101
|
Neumann K, Zhao Y, Chu J, Keilwagen J, Reif JC, Kilian B, Graner A. Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis. BMC PLANT BIOLOGY 2017; 17:137. [PMID: 28797222 PMCID: PMC5554006 DOI: 10.1186/s12870-017-1085-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/23/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Genetic mapping of phenotypic traits generally focuses on a single time point, but biomass accumulates continuously during plant development. Resolution of the temporal dynamics that affect biomass recently became feasible using non-destructive imaging. RESULTS With the aim to identify key genetic factors for vegetative biomass formation from the seedling stage to flowering, we explored growth over time in a diverse collection of two-rowed spring barley accessions. High heritabilities facilitated the temporal analysis of trait relationships and identification of quantitative trait loci (QTL). Biomass QTL tended to persist only a short period during early growth. More persistent QTL were detected around the booting stage. We identified seven major biomass QTL, which together explain 55% of the genetic variance at the seedling stage, and 43% at the booting stage. Three biomass QTL co-located with genes or QTL involved in phenology. The most important locus for biomass was independent from phenology and is located on chromosome 7HL at 141 cM. This locus explained ~20% of the genetic variance, was significant over a long period of time and co-located with HvDIM, a gene involved in brassinosteroid synthesis. CONCLUSIONS Biomass is a dynamic trait and is therefore orchestrated by different QTL during early and late growth stages. Marker-assisted selection for high biomass at booting stage is most effective by also including favorable alleles from seedling biomass QTL. Selection for dynamic QTL may enhance genetic gain for complex traits such as biomass or, in the future, even grain yield.
Collapse
Affiliation(s)
- Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany.
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Jianting Chu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Jens Keilwagen
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
- Global Crop Diversity Trust (GCDT), Bonn, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| |
Collapse
|
102
|
Siol M, Jacquin F, Chabert-Martinello M, Smýkal P, Le Paslier MC, Aubert G, Burstin J. Patterns of Genetic Structure and Linkage Disequilibrium in a Large Collection of Pea Germplasm. G3 (BETHESDA, MD.) 2017; 7:2461-2471. [PMID: 28611254 PMCID: PMC5555454 DOI: 10.1534/g3.117.043471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
Pea (Pisum sativum, L.) is a major pulse crop used both for animal and human alimentation. Owing to its association with nitrogen-fixing bacteria, it is also a valuable component for low-input cropping systems. To evaluate the genetic diversity and the scale of linkage disequilibrium (LD) decay in pea, we genotyped a collection of 917 accessions, gathering elite cultivars, landraces, and wild relatives using an array of ∼13,000 single nucleotide polymorphisms (SNP). Genetic diversity is broadly distributed across three groups corresponding to wild/landraces peas, winter types, and spring types. At a finer subdivision level, genetic groups relate to local breeding programs and type usage. LD decreases steeply as genetic distance increases. When considering subsets of the data, LD values can be higher, even if the steep decay remains. We looked for genomic regions exhibiting high level of differentiation between wild/landraces, winter, and spring pea, respectively. Two regions on linkage groups 5 and 6 containing 33 SNPs exhibit stronger differentiation between winter and spring peas than would be expected under neutrality. Interestingly, QTL for resistance to cold acclimation and frost resistance have been identified previously in the same regions.
Collapse
Affiliation(s)
- Mathieu Siol
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1347, Agroécologie, 21065 Dijon, France
| | - Françoise Jacquin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1347, Agroécologie, 21065 Dijon, France
| | - Marianne Chabert-Martinello
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1347, Agroécologie, 21065 Dijon, France
| | - Petr Smýkal
- Palacky University, Faculty of Science, Department of Botany, Holice, 783 71 Olomouc, Czech Republic
| | - Marie-Christine Le Paslier
- INRA, US 1279 Etude du Polymorphisme des Génomes Végétaux (EPGV), Centre de Recherche Ile-de-France-Versailles-Grignon, Commissariat à l'énergie atomique (CEA)-Institut de Génomique, Centre national de génotypage (CNG), Université Paris-Saclay, 91000 Evry, France
| | - Grégoire Aubert
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1347, Agroécologie, 21065 Dijon, France
| | - Judith Burstin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1347, Agroécologie, 21065 Dijon, France
| |
Collapse
|
103
|
Vafadarshamasbi U, Jamali SH, Sadeghzadeh B, Abdollahi Mandoulakani B. Genetic Mapping of Quantitative Trait Loci for Yield-Affecting Traits in a Barley Doubled Haploid Population Derived from Clipper × Sahara 3771. FRONTIERS IN PLANT SCIENCE 2017; 8:688. [PMID: 28769936 PMCID: PMC5513936 DOI: 10.3389/fpls.2017.00688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/13/2017] [Indexed: 05/02/2023]
Abstract
Many traits play essential roles in determining crop yield. Wide variation for morphological traits exists in Hordeum vulgare L., but the genetic basis of this morphological variation is largely unknown. To understand genetic basis controlling morphological traits affecting yield, a barley doubled haploid population (146 individuals) derived from Clipper × Sahara 3771 was used to map chromosome regions underlying days to awn appearance, plant height, fertile spike number, flag leaf length, spike length, harvest index, seed number per plant, thousands kernel weight, and grain yield. Twenty-seven QTLs for nine traits were mapped to the barley genome that described 3-69% of phenotypic variations; and some genomic regions harbor a given QTL for more than one trait. Out of 27 QTLs identified, 19 QTLs were novel. Chromosomal regions on 1H, 2H, 4H, and 6H associated with seed grain yield, and chromosome regions on 2H and 6H had major effects on grain yield (GY). One major QTL for seed number per plant was flanked by marker VRS1-KSUF15 on chromosome 2H. This QTL was also associated with GY. Some loci controlling thousands kernel weight (TKW), fertile spike number (FSN), and GY were the same. The major grain yield QTL detected on linkage PSR167 co-localized with TAM10. Two major QTLs controlling TKW and FSN were also mapped at this locus. Eight QTLs on chromosomes 1H, 2H, 3H, 4H, 5H, 6H, and 7H consistently affected spike characteristics. One major QTL (ANIONT1A-TACMD) on 4H affected both spike length (SL) and spike number explained 9 and 5% of the variation of SL and FSN, respectively. In conclusion, this study could cast some light on the genetic basis of the studied pivotal traits. Moreover, fine mapping of the identified major effect markers may facilitate the application of molecular markers in barley breeding programs.
Collapse
Affiliation(s)
- Ulduz Vafadarshamasbi
- Department of Agricultural Biotechnology, Maragheh Branch, Islamic Azad UniversityMaragheh, Iran
| | - Seyed Hossein Jamali
- Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension OrganizationKaraj, Iran
| | - Behzad Sadeghzadeh
- Dryland Agricultural Research Institute, Agricultural Research, Education and Extension OrganizationMaragheh, Iran
| | | |
Collapse
|
104
|
Lin Y, Liu S, Liu Y, Liu Y, Chen G, Xu J, Deng M, Jiang Q, Wei Y, Lu Y, Zheng Y. Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder parents. Genet Mol Biol 2017; 40:620-629. [PMID: 28696481 PMCID: PMC5596365 DOI: 10.1590/1678-4685-gmb-2016-0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a major abiotic factor affecting grain weight and
quality, and is caused by an early break in seed dormancy. Association mapping (AM)
is used to detect correlations between phenotypes and genotypes based on linkage
disequilibrium (LD) in wheat breeding programs. We evaluated seed dormancy in 80
Chinese wheat founder parents in five environments and performed a genome-wide
association study using 6,057 markers, including 93 simple sequence repeat (SSR),
1,472 diversity array technology (DArT), and 4,492 single nucleotide polymorphism
(SNP) markers. The general linear model (GLM) and the mixed linear model (MLM) were
used in this study, and two significant markers (tPt-7980 and
wPt-6457) were identified. Both markers were located on
Chromosome 1B, with wPt-6457 having been identified in a previously
reported chromosomal position. The significantly associated loci contain essential
information for cloning genes related to resistance to PHS and can be used in wheat
breeding programs.
Collapse
Affiliation(s)
- Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yujiao Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| |
Collapse
|
105
|
Yu G, Champouret N, Steuernagel B, Olivera PD, Simmons J, Williams C, Johnson R, Moscou MJ, Hernández-Pinzón I, Green P, Sela H, Millet E, Jones JDG, Ward ER, Steffenson BJ, Wulff BBH. Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1207-1222. [PMID: 28275817 PMCID: PMC5440502 DOI: 10.1007/s00122-017-2882-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/17/2017] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.
