101
|
Abstract
Early engagement of the lymphatic system by solid tumors in peripheral, nonlymphoid tissues is a clinical hallmark of cancer and often forecasts poor prognosis. The significance of lymph node metastasis for distant spread, however, has been questioned by large-scale lymph node dissection trials and the likely prevalence of direct hematogenous metastasis. Still, an emerging appreciation for the immunological role of the tumor-draining lymph node has renewed interest in its basic biology, role in metastatic progression, antitumor immunity, and patient outcomes. In this review, we discuss our current understanding of the early mechanisms through which tumors engage lymphatic transport and condition tumor-draining lymph nodes, the significance of these changes for both metastasis and immunity, and potential implications of the tumor-draining lymph node for immunotherapy.
Collapse
Affiliation(s)
- Haley du Bois
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
| | - Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016
- Laura and Isaac Perlmutter Cancer Center NYU Langone Health, New York, NY 10016
| |
Collapse
|
102
|
McAuliffe J, Chan HF, Noblecourt L, Ramirez-Valdez RA, Pereira-Almeida V, Zhou Y, Pollock E, Cappuccini F, Redchenko I, Hill AV, Leung CSK, Van den Eynde BJ. Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy. J Immunother Cancer 2021; 9:jitc-2021-003218. [PMID: 34479921 PMCID: PMC8420668 DOI: 10.1136/jitc-2021-003218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Background The clinical benefit of immune checkpoint blockade (ICB) therapy is often limited by the lack of pre-existing CD8+ T cells infiltrating the tumor. In principle, CD8+ T-cell infiltration could be promoted by therapeutic vaccination. However, this remains challenging given the paucity of vaccine platforms able to induce the strong cytotoxic CD8+ T-cell response required to reject tumors. A therapeutic cancer vaccine that induces a robust cytotoxic CD8+ T-cell response against shared tumor antigens and can be combined with ICB could improve the outcome of cancer immunotherapy. Methods Here, we developed a heterologous prime-boost vaccine based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding MAGE-type antigens, which are tumor-specific shared antigens expressed in different tumor types. The mouse MAGE-type antigen P1A was used as a surrogate to study the efficacy of the vaccine in combination with ICB in murine tumor models expressing the P1A antigen. To characterize the vaccine-induced immune response, we performed flow cytometry and transcriptomic analyses. Results The ChAdOx1/MVA vaccine displayed strong immunogenicity with potent induction of CD8+ T cells. When combined with anti-Programmed Cell Death Protein 1 (PD-1), the vaccine induced superior tumor clearance and survival in murine tumor models expressing P1A compared with anti-PD-1 alone. Remarkably, ChAdOx1/MVA P1A vaccination promoted CD8+ T-cell infiltration in the tumors, and drove inflammation in the tumor microenvironment, turning ‘cold’ tumors into ‘hot’ tumors. Single-cell transcriptomic analysis of the P1A-specific CD8+ T cells revealed an expanded population of stem-like T cells in the spleen after the combination treatment as compared with vaccine alone, and a reduced PD-1 expression in the tumor CD8+ T cells. Conclusions These findings highlight the synergistic potency of ChAdOx1/MVA MAGE vaccines combined with anti-PD-1 for cancer therapy, and establish the foundation for clinical translation of this approach. A clinical trial of ChadOx1/MVA MAGE-A3/NY-ESO-1 combined with anti-PD-1 will commence shortly.
Collapse
Affiliation(s)
- James McAuliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hok Fung Chan
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurine Noblecourt
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Vinnycius Pereira-Almeida
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Département Biologie, Université Claude Bernard Lyon 1, Villeurbanne, Auvergne-Rhône-Alpes, France
| | - Yaxuan Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Emily Pollock
- The Jenner Institute, Nuffield Department of Medicine, University of oxford, Oxford, UK
| | - Federica Cappuccini
- The Jenner Institute, Nuffield Department of Medicine, University of oxford, Oxford, UK
| | - Irina Redchenko
- The Jenner Institute, Nuffield Department of Medicine, University of oxford, Oxford, UK
| | - Adrian Vs Hill
- The Jenner Institute, Nuffield Department of Medicine, University of oxford, Oxford, UK
| | - Carol Sze Ki Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Ludwig Institute for Cancer Research, WELBIO, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
103
|
Olnes MJ, Martinson HA. Recent advances in immune therapies for gastric cancer. Cancer Gene Ther 2021; 28:924-934. [PMID: 33664460 PMCID: PMC8417143 DOI: 10.1038/s41417-021-00310-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is an aggressive malignancy that is the third leading cause of cancer mortality worldwide. Localized GC can be cured with surgery, but most patients present with more advanced non-operable disease. Until recently, treatment options for relapsed and refractory advanced GC have been limited to combination chemotherapy regimens, HER-2 directed therapy, and radiation, which lead to few durable responses. Over the past decade, there have been significant advances in our understanding of the molecular and immune pathogenesis of GC. The infectious agents Epstein-Barr virus and Helicobacter pylori perturb the gastric mucosa immune equilibrium, which creates a microenvironment that favors GC tumorigenesis and evasion of immune surveillance. Insights into immune mechanisms of GC have translated into novel therapeutics, including immune checkpoint inhibitors, which have become a treatment option for select patients with GC. Furthermore, chimeric antigen receptor T-cell therapies have emerged as a breakthrough treatment for many cancers, with recent studies showing this to be a potential therapy for GC. In this review, we summarize the current state of knowledge on immune mechanisms of GC and the status of emerging immunotherapies to treat this aggressive cancer, as well as outline current challenges and directions for future research.
