclic heteroecious rust fungus, it is able to infect two unrelated host plants, wheat and barberry. Its urediniospores infect wheat and cause disease epidemic, while its basidiospores parasitize barberry to fulfill the sexual reproduction. This complex life cycle poses interesting questions on the different mechanisms of pathogenesis underlying the infection of the two different hosts. In the present study, transcriptomes of P. striiformis f. sp. tritici during the initial infection of wheat and barberry leaves were qualitatively and quantitatively compared. As a result, 142 wheat-specifically expressed genes (WEGs) were identified, which was far less than the 2,677 barberry-specifically expressed genes (BEGs). A larger proportion of evolutionarily conserved genes were observed in BEGs than that in WEGs, implying a longer history of the interaction between P. striiformis f. sp. tritici and barberry. Additionally, P. striiformis f. sp. tritici differentially expressed genes (DEGs) between wheat at 1 and 2 days postinoculation (dpi) and barberry at 3 and 4 dpi were identified by quantitative analysis. Gene Ontology analysis of these DEGs and expression patterns of P. striiformis f. sp. tritici pathogenic genes, including those encoding candidate secreted effectors, cell wall-degrading enzymes, and nutrient transporters, demonstrated that urediniospores and basidiospores exploited distinct strategies to overcome host defense systems. These results represent the first analysis of the P. striiformis f. sp. tritici transcriptome in barberry and contribute to a better understanding of the evolutionary processes and strategies of different types of rust spores during the infection process on different hosts.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wanlu Duan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ce Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Long Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Song Tian
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Guoliang Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gangming Zhan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hua Zhuang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jie Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
122
|
Jagadeeswaran G, Veale L, Mort AJ. Do Lytic Polysaccharide Monooxygenases Aid in Plant Pathogenesis and Herbivory? TRENDS IN PLANT SCIENCE 2021; 26:142-155. [PMID: 33097402 DOI: 10.1016/j.tplants.2020.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs), copper-dependent enzymes mainly found in fungi, bacteria, and viruses, are responsible for enabling plant infection and degradation processes. Since their discovery 10 years ago, significant progress has been made in understanding the major role these enzymes play in biomass conversion. The recent discovery of additional LPMO families in fungi and oomycetes (AA16) as well as insects (AA15) strongly suggests that LPMOs might also be involved in biological processes such as overcoming plant defenses. In this review, we aim to give a comprehensive overview of the potential role of different LPMO families from the perspective of plant defense and their multiple implications in devising new strategies for achieving crop protection from plant pathogens and insect pests.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lawrie Veale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Andrew J Mort
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
123
|
Tavares MP, Morgan T, Gomes RF, Rodrigues MQRB, Castro-Borges W, de Rezende ST, de Oliveira Mendes TA, Guimarães VM. Secretomic insight into the biomass hydrolysis potential of the phytopathogenic fungus Chrysoporthe cubensis. J Proteomics 2021; 236:104121. [PMID: 33540065 DOI: 10.1016/j.jprot.2021.104121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
The phytopathogenic fungus Chrysoporthe cubensis has a great capacity to produce highly efficient enzymes for the hydrolysis of lignocellulosic biomass. The bioinfosecretome of C. cubensis was identified by computational predictions of secreted proteins combined with protein analysis using 1D-LC-MS/MS. The in silico secretome predicted 562 putative genes capable of encoding secreted proteins, including 273 CAZymes. Proteomics analysis confirmed the existence of 313 proteins, including 137 CAZymes classified as Glycosyl Hydrolases (GH), Polysaccharide Lyases (PL), Carbohydrate Esterases (CE) and Auxiliary Activities enzymes (AA), which indicates the presence of classical and oxidative cellulolytic mechanisms. The enzymes diversity in the extract shows fungal versatility to act in complex biomasses. This study provides an insight into the lignocellulose-degradation mechanisms by C. cubensis and allows the identification of the enzymes that are potentially useful in improving industrial process of bioconversion of lignocellulose. SIGNIFICANCE: Chrysoporthe cubensis is an important deadly canker pathogen of commercially cultivated Eucalyptus species. The effective depolymerisation of the recalcitrant plant cell wall performed by this fungus is closely related to its high potential of lignocellulolytic enzymes secretion. Since the degradation of biomass occurs in nature almost exclusively by enzyme secretion systems, it is reasonable to suggest that the identification of C. cubensis lignocellulolytic enzymes is relevant in contributing to new sustainable alternatives for industrial solutions. As far as we know, this work is the first accurate proteomic evaluation of the enzymes secreted by this species of fungus. The integration of the gel-based proteomic approach, the bioinformatic prediction of the secretome and the analyses of enzymatic activity are powerful tools in the evaluation of biotechnological potential of C. cubensis in producing carbohydrate-active enzymes. In addition, analysis of the C. cubensis secretome grown in wheat bran draws attention to this plant pathogen and its extracellular enzymatic machinery, especially regarding the identification of promising new enzymes for industrial applications. The results from this work allowed for explanation and reinforce previous research that revealed C. cubensis as a strong candidate to produce enzymes to hydrolyse sugarcane bagasse and similar substrates.
Collapse
Affiliation(s)
- Murillo Peterlini Tavares
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Túlio Morgan
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Riziane Ferreira Gomes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | | | - William Castro-Borges
- Department of Biological Science, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| | - Sebastião Tavares de Rezende
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Valéria Monteze Guimarães
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
124
|
Ökmen B, Schwammbach D, Bakkeren G, Neumann U, Doehlemann G. The Ustilago hordei-Barley Interaction Is a Versatile System for Characterization of Fungal Effectors. J Fungi (Basel) 2021; 7:86. [PMID: 33513785 PMCID: PMC7912019 DOI: 10.3390/jof7020086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei-barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.