Collapse
Affiliation(s)
- Guotai Yu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- 2Blades Foundation, 1630 Chicago Avenue, Suite 1901, Evanston, IL, 60201, USA
| | - Nicolas Champouret
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- J.R. Simplot Company, 5369 West Irving Street, Boise, ID, 83706, USA
| | | | - Pablo D Olivera
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jamie Simmons
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Cole Williams
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Ryan Johnson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Matthew J Moscou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Phon Green
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hanan Sela
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eitan Millet
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Eric R Ward
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- 2Blades Foundation, 1630 Chicago Avenue, Suite 1901, Evanston, IL, 60201, USA
- AgBiome Inc, 104 T. W. Alexander Drive, Building 1, Research Triangle Park, NC, 27709, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
106
|
Alqudah AM, Schnurbusch T. Heading Date Is Not Flowering Time in Spring Barley. FRONTIERS IN PLANT SCIENCE 2017; 8:896. [PMID: 28611811 PMCID: PMC5447769 DOI: 10.3389/fpls.2017.00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/12/2017] [Indexed: 05/02/2023]
Affiliation(s)
- Ahmad M. Alqudah
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (LG)Seeland, Germany
| | | |
Collapse
|
107
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
108
|
Wonneberger R, Ficke A, Lillemo M. Mapping of quantitative trait loci associated with resistance to net form net blotch (Pyrenophora teres f. teres) in a doubled haploid Norwegian barley population. PLoS One 2017; 12:e0175773. [PMID: 28448537 PMCID: PMC5407769 DOI: 10.1371/journal.pone.0175773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/31/2017] [Indexed: 12/01/2022] Open
Abstract
Barley net blotch caused by the necrotrophic fungus Pyrenophora teres is a major barley disease in Norway. It can cause grain shriveling and yield losses, and resistance in currently grown cultivars is insufficient. In this study, a set of 589 polymorphic SNP markers was used to map resistance loci in a population of 109 doubled haploid lines from a cross between the closely related Norwegian cultivars Arve (moderately susceptible) and Lavrans (moderately resistant). Resistance to three net form net blotch (P. teres f. teres) single spore isolates was evaluated at the seedling stage in the greenhouse and at the adult plant stage under field conditions during three years. Days to heading and plant height were scored to assess their influence on disease severity. At the seedling stage, three to four quantitative trait loci (QTL) associated with resistance were found per isolate used. A major, putatively novel QTL was identified on chromosome 5H, accounting for 23-48% of the genetic variation. Additional QTL explaining between 12 and 16.5% were found on chromosomes 4H, 5H, 6H and 7H, with the one on 6H being race-specific. The major QTL on 5H was also found in adult plants under field conditions in three years (explaining up to 55%) and the 7H QTL was found in field trials in one year. Additional adult plant resistance QTL on 3H, 6H and 7H were significant in single years. The resistance on chromosomes 3H, 5H, 6H and 7H originates from the more resistant parent Lavrans, while the resistance on 4H is conferred by Arve. The genetic markers associated with the QTL found in this study will benefit marker-assisted selection for resistance against net blotch.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Andrea Ficke
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
109
|
Pasam RK, Bansal U, Daetwyler HD, Forrest KL, Wong D, Petkowski J, Willey N, Randhawa M, Chhetri M, Miah H, Tibbits J, Bariana H, Hayden MJ. Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:777-793. [PMID: 28255670 DOI: 10.1007/s00122-016-2851-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/28/2016] [Indexed: 05/26/2023]
Abstract
BayesR and MLM association mapping approaches in common wheat landraces were used to identify genomic regions conferring resistance to Yr, Lr, and Sr diseases. Deployment of rust resistant cultivars is the most economically effective and environmentally friendly strategy to control rust diseases in wheat. However, the highly evolving nature of wheat rust pathogens demands continued identification, characterization, and transfer of new resistance alleles into new varieties to achieve durable rust control. In this study, we undertook genome-wide association studies (GWAS) using a mixed linear model (MLM) and the Bayesian multilocus method (BayesR) to identify QTL contributing to leaf rust (Lr), stem rust (Sr), and stripe rust (Yr) resistance. Our study included 676 pre-Green Revolution common wheat landrace accessions collected in the 1920-1930s by A.E. Watkins. We show that both methods produce similar results, although BayesR had reduced background signals, enabling clearer definition of QTL positions. For the three rust diseases, we found 5 (Lr), 14 (Yr), and 11 (Sr) SNPs significant in both methods above stringent false-discovery rate thresholds. Validation of marker-trait associations with known rust QTL from the literature and additional genotypic and phenotypic characterisation of biparental populations showed that the landraces harbour both previously mapped and potentially new genes for resistance to rust diseases. Our results demonstrate that pre-Green Revolution landraces provide a rich source of genes to increase genetic diversity for rust resistance to facilitate the development of wheat varieties with more durable rust resistance.
Collapse
Affiliation(s)
- Raj K Pasam
- Department of Economic Development, Jobs, Transport and Recourses, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Urmil Bansal
- Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia
| | - Hans D Daetwyler
- Department of Economic Development, Jobs, Transport and Recourses, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Kerrie L Forrest
- Department of Economic Development, Jobs, Transport and Recourses, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Debbie Wong
- Department of Economic Development, Jobs, Transport and Recourses, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Joanna Petkowski
- Department of Economic Development, Jobs, Transport and Recourses, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Nicholas Willey
- Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia
- Dow AgroSciences Australia Ltd, Unit 12A, 84 Barnes Street, Tamworth, NSW, 2340, Australia
| | - Mandeep Randhawa
- Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco, México, C.P. 56237, Mexico
| | - Mumta Chhetri
- Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia
| | - Hanif Miah
- Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia
| | - Josquin Tibbits
- Department of Economic Development, Jobs, Transport and Recourses, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Harbans Bariana
- Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia.
| | - Matthew J Hayden
- Department of Economic Development, Jobs, Transport and Recourses, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
110
|
Berdugo-Cely J, Valbuena RI, Sánchez-Betancourt E, Barrero LS, Yockteng R. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLoS One 2017; 12:e0173039. [PMID: 28257509 PMCID: PMC5336250 DOI: 10.1371/journal.pone.0173039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs.
Collapse
Affiliation(s)
- Jhon Berdugo-Cely
- Colombian Agricultural Research Corporation (CORPOICA)-Mosquera, Cundinamarca, Colombia
| | - Raúl Iván Valbuena
- Colombian Agricultural Research Corporation (CORPOICA)-Mosquera, Cundinamarca, Colombia
| | | | - Luz Stella Barrero
- Colombian Agricultural Research Corporation (CORPOICA)-Mosquera, Cundinamarca, Colombia
| | - Roxana Yockteng
- Colombian Agricultural Research Corporation (CORPOICA)-Mosquera, Cundinamarca, Colombia
- Muséum National d’Histoire Naturelle, UMR-CNRS 7205, Paris, France
| |
Collapse
|
111
|
Zeng B, Yan H, Liu X, Zang W, Zhang A, Zhou S, Huang L, Liu J. Genome-wide association study of rust traits in orchardgrass using SLAF-seq technology. Hereditas 2017; 154:5. [PMID: 28250720 PMCID: PMC5322626 DOI: 10.1186/s41065-017-0027-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/24/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND While orchardgrass (Dactylis glomerata L.) is a well-known perennial forage species, rust diseases cause serious reductions in the yield and quality of orchardgrass; however, genetic mechanisms of rust resistance are not well understood in orchardgrass. RESULTS In this study, a genome-wide association study (GWAS) was performed using specific-locus amplified fragment sequencing (SLAF-seq) technology in orchardgrass. A total of 2,334,889 SLAF tags were generated to produce 2,309,777 SNPs. ADMIXTURE analysis revealed unstructured subpopulations for 33 accessions, indicating that this orchardgrass population could be used for association analysis. Linkage disequilibrium (LD) analysis revealed an average r2 of 0.4 across all SNP pairs, indicating a high extent of LD in these samples. Through GWAS, a total of 4,604 SNPs were found to be significantly (P < 0.01) associated with the rust trait. The bulk analysis discovered a number of 5,211 SNPs related to rust trait. Two candidate genes, including cytochrome P450, and prolamin were implicated in disease resistance through prediction of functional genes surrounding each high-quality SNP (P < 0.01) associated with rust traits based on GWAS analysis and bulk analysis. CONCLUSIONS The large number of SNPs associated with rust traits and these two candidate genes may provide the basis for further research on rust resistance mechanisms and marker-assisted selection (MAS) for rust-resistant lineages.