Collapse
Affiliation(s)
- Matthew J Olnes
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, Anchorage, AK, USA.
- WWAMI School of Medical Education, University of Alaska Anchorage, Anchorage, AK, USA.
| | - Holly A Martinson
- WWAMI School of Medical Education, University of Alaska Anchorage, Anchorage, AK, USA
| |
Collapse
|
104
|
Belmontes B, Sawant DV, Zhong W, Tan H, Kaul A, Aeffner F, O'Brien SA, Chun M, Noubade R, Eng J, Ma H, Muenz M, Li P, Alba BM, Thomas M, Cook K, Wang X, DeVoss J, Egen JG, Nolan-Stevaux O. Immunotherapy combinations overcome resistance to bispecific T cell engager treatment in T cell-cold solid tumors. Sci Transl Med 2021; 13:13/608/eabd1524. [PMID: 34433637 DOI: 10.1126/scitranslmed.abd1524] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Therapeutic approaches are needed to promote T cell-mediated destruction of poorly immunogenic, "cold" tumors typically associated with minimal response to immune checkpoint blockade (ICB) therapy. Bispecific T cell engager (BiTE) molecules induce redirected lysis of cancer cells by polyclonal T cells and have demonstrated promising clinical activity against solid tumors in some patients. However, little is understood about the key factors that govern clinical responses to these therapies. Using an immunocompetent mouse model expressing a humanized CD3ε chain (huCD3e mice) and BiTE molecules directed against mouse CD19, mouse CLDN18.2, or human EPCAM antigens, we investigated the pharmacokinetic and pharmacodynamic parameters and immune correlates associated with BiTE efficacy across multiple syngeneic solid-tumor models. These studies demonstrated that pretreatment tumor-associated T cell density is a critical determinant of response to BiTE therapy, identified CD8+ T cells as important targets and mediators of BiTE activity, and revealed an antagonistic role for CD4+ T cells in BiTE efficacy. We also identified therapeutic combinations, including ICB and 4-1BB agonism, that synergized with BiTE treatment in poorly T cell-infiltrated, immunotherapy-refractory tumors. In these models, BiTE efficacy was dependent on local expansion of tumor-associated CD8+ T cells, rather than their recruitment from circulation. Our findings highlight the relative contributions of baseline T cell infiltration, local T cell proliferation, and peripheral T cell trafficking for BiTE molecule-mediated efficacy, identify combination strategies capable of overcoming resistance to BiTE therapy, and have clinical relevance for the development of BiTE and other T cell engager therapies.
Collapse
Affiliation(s)
- Brian Belmontes
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Deepali V Sawant
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Wendy Zhong
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Hong Tan
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Anupurna Kaul
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Famke Aeffner
- Amgen Research, Thousand Oaks, CA 91320, USA.,Translational Safety and Bioanalytical Sciences, Amgen, South San Francisco, CA 94080, USA
| | - Sarah A O'Brien
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Matthew Chun
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Rajkumar Noubade
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Jason Eng
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Hayley Ma
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Markus Muenz
- Amgen Research, Thousand Oaks, CA 91320, USA.,Amgen Research GmbH, Munich 81477, Germany
| | - Peng Li
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Benjamin M Alba
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Melissa Thomas
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Kevin Cook
- Amgen Research, Thousand Oaks, CA 91320, USA.,Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA 94080, USA
| | - Xiaoting Wang
- Amgen Research, Thousand Oaks, CA 91320, USA.,Translational Safety and Bioanalytical Sciences, Amgen, South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Jackson G Egen
- Amgen Research, Thousand Oaks, CA 91320, USA. .,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Olivier Nolan-Stevaux
- Amgen Research, Thousand Oaks, CA 91320, USA. .,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| |
Collapse
|
105
|
Xu Y, Campos Carrascosa L, Yeung YA, Chu MLH, Yang W, Djuretic I, Pappas DC, Zeytounian J, Ge Z, de Ruiter V, Starbeck-Miller GR, Patterson J, Rigas D, Chen SH, Kraynov E, Boor PP, Noordam L, Doukas M, Tsao D, Ijzermans JN, Guo J, Grünhagen DJ, Erdmann J, Verheij J, van Royen ME, Doornebosch PG, Feldman R, Park T, Mahmoudi S, Dorywalska M, Ni I, Chin SM, Mistry T, Mosyak L, Lin L, Ching KA, Lindquist KC, Ji C, Londono LM, Kuang B, Rickert R, Kwekkeboom J, Sprengers D, Huang TH, Chaparro-Riggers J. An Engineered IL15 Cytokine Mutein Fused to an Anti-PD-1 Improves Intratumoral T-Cell Function and Antitumor Immunity. Cancer Immunol Res 2021; 9:1141-1157. [PMID: 34376502 DOI: 10.1158/2326-6066.cir-21-0058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