Collapse
Affiliation(s)
- Bilal Ökmen
- BioCenter, Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Daniela Schwammbach
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Straße, 35043 Marburg, Germany;
| | - Guus Bakkeren
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada;
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany;
| | - Gunther Doehlemann
- BioCenter, Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| |
Collapse
|
125
|
Complete genome sequencing and comparative CAZyme analysis of Rhodococcus sp. PAMC28705 and PAMC28707 provide insight into their biotechnological and phytopathogenic potential. Arch Microbiol 2021; 203:1731-1742. [PMID: 33459813 DOI: 10.1007/s00203-020-02177-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Study of carbohydrate-active enzymes (CAZymes) can reveal information about the lifestyle and behavior of an organism. Rhodococcus species is well known for xenobiotic metabolism; however, their carbohydrate utilization ability has been less discussed till date. This study aimed to present the CAZyme analysis of two Rhodococcus strains, PAMC28705 and PAMC28707, isolated from lichens in Antarctica, and compare them with other Rhodococcus, Mycobacterium, and Corynebacterium strains. Genome-wide computational analysis was performed using various tools. Results showed similarities in CAZymes across all the studied genera. All three genera showed potential for significant polysaccharide utilization, including starch, cellulose, and pectin referring their biotechnological potential. Keeping in mind the pathogenic strains listed across all three genera, CAZymes associated to pathogenicity were analyzed too. Cutinase enzyme, which has been associated with phytopathogenicity, was abundant in all the studied organisms. CAZyme gene cluster of Rhodococcus sp. PAMC28705 and Rhodococcus sp. PAMC28707 showed the insertion of cutinase in the cluster, further supporting their possible phytopathogenic properties.
Collapse
|
126
|
Maximiano MR, Miranda VJ, de Barros EG, Dias SC. Validation of an in vitro system to trigger changes in the gene expression of effectors of Sclerotinia sclerotiorum. J Appl Microbiol 2021; 131:885-897. [PMID: 33331046 DOI: 10.1111/jam.14973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/27/2022]
Abstract
AIMS Sclerotinia sclerotiorum, the causal agent of white mold, can infect several host species, including economically important crops. In this study, we propose and validate a new in vitro system able to mimic the conditions of interaction with the host and promote the induction of S. sclerotiorum effectors. METHODS AND RESULTS For culture media production, we selected three plant species, common bean (Phaseolus vulgaris L, cv. Requinte.), maize (Zea mays, cv. BRS1030) and beggarticks (Bidens pilosa). To validate this system as an in vitro inducer of effectors, the qRT-PCR technique was used to investigate the expression profile of some S. sclerotiorum effector genes in each growth medium at different times after inoculation. CONCLUSION The results obtained in this study provide a validation of a new method to study S. sclerotiorum during mimetic interaction with different hosts. Although leaf extract does not fully represent the plant environment, the presence of plant components in the culture medium seems to induce effector genes, mimicking in planta conditions. The use of MEVM is simpler than in planta growth, bypasses problems such as the amount of mycelium produced, as well as contamination of host cells during transcriptomic and proteomic analyses. SIGNIFICANCE AND IMPACT OF THE STUDY We have devised MEVM media as a model mimicking the interaction of S. sclerotiorum and its hosts and used it to evaluate in vitro expression of effectors normally expressed only in planta.
Collapse
Affiliation(s)
- M R Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - V J Miranda
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - E G de Barros
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - S C Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
127
|
Zhu P, Kou M, Liu C, Zhang S, Lü R, Xia Z, Yu M, Zhao A. Genome Sequencing of Ciboria shiraiana Provides Insights into the Pathogenic Mechanisms of Hypertrophy Sorosis Scleroteniosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:62-74. [PMID: 33021883 DOI: 10.1094/mpmi-07-20-0201-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ciboria shiraiana causes hypertrophy sorosis scleroteniosis in mulberry trees, resulting in huge economic losses, and exploring its pathogenic mechanism at a genomic level is important for developing new control methods. Here, genome sequencing of C. shiraiana based on PacBio RSII and Illumina HiSeq 2500 platform as well as manual gap filling was performed. Synteny analysis with Sclerotinia sclerotiorum revealed 16 putative chromosomes corresponding to 16 chromosomes of C. shiraiana. Screening of rapid-evolution genes revealed that 97 and 2.4% of genes had undergone purifying selection and positive selection, respectively. When compared with S. sclerotiorum, fewer secreted effector proteins were found in C. shiraiana. The number of genes involved in pathogenicity, including secondary metabolites, carbohydrate active enzymes, and P450s, in the C. shiraiana genome was comparable with that of other necrotrophs but higher than that of biotrophs and saprotrophs. The growth-related genes and plant cell-wall-degradation-related genes in C. shiraiana were expressed in different developmental and infection stages, and may be potential targets for prevention and control of this pathogen. These results provide new insights into C. shiraiana pathogenic mechanisms, especially host range and necrotrophy features, and lay the foundation for further study of the underlying molecular mechanisms.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Collapse
Affiliation(s)
- Panpan Zhu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| | - Min Kou
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Changying Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Shuai Zhang
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Ruihua Lü
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- College of Medical Technology, Shanxi University of Chinese Medicine, Xianyang, Shanxi Province, China
| | - Zhongqiang Xia
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Maode Yu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Aichun Zhao
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
128
|
Comparative Analysis of Carbohydrate Active Enzymes in the Flammulina velutipes var. lupinicola Genome. Microorganisms 2020; 9:microorganisms9010020. [PMID: 33374587 PMCID: PMC7822412 DOI: 10.3390/microorganisms9010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to determine the genome sequence of Flammulina velutipes var. lupinicola based on next-generation sequencing (NGS) and to identify the genes encoding carbohydrate-active enzymes (CAZymes) in the genome. The optimal assembly (71 kmer) based on ABySS de novo assembly revealed a total length of 33,223,357 bp (49.53% GC content). A total of 15,337 gene structures were identified in the F. velutipes var. lupinicola genome using ab initio gene prediction method with Funannotate pipeline. Analysis of the orthologs revealed that 11,966 (96.6%) out of the 15,337 predicted genes belonged to the orthogroups and 170 genes were specific for F. velutipes var. lupinicola. CAZymes are divided into six classes: auxiliary activities (AAs), glycosyltransferases (GTs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycoside hydrolases (GHs), and carbohydrate-binding modules (CBMs). A total of 551 genes encoding CAZymes were identified in the F. velutipes var. lupinicola genome by analyzing the dbCAN meta server database (HMMER, Hotpep, and DIAMOND searches), which consisted of 54-95 AAs, 145-188 GHs, 55-73 GTs, 6-19 PLs, 13-59 CEs, and 7-67 CBMs. CAZymes can be widely used to produce bio-based products (food, paper, textiles, animal feed, and biofuels). Therefore, information about the CAZyme repertoire of the F. velutipes var. lupinicola genome will help in understanding the lignocellulosic machinery and in-depth studies will provide opportunities for using this fungus for biotechnological and industrial applications.