Collapse
Affiliation(s)
- Bing Zeng
- Department of Animal Science, Southwest University, Rongchang, Chongqing, 402460 China
| | - Haidong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xinchun Liu
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenjing Zang
- College of Life Science, China West Normal University, Nanchong, 637009 China
| | - Ailing Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Sifan Zhou
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jinping Liu
- College of Life Science, China West Normal University, Nanchong, 637009 China
| |
Collapse
|
112
|
Zaid IU, Tang W, Liu E, Khan SU, Wang H, Mawuli EW, Hong D. Genome-Wide Single-Nucleotide Polymorphisms in CMS and Restorer Lines Discovered by Genotyping Using Sequencing and Association with Marker-Combining Ability for 12 Yield-Related Traits in Oryza sativa L. subsp. Japonica. FRONTIERS IN PLANT SCIENCE 2017; 8:143. [PMID: 28228768 PMCID: PMC5297617 DOI: 10.3389/fpls.2017.00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/24/2017] [Indexed: 05/26/2023]
Abstract
Heterosis or hybrid vigor is closely related with general combing ability (GCA) of parents and special combining ability (SCA) of combinations. The evaluation of GCA and SCA facilitate selection of parents and combinations in heterosis breeding. In order to improve combining ability (CA) by molecular marker assist selection, it is necessary to identify marker loci associated with the CA. To identify the single nucleotide polymorphisms (SNP) loci associated with CA in the parental genomes of japonica rice, genome-wide discovered SNP loci were tested for association with the CA of 18 parents for 12 yield-related traits. In this study, 81 hybrids were created and evaluated to calculate the CA of 18 parents. The parents were sequenced by genotyping by sequencing (GBS) method for identification of genome-wide SNPs. The analysis of GBS indicated that the successful mapping of 9.86 × 106 short reads in the Nipponbare reference genome consists of 39,001 SNPs in parental genomes at 11,085 chromosomal positions. The discovered SNPs were non-randomly distributed within and among the 12 chromosomes of rice. Overall, 20.4% (8026) of the discovered SNPs were coding types, and 8.6% (3344) and 9.9% (3951) of the SNPs revealed synonymous and non-synonymous changes, which provide valuable knowledge about the underlying performance of the parents. Furthermore, the associations between SNPs and CA indicated that 362 SNP loci were significantly related to the CA of 12 parental traits. The identified SNP loci of CA in our study were distributed genome wide and caused a positive or negative effect on the CA of traits. For the yield-related traits, such as grain thickness, days to heading, panicle length, grain length and 1000-grain weight, a maximum number of positive SNP loci of CA were found in CMS A171 and in the restorers LC64 and LR27. On an individual basis, some of associated loci that resided on chromosomes 2, 5, 7, 9, and 11 recorded maximum positive values for the CA of traits. From our results, we suggest that heterosis in japonica rice would be improved by pyramiding the favorable SNP loci of CA and eliminating the unfavorable loci from parental genomes.
Collapse
Affiliation(s)
- Imdad U. Zaid
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Erbao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Sana U. Khan
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia
| | - Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Edzesi W. Mawuli
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
113
|
Esuma W, Herselman L, Labuschagne MT, Ramu P, Lu F, Baguma Y, Buckler ES, Kawuki RS. Genome-wide association mapping of provitamin A carotenoid content in cassava. EUPHYTICA 2016; 212:97-110. [PMID: 0 DOI: 10.1007/s10681-016-1772-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/05/2016] [Indexed: 05/25/2023]
|
114
|
Gao Y, Liu Z, Faris JD, Richards J, Brueggeman RS, Li X, Oliver RP, McDonald BA, Friesen TL. Validation of Genome-Wide Association Studies as a Tool to Identify Virulence Factors in Parastagonospora nodorum. PHYTOPATHOLOGY 2016; 106:1177-1185. [PMID: 27442533 DOI: 10.1094/phyto-02-16-0113-fi] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parastagonospora nodorum is a necrotrophic fungal pathogen causing Septoria nodorum blotch on wheat. We have identified nine necrotrophic effector-host dominant sensitivity gene interactions, and we have cloned three of the necrotrophic effector genes, including SnToxA, SnTox1, and SnTox3. Because sexual populations of P. nodorum are difficult to develop under lab conditions, genome-wide association study (GWAS) is the best population genomic approach to identify genomic regions associated with traits using natural populations. In this article, we used a global collection of 191 P. nodorum isolates from which we identified 2,983 single-nucleotide polymorphism (SNP) markers and gene markers for SnToxA and SnTox3 to evaluate the power of GWAS on two popular wheat breeding lines that were sensitive to SnToxA and SnTox3. Strong marker trait associations (MTA) with P. nodorum virulence that mapped to SnTox3 and SnToxA were first identified using the marker set described above. A novel locus in the P. nodorum genome associated with virulence was also identified as a result of this analysis. To evaluate whether a sufficient level of marker saturation was available, we designed a set of primers every 1 kb in the genomic regions containing SnToxA and SnTox3. Polymerase chain reaction amplification was performed across the 191 isolates and the presence/absence polymorphism was scored and used as the genotype. The marker proximity necessary to identify MTA flanking SnToxA and SnTox3 ranged from 4 to 5 and 1 to 7 kb, respectively. Similar analysis was performed on the novel locus. Using a 45% missing data threshold, two more SNP were identified spanning a 4.6-kb genomic region at the novel locus. These results showed that the rate of linkage disequilibrium (LD) decay in P. nodorum and, likely, other fungi is high compared with plants and animals. The fast LD decay in P. nodorum is an advantage only if sufficient marker density is attained. Based on our results with the SnToxA and SnTox3 regions, markers are needed every 9 or 8 kb, respectively, or in every gene, to guarantee that genes associated with a quantitative trait such as virulence are not missed.
Collapse
Affiliation(s)
- Yuanyuan Gao
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Zhaohui Liu
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Justin D Faris
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Jonathan Richards
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Robert S Brueggeman
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Xuehui Li
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Richard P Oliver
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Bruce A McDonald
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| | - Timothy L Friesen
- First, second, fourth, fifth, and ninth authors: Department of Plant Pathology, North Dakota State University, Fargo 58108; third and ninth authors: United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58102; sixth author: Department of Plant Science, North Dakota State University, Fargo; seventh author: Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6102, Australia; and eighth author: Institute of Integrative Biology, Plant Pathology Group, Swiss Federal Institute of Technology, ETH Zentrum, LFW, CH-8092 Zürich, Switzerland
| |
Collapse
|
115
|
Population structure and marker-trait association of salt tolerance in barley (Hordeum vulgare L.). C R Biol 2016; 339:454-461. [PMID: 27660095 DOI: 10.1016/j.crvi.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/18/2016] [Accepted: 06/19/2016] [Indexed: 12/26/2022]
Abstract
Association mapping is becoming an important tool for identifying alleles and loci responsible for dissecting highly complex traits in barley. This study describes the population structure and marker-trait association using general linear model (GLM) analysis on a site of 60 barley genotypes, evaluated in six salinity environments. Ninety-eight SSR and SNP alleles were employed for the construction of a framework genetic map. The genetic structure analysis of the collection turned out to consist of two major sub-populations, mainly comprising hulled and naked types. LD significantly varied among the barley chromosomes, suggesting that this factor may affect the resolution of association mapping for QTL located on different chromosomes. Numerous significant marker traits were associated in different regions of the barley genome controlling salt tolerance and related traits; among them, 46 QTLs were detected on 14 associated traits over the two years, with a major QTL controlling salt tolerance on 1H, 2H, 4H and 7H, which are important factors in improving barley's salt tolerance.
Collapse
|
116
|
Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M. Photoperiod-H1 (Ppd-H1) Controls Leaf Size. PLANT PHYSIOLOGY 2016; 172:405-15. [PMID: 27457126 PMCID: PMC5074620 DOI: 10.1104/pp.16.00977] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/22/2016] [Indexed: 05/18/2023]
Abstract
Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds.
Collapse
Affiliation(s)
- Benedikt Digel
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (B.D., M.v.K.);Institute of Plant Genetics, Heinrich-Heine-University, 40225 Duesseldorf, Germany (B.D., M.v.K.);Cluster of Excellence on Plant Sciences "From Complex Traits Towards Synthetic Modules," 40225 Duesseldorf, Germany (B.D., M.v.K.);Università degli Studi di Milano-DiSAA, 20133 Milan, Italy (E.T., G.V., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186 Shiraz, Iran (E.T.);Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda, Italy (A.T., L.C.);Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wu Ling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biologica Technology, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China (X.X.); andParco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, Italy (L.R.)
| | - Elahe Tavakol
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (B.D., M.v.K.);Institute of Plant Genetics, Heinrich-Heine-University, 40225 Duesseldorf, Germany (B.D., M.v.K.);Cluster of Excellence on Plant Sciences "From Complex Traits Towards Synthetic Modules," 40225 Duesseldorf, Germany (B.D., M.v.K.);Università degli Studi di Milano-DiSAA, 20133 Milan, Italy (E.T., G.V., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186 Shiraz, Iran (E.T.);Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda, Italy (A.T., L.C.);Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wu Ling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biologica Technology, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China (X.X.); andParco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, Italy (L.R.)
| | - Gabriele Verderio
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (B.D., M.v.K.);Institute of Plant Genetics, Heinrich-Heine-University, 40225 Duesseldorf, Germany (B.D., M.v.K.);Cluster of Excellence on Plant Sciences "From Complex Traits Towards Synthetic Modules," 40225 Duesseldorf, Germany (B.D., M.v.K.);Università degli Studi di Milano-DiSAA, 20133 Milan, Italy (E.T., G.V., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186 Shiraz, Iran (E.T.);Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda, Italy (A.T., L.C.);Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wu Ling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biologica Technology, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China (X.X.); andParco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, Italy (L.R.)