The use of cytokines for immunotherapy shows clinical efficacy but is frequently accompanied by severe adverse events caused by excessive and systemic immune activation. Here, we set out to address these challenges by engineering a fusion protein of a single, potency-reduced, IL15 mutein and a PD-1-specific antibody (anti-PD1-IL15m). This immunocytokine was designed to deliver PD-1-mediated, avidity-driven IL2/15 receptor stimulation to PD-1+ tumor-infiltrating lymphocytes (TILs) while minimally affecting circulating peripheral natural killer (NK) cells and T cells. Treatment of tumor-bearing mice with a mouse cross-reactive fusion, anti-mPD1-IL15m demonstrated potent antitumor efficacy without exacerbating body weight loss in B16 and MC38 syngeneic tumor models. Moreover, anti-mPD1-IL15m was more efficacious than an IL15 superagonist, an anti-mPD-1, or the combination thereof in the B16 melanoma model. Mechanistically, anti-PD1-IL15m preferentially targeted CD8+ TILs and scRNA-seq analyses revealed that anti-mPD1-IL15m treatment induced the expansion of an exhausted CD8+ TILs cluster with high proliferative capacity and effector-like signatures. Antitumor efficacy of anti-mPD1-IL15m was dependent on CD8+ T cells, as depletion of CD8+ cells resulted in the loss of antitumor activity, whereas depletion of NK cells had little impact on efficacy. The impact of anti-hPD1-IL15m on primary human TILs from cancer patients was also evaluated. Anti-hPD1-IL15m robustly enhanced the proliferation, activation, and cytotoxicity of CD8+ and CD4+ TILs from human primary cancers in vitro, whereas tumor-derived regulatory T cells were largely unaffected. Taken together, we showed that anti-PD1-IL15m exhibits a high translational promise with improved efficacy and safety of IL15 for cancer immunotherapy via targeting PD-1+ TILs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Irene Ni
- Oncology Research Unit, Pfizer (United States)
| | | | | | | | | | - Keith A Ching
- Computational Biology/Oncology Research Unit, Pfizer Global R & D
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Zhang G, Xu M, Zhang X, Ma L, Zhang H. TRAIL produced by SAM-1-activated CD4 + and CD8 + subgroup T cells induces apoptosis in human tumor cells through upregulation of death receptors. Toxicol Appl Pharmacol 2021; 427:115656. [PMID: 34329641 DOI: 10.1016/j.taap.2021.115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Bacterial superantigens potently activate conventional T-cells to induce massive cytokine production and mediate tumor cell death. To engineer superantigens for immunotherapy against tumors in clinic, we previously generated SAM-1, a staphylococcal enterotoxins C2 (SEC2) mutant, that exhibited significantly reduced toxicity but maintained the superantigen activity in animal models. This present study aimed to investigate whether SAM-1 activates T cells and induces apoptosis in human tumor cells. We found that SAM-1 induced the maturation of dendritic cells (DCs) with upregulating expression of the surface markers CD80, CD86 and HLA-DR, which secreted high levels of IL-12p70 by activating TLR2-NF-κB signaling pathways. SAM-1 could activate human CD4+ subgroup T cells and CD8+ subgroup T cells in the presence of mature dendritic cells (DCs), leading to the productions of cytokines TRAIL, IL-2, IFN-γ and TNF-α. We observed that TRAIL mediated the apoptosis and S-phase and G2/M-phase arrest in HGC-27 tumor cells via binding to upregulated death receptors DR4 and DR5. Using shRNA knockdown in HGC-27 cells or constitutive overexpression in ES2 cells for DR4 and DR5, we demonstrated the vital requirement of DR4 and DR5 in apoptosis of tumor cells in response to TRAIL secreted from SAM-1-activated T cells. Collectively, our results will facilitate better understanding of SAM-1-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Guojun Zhang
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, Shenyang, Liaoning, China.
| | - Xiaoqing Zhang
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Ling Ma
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| |
Collapse
|
107
|
Panda A, Ganesan S. Genomic and Immunologic Correlates of Indoleamine 2,3-Dioxygenase Pathway Expression in Cancer. Front Genet 2021; 12:706435. [PMID: 34367262 PMCID: PMC8340027 DOI: 10.3389/fgene.2021.706435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint blockade leads to unprecedented responses in many cancer types. An alternative method of unleashing anti-tumor immune response is to target immunosuppressive metabolic pathways like the indoleamine 2,3-dioxygenase (IDO) pathway. Despite promising results in Phase I/II clinical trials, an IDO-1 inhibitor did not show clinical benefit in a Phase III clinical trial. Since, a treatment can be quite effective in a specific subset without being effective in the whole cancer type, it is important to identify the subsets of cancers that may benefit from IDO-1 inhibitors. In this study, we looked for the genomic and immunologic correlates of IDO pathway expression in cancer using the Cancer Genome Atlas (TCGA) dataset. Strong CD8+ T-cell infiltration, high mutation burden, and expression of exogenous viruses [Epstein-Barr virus (EBV), Human papilloma virus (HPV), and Hepatitis C virus (HCV)] or endogenous retrovirus (ERV3-2) were associated with over-expression of IDO-1 in most cancer types, IDO-2 in many cancer types, and TDO-2 in a few cancer types. High mutation burden in ER+ HER2- breast cancer, and ERV3-2 expression in ER- HER2- and HER2+ breast, colon, and endometrial cancers were associated with over-expression of all three genes. These results may have important implications for guiding development clinical trials of IDO-1 inhibitors.