Collapse
|
129
|
Alvarez-Zúñiga MT, Castañeda García D, Aguilar Osorio G. Effect of different carbon sources on the growth and enzyme production of a toxigenic and a non-toxigenic strain of Aspergillus flavus. Prep Biochem Biotechnol 2020; 51:769-779. [DOI: 10.1080/10826068.2020.1858426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- María Teresa Alvarez-Zúñiga
- Department of Food Science and Biotechnology, Faculty of Chemistry, National Autonomous University of Mexico, Coyoacan, Mexico
| | - Diana Castañeda García
- Department of Food Science and Biotechnology, Faculty of Chemistry, National Autonomous University of Mexico, Coyoacan, Mexico
| | - Guillermo Aguilar Osorio
- Department of Food Science and Biotechnology, Faculty of Chemistry, National Autonomous University of Mexico, Coyoacan, Mexico
| |
Collapse
|
130
|
St. Leger RJ, Wang JB. Metarhizium: jack of all trades, master of many. Open Biol 2020; 10:200307. [PMID: 33292103 PMCID: PMC7776561 DOI: 10.1098/rsob.200307] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The genus Metarhizium and Pochonia chlamydosporia comprise a monophyletic clade of highly abundant globally distributed fungi that can transition between long-term beneficial associations with plants to transitory pathogenic associations with frequently encountered protozoans, nematodes or insects. Some very common 'specialist generalist' species are adapted to particular soil and plant ecologies, but can overpower a wide spectrum of insects with numerous enzymes and toxins that result from extensive gene duplications made possible by loss of meiosis and associated genome defence mechanisms. These species use parasexuality instead of sex to combine beneficial mutations from separate clonal individuals into one genome (Vicar of Bray dynamics). More weakly endophytic species which kill a narrow range of insects retain sexuality to facilitate host-pathogen coevolution (Red Queen dynamics). Metarhizium species can fit into numerous environments because they are very flexible at the genetic, physiological and ecological levels, providing tractable models to address how new mechanisms for econutritional heterogeneity, host switching and virulence are acquired and relate to diverse sexual life histories and speciation. Many new molecules and functions have been discovered that underpin Metarhizium associations, and have furthered our understanding of the crucial ecology of these fungi in multiple habitats.
Collapse
|
131
|
Interplay between differential competition and actions of spore-vectors explain host exclusivity of saprobic fungi in Protea flowers. Antonie Van Leeuwenhoek 2020; 113:2187-2200. [PMID: 33221982 DOI: 10.1007/s10482-020-01491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/21/2020] [Indexed: 10/22/2022]
Abstract
Protea flowers host saprobic Knoxdaviesia and Sporothrix fungi that are dispersed by pollinating insects and birds. Different Protea species contain sympatric populations of different fungal species. For example, P. repens host S. splendens and K. proteae, while P. neriifolia host K. capensis and S. phasma. Even though all fungi can grow vigorously on alternative hosts and they share the same spore vector species, they rarely colonise alternative hosts. We investigated the role of fungal differential competitive abilities on their usual and alternative hosts to explain their host exclusivity. In a de Wit replacement series experiment, S. splendens outcompeted and later overgrew all other fungi on media prepared from its usual and alternative hosts. Host exclusivity of S. splendens on P. repens may therefore be maintained by restricted movement of spore vectors rather than weaker competitive abilities on alternative hosts. On their preferred hosts, S. splendens and S. phasma rapidly overgrew Knoxdavesia species with which they do not usually share a host, explaining host exclusivity of the Knoxdavesia species. Knoxdaviesia proteae likely only persist on P. repens with sympatric S. splendens if it colonizes flowers earlier, in a different area, or completes its life cycle before being overgrown. On their usual P. neriifolia host, K. capensis and S. phasma had neutralistic interactions and S. phasma could not overgrow K. capensis, explaining their co-existence. Host exclusivity of saprobic Protea-associated Knoxdaviesia and Sporothrix may therefore be maintained by both the activities of spore vectors and differential competitive abilities on different hosts, but the influence of other competing microbes and micro-niche differentiation cannot be excluded.
Collapse
|
132
|
Muñoz-Barrios A, Sopeña-Torres S, Ramos B, López G, Del Hierro I, Díaz-González S, González-Melendi P, Mélida H, Fernández-Calleja V, Mixão V, Martín-Dacal M, Marcet-Houben M, Gabaldón T, Sacristán S, Molina A. Differential Expression of Fungal Genes Determines the Lifestyle of Plectosphaerella Strains During Arabidopsis thaliana Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1299-1314. [PMID: 32720872 DOI: 10.1094/mpmi-03-20-0057-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fungal genus Plectosphaerella comprises species and strains with different lifestyles on plants, such as P. cucumerina, which has served as model for the characterization of Arabidopsis thaliana basal and nonhost resistance to necrotrophic fungi. We have sequenced, annotated, and compared the genomes and transcriptomes of three Plectosphaerella strains with different lifestyles on A. thaliana, namely, PcBMM, a natural pathogen of wild-type plants (Col-0), Pc2127, a nonpathogenic strain on Col-0 but pathogenic on the immunocompromised cyp79B2 cyp79B3 mutant, and P0831, which was isolated from a natural population of A. thaliana and is shown here to be nonpathogenic and to grow epiphytically on Col-0 and cyp79B2 cyp79B3 plants. The genomes of these Plectosphaerella strains are very similar and do not differ in the number of genes with pathogenesis-related functions, with the exception of secreted carbohydrate-active enzymes (CAZymes), which are up to five times more abundant in the pathogenic strain PcBMM. Analysis of the fungal transcriptomes in inoculated Col-0 and cyp79B2 cyp79B3 plants at initial colonization stages confirm the key role of secreted CAZymes in the necrotrophic interaction, since PcBMM expresses more genes encoding secreted CAZymes than Pc2127 and P0831. We also show that P0831 epiphytic growth on A. thaliana involves the transcription of specific repertoires of fungal genes, which might be necessary for epiphytic growth adaptation. Overall, these results suggest that in-planta expression of specific sets of fungal genes at early stages of colonization determine the diverse lifestyles and pathogenicity of Plectosphaerella strains.