| | - Alessandro Tondelli
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (B.D., M.v.K.);Institute of Plant Genetics, Heinrich-Heine-University, 40225 Duesseldorf, Germany (B.D., M.v.K.);Cluster of Excellence on Plant Sciences "From Complex Traits Towards Synthetic Modules," 40225 Duesseldorf, Germany (B.D., M.v.K.);Università degli Studi di Milano-DiSAA, 20133 Milan, Italy (E.T., G.V., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186 Shiraz, Iran (E.T.);Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda, Italy (A.T., L.C.);Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wu Ling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biologica Technology, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China (X.X.); andParco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, Italy (L.R.)
| | - Xin Xu
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (B.D., M.v.K.);Institute of Plant Genetics, Heinrich-Heine-University, 40225 Duesseldorf, Germany (B.D., M.v.K.);Cluster of Excellence on Plant Sciences "From Complex Traits Towards Synthetic Modules," 40225 Duesseldorf, Germany (B.D., M.v.K.);Università degli Studi di Milano-DiSAA, 20133 Milan, Italy (E.T., G.V., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186 Shiraz, Iran (E.T.);Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda, Italy (A.T., L.C.);Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wu Ling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biologica Technology, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China (X.X.); andParco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, Italy (L.R.)
| | - Luigi Cattivelli
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (B.D., M.v.K.);Institute of Plant Genetics, Heinrich-Heine-University, 40225 Duesseldorf, Germany (B.D., M.v.K.);Cluster of Excellence on Plant Sciences "From Complex Traits Towards Synthetic Modules," 40225 Duesseldorf, Germany (B.D., M.v.K.);Università degli Studi di Milano-DiSAA, 20133 Milan, Italy (E.T., G.V., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186 Shiraz, Iran (E.T.);Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda, Italy (A.T., L.C.);Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wu Ling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biologica Technology, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China (X.X.); andParco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, Italy (L.R.)
| | - Laura Rossini
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (B.D., M.v.K.);Institute of Plant Genetics, Heinrich-Heine-University, 40225 Duesseldorf, Germany (B.D., M.v.K.);Cluster of Excellence on Plant Sciences "From Complex Traits Towards Synthetic Modules," 40225 Duesseldorf, Germany (B.D., M.v.K.);Università degli Studi di Milano-DiSAA, 20133 Milan, Italy (E.T., G.V., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186 Shiraz, Iran (E.T.);Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda, Italy (A.T., L.C.);Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wu Ling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biologica Technology, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China (X.X.); andParco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, Italy (L.R.)
| | - Maria von Korff
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (B.D., M.v.K.);Institute of Plant Genetics, Heinrich-Heine-University, 40225 Duesseldorf, Germany (B.D., M.v.K.);Cluster of Excellence on Plant Sciences "From Complex Traits Towards Synthetic Modules," 40225 Duesseldorf, Germany (B.D., M.v.K.);Università degli Studi di Milano-DiSAA, 20133 Milan, Italy (E.T., G.V., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186 Shiraz, Iran (E.T.);Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda, Italy (A.T., L.C.);Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wu Ling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biologica Technology, College of Life Science, South-Central University for Nationalities, Wuhan 430074, China (X.X.); andParco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, Italy (L.R.)
| |
Collapse
|
117
|
Abstract
One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.
Collapse
Affiliation(s)
- Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
118
|
Mikołajczak K, Kuczyńska A, Krajewski P, Sawikowska A, Surma M, Ogrodowicz P, Adamski T, Krystkowiak K, Górny AG, Kempa M, Szarejko I, Guzy-Wróbelska J, Gudyś K. Quantitative trait loci for plant height in Maresi × CamB barley population and their associations with yield-related traits under different water regimes. J Appl Genet 2016; 58:23-35. [PMID: 27447461 PMCID: PMC5243891 DOI: 10.1007/s13353-016-0358-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022]
Abstract
High-yielding capacity of the modern barley varieties is mostly dependent on the sources of semi-dwarfness associated with the sdw1/denso locus. The objective of the study was to identify quantitative trait loci (QTLs) associated with the plant height and yield potential of barley recombinant inbred lines (RILs) grown under various soil moisture regimes. The plant material was developed from a hybrid between the Maresi (European cv.) and CamB (Syrian cv.). A total of 103 QTLs affecting analysed traits were detected and 36 of them showed stable effects over environments. In total, ten QTLs were found to be significant only under water shortage conditions. Nine QTLs affecting the length of main stem were detected on 2H-6H chromosomes. In four of the detected QTLs, alleles contributed by Maresi had negative effects on that trait, the most significant being the QLSt-3H.1-1 in the 3H.1 linkage group. The close linkage between QTLs identified around the sdw1/denso locus, with positive alleles contributed by Maresi, indicates that the semi-dwarf cv. Maresi could serve as a donor of favourable traits resulting in grain yield improvement, also under water scarcity. Molecular analyses revealed that the Syrian cv. also contributed alleles which increased the yield potential. Available barley resources of genomic annotations were employed to the biological interpretation of detected QTLs. This approach revealed 26 over-represented Gene Ontology terms. In the projected support intervals of QGWSl-5H.3-2 and QLSt-5H.3 on the chromosome 5H, four genes annotated to 'response to stress' were found. It suggests that these QTL-regions may be involved in a response of plant to a wide range of environmental disturbances.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Andrzej G Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
119
|
Miller CN, Harper AL, Trick M, Werner P, Waldron K, Bancroft I. Elucidation of the genetic basis of variation for stem strength characteristics in bread wheat by Associative Transcriptomics. BMC Genomics 2016; 17:500. [PMID: 27423334 PMCID: PMC4947262 DOI: 10.1186/s12864-016-2775-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/25/2016] [Indexed: 01/16/2023] Open
Abstract
Background The current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced. Results To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions. Conclusions This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2775-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Andrea L Harper
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Department of Biology, University of York, York, YO10 5DD, UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Peter Werner
- KWS UK Ltd, 56 Church Street, Thriplow, Hertfordshire, SG8 7RE, UK
| | - Keith Waldron
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ian Bancroft
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. .,Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
120
|
Wang J, Sun G, Ren X, Li C, Liu L, Wang Q, Du B, Sun D. QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genet 2016; 17:103. [PMID: 27388211 PMCID: PMC4936321 DOI: 10.1186/s12863-016-0409-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022] Open
Abstract
Background Increasing the yield of barley (Hordeum vulgare L.) is a main breeding goal in developing barley cultivars. A high density genetic linkage map containing 1894 SNP and 68 SSR markers covering 1375.8 cM was constructed and used for mapping quantitative traits. A late-generation double haploid population (DH) derived from the Huaai 11 × Huadamai 6 cross was used to identify QTLs and QTL × environment interactions for ten traits affecting grain yield including length of main spike (MSL), spikelet number on main spike (SMS), spikelet number per plant (SLP), grain number per plant (GP), grain weight per plant (GWP), grain number per spike (GS), thousand grain weight (TGW), grain weight per spike (GWS), spike density (SPD) and spike number per plant (SP). Results In single environment analysis using composite interval mapping (CIM), a total of 221 QTLs underlying the ten traits were detected in five consecutive years (2009–2013). The QTLs detected in each year were 50, 48, 41, 41 and 41 for the year 2009 to 2013. The QTLs associated with these traits were generally clustered on chromosome 2H, 4H and 7H. In multi-environment analysis, a total of 111 significant QTLs including 18 for MSL, 16 for SMS, 15 for SPD, 5 for SP, 4 for SLP, 14 for TGW, 5 for GP, 11 for GS, 8 for GWP, and 15 for GWS were detected in the five years. Most QTLs showed significant QTL × environment interactions (QEI), nine QTLs (qIMSL3-1, qIMSL4-1, qIMSL4-2, qIMSL6-1, qISMS7-1, qISPD2-7, qISPD7-1, qITGW3-1 and qIGWS4-3) were detected with minimal QEI effects and stable in different years. Among 111 QTLs,71 (63.40 %) QTLs were detected in both single and multiple environments. Conclusions Three main QTL cluster regions associated with the 10 agronomic traits on chromosome 2H, 4H and 7H were detected. The QTLs for SMS, SLP, GP and GWP were located in the region near Vrs1 on chromosome 2H. The QTLs underlying SMS, SPD and SLP were clustered on chromosome 4H. On the terminal of chromosome 7H, there was a QTL cluster associated with TGW, SPD, GWP and GWS. The information will be useful for marker-assisted selection (MAS) in barley breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0409-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jibin Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengdao Li
- Department of Agriculture & Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA, 6155, Australia
| | - Lipan Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
121
|
Qin P, Lin Y, Hu Y, Liu K, Mao S, Li Z, Wang J, Liu Y, Wei Y, Zheng Y. Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet Mol Biol 2016; 39:398-407. [PMID: 27560650 PMCID: PMC5004832 DOI: 10.1590/1678-4685-gmb-2015-0232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/15/2015] [Indexed: 01/09/2023] Open
Abstract
The D-genome progenitor of wheat (Triticum aestivum), Aegilops tauschii, possesses numerous genes for resistance to abiotic stresses, including drought. Therefore, information on the genetic architecture of A. tauschii can aid the development of drought-resistant wheat varieties. Here, we evaluated 13 traits in 373 A. tauschii accessions grown under normal and polyethylene glycol-simulated drought stress conditions and performed a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers. We identified 208 and 28 SNPs associated with all traits using the general linear model and mixed linear model, respectively, while both models detected 25 significant SNPs with genome-wide distribution. Public database searches revealed several candidate/flanking genes related to drought resistance that were grouped into three categories according to the type of encoded protein (enzyme, storage protein, and drought-induced protein). This study provided essential information for SNPs and genes related to drought resistance in A. tauschii and wheat, and represents a foundation for breeding drought-resistant wheat cultivars using marker-assisted selection.