Collapse
Affiliation(s)
- Anshuman Panda
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Shridar Ganesan
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
108
|
YIV-906 potentiated anti-PD1 action against hepatocellular carcinoma by enhancing adaptive and innate immunity in the tumor microenvironment. Sci Rep 2021; 11:13482. [PMID: 34188068 PMCID: PMC8242098 DOI: 10.1038/s41598-021-91623-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 11/08/2022] Open
Abstract
YIV-906 (PHY906) is a standardized botanical cancer drug candidate developed with a systems biology approach—inspired by a traditional Chinese herbal formulation, historically used to treat gastrointestinal symptoms including diarrhea, nausea and vomiting. In combination with chemotherapy and/or radiation therapy, preclinical and clinical results suggest that YIV-906 has the potential to prolong survival and improve quality of life for cancer patients. Here, we demonstrated that YIV-906 plus anti-PD1 could eradicate all Hepa 1–6 tumors in all tumor bearing mice. YIV-906 was found to have multiple mechanisms of action to enhance adaptive and innate immunity. In combination, YIV-906 reduced PD1 or counteracted PD-L1 induction caused by anti-PD1 which led to higher T-cell activation gene expression of the tumor. In addition, YIV-906 could reduce immune tolerance by modulating IDO activity and reducing monocytic MDSC of the tumor. The combination of anti-PD1 and YIV-906 generated acute inflammation in the tumor microenvironment with more M1-like macrophages. YIV-906 could potentiate the action of interferon gamma (IFNg) to increase M1-like macrophage polarization while inhibiting IL4 action to decrease M2 macrophage polarization. Flavonoids from YIV-906 were responsible for modulating IDO activity and potentiating IFNg action in M1-like macrophage polarization. In conclusion, YIV-906 could act as an immunomodulator and enhance the innate and adaptive immune response and potentiate anti-tumor activity for immunotherapies to treat cancer.
Collapse
|
109
|
García-Cañaveras JC, Lahoz A. Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers (Basel) 2021; 13:3230. [PMID: 34203535 PMCID: PMC8268968 DOI: 10.3390/cancers13133230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer that enables cancer cells to grow, proliferate and survive. This metabolic rewiring is intrinsically regulated by mutations in oncogenes and tumor suppressors, but also extrinsically by tumor microenvironment factors (nutrient and oxygen availability, cell-to-cell interactions, cytokines, hormones, etc.). Intriguingly, only a few cancers are driven by mutations in metabolic genes, which lead metabolites with oncogenic properties (i.e., oncometabolites) to accumulate. In the last decade, there has been rekindled interest in understanding how dysregulated metabolism and its crosstalk with various cell types in the tumor microenvironment not only sustains biosynthesis and energy production for cancer cells, but also contributes to immune escape. An assessment of dysregulated intratumor metabolism has long since been exploited for cancer diagnosis, monitoring and therapy, as exemplified by 18F-2-deoxyglucose positron emission tomography imaging. However, the efficient delivery of precision medicine demands less invasive, cheaper and faster technologies to precisely predict and monitor therapy response. The metabolomic analysis of tumor and/or microenvironment-derived metabolites in readily accessible biological samples is likely to play an important role in this sense. Here, we review altered cancer metabolism and its crosstalk with the tumor microenvironment to focus on energy and biomass sources, oncometabolites and the production of immunosuppressive metabolites. We provide an overview of current pharmacological approaches targeting such dysregulated metabolic landscapes and noninvasive approaches to characterize cancer metabolism for diagnosis, therapy and efficacy assessment.
Collapse
Affiliation(s)
- Juan C. García-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
110
|
Kassab SE, Mowafy S. Structural Basis of Selective Human Indoleamine-2,3-dioxygenase 1 (hIDO1) Inhibition. ChemMedChem 2021; 16:3149-3164. [PMID: 34174026 DOI: 10.1002/cmdc.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Indexed: 11/08/2022]
Abstract
hIDO1 is a heme-dioxygenase overexpressed in the tumor microenvironment and is implicated in the survival of cancer cells. Metabolism of tryptophan to N-formyl-kynurenine by hIDO1 leads to immune suppression to result in cancer cell immune escape. In this article, we discuss the discovery of selective hIDO1 inhibitors for therapeutic intervention that have been promoted to clinical trials and for which crystallographic structural information is available for the respective inhibitor-enzyme complex. The structural insights are based on the complex crystal structures and the relative biological data profiles. The structural basis of selective hIDO1 inhibition, as discussed herein, opens new avenues to the discovery of novel inhibitors with improved activity profiles, selectivity, and distinct structure frameworks.