Collapse
Affiliation(s)
- Antonio Muñoz-Barrios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Brisa Ramos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Irene Del Hierro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Vanessa Fernández-Calleja
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Verónica Mixão
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| |
Collapse
|
133
|
Lopes AMM, Félix de Mélo AH, Procópio DP, Teixeira GS, Carazzolle MF, de Carvalho LM, Adelantado N, Pereira GA, Ferrer P, Filho FM, Goldbeck R. Genome sequence of Acremonium strictum AAJ6 strain isolated from the Cerrado biome in Brazil and CAZymes expression in thermotolerant industrial yeast for ethanol production. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
134
|
Comparative Genomic Analysis of Dactylonectria torresensis Strains from Grapevine, Soil and Weed Highlights Potential Mechanisms in Pathogenicity and Endophytic Lifestyle. J Fungi (Basel) 2020; 6:jof6040255. [PMID: 33138048 PMCID: PMC7712071 DOI: 10.3390/jof6040255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/19/2023] Open
Abstract
The soil-borne fungus Dactylonectria torresensis is the most common causal agent of black-foot disease in Europe. However, there is a lack of understanding on how this fungus can provoke plant symptoms. In this study, we sequenced, annotated and analyzed the genomes of three isolates of D. torresensis collected from asymptomatic vine, weed and soil. Sequenced genomes were further compared to those of 27 fungal species including root and aerial pathogens, white rot degraders, indoor biodeterioration agents, saprotrophs, dark septate endophytes and mycorrhiza. Strains of D. torresensis present genomes with between 64 and 65 Mbp and with up to 18,548 predicted genes for each strain. Average Nucleotide Identity (ANI) shows that strains are different according to genome contents. Clusters of orthologous groups were compared, and clusters of genes related to necroses were particularly detected in all strains of D. torresensis (necrosis inducing peptides and proteins, and ethylene inducing peptides) as well as several genes involved in resistance against fungicides frequently used in viticulture such as copper. Interestingly, an expanded high number of genes related to carbohydrate-active enzymes were detected in each Dactylonectria strain, especially those related to glycoside hydrolases that could be involved in penetration of plant tissues or pathogenicity. An increased number of candidate genes for CAZyme classes AA9 and AA3-1 supports the ability of strains to efficiently degrade plant material. High numbers of genes of D. torresensis related to secretome and small secreted proteins were further characterized. Moreover, the presence of several gene clusters such as fujikurin-like genes was detected and were normally found in Fusariumfujikuroi, that have been linked to fungal pathogenicity. The phenotypes of the three strains investigated showed further difference in light response. We found that Dactylonectria strains have an increased number of photoreceptor encoding genes and we showed sequence alterations. Altogether, the results highlight several gene clusters present in D. torresensis strains that could be linked to endophytic lifestyle, pathogenicity, plant maceration and degradation of plant tissues as well as adaptation to soil contaminated with metals and metalloids and light response.
Collapse
|
135
|
Djemiel C, Goulas E, Badalato N, Chabbert B, Hawkins S, Grec S. Targeted Metagenomics of Retting in Flax: The Beginning of the Quest to Harness the Secret Powers of the Microbiota. Front Genet 2020; 11:581664. [PMID: 33193706 PMCID: PMC7652851 DOI: 10.3389/fgene.2020.581664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanical and chemical properties of natural plant fibers are determined by many different factors, both intrinsic and extrinsic to the plant, during growth but also after harvest. A better understanding of how all these factors exert their effect and how they interact is necessary to be able to optimize fiber quality for use in different industries. One important factor is the post-harvest process known as retting, representing the first step in the extraction of bast fibers from the stem of species such as flax and hemp. During this process microorganisms colonize the stem and produce hydrolytic enzymes that target cell wall polymers thereby facilitating the progressive destruction of the stem and fiber bundles. Recent advances in sequencing technology have allowed researchers to implement targeted metagenomics leading to a much better characterization of the microbial communities involved in retting, as well as an improved understanding of microbial dynamics. In this paper we review how our current knowledge of the microbiology of retting has been improved by targeted metagenomics and discuss how related '-omics' approaches might be used to fully characterize the functional capability of the retting microbiome.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Estelle Goulas
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nelly Badalato
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Brigitte Chabbert
- Université de Reims Champagne Ardenne, INRAE, UMR FARE A 614, Reims, France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
136
|
Zhao Q, Wu J, Zhang L, Yan C, Jiang S, Li Z, Sun D, Lai Y, Gong Z. Genome-scale analyses and characteristics of putative pathogenicity genes of Stagonosporopsis cucurbitacearum, a pumpkin gummy stem blight fungus. Sci Rep 2020; 10:18065. [PMID: 33093634 PMCID: PMC7581720 DOI: 10.1038/s41598-020-75235-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Outbreaks of gummy stem blight (GSB), an emerging seed pumpkin disease, have increased in number and have become more widespread in recent years. Previously we reported that Stagonosporopsis cucurbitacearum (Sc.) is the dominant fungal cause of pumpkin seedling GSB in Northeast China, where it has greatly reduced crop yields in that region. Here, high-throughput whole-genome sequencing and assembly of the Sc. genome were conducted toward revealing pathogenic molecular regulatory mechanisms involved in fungal growth and development. Zq-1 as representative Sc. strain, DNA of Zq-1was prepared for genomic sequencing, we obtained 5.24 Gb of high-quality genomic sequence data via PacBio RS II sequencing. After sequence data was processed to filter out low quality reads, a hierarchical genome-assembly process was employed that generated a genome sequence of 35.28 Mb in size. A total of 9844 genes were predicted, including 237 non-coding RNAs, 1024 genes encoding proteins with signal peptides, 2066 transmembrane proteins and 756 secretory proteins.Transcriptional identification revealed 54 differentially expressed secretory proteins. Concurrently, 605, 130 and 2869 proteins were matched in the proprietary databases Carbohydrate-Active EnZymes database (CAZyme), Transporter Classification Database (TCDB) and Pathogen-Host Interactions database (PHI), respectively. And 96 and 36 DEGs were identified form PHI database and CAZyme database, respectively. In addition, contig00011.93 was an up-regulated DEG involving ATP-binding cassette metabolism in the procession of infection. In order to test relevance of gene predictions to GSB, DEGs with potential pathogenic relevance were revealed through transcriptome data analysis of Sc. strains pre- and post-infection of pumpkin. Interestingly, Sc. and Leptosphaeria maculans (Lm.) exhibited relatively similar with genome lengths, numbers of protein-coding genes and other characteristics. This work provides a foundation for future exploration of additional Sc. gene functions toward the development of more effective GSB control strategies.