Collapse
Affiliation(s)
- Peng Qin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kun Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Shuangshuang Mao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Zhanyi Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| |
Collapse
|
122
|
Racedo J, Gutiérrez L, Perera MF, Ostengo S, Pardo EM, Cuenya MI, Welin B, Castagnaro AP. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC PLANT BIOLOGY 2016; 16:142. [PMID: 27342657 PMCID: PMC4921039 DOI: 10.1186/s12870-016-0829-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/14/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. RESULTS A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. CONCLUSIONS In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as random covariates may prove to be highly successful. Moreover, sequences of DArT marker associated with the traits of interest were aligned in chromosomal regions where sorghum QTLs has previously been reported. This approach could be a valuable tool to assist the improvement of sugarcane and better supply sugarcane demand that has been projected for the upcoming decades.
Collapse
Affiliation(s)
- Josefina Racedo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Lucía Gutiérrez
- />Departamento de Biometría, Estadística y Cómputos, Facultad de Agronomía, Universidad de la República, Garzón 780, 12900 Montevideo, Uruguay
- />Agronomy Department, University of Wisconsin – Madison, 1575 Linden Dr., Madison, WI 53706 USA
| | - María Francisca Perera
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Santiago Ostengo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Esteban Mariano Pardo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - María Inés Cuenya
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Bjorn Welin
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Atilio Pedro Castagnaro
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| |
Collapse
|
123
|
Alqudah AM, Koppolu R, Wolde GM, Graner A, Schnurbusch T. The Genetic Architecture of Barley Plant Stature. Front Genet 2016; 7:117. [PMID: 27446200 PMCID: PMC4919324 DOI: 10.3389/fgene.2016.00117] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023] Open
Abstract
Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture.
Collapse
Affiliation(s)
- Ahmad M. Alqudah
- HEISENBERG-Research Group Plant Architecture, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Ravi Koppolu
- HEISENBERG-Research Group Plant Architecture, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Gizaw M. Wolde
- HEISENBERG-Research Group Plant Architecture, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Andreas Graner
- Research Group Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Thorsten Schnurbusch
- HEISENBERG-Research Group Plant Architecture, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
124
|
Jost M, Taketa S, Mascher M, Himmelbach A, Yuo T, Shahinnia F, Rutten T, Druka A, Schmutzer T, Steuernagel B, Beier S, Taudien S, Scholz U, Morgante M, Waugh R, Stein N. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence. PLANT PHYSIOLOGY 2016; 171:1113-27. [PMID: 27208226 PMCID: PMC4902598 DOI: 10.1104/pp.16.00124] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/08/2016] [Indexed: 05/17/2023]
Abstract
Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected.
Collapse
Affiliation(s)
- Matthias Jost
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Shin Taketa
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Takahisa Yuo
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Arnis Druka
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Burkhard Steuernagel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Sebastian Beier
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Stefan Taudien
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Michele Morgante
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Robbie Waugh
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| |
Collapse
|
125
|
Association Mapping in Turkish Olive Cultivars Revealed Significant Markers Related to Some Important Agronomic Traits. Biochem Genet 2016; 54:506-533. [PMID: 27209034 DOI: 10.1007/s10528-016-9738-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
Olive (Olea europaea L.) is one of the most important fruit trees especially in the Mediterranean countries due to high consumption of table olive and olive oil. In olive breeding, the phenotypic traits associated to fruit are the key factors that determine productivity. Association mapping has been used in some tree species and a lot of crop plant species, and here, we perform an initial effort to detect marker-trait associations in olive tree. In the current study, a total of 96 olive genotypes, including both oil and table olive genotypes from Turkish Olive GenBank Resources, were used to examine marker-trait associations. For olive genotyping, SNP, AFLP, and SSR marker data were selected from previously published study and association analysis was performed between these markers and 5 yield-related traits. Three different approaches were used to check for false-positive results in association tests, and association results obtained from these models were compared. Using the model utilizing both population structure and relative kinship, eleven associations were significant with FDR ≤ 0.05. The largest number of significant associations was detected for fruit weight and stone weight. Our results suggested that association mapping could be an effective approach for identifying marker-trait associations in olive genotypes, without the development of mapping populations. This study shows for the first time the use of association mapping for identifying molecular markers linked to important traits in olive tree.
Collapse
|
126
|
Multi-breed genome-wide association study reveals heterogeneous loci associated with loin eye area in pigs. J Appl Genet 2016; 57:511-518. [DOI: 10.1007/s13353-016-0351-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 03/15/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
|
127
|
Sardos J, Rouard M, Hueber Y, Cenci A, Hyma KE, van den Houwe I, Hribova E, Courtois B, Roux N. A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop. PLoS One 2016; 11:e0154448. [PMID: 27144345 PMCID: PMC4856271 DOI: 10.1371/journal.pone.0154448] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/13/2016] [Indexed: 11/19/2022] Open
Abstract
Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.
Collapse
Affiliation(s)
- Julie Sardos
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Yann Hueber
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Alberto Cenci
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Katie E. Hyma
- Institute of Biotechnology, Genomic Diversity Facility, Cornell University, Ithaca, NY, 14853, United States of America
| | | | - Eva Hribova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Nicolas Roux
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| |
Collapse
|
128
|
Huq A, Akter S, Nou IS, Kim HT, Jung YJ, Kang KK. Identification of functional SNPs in genes and their effects on plant phenotypes. ACTA ACUST UNITED AC 2016. [DOI: 10.5010/jpb.2016.43.1.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Amdadul Huq
- Department of Horticulture, Hankyong National University, Ansung City, Gyeonggi-do, 17579, Republic of Korea
| | - Shahina Akter
- Department of Horticulture, Hankyong National University, Ansung City, Gyeonggi-do, 17579, Republic of Korea
| | - Ill Sup Nou
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonam-do, 57922, Korea
| | - Hoy Taek Kim
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonam-do, 57922, Korea
| | - Yu Jin Jung
- Department of Horticulture, Hankyong National University, Ansung City, Gyeonggi-do, 17579, Republic of Korea
| | - Kwon Kyoo Kang
- Department of Horticulture, Hankyong National University, Ansung City, Gyeonggi-do, 17579, Republic of Korea
| |
Collapse
|
129
|
Gao L, Turner MK, Chao S, Kolmer J, Anderson JA. Genome Wide Association Study of Seedling and Adult Plant Leaf Rust Resistance in Elite Spring Wheat Breeding Lines. PLoS One 2016; 11:e0148671. [PMID: 26849364 PMCID: PMC4744023 DOI: 10.1371/journal.pone.0148671] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/21/2016] [Indexed: 11/26/2022] Open
Abstract
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20–30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26–30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24–34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays.
Collapse
Affiliation(s)
- Liangliang Gao
- University of Minnesota, Department of Agronomy and Plant Genetics, St. Paul, MN, 55108, United States of America
| | - M. Kathryn Turner
- University of Minnesota, Department of Agronomy and Plant Genetics, St. Paul, MN, 55108, United States of America
| | - Shiaoman Chao
- USDA-ARS Biosciences Research Lab, Fargo, ND, 58102, United States of America
| | - James Kolmer
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, 55108, United States of America
- University of Minnesota, Department of Plant Pathology, St. Paul, MN, 55108, United States of America
- * E-mail: (JAA); (JK)
| | - James A. Anderson
- University of Minnesota, Department of Agronomy and Plant Genetics, St. Paul, MN, 55108, United States of America
- * E-mail: (JAA); (JK)
| |
Collapse
|
130
|
Cai S, Han Z, Huang Y, Hu H, Dai F, Zhang G. Identification of Quantitative Trait Loci for the Phenolic Acid Contents and Their Association with Agronomic Traits in Tibetan Wild Barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:980-987. [PMID: 26757245 DOI: 10.1021/acs.jafc.5b05441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phenolic acids have been of considerable interest in human nutrition because of their strong antioxidative properties. However, even in a widely grown crop, such as barley, their genetic architecture is still unclear. In this study, genetic control of two main phenolic acids, ferulic acid (FA) and p-coumaric acid (p-CA), and their associations with agronomic traits were investigated among 134 Tibetan wild barley accessions. A genome-wide association study (GWAS) identified three DArT markers (bpb-2723, bpb-7199, and bpb-7273) associated with p-CA content and one marker (bpb-3653) associated with FA content in 2 consecutive years. The contents of the two phenolic acids were positively correlated with some agronomic traits, such as the first internode length, plant height, and some grain color parameters, and negatively correlated with the thousand-grain weight (TGW). This study provides DNA markers for barley breeding programs to improve the contents of phenolic acids.