Collapse
Affiliation(s)
- Shaymaa Emam Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt.,Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States of America
| |
Collapse
|
111
|
Sharon S, Baird JR, Bambina S, Kramer G, Blair TC, Jensen SM, Leidner RS, Bell RB, Casap N, Crittenden MR, Gough MJ. A platform for locoregional T-cell immunotherapy to control HNSCC recurrence following tumor resection. Oncotarget 2021; 12:1201-1213. [PMID: 34194619 PMCID: PMC8238246 DOI: 10.18632/oncotarget.27982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
Surgical resection of head and neck squamous-cell carcinoma (HNSCC) is associated with high rates of local and distant recurrence, partially mitigated by adjuvant therapy. A pre-existing immune response in the patient's tumor is associated with better outcomes following treatment with conventional therapies, but improved options are needed for patients with poor anti-tumor immunity. We hypothesized that local delivery of tumor antigen-specific T-cells into the resection cavity following surgery would direct T-cells to residual antigens in the margins and draining lymphatics and present a platform for T-cell-targeted immunotherapy. We loaded T-cells into a biomaterial that conformed to the resection cavity and demonstrated that it could release T-cells that retained their functional activity in-vitro, and in a HNSCC model in-vivo. Locally delivered T-cells loaded in a biomaterial were equivalent in control of established tumors to intravenous adoptive T-cell transfer, and resulted in the systemic circulation of tumor antigen-specific T-cells as well as local accumulation in the tumor. We demonstrate that adjuvant therapy with anti-PD1 following surgical resection was ineffective unless combined with local delivery of T-cells. These data demonstrate that local delivery of tumor-specific T-cells is an efficient option to convert tumors that are unresponsive to checkpoint inhibitors to permit tumor cures.
Collapse
Affiliation(s)
- Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Jason R. Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Gwen Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Tiffany C. Blair
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Shawn M. Jensen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Rom S. Leidner
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | - R. Bryan Bell
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Nardy Casap
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
- The Oregon Clinic, Portland, OR 97213, USA
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| |
Collapse
|
112
|
Sharon S, Duhen T, Bambina S, Baird J, Leidner R, Bell B, Casap N, Crittenden M, Vasudevan S, Jubran M, Kravchenko-Balasha N, Gough M. Explant Modeling of the Immune Environment of Head and Neck Cancer. Front Oncol 2021; 11:611365. [PMID: 34221953 PMCID: PMC8249923 DOI: 10.3389/fonc.2021.611365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/25/2021] [Indexed: 01/10/2023] Open
Abstract
Patients exhibit distinct responses to immunotherapies that are thought to be linked to their tumor immune environment. However, wide variations in outcomes are also observed in patients with matched baseline tumor environments, indicating that the biological response to treatment is not currently predictable using a snapshot analysis. To investigate the relationship between the immune environment of tumors and the biological response to immunotherapies, we characterized four murine head and neck squamous cell carcinoma (HNSCC) models on two genetic backgrounds. Using tumor explants from those models, we identified correlations between the composition of infiltrating immune cells and baseline cytokine profiles prior to treatment. Following treatment with PD-1 blockade, CTLA-4 blockade, or OX40 stimulation, we observed inter-individual variability in the response to therapy between genetically identical animals bearing the same tumor. These distinct biological responses to treatment were not linked to the initial tumor immune environment, meaning that outcome would not be predictable from a baseline analysis of the tumor infiltrates. We similarly performed the explant assay on patient HNSCC tumors and found significant variability between the baseline environment of the tumors and their response to therapy. We propose that tumor explants provide a rapid biological assay to assess response to candidate immunotherapies that may allow matching therapies to individual patient tumors. Further development of explant approaches may allow screening and monitoring of treatment responses in HNSCC.
Collapse
Affiliation(s)
- Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, Israel
| | - Thomas Duhen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Jason Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Rom Leidner
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Bryan Bell
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Nardy Casap
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, Israel
| | - Marka Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
- The Oregon Clinic, Portland, OR, United States
| | - Swetha Vasudevan
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Jubran
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Michael Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| |
Collapse
|
113
|
Zakharia Y, McWilliams RR, Rixe O, Drabick J, Shaheen MF, Grossmann KF, Kolhe R, Pacholczyk R, Sadek R, Tennant LL, Smith CM, Kennedy EP, Link CJ, Vahanian NN, Yu J, Shen SS, Brincks EL, Rossi GR, Munn D, Milhem M. Phase II trial of the IDO pathway inhibitor indoximod plus pembrolizumab for the treatment of patients with advanced melanoma. J Immunother Cancer 2021; 9:jitc-2020-002057. [PMID: 34117113 PMCID: PMC8202104 DOI: 10.1136/jitc-2020-002057] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background The indoleamine 2,3-dioxygenase (IDO) pathway is a key counter-regulatory mechanism that, in cancer, is exploited by tumors to evade antitumor immunity. Indoximod is a small-molecule IDO pathway inhibitor that reverses the immunosuppressive effects of low tryptophan (Trp) and high kynurenine (Kyn) that result from IDO activity. In this study, indoximod was used in combination with a checkpoint inhibitor (CPI) pembrolizumab for the treatment for advanced melanoma. Methods Patients with advanced melanoma were enrolled in a single-arm phase II clinical trial evaluating the addition of indoximod to standard of care CPI approved for melanoma. Investigators administered their choice of CPI including pembrolizumab (P), nivolumab (N), or ipilimumab (I). Indoximod was administered continuously (1200 mg orally two times per day), with concurrent CPI dosed per US Food and Drug Administration (FDA)-approved label. Results Between July 2014 and July 2017, 131 patients were enrolled. (P) was used more frequently (n=114, 87%) per investigator’s choice. The efficacy evaluable population consisted of 89 patients from the phase II cohort with non-ocular melanoma who received indoximod combined with (P). The objective response rate (ORR) for the evaluable population was 51% with confirmed complete response of 20% and disease control rate of 70%. Median progression-free survival was 12.4 months (95% CI 6.4 to 24.9). The ORR for Programmed Death-Ligand 1 (PD-L1)-positive patients was 70% compared with 46% for PD-L1-negative patients. The combination was well tolerated, and side effects were similar to what was expected from single agent (P). Conclusion In this study, the combination of indoximod and (P) was well tolerated and showed antitumor efficacy that is worth further evaluation in selected patients with advanced melanoma.