Collapse
Affiliation(s)
- Qian Zhao
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jianzhong Wu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liyan Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chao Yan
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Shukun Jiang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhugang Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Dequan Sun
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences, Harbin, China.
| | - Zhenping Gong
- College of Agriculture, Northeast Agriculture University, Harbin, China.
| |
Collapse
|
137
|
Yang J, Ji JY, Zhang BW, Chen YZ, Wang SR, Zhang GC, Zhang J. Transcriptome and cell wall degrading enzyme-related gene analysis of Pestalotiopsis neglecta in response to sodium pheophorbide a. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104639. [PMID: 32828363 DOI: 10.1016/j.pestbp.2020.104639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Sodium pheophorbide a (SPA) is a new alternative fungicide with low toxicity and high efficiency, which has high fungicidal activity against Pestalotiopsis neglecta, a pathogen that causes black spot needle blight of Pinus sylvestris var. mongolica. To utilize SPA for plant disease control, understanding its antifungal mechanism is essential. Six cDNA libraries were constructed from 3 d-old P. neglecta mycelia (three SPA-infected and three untreated groups) and 29,850 expressed genes were obtained by Illumina HiSeq4000 sequencing. Compared with controls, 3268 differentially expressed genes (DEGs) were identified in SPA-treated groups, including 1879 upregulated and 1389 downregulated genes. Most DEGs were involved in the metabolism of amino acids, carbohydrates, and lipids, as well as cell structure and genetic information processing. These findings were further confirmed by decreased conductivity, RNA and protein content, and activities of nicotinamide adenine dinucleotide-dependent malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase. Moreover, qRT-PCR verified the reliability of the transcriptome results. After treatment with SPA at different concentrations for 60 min, the expressions of three cell wall degrading enzyme-related genes (PnEG, PnBG, and PnPG) were all suppressed. Overall, this study provided insights into the molecular mechanisms through which SPA inhibits P. neglecta, increasing the possibility of developing SPA into an effective fungicide in the future.
Collapse
Affiliation(s)
- Jing Yang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Jing-Yu Ji
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Bo-Wen Zhang
- School of Information and Computer Engineering, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Yun-Ze Chen
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Shu-Ren Wang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Guo-Cai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China.
| | - Jie Zhang
- Key Laboratory of Saline-Alkali Vegetation Recovery and Reconstruction, Ministry of Education, School of Life Science, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
138
|
Yacoub A, Magnin N, Gerbore J, Haidar R, Bruez E, Compant S, Guyoneaud R, Rey P. The Biocontrol Root-Oomycete, Pythium Oligandrum, Triggers Grapevine Resistance and Shifts in the Transcriptome of the Trunk Pathogenic Fungus, Phaeomoniella Chlamydospora. Int J Mol Sci 2020; 21:ijms21186876. [PMID: 32961710 PMCID: PMC7555917 DOI: 10.3390/ijms21186876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
The worldwide increase in grapevine trunk diseases, mainly esca, represents a major threat for vineyard sustainability. Biocontrol of a pioneer fungus of esca, Phaeomoniella chlamydospora, was investigated here by deciphering the tripartite interaction between this trunk-esca pathogen, grapevine and the biocontrol-oomycete, Pythium oligandrum. When P. oligandrum colonizes grapevine roots, it was observed that the wood necroses caused by P. chlamydospora were significantly reduced. Transcriptomic analyses of plant and fungus responses were performed to determine the molecular events occurring, with the aim to relate P.chlamydospora degradation of wood to gene expression modulation. Following P. oligandrum-root colonization, major transcriptomic changes occurred both, in the grapevine-defense system and in the P. chlamydospore-virulence factors. Grapevine-defense was enhanced in response to P. chlamydospora attacks, with P. oligandrum acting as a plant-systemic resistance inducer, promoting jasmonic/ethylene signaling pathways and grapevine priming. P. chlamydospora pathogenicity genes, such as those related to secondary metabolite biosynthesis, carbohydrate-active enzymes and transcription regulators, were also affected in their expression. Shifts in grapevine responses and key-fungal functions were associated with the reduction of P. chlamydospora wood necroses. This study provides evidence of wood fungal pathogen transcriptional changes induced by a root biocontrol agent, P. oligandrum, in which there is no contact between the two microorganisms.
Collapse
Affiliation(s)
- Amira Yacoub
- INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France; (A.Y.); (N.M.); (R.H.); (E.B.)
| | - Noel Magnin
- INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France; (A.Y.); (N.M.); (R.H.); (E.B.)
| | | | - Rana Haidar
- INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France; (A.Y.); (N.M.); (R.H.); (E.B.)
| | - Emilie Bruez
- INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France; (A.Y.); (N.M.); (R.H.); (E.B.)
| | - Stéphane Compant
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430 Tulln, Austria;
| | - Rémy Guyoneaud
- Institut des Sciences Analytiques et de Physicochimie pour l‘Environnement et les Matériaux—UMR 5254, Microbial Ecology, Université de Pau et des Pays de l’Adour/E2S UPPA/CNRS, IBEAS Avenue de l’Université, 64013 Pau, France;
| | - Patrice Rey
- INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France; (A.Y.); (N.M.); (R.H.); (E.B.)
- Correspondence:
| |
Collapse
|
139
|
Abstract
Most genomes within the species complex of Fusarium oxysporum are organized into two compartments: the core chromosomes (CCs) and accessory chromosomes (ACs). As opposed to CCs, which are conserved and vertically transmitted to carry out essential housekeeping functions, lineage- or strain-specific ACs are believed to be initially horizontally acquired through unclear mechanisms. These two genomic compartments are different in terms of gene density, the distribution of transposable elements, and epigenetic markers. Although common in eukaryotes, the functional importance of ACs is uniquely emphasized among fungal species, specifically in relationship to fungal pathogenicity and their adaptation to diverse hosts. With a focus on the cross-kingdom fungal pathogen F. oxysporum, this review provides a summary of the differences between CCs and ACs based on current knowledge of gene functions, genome structures, and epigenetic signatures, and explores the transcriptional crosstalk between the core and accessory genomes.