Collapse
Affiliation(s)
- Shengguan Cai
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhigang Han
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuqing Huang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongliang Hu
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Fei Dai
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Guoping Zhang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
131
|
Gao L, Turner MK, Chao S, Kolmer J, Anderson JA. Genome Wide Association Study of Seedling and Adult Plant Leaf Rust Resistance in Elite Spring Wheat Breeding Lines. PLoS One 2016. [PMID: 26849364 DOI: 10.1371/journal.pgen.148671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20-30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26-30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24-34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays.
Collapse
Affiliation(s)
- Liangliang Gao
- University of Minnesota, Department of Agronomy and Plant Genetics, St. Paul, MN, 55108, United States of America
| | - M Kathryn Turner
- University of Minnesota, Department of Agronomy and Plant Genetics, St. Paul, MN, 55108, United States of America
| | - Shiaoman Chao
- USDA-ARS Biosciences Research Lab, Fargo, ND, 58102, United States of America
| | - James Kolmer
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, 55108, United States of America
- University of Minnesota, Department of Plant Pathology, St. Paul, MN, 55108, United States of America
| | - James A Anderson
- University of Minnesota, Department of Agronomy and Plant Genetics, St. Paul, MN, 55108, United States of America
| |
Collapse
|
132
|
Fan Y, Zhou G, Shabala S, Chen ZH, Cai S, Li C, Zhou M. Genome-Wide Association Study Reveals a New QTL for Salinity Tolerance in Barley (Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2016; 7:946. [PMID: 27446173 PMCID: PMC4923249 DOI: 10.3389/fpls.2016.00946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/14/2016] [Indexed: 05/02/2023]
Abstract
Salinity stress is one of the most severe abiotic stresses that affect agricultural production. Genome wide association study (GWAS) has been widely used to detect genetic variations in extensive natural accessions with more recombination and higher resolution. In this study, 206 barley accessions collected worldwide were genotyped with 408 Diversity Arrays Technology (DArT) markers and evaluated for salinity stress tolerance using salinity tolerance score - a reliable trait developed in our previous work. GWAS for salinity tolerance had been conducted through a general linkage model and a mixed linkage model based on population structure and kinship. A total of 24 significant marker-trait associations were identified. A QTL on 4H with the nearest marker of bPb-9668 was consistently detected in all different methods. This QTL has not been reported before and is worth to be further confirmed with bi-parental populations.
Collapse
Affiliation(s)
- Yun Fan
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
| | - Gaofeng Zhou
- Western Australian State Agricultural Biotechnology Centre, Murdoch University,Murdoch, WA Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University,Penrith, NSW Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University,Penrith, NSW Australia
| | - Chengdao Li
- Western Australian State Agricultural Biotechnology Centre, Murdoch University,Murdoch, WA Australia
- *Correspondence: Meixue Zhou, ; Chengdao Li,
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
- *Correspondence: Meixue Zhou, ; Chengdao Li,
| |
Collapse
|
133
|
Han M, Wong J, Su T, Beatty PH, Good AG. Identification of Nitrogen Use Efficiency Genes in Barley: Searching for QTLs Controlling Complex Physiological Traits. FRONTIERS IN PLANT SCIENCE 2016; 7:1587. [PMID: 27818673 PMCID: PMC5073129 DOI: 10.3389/fpls.2016.01587] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Over the past half century, the use of nitrogen (N) fertilizers has markedly increased crop yields, but with considerable negative effects on the environment and human health. Consequently, there has been a strong push to reduce the amount of N fertilizer used by maximizing the nitrogen use efficiency (NUE) of crops. One approach would be to use classical genetics to improve the NUE of a crop plant. This involves both conventional breeding and quantitative trait loci (QTL) mapping in combination with marker-assisted selection (MAS) to track key regions of the chromosome that segregate for NUE. To achieve this goal, one of initial steps is to characterize the NUE-associated genes, then use the profiles of specific genes to combine plant physiology and genetics to improve plant performance. In this study, on the basis of genetic homology and expression analysis, barley candidate genes from a variety of families that exhibited potential roles in enhancing NUE were identified and mapped. We then performed an analysis of QTLs associated with NUE in field trials and further analyzed their map-location data to narrow the search for these candidate genes. These results provide a novel insight on the identification of NUE genes and for the future prospects, will lead to a more thorough understanding of physiological significances of the diverse gene families that may be associated with NUE in barley.
Collapse
Affiliation(s)
- Mei Han
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Julia Wong
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | - Tao Su
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Tao Su
| | - Perrin H. Beatty
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | - Allen G. Good
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
134
|
Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Valè G, Cattivelli L. Next generation breeding. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:3-13. [PMID: 26566820 DOI: 10.1016/j.plantsci.2015.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 05/18/2023]
Abstract
The genomic revolution of the past decade has greatly improved our understanding of the genetic make-up of living organisms. The sequencing of crop genomes has completely changed our vision and interpretation of genome organization and evolution. Re-sequencing allows the identification of an unlimited number of markers as well as the analysis of germplasm allelic diversity based on allele mining approaches. High throughput marker technologies coupled with advanced phenotyping platforms provide new opportunities for discovering marker-trait associations which can sustain genomic-assisted breeding. The availability of genome sequencing information is enabling genome editing (site-specific mutagenesis), to obtain gene sequences desired by breeders. This review illustrates how next generation sequencing-derived information can be used to tailor genomic tools for different breeders' needs to revolutionize crop improvement.
Collapse
Affiliation(s)
- Delfina Barabaschi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Alessandro Tondelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Francesca Desiderio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Andrea Volante
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Rice Research Unit, SS 11 to Torino Km 2.5, 13100 Vercelli, Italy
| | - Patrizia Vaccino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Research Unit for Cereal Selection in Continental areas, via R. Forlani, e, 26866 S. Angelo Lodigiano, Italy
| | - Giampiero Valè
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Rice Research Unit, SS 11 to Torino Km 2.5, 13100 Vercelli, Italy
| | - Luigi Cattivelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy.
| |
Collapse
|
135
|
Winkler LR, Michael Bonman J, Chao S, Admassu Yimer B, Bockelman H, Esvelt Klos K. Population Structure and Genotype-Phenotype Associations in a Collection of Oat Landraces and Historic Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:1077. [PMID: 27524988 PMCID: PMC4965477 DOI: 10.3389/fpls.2016.01077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/08/2016] [Indexed: 05/12/2023]
Abstract
Population structure and genetic architecture of phenotypic traits in oat (Avena sativa L.) remain relatively under-researched compared to other small grain species. This study explores the historic context of current elite germplasm, including phenotypic and genetic characterization, with a particular focus on identifying under-utilized areas. A diverse panel of cultivated oat accessions was assembled from the USDA National Small Grains Collection to represent a gene pool relatively unaffected by twentieth century breeding activity and unlikely to have been included in recent molecular studies. The panel was genotyped using an oat iSelect 6K beadchip SNP array. The final dataset included 759 unique individuals and 2,715 polymorphic markers. Some population structure was apparent, with the first three principal components accounting for 38.8% of variation and 73% of individuals belonging to one of three clusters. One cluster with high genetic distinctness appears to have been largely overlooked in twentieth century breeding. Classification and phenotype data provided by the Germplasm Resources Information Network were evaluated for their relationship to population structure. Of the structuring variables evaluated, improvement status (cultivar or landrace) was relatively unimportant, indicating that landraces and cultivars included in the panel were all sampled from a similar underlying population. Instead, lemma color and region of origin showed the strongest explanatory power. An exploratory association mapping study of the panel using a subset of 2,588 mapped markers generated novel indications of genomic regions associated with awn frequency, kernels per spikelet, lemma color, and panicle type. Further results supported previous findings of loci associated with barley yellow dwarf virus tolerance, crown rust (caused by Puccinia coronata f. sp. avenae) resistance, days to anthesis, and growth habit (winter/spring). In addition, two novel loci were identified for crown rust resistance.