Collapse
Affiliation(s)
- Yousef Zakharia
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiayi Yu
- NewLink Genetics Corp, Ames, Iowa, USA
| | - Steven S Shen
- University of Minnesota Institute for Health Informatics, Minneapolis, Minnesota, USA
| | | | | | - David Munn
- Augusta University, Augusta, Georgia, USA
| | - Mohammed Milhem
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| |
Collapse
|
114
|
Trojaniello C, Luke JJ, Ascierto PA. Therapeutic Advancements Across Clinical Stages in Melanoma, With a Focus on Targeted Immunotherapy. Front Oncol 2021; 11:670726. [PMID: 34178657 PMCID: PMC8222774 DOI: 10.3389/fonc.2021.670726] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
Melanoma is the most fatal skin cancer. In the early stages, it can be safely treated with surgery alone. However, since 2011, there has been an important revolution in the treatment of melanoma with new effective treatments. Targeted therapy and immunotherapy with checkpoint inhibitors have changed the history of this disease. To date, more than half of advanced melanoma patients are alive at 5 years; despite this breakthrough, approximately half of the patients still do not respond to treatment. For these reasons, new therapeutic strategies are required to expand the number of patients who can benefit from immunotherapy or combination with targeted therapy. Current research aims at preventing primary and acquired resistance, which are both responsible for treatment failure in about 50% of patients. This could increase the effectiveness of available drugs and allow for the evaluation of new combinations and new targets. The main pathways and molecules under study are the IDO inhibitor, TLR9 agonist, STING, LAG-3, TIM-3, HDAC inhibitors, pegylated IL-2 (NKTR-214), GITR, and adenosine pathway inhibitors, among others (there are currently about 3000 trials that are evaluating immunotherapeutic combinations in different tumors). Other promising strategies are cancer vaccines and oncolytic viruses. Another approach is to isolate and remove immune cells (DCs, T cells, and NK cells) from the patient's blood or tumor infiltrates, add specific gene fragments, expand them in culture with growth factors, and re-inoculate into the same patient. TILs, TCR gene transfer, and CAR-T therapy follow this approach. In this article, we give an overview over the current status of melanoma therapies, the clinical rationale for choosing treatments, and the new immunotherapy approaches.
Collapse
Affiliation(s)
- Claudia Trojaniello
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Jason J. Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, United States
| | - Paolo A. Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
115
|
Quintarelli C, Camera A, Ciccone R, Alessi I, Del Bufalo F, Carai A, Del Baldo G, Mastronuzzi A, De Angelis B. Innovative and Promising Strategies to Enhance Effectiveness of Immunotherapy for CNS Tumors: Where Are We? Front Immunol 2021; 12:634031. [PMID: 34163465 PMCID: PMC8216238 DOI: 10.3389/fimmu.2021.634031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are several immunotherapy approaches for the treatment of Central Nervous System (CNS) tumors under evaluation, currently none of these approaches have received approval from the regulatory agencies. CNS tumors, especially glioblastomas, are tumors characterized by highly immunosuppressive tumor microenvironment, limiting the possibility of effectively eliciting an immune response. Moreover, the peculiar anatomic location of these tumors poses relevant challenges in terms of safety, since uncontrolled hyper inflammation could lead to cerebral edema and cranial hypertension. The most promising strategies of immunotherapy in neuro-oncology consist of the use of autologous T cells redirected against tumor cells through chimeric antigen receptor (CAR) constructs or genetically modified T-cell receptors. Trials based on native or genetically engineered oncolytic viruses and on vaccination with tumor-associated antigen peptides are also under evaluation. Despite some sporadic complete remissions achieved in clinical trials, the outcome of patients with CNS tumors treated with different immunotherapeutic approaches remains poor. Based on the lessons learned from these unsatisfactory experiences, novel immune-therapy approaches aimed at overcoming the profound immunosuppressive microenvironment of these diseases are bringing new hope to reach the cure for CNS tumors.
Collapse
Affiliation(s)
- Concetta Quintarelli
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Camera
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roselia Ciccone
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Iside Alessi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giada Del Baldo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Biagio De Angelis
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
116
|
Hendriks LEL, Remon J, Menis J, Besse B. Is there any opportunity for immune checkpoint inhibitor therapy in non-small cell lung cancer patients with brain metastases? Transl Lung Cancer Res 2021; 10:2868-2875. [PMID: 34295685 PMCID: PMC8264345 DOI: 10.21037/tlcr-20-343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/13/2020] [Indexed: 11/06/2022]
Abstract
Although brain metastases occur in almost one-third of non-small cell lung cancer (NSCLC) patients, and immune checkpoint inhibitors (ICI) either as monotherapy or combined with chemotherapy are the new standard of care in the first line setting, most trials excluded patients with asymptomatic and/or untreated brain metastases. Brain metastases have a major clinical impact due to the worsening of the patient's prognosis and quality of life. Furthermore, the incidence of brain metastases is increasing in NSCLC patients, due to a longer survival and better imaging techniques. Therefore, brain metastases are increasingly becoming a research topic. Recent clinical data endorses ICI as a therapeutic strategy in this subpopulation of NSCLC patients, although the immune environment in brain metastases is more immune ignorant compared with the microenvironment in the primary tumour or in the extracranial metastases. In this review we summarize the current evidence of ICI strategy in NSCLC patients with brain metastases, including trial and real-life data. We also state that the different tumor microenvironment between brain metastases and primary tumor may explain the discordance on the response rate during treatment with ICI. Last, we focus on future directions, including the role and optimal sequence of cranial irradiation and ICI, prognostic scores, the best response assessment and new imaging techniques.