Collapse
|
140
|
Feurtey A, Lorrain C, Croll D, Eschenbrenner C, Freitag M, Habig M, Haueisen J, Möller M, Schotanus K, Stukenbrock EH. Genome compartmentalization predates species divergence in the plant pathogen genus Zymoseptoria. BMC Genomics 2020; 21:588. [PMID: 32842972 PMCID: PMC7448473 DOI: 10.1186/s12864-020-06871-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Antagonistic co-evolution can drive rapid adaptation in pathogens and shape genome architecture. Comparative genome analyses of several fungal pathogens revealed highly variable genomes, for many species characterized by specific repeat-rich genome compartments with exceptionally high sequence variability. Dynamic genome structure may enable fast adaptation to host genetics. The wheat pathogen Zymoseptoria tritici with its highly variable genome, has emerged as a model organism to study genome evolution of plant pathogens. Here, we compared genomes of Z. tritici isolates and of sister species infecting wild grasses to address the evolution of genome composition and structure. Results Using long-read technology, we sequenced and assembled genomes of Z. ardabiliae, Z. brevis, Z. pseudotritici and Z. passerinii, together with two isolates of Z. tritici. We report a high extent of genome collinearity among Zymoseptoria species and high conservation of genomic, transcriptomic and epigenomic signatures of compartmentalization. We identify high gene content variability both within and between species. In addition, such variability is mainly limited to the accessory chromosomes and accessory compartments. Despite strong host specificity and non-overlapping host-range between species, predicted effectors are mainly shared among Zymoseptoria species, yet exhibiting a high level of presence-absence polymorphism within Z. tritici. Using in planta transcriptomic data from Z. tritici, we suggest different roles for the shared orthologs and for the accessory genes during infection of their hosts. Conclusion Despite previous reports of high genomic plasticity in Z. tritici, we describe here a high level of conservation in genomic, epigenomic and transcriptomic composition and structure across the genus Zymoseptoria. The compartmentalized genome allows the maintenance of a functional core genome co-occurring with a highly variable accessory genome.
Collapse
Affiliation(s)
- Alice Feurtey
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| | - Cécile Lorrain
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany. .,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany. .,INRA Centre Grand Est - Nancy, UMR 1136 INRA/Universite de Lorraine Interactions Arbres/Microorganismes, 54280, Champenoux, France.
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Christoph Eschenbrenner
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Habig
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| | - Janine Haueisen
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| | - Mareike Möller
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Klaas Schotanus
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany.,Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, NC, 27710, USA
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| |
Collapse
|
141
|
de Vries S, de Vries J. A Global Survey of Carbohydrate Esterase Families 1 and 10 in Oomycetes. Front Genet 2020; 11:756. [PMID: 32849784 PMCID: PMC7427535 DOI: 10.3389/fgene.2020.00756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are a cornerstone in the phytopathogenicity of filamentous microbes. CAZymes are required for every step of a successful infection cycle-from penetration, to nutrient acquisition (during colonization), to exit and dispersal. Yet, CAZymes are not a unique feature of filamentous pathogens. They are found across eukaryotic genomes and including, for example, saprotrophic relatives of major pathogens. Comparative genomics and functional analyses revealed that CAZyme content is shaped by a multitude of factors, including utilized substrate, lifestyle, and host preference. Yet, family size alone says little about usage. Indeed, in a previous study, we found that genes putatively coding for the CAZyme families of carbohydrate esterase (CE)1 and CE10, while not specifically enriched in number, were suggested to have lifestyle-specific gene expression patterns. Here, we used comparative genomics and a clustering approach to understand how the repertoire of the CE1- and CE10-encoding gene families is shaped across oomycete evolution. These data are combined with comparative transcriptomic analyses across homologous clusters within the gene families. We find that CE1 and CE10 have been reduced in number in biotrophic oomycetes independent of the phylogenetic relationship of the biotrophs to each other. The reduction in CE1 is different from that observed for CE10: While in CE10 specific clusters of homologous sequences show convergent reduction, CE1 reduction is caused by species-specific losses. Comparative transcriptomics revealed that some clusters of CE1 or CE10 sequences have a higher expression than others, independent of the species composition within them. Further, we find that CE1- and CE10-encoding genes are mainly induced in plant pathogens and that some homologous genes show lifestyle-specific gene expression levels during infection, with hemibiotrophs showing the highest expression levels.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göettingen, Göettingen, Germany
- Göettingen Center for Molecular Biosciences (GZMB), University of Göettingen, Göettingen, Germany
- Campus Institute Data Science, University of Göettingen, Göettingen, Germany
| |
Collapse
|
142
|
Pham TA, Kyriacou BA, Schwerdt JG, Shirley NJ, Xing X, Bulone V, Little A. Composition and biosynthetic machinery of the Blumeria graminis f. sp. hordei conidia cell wall. ACTA ACUST UNITED AC 2020; 5:100029. [PMID: 32743145 PMCID: PMC7388969 DOI: 10.1016/j.tcsw.2019.100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
Infection of barley with the powdery mildew causal agent, Blumeria graminis f. sp. hordei (Bgh), can lead to devastating damage to barley crops. The recent emergence of fungicide resistance imposes a need to develop new antifungal strategies. The enzymes involved in cell wall biosynthesis are ideal targets for the development of fungicides. However, in order to narrow down any target proteins involved in cell wall formation, a greater understanding of the cell wall structure and composition is required. Here, we present a detailed carbohydrate analysis of the Bgh conidial cell wall, a full annotation of Carbohydrate Active enZymes (CAZy) in the Bgh genome, and a comprehensive expression profile of the genes involved in cell wall metabolism. Glycosidic linkage analysis has revealed that the cell wall polysaccharide fraction of Bgh conidia predominantly consists of glucosyl residues (63.1%) and has a greater proportion of galactopyranosyl residues compared to other species (8.5%). Trace amounts of xylosyl residues were also detected, which is unusual in ascomycetes. Transcripts of the genes involved in cell wall metabolism show high expression of chitin deacetylases, which assist fungi in evading the host defence system by deacetylating chitin to chitosan. The data presented suggest that the cell wall components of the conidia and the corresponding obligate biotrophic CAZy gene profile play a key role in the infection process.