Collapse
Affiliation(s)
- Louisa R. Winkler
- Sustainable Seed Systems Laboratory, Department of Crop and Soil Sciences, Washington State University, PullmanWA, USA
| | - J. Michael Bonman
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, AberdeenID, USA
| | - Shiaoman Chao
- Cereal Crops Research Unit, United States Department of Agriculture – Agricultural Research Service, FargoND, USA
| | - B. Admassu Yimer
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, AberdeenID, USA
| | - Harold Bockelman
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, AberdeenID, USA
| | - Kathy Esvelt Klos
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, AberdeenID, USA
- *Correspondence: Kathy Esvelt Klos,
| |
Collapse
|
136
|
Mora F, Quitral YA, Matus I, Russell J, Waugh R, del Pozo A. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:909. [PMID: 27446139 PMCID: PMC4921488 DOI: 10.3389/fpls.2016.00909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/08/2016] [Indexed: 05/18/2023]
Abstract
This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.
Collapse
Affiliation(s)
- Freddy Mora
- Instituto de Ciencias Biológicas, Área de Biología Molecular y Biotecnología, Universidad de TalcaTalca, Chile
| | - Yerko A. Quitral
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de TalcaTalca, Chile
| | - Ivan Matus
- Centro Regional de Investigación Quilamapu, Instituto de Investigaciones AgropecuariasChillán, Chile
| | | | | | - Alejandro del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de TalcaTalca, Chile
- *Correspondence: Alejandro del Pozo
| |
Collapse
|
137
|
Qiu X, Pang Y, Yuan Z, Xing D, Xu J, Dingkuhn M, Li Z, Ye G. Genome-Wide Association Study of Grain Appearance and Milling Quality in a Worldwide Collection of Indica Rice Germplasm. PLoS One 2015; 10:e0145577. [PMID: 26714258 PMCID: PMC4694703 DOI: 10.1371/journal.pone.0145577] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Grain appearance quality and milling quality are the main determinants of market value of rice. Breeding for improved grain quality is a major objective of rice breeding worldwide. Identification of genes/QTL controlling quality traits is the prerequisite for increasing breeding efficiency through marker-assisted selection. Here, we reported a genome-wide association study in indica rice to identify QTL associated with 10 appearance and milling quality related traits, including grain length, grain width, grain length to width ratio, grain thickness, thousand grain weight, degree of endosperm chalkiness, percentage of grains with chalkiness, brown rice rate, milled rice rate and head milled rice rate. A diversity panel consisting of 272 indica accessions collected worldwide was evaluated in four locations including Hangzhou, Jingzhou, Sanya and Shenzhen representing indica rice production environments in China and genotyped using genotyping-by-sequencing and Diversity Arrays Technology based on next-generation sequencing technique called DArTseq™. A wide range of variation was observed for all traits in all environments. A total of 16 different association analysis models were compared to determine the best model for each trait-environment combination. Association mapping based on 18,824 high quality markers yielded 38 QTL for the 10 traits. Five of the detected QTL corresponded to known genes or fine mapped QTL. Among the 33 novel QTL identified, qDEC1.1 (qGLWR1.1), qBRR2.2 (qGL2.1), qTGW2.1 (qGL2.2), qGW11.1 (qMRR11.1) and qGL7.1 affected multiple traits with relatively large effects and/or were detected in multiple environments. The research provided an insight of the genetic architecture of rice grain quality and important information for mining genes/QTL with large effects within indica accessions for rice breeding.
Collapse
Affiliation(s)
- Xianjin Qiu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yunlong Pang
- Institute of Crop Science/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhihua Yuan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Danying Xing
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jianlong Xu
- Institute of Crop Science/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Institute of Breeding & Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Michael Dingkuhn
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Zhikang Li
- Institute of Crop Science/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoyou Ye
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
138
|
Laidò G, Panio G, Marone D, Russo MA, Ficco DBM, Giovanniello V, Cattivelli L, Steffenson B, de Vita P, Mastrangelo AM. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping. FRONTIERS IN PLANT SCIENCE 2015; 6:1033. [PMID: 26697025 PMCID: PMC4673868 DOI: 10.3389/fpls.2015.01033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/06/2015] [Indexed: 05/22/2023]
Abstract
Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.
Collapse
Affiliation(s)
- Giovanni Laidò
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Giosuè Panio
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Daniela Marone
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Maria A. Russo
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Donatella B. M. Ficco
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | | | - Luigi Cattivelli
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
- Genomics Research Centre, Council for Agricultural Research and EconomicsFiorenzuola d'Arda, Italy
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota Twin CitiesMinneapolis, MN, USA
| | - Pasquale de Vita
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Anna M. Mastrangelo
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| |
Collapse
|
139
|
Liu Y, Wang L, Deng M, Li Z, Lu Y, Wang J, Wei Y, Zheng Y. Genome-wide association study of phosphorus-deficiency-tolerance traits in Aegilops tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2203-12. [PMID: 26187748 DOI: 10.1007/s00122-015-2578-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/01/2015] [Indexed: 05/19/2023]
Abstract
Using GWAS, 13 significant SNPs distributed on six of the seven Aegilops tauschii chromosomes (all but 5D) were identified, and several candidate P-deficiency-responsive genes were proposed from searches of public databases. Aegilops tauschii, the wheat (Triticum aestivum) D-genome progenitor, possesses numerous genes for stress resistance, including genes for tolerance of phosphorus (P) deficiency. Investigation of the genetic architecture of A. tauschii will help in developing P-deficiency-tolerant varieties of wheat. We evaluated nine traits in a population of 380 A. tauschii specimens under conditions with and without P application, and we performed genome-wide association studies for these traits using single nucleotide polymorphism (SNP) chips containing 7185 markers. Using a general linear model, we identified 119 SNPs that were significantly associated with all nine traits, and a mixed linear model revealed 18 SNPs associated with all traits. Both models detected 13 significant markers distributed on six of the seven A. tauschii chromosomes (all but 5D). Searches of public databases revealed several candidate/flanking genes related to P-deficiency tolerance. These genes were grouped in five categories by the types of proteins they encoded: defense response proteins, enzymes, promoters and transcription factors, storage proteins, or proteins triggered by P deficiency. The identified SNPs and genes contain essential information for cloning genes related to P-deficiency tolerance in A. tauschii and wheat, and they provide a foundation for breeding P-deficiency tolerant wheat cultivars.
Collapse
Affiliation(s)
- Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Lang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Zhanyi Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
140
|
Wu D, Sato K, Ma JF. Genome-wide association mapping of cadmium accumulation in different organs of barley. THE NEW PHYTOLOGIST 2015; 208:817-29. [PMID: 26061418 DOI: 10.1111/nph.13512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/07/2015] [Indexed: 05/08/2023]
Abstract
The threshold value of cadmium (Cd) concentration in grains of barley (Hordeum vulgare) is the lowest among cereal crops; however, it is poorly understood how Cd accumulation in barley grain is genetically controlled. We investigated genotypic variation in Cd accumulation of different organs in 100 accessions from a subset of the barley core collection using both hydroponic and Cd-contaminated soil culture. We also performed a genome-wide association (GWA) mapping for Cd accumulation in different organs. A large genotypic variation in the Cd concentration was found in all organs. There was a good correlation between shoot Cd of solution and soil culture, the shoot Cd and grain Cd, but no correlation between the root Cd and grain Cd. GWA mapping detected 9 quantitative trait loci (QTL) for root Cd, 21 for shoot Cd, 14 for root-to-shoot translocation and 15 for grain Cd. A common QTL for the shoot Cd and root-to-shoot translocation was found at 132.6 cM on chromosome 5H. Two major QTL for grain Cd were identified on chromosome 2H and chromosome 5H. The genetic variation in Cd accumulation and major QTL detected provide useful information helpful for cloning candidate genes for Cd accumulation and breeding low-Cd barley cultivars in future.
Collapse
Affiliation(s)
- Dezhi Wu
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
141
|
Genome-wide association study of 29 morphological traits in Aegilops tauschii. Sci Rep 2015; 5:15562. [PMID: 26503608 PMCID: PMC4622089 DOI: 10.1038/srep15562] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/29/2015] [Indexed: 11/08/2022] Open
Abstract
Aegilops tauschii is the D-genome progenitor of hexaploid wheat (Triticum aestivum). It is considered to be an important source of genetic variation for wheat breeding, and its genome is an invaluable reference for wheat genomics. We conducted a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers across 322 diverse accessions of Ae. tauschii that were systematically phenotyped for 29 morphological traits in order to identify marker-trait associations and candidate genes, assess genetic diversity, and classify the accessions based on phenotypic data and genotypic comparison. Using the general linear model and mixed linear model, we identified a total of 18 SNPs significantly associated with 10 morphological traits. Systematic search of the flanking sequences of trait-associated SNPs in public databases identified several genes that may be linked to variations in phenotypes. Cluster analysis using phenotypic data grouped accessions into four clusters, while accessions in the same cluster were not from the same Ae. tauschii subspecies or from the same area of origin. This work establishes a fundamental research platform for association studies in Ae. tauschii and also provides useful information for understanding the genetic mechanism of agronomic traits in wheat.