Collapse
Affiliation(s)
- Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM CIOCC), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Benjamin Besse
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Paris-Sud University, Orsay, France
| |
Collapse
|
117
|
Lee YJ, Lee JB, Ha SJ, Kim HR. Clinical Perspectives to Overcome Acquired Resistance to Anti-Programmed Death-1 and Anti-Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer. Mol Cells 2021; 44:363-373. [PMID: 34001680 PMCID: PMC8175154 DOI: 10.14348/molcells.2021.0044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors have changed the paradigm of treatment options for non-small cell lung cancer (NSCLC). Monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have gained wide attention for their application, which has been shown to result in prolonged survival. Nevertheless, only a limited subset of patients show partial or complete response to PD-1 therapy, and patients who show a response eventually develop resistance to immunotherapy. This article aims to provide an overview of the mechanisms of acquired resistance to anti-PD-1/PD-L1 therapy from the perspective of tumor cells and the surrounding microenvironment. In addition, we address the potential therapeutic targets and ongoing clinical trials, focusing mainly on NSCLC.
Collapse
Affiliation(s)
- Yong Jun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea
- Division of Hemato-Oncology, Wonju Severance Christian Hospital, Yonsei University College of Medicine, Wonju 26426, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
118
|
Varayathu H, Sarathy V, Thomas BE, Mufti SS, Naik R. Combination Strategies to Augment Immune Check Point Inhibitors Efficacy - Implications for Translational Research. Front Oncol 2021; 11:559161. [PMID: 34123767 PMCID: PMC8193928 DOI: 10.3389/fonc.2021.559161] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint inhibitor therapy has revolutionized the field of cancer immunotherapy. Even though it has shown a durable response in some solid tumors, several patients do not respond to these agents, irrespective of predictive biomarker (PD-L1, MSI, TMB) status. Multiple preclinical, as well as early-phase clinical studies are ongoing for combining immune checkpoint inhibitors with anti-cancer and/or non-anti-cancer drugs for beneficial therapeutic interactions. In this review, we discuss the mechanistic basis behind the combination of immune checkpoint inhibitors with other drugs currently being studied in early phase clinical studies including conventional chemotherapy drugs, metronomic chemotherapy, thalidomide and its derivatives, epigenetic therapy, targeted therapy, inhibitors of DNA damage repair, other small molecule inhibitors, anti-tumor antibodies hormonal therapy, multiple checkpoint Inhibitors, microbiome therapeutics, oncolytic viruses, radiotherapy, drugs targeting myeloid-derived suppressor cells, drugs targeting Tregs, drugs targeting renin-angiotensin system, drugs targeting the autonomic nervous system, metformin, etc. We also highlight how translational research strategies can help better understand the true therapeutic potential of such combinations.
Collapse
Affiliation(s)
- Hrishi Varayathu
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Vinu Sarathy
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Beulah Elsa Thomas
- Department of Clinical Pharmacology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Suhail Sayeed Mufti
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Radheshyam Naik
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| |
Collapse
|
119
|
Zou R, Wang Y, Ye F, Zhang X, Wang M, Cui S. Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome. Clin Transl Oncol 2021; 23:2237-2252. [PMID: 34002348 DOI: 10.1007/s12094-021-02637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
As a very promising immunotherapy, PD-1/PD-L1 blockade has revolutionized the treatment of a variety of tumor types, resulting in significant clinical efficacy and lasting responses. However, these therapies do not work for a large proportion of patients initially, which is called primary resistance. And more frustrating is that most patients eventually develop acquired resistance after an initial response to PD-1/PD-L1 blockade. The mechanisms that lead to primary and acquired resistance to PD-1/PD-L1 inhibition have remained largely unclear. Recently, the gut microbiome has emerged as a potential regulator for PD-1/PD-L1 blockade. This review elaborates on the current understanding of the mechanisms in terms of PD-1 related signaling pathways and necessary factors. Moreover, this review discusses new strategies to increase the efficacy of immunotherapy from the perspectives of immune markers and gut microbiome.