Collapse
Affiliation(s)
- Trang A.T. Pham
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Bianca A. Kyriacou
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Julian G. Schwerdt
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Neil J. Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Xiaohui Xing
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Corresponding author.
| |
Collapse
|
143
|
Reference Genome Assembly for Australian Ascochyta rabiei Isolate ArME14. G3-GENES GENOMES GENETICS 2020; 10:2131-2140. [PMID: 32345704 PMCID: PMC7341154 DOI: 10.1534/g3.120.401265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ascochyta rabiei is the causal organism of ascochyta blight of chickpea and is present in chickpea crops worldwide. Here we report the release of a high-quality PacBio genome assembly for the Australian A. rabiei isolate ArME14. We compare the ArME14 genome assembly with an Illumina assembly for Indian A. rabiei isolate, ArD2. The ArME14 assembly has gapless sequences for nine chromosomes with telomere sequences at both ends and 13 large contig sequences that extend to one telomere. The total length of the ArME14 assembly was 40,927,385 bp, which was 6.26 Mb longer than the ArD2 assembly. Division of the genome by OcculterCut into GC-balanced and AT-dominant segments reveals 21% of the genome contains gene-sparse, AT-rich isochores. Transposable elements and repetitive DNA sequences in the ArME14 assembly made up 15% of the genome. A total of 11,257 protein-coding genes were predicted compared with 10,596 for ArD2. Many of the predicted genes missing from the ArD2 assembly were in genomic regions adjacent to AT-rich sequence. We compared the complement of predicted transcription factors and secreted proteins for the two A. rabiei genome assemblies and found that the isolates contain almost the same set of proteins. The small number of differences could represent real differences in the gene complement between isolates or possibly result from the different sequencing methods used. Prediction pipelines were applied for carbohydrate-active enzymes, secondary metabolite clusters and putative protein effectors. We predict that ArME14 contains between 450 and 650 CAZymes, 39 putative protein effectors and 26 secondary metabolite clusters.
Collapse
|
144
|
Cao H, Shimura Y, Steffen MM, Yang Z, Lu J, Joel A, Jenkins L, Kawachi M, Yin Y, Garcia-Pichel F. The Trait Repertoire Enabling Cyanobacteria to Bloom Assessed through Comparative Genomic Complexity and Metatranscriptomics. mBio 2020; 11:e01155-20. [PMID: 32605986 PMCID: PMC7327172 DOI: 10.1128/mbio.01155-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023] Open
Abstract
Water bloom development due to eutrophication constitutes a case of niche specialization among planktonic cyanobacteria, but the genomic repertoire allowing bloom formation in only some species has not been fully characterized. We posited that the habitat relevance of a trait begets its underlying genomic complexity, so that traits within the repertoire would be differentially more complex in species successfully thriving in that habitat than in close species that cannot. To test this for the case of bloom-forming cyanobacteria, we curated 17 potentially relevant query metabolic pathways and five core pathways selected according to existing ecophysiological literature. The available 113 genomes were split into those of blooming (45) or nonblooming (68) strains, and an index of genomic complexity for each strain's version of each pathway was derived. We show that strain versions of all query pathways were significantly more complex in bloomers, with complexity in fact correlating positively with strain blooming incidence in 14 of those pathways. Five core pathways, relevant everywhere, showed no differential complexity or correlations. Gas vesicle, toxin and fatty acid synthesis, amino acid uptake, and C, N, and S acquisition systems were most strikingly relevant in the blooming repertoire. Further, we validated our findings using metagenomic gene expression analyses of blooming and nonblooming cyanobacteria in natural settings, where pathways in the repertoire were differentially overexpressed according to their relative complexity in bloomers, but not in nonbloomers. We expect that this approach may find applications to other habitats and organismal groups.IMPORTANCE We pragmatically delineate the trait repertoire that enables organismal niche specialization. We based our approach on the tenet, derived from evolutionary and complex-system considerations, that genomic units that can significantly contribute to fitness in a certain habitat will be comparatively more complex in organisms specialized to that habitat than their genomic homologs found in organisms from other habitats. We tested this in cyanobacteria forming harmful water blooms, for which decades-long efforts in ecological physiology and genomics exist. Our results essentially confirm that genomics and ecology can be linked through comparative complexity analyses, providing a tool that should be of general applicability for any group of organisms and any habitat, and enabling the posing of grounded hypotheses regarding the ecogenomic basis for diversification.
Collapse
Affiliation(s)
- Huansheng Cao
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Yohei Shimura
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Morgan M Steffen
- Biology Department, James Madison University, Harrisonburg, Harrisonburg, Virginia, USA
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jingrang Lu
- U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, Ohio, USA
| | - Allen Joel
- U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, Ohio, USA
| | - Landon Jenkins
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Masanobu Kawachi
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ferran Garcia-Pichel
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
145
|
Li Y, Han Y, Qu M, Chen J, Chen X, Geng X, Wang Z, Chen S. Apoplastic Cell Death-Inducing Proteins of Filamentous Plant Pathogens: Roles in Plant-Pathogen Interactions. Front Genet 2020; 11:661. [PMID: 32676100 PMCID: PMC7333776 DOI: 10.3389/fgene.2020.00661] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Filamentous pathogens, such as phytopathogenic oomycetes and fungi, secrete a remarkable diversity of apoplastic effector proteins to facilitate infection, many of which are able to induce cell death in plants. Over the past decades, over 177 apoplastic cell death-inducing proteins (CDIPs) have been identified in filamentous oomycetes and fungi. An emerging number of studies have demonstrated the role of many apoplastic CDIPs as essential virulence factors. At the same time, apoplastic CDIPs have been documented to be recognized by plant cells as pathogen-associated molecular patterns (PAMPs). The recent findings of extracellular recognition of apoplastic CDIPs by plant leucine-rich repeat-receptor-like proteins (LRR-RLPs) have greatly advanced our understanding of how plants detect them and mount a defense response. This review summarizes the latest advances in identifying apoplastic CDIPs of plant pathogenic oomycetes and fungi, and our current understanding of the dual roles of apoplastic CDIPs in plant-filamentous pathogen interactions.