Collapse
|
142
|
Douchkov D, Lück S, Johrde A, Nowara D, Himmelbach A, Rajaraman J, Stein N, Sharma R, Kilian B, Schweizer P. Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi. Genome Biol 2015; 15:518. [PMID: 25476012 PMCID: PMC4302706 DOI: 10.1186/s13059-014-0518-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 01/01/2023] Open
Abstract
Background Non-host resistance, NHR, to non-adapted pathogens and quantitative host resistance, QR, confer durable protection to plants and are important for securing yield in a longer perspective. However, a more targeted exploitation of the trait usually possessing a complex mode of inheritance by many quantitative trait loci, QTLs, will require a better understanding of the most important genes and alleles. Results Here we present results from a transient-induced gene silencing, TIGS, approach of candidate genes for NHR and QR in barley against the powdery mildew fungus Blumeria graminis. Genes were selected based on transcript regulation, multigene-family membership or genetic map position. Out of 1,144 tested RNAi-target genes, 96 significantly affected resistance to the non-adapted wheat- or the compatible barley powdery mildew fungus, with an overlap of four genes. TIGS results for QR were combined with transcript regulation data, allele-trait associations, QTL co-localization and copy number variation resulting in a meta-dataset of 51 strong candidate genes with convergent evidence for a role in QR. Conclusions This study represents an initial, functional inventory of approximately 3% of the barley transcriptome for a role in NHR or QR against the powdery mildew pathogen. The discovered candidate genes support the idea that QR in this Triticeae host is primarily based on pathogen-associated molecular pattern-triggered immunity, which is compromised by effector molecules produced by the compatible pathogen. The overlap of four genes with significant TIGS effects both in the NHR and QR screens also indicates shared components for both forms of durable pathogen resistance. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0518-8) contains supplementary material, which is available to authorized users.
Collapse
|
143
|
Bendix C, Marshall CM, Harmon FG. Circadian Clock Genes Universally Control Key Agricultural Traits. MOLECULAR PLANT 2015; 8:1135-52. [PMID: 25772379 DOI: 10.1016/j.molp.2015.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 05/17/2023]
Abstract
Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, including growth, development, and reproduction, primarily through controlling a substantial proportion of transcriptional activity and protein function. This review examines the roles that alleles of circadian clock genes have played in domestication and improvement of crop plants. The focus here is on three groups of circadian clock genes essential to clock function in Arabidopsis thaliana: PSEUDO-RESPONSE REGULATORs, GIGANTEA, and the evening complex genes early flowering 3, early flowering 4, and lux arrhythmo. homologous genes from each group underlie quantitative trait loci that have beneficial influences on key agricultural traits, especially flowering time but also yield, biomass, and biennial growth habit. Emerging insights into circadian clock regulation of other fundamental plant processes, including responses to abiotic and biotic stresses, are discussed to highlight promising avenues for further crop improvement.
Collapse
Affiliation(s)
- Claire Bendix
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Carine M Marshall
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Frank G Harmon
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
144
|
Hu X, Ren J, Ren X, Huang S, Sabiel SAI, Luo M, Nevo E, Fu C, Peng J, Sun D. Association of Agronomic Traits with SNP Markers in Durum Wheat (Triticum turgidum L. durum (Desf.)). PLoS One 2015; 10:e0130854. [PMID: 26110423 PMCID: PMC4482485 DOI: 10.1371/journal.pone.0130854] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/25/2015] [Indexed: 01/11/2023] Open
Abstract
Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection.
Collapse
Affiliation(s)
- Xin Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Jing Ren
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, 253023, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Sisi Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Salih A. I. Sabiel
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Mingcheng Luo
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, United States of America
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Chunjie Fu
- Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, Hubei, 430206, China
| | - Junhua Peng
- Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, Hubei, 430206, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei, 434025, China
| |
Collapse
|
145
|
Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 2015; 10:e0122165. [PMID: 25970600 PMCID: PMC4430295 DOI: 10.1371/journal.pone.0122165] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with 'stay green' phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet drought tolerance.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Leif Skot
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Richa Singh
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Department of Molecular Biology and Biotechnology, Hisar, Haryana, India
| | - Rakesh Kumar Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | - Sankar Prasad Das
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, India
| | - Jyoti Taunk
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Department of Molecular Biology and Biotechnology, Hisar, Haryana, India
| | - Parbodh C. Sharma
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- Central Soil Salinity Research Institute (CSSRI), Karnal, India
| | - Ram Pal
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- National Research Centre for Orchids, Darjeeling Campus, Darjeeling, India
| | - Bhasker Raj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | | | - Rattan S. Yadav
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| |
Collapse
|
146
|
Luo J. Metabolite-based genome-wide association studies in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:31-8. [PMID: 25637954 DOI: 10.1016/j.pbi.2015.01.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 05/18/2023]
|
147
|
Li L, Long Y, Zhang L, Dalton-Morgan J, Batley J, Yu L, Meng J, Li M. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L. PLoS One 2015; 10:e0119425. [PMID: 25790019 PMCID: PMC4366152 DOI: 10.1371/journal.pone.0119425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci.
Collapse
Affiliation(s)
- Lun Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Long
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China
| | - Jessica Dalton-Morgan
- School of Agriculture & Food Sciences, The University of Queensland, Brisbane, Australia
| | - Jacqueline Batley
- School of Agriculture & Food Sciences, The University of Queensland, Brisbane, Australia
| | - Longjiang Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jinling Meng
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
148
|
Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Sharpe AG, Sidebottom CH, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 2015; 16:48. [PMID: 25886949 PMCID: PMC4389885 DOI: 10.1186/s13059-015-0606-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background Bread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines. Results A sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies. Conclusions Evidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0606-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine W Jordan
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Shichen Wang
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Yanni Lun
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA. .,Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.
| | - Laura-Jayne Gardiner
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Ron MacLachlan
- Department Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Pierre Hucl
- Department Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Krysta Wiebe
- Department Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Debbie Wong
- Department Environment and Primary Industries, Bundoora, VIC, 3083, Australia.
| | - Kerrie L Forrest
- Department Environment and Primary Industries, Bundoora, VIC, 3083, Australia.
| | | | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0 W9, Canada.
| | | | - Neil Hall
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | | | - Timothy Close
- Department Botany & Plant Sciences, University of California, Riverside, CA, 92521, USA.
| | - Jorge Dubcovsky
- Department Plant Sciences, University of California, Davis, CA, 95616, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Alina Akhunova
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA. .,Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.
| | - Luther Talbert
- Department Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
| | - Urmil K Bansal
- Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia.
| | - Harbans S Bariana
- Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia.
| | - Matthew J Hayden
- Department Environment and Primary Industries, Bundoora, VIC, 3083, Australia.
| | - Curtis Pozniak
- Department Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | | | - Anthony Hall
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Eduard Akhunov
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
149
|
Farfan IDB, De La Fuente GN, Murray SC, Isakeit T, Huang PC, Warburton M, Williams P, Windham GL, Kolomiets M. Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS One 2015; 10:e0117737. [PMID: 25714370 PMCID: PMC4340625 DOI: 10.1371/journal.pone.0117737] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/31/2014] [Indexed: 11/24/2022] Open
Abstract
The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5-10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines.
Collapse
Affiliation(s)
- Ivan D. Barrero Farfan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gerald N. De La Fuente
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Seth C. Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Thomas Isakeit
- Department of Plant Pathology, Texas A&M University, College Station, Texas, United States of America
| | - Pei-Cheng Huang
- Department of Plant Pathology, Texas A&M University, College Station, Texas, United States of America
| | - Marilyn Warburton
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi, United States of America
| | - Paul Williams
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi, United States of America
| | - Gary L. Windham
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi, United States of America
| | - Mike Kolomiets
- Department of Plant Pathology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
150
|
Kumar V, Singh A, Mithra SVA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 2015; 22:133-45. [PMID: 25627243 PMCID: PMC4401324 DOI: 10.1093/dnares/dsu046] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/26/2014] [Indexed: 02/07/2023] Open
Abstract
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.
Collapse
Affiliation(s)
- Vinod Kumar
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Anshuman Singh
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - S V Amitha Mithra
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - S L Krishnamurthy
- Central Soil Salinity Research Institute, Karnal, Haryana 132001, India
| | - Swarup K Parida
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Sourabh Jain
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Kapil K Tiwari
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Pankaj Kumar
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Atmakuri R Rao
- Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - S K Sharma
- Central Soil Salinity Research Institute, Karnal, Haryana 132001, India
| | | | - Nagendra K Singh
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Trilochan Mohapatra
- National Research Centre on Plant Biotechnology, New Delhi 110012, India Central Rice Research Institute, Cuttack, Odisha 753006, India
| |
Collapse
|