Collapse
Affiliation(s)
- R Zou
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Y Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - F Ye
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - X Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - M Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - S Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
120
|
Zhang Y, Li Y, Chen K, Qian L, Wang P. Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int 2021; 21:262. [PMID: 33985527 PMCID: PMC8120729 DOI: 10.1186/s12935-021-01972-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It has been intensively reported that the immunosuppressive tumor microenvironment (TME) results in tumor resistance to immunotherapy, especially immune checkpoint blockade and chimeric T cell antigen therapy. As an emerging therapeutic agent, oncolytic viruses (OVs) can specifically kill malignant cells and modify immune and non-immune TME components through their intrinsic properties or genetically incorporated with TME regulators. Strategies of manipulating OVs against the immunosuppressive TME include serving as a cancer vaccine, expressing proinflammatory factors and immune checkpoint inhibitors, and regulating nonimmune stromal constituents. In this review, we summarized the mechanisms and applications of OVs against the immunosuppressive TME, and strategies of OVs in combination with immunotherapy. We also introduced future directions to achieve efficient clinical translation including optimization of preclinical models that simulate the human TME and achieving systemic delivery of OVs.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
121
|
Staniszewska M, Iking J, Lückerath K, Hadaschik B, Herrmann K, Ferdinandus J, Fendler WP. Drug and molecular radiotherapy combinations for metastatic castration resistant prostate cancer. Nucl Med Biol 2021; 96-97:101-111. [PMID: 33866131 DOI: 10.1016/j.nucmedbio.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Metastatic castration resistant prostate cancer (mCRPC) is a highly lethal disease. Several novel therapies have been assessed in the past years. Targeting DNA damage response (DDR) pathways in prostate cancer became a promising treatment strategy and olaparib and rucaparib, Poly(ADP-ribose) polymerase (PARP) inhibitors, have been approved for patients carrying mutations in homologous recombination (HR) repair pathways. Other DDR inhibitor targets, such as ATM, ATR, CHK1, CHK2, and WEE1 are under extensive investigation. Additionally, molecular radiotherapy (MRT) including [177Lu]Lu-PSMA, [225Ac]Ac-PSMA, [223Ra]Ra-dichloride, [153Sm]-EDTMP, [188Re]Re-HDMP and GRPR-targeted MRT treat cancer through internal ionizing radiation causing DNA damage and demonstrate promising efficacy in clinical trials. In the field of immunotherapy, checkpoint inhibition as well as sipuleucel-T and PROSTVAC demonstrated only limited efficacy in mCRPC when used as monotherapy. This review discusses recent therapeutic strategies for mCRPC highlighting the need for rational combination of treatment options.
Collapse
Affiliation(s)
- Magdalena Staniszewska
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| | - Janette Iking
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Katharina Lückerath
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Justin Ferdinandus
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| |
Collapse
|
122
|
Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol 2021; 18:1085-1095. [PMID: 33785843 PMCID: PMC8093220 DOI: 10.1038/s41423-021-00655-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/07/2021] [Indexed: 02/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has achieved successful outcomes against hematological malignancies and provided a new impetus for treating solid tumors. However, the efficacy of CAR-T cells for solid tumors remains unsatisfactory. The tumor microenvironment has an important role in interfering with and inhibiting the effector function of immune cells, among which upregulated inhibitory checkpoint receptors, soluble suppressive cytokines, altered chemokine expression profiles, aberrant vasculature, complicated stromal composition, hypoxia and abnormal tumor metabolism are major immunosuppressive mechanisms. In this review, we summarize the inhibitory factors that affect the function of CAR-T cells in tumor microenvironment and discuss approaches to improve CAR-T cell efficacy for solid tumor treatment by targeting those barriers.
Collapse
|
123
|
Tang K, Wu YH, Song Y, Yu B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J Hematol Oncol 2021; 14:68. [PMID: 33883013 PMCID: PMC8061021 DOI: 10.1186/s13045-021-01080-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme that catalyzes the oxidation of L-tryptophan. Functionally, IDO1 has played a pivotal role in cancer immune escape via catalyzing the initial step of the kynurenine pathway, and overexpression of IDO1 is also associated with poor prognosis in various cancers. Currently, several small-molecule candidates and peptide vaccines are currently being assessed in clinical trials. Furthermore, the "proteolysis targeting chimera" (PROTAC) technology has also been successfully used in the development of IDO1 degraders, providing novel therapeutics for cancers. Herein, we review the biological functions of IDO1, structural biology and also extensively summarize medicinal chemistry strategies for the development of IDO1 inhibitors in clinical trials. The emerging PROTAC-based IDO1 degraders are also highlighted. This review may provide a comprehensive and updated overview on IDO1 inhibitors and their therapeutic potentials.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
124
|
Vackova J, Polakova I, Johari SD, Smahel M. CD80 Expression on Tumor Cells Alters Tumor Microenvironment and Efficacy of Cancer Immunotherapy by CTLA-4 Blockade. Cancers (Basel) 2021; 13:cancers13081935. [PMID: 33923750 PMCID: PMC8072777 DOI: 10.3390/cancers13081935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023] Open
Abstract
Cluster of differentiation (CD) 80 is mainly expressed in immune cells but can also be found in several types of cancer cells. This molecule may either activate or inhibit immune reactions. Here, we determined the immunosuppressive role of CD80 in the tumor microenvironment by CRISPR/Cas9-mediated deactivation of the corresponding gene in the mouse oncogenic TC-1 cell line. The tumor cells with deactivated CD80 (TC-1/dCD80-1) were more immunogenic than parental cells and induced tumors that gained sensitivity to cytotoxic T-lymphocyte antigen 4 (CTLA-4) blockade, as compared with the TC-1 cells. In vivo depletion experiments showed that the deactivation of CD80 switched the pro-tumorigenic effect of macrophages observed in TC-1-induced tumors