Collapse
Affiliation(s)
- Ya Li
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
146
|
Djalali Farahani-Kofoet R, Witzel K, Graefe J, Grosch R, Zrenner R. Species-Specific Impact of Fusarium Infection on the Root and Shoot Characteristics of Asparagus. Pathogens 2020; 9:E509. [PMID: 32599821 PMCID: PMC7350344 DOI: 10.3390/pathogens9060509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
Soil-borne pathogens can have considerable detrimental effects on asparagus (Asparagus officinalis) growth and production, notably caused by the Fusarium species F. oxysporum f.sp. asparagi, F. proliferatum and F. redolens. In this study, their species-specific impact regarding disease severity and root morphological traits was analysed. Additionally, various isolates were characterised based on in vitro physiological activities and on protein extracts using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS). The response of two asparagus cultivars to the different Fusarium species was evaluated by inoculating experiments. Differences in aggressiveness were observed between Fusarium species and their isolates on roots, while no clear disease symptoms became visible in ferns eight weeks after inoculation. F. redolens isolates Fred1 and Fred2 were the most aggressive strains followed by the moderate aggressive F. proliferatum and the less and almost non-aggressive F. oxysporum isolates, based on the severity of disease symptoms. Fungal DNA in stem bases and a significant induction of pathogenesis-related gene expression was detectable in both asparagus cultivars. A significant negative impact of the pathogens on the root characteristics total root length, volume, and surface area was detected for each isolate tested, with Fred1 causing the strongest effects. No significant differences between the tested asparagus cultivars were observed.
Collapse
Affiliation(s)
| | | | | | | | - Rita Zrenner
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., 14979 Großbeeren, Germany; (R.D.F.-K.); (K.W.); (J.G.); (R.G.)
| |
Collapse
|
147
|
van Vliet DM, Lin Y, Bale NJ, Koenen M, Villanueva L, Stams AJM, Sánchez-Andrea I. Pontiella desulfatans gen. nov., sp. nov., and Pontiella sulfatireligans sp. nov., Two Marine Anaerobes of the Pontiellaceae fam. nov. Producing Sulfated Glycosaminoglycan-like Exopolymers. Microorganisms 2020; 8:microorganisms8060920. [PMID: 32570748 PMCID: PMC7356697 DOI: 10.3390/microorganisms8060920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, we isolated two marine strains, F1T and F21T, which together with Kiritimatiella glycovorans L21-Fru-ABT are the only pure cultures of the class Kiritimatiellae within the phylum Verrucomicrobiota. Here, we present an in-depth genome-guided characterization of both isolates with emphasis on their exopolysaccharide synthesis. The strains only grew fermentatively on simple carbohydrates and sulfated polysaccharides. Strains F1T, F21T and K. glycovorans reduced elemental sulfur, ferric citrate and anthraquinone-2,6-disulfonate during anaerobic growth on sugars. Both strains produced exopolysaccharides during stationary phase, probably with intracellularly stored glycogen as energy and carbon source. Exopolysaccharides included N-sulfated polysaccharides probably containing hexosamines and thus resembling glycosaminoglycans. This implies that the isolates can both degrade and produce sulfated polysaccharides. Both strains encoded an unprecedently high number of glycoside hydrolase genes (422 and 388, respectively), including prevalent alpha-L-fucosidase genes, which may be necessary for degrading complex sulfated polysaccharides such as fucoidan. Strain F21T encoded three putative glycosaminoglycan sulfotransferases and a putative sulfate glycosaminoglycan biosynthesis gene cluster. Based on phylogenetic and chemotaxonomic analyses, we propose the taxa Pontiella desulfatans F1T gen. nov., sp. nov. and Pontiella sulfatireligans F21T sp. nov. as representatives of the Pontiellaceae fam. nov. within the class Kiritimatiellae.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands;
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
- Correspondence: ; Tel.: +31-317-483486
| |
Collapse
|
148
|
High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00447-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Hypoxylaceae (Xylariales, Ascomycota) is a diverse family of mainly saprotrophic fungi, which commonly occur in angiosperm-dominated forests around the world. Despite their importance in forest and plant ecology as well as a prolific source of secondary metabolites and enzymes, genome sequences of related taxa are scarce and usually derived from environmental isolates. To address this lack of knowledge thirteen taxonomically well-defined representatives of the family and one member of the closely related Xylariaceae were genome sequenced using combinations of Illumina and Oxford nanopore technologies or PacBio sequencing. The workflow leads to high quality draft genome sequences with an average N50 of 3.0 Mbp. A backbone phylogenomic tree was calculated based on the amino acid sequences of 4912 core genes reflecting the current accepted taxonomic concept of the Hypoxylaceae. A Percentage of Conserved Proteins (POCP) analysis revealed that 70% of the proteins are conserved within the family, a value with potential application for the definition of family boundaries within the order Xylariales. Also, Hypomontagnella spongiphila is proposed as a new marine derived lineage of Hypom. monticulosa based on in-depth genomic comparison and morphological differences of the cultures. The results showed that both species share 95% of their genes corresponding to more than 700 strain-specific proteins. This difference is not reflected by standard taxonomic assessments (morphology of sexual and asexual morph, chemotaxonomy, phylogeny), preventing species delimitation based on traditional concepts. Genetic changes are likely to be the result of environmental adaptations and selective pressure, the driving force of speciation. These data provide an important starting point for the establishment of a stable phylogeny of the Xylariales; they enable studies on evolution, ecological behavior and biosynthesis of natural products; and they significantly advance the taxonomy of fungi.
Collapse
|
149
|
Reveglia P, Masi M, Evidente A. Melleins-Intriguing Natural Compounds. Biomolecules 2020; 10:E772. [PMID: 32429259 PMCID: PMC7277180 DOI: 10.3390/biom10050772] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Melleins are 3,4-dihydroisocoumarins mainly produced by fungi, but also by plants, insects and bacteria. These specialized metabolites play important roles in the life cycles of the producers and they are involved in many biochemical and ecological processes. This review outlines the isolation and chemical and biological characterizations of natural-occurring melleins from the first report of (R)-mellein in 1933 to the most recent advances in their characterization in 2019. In addition, the pathways that could be involved in mellein biosynthesis are discussed, along with the enzymes and genes involved.
Collapse
Affiliation(s)
- Pierluigi Reveglia
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy; (P.R.); (M.M.)
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Plesso di Medicina Viale Luigi Pinto 1, 71122 Foggia, Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy; (P.R.); (M.M.)
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy; (P.R.); (M.M.)
| |
Collapse
|
150
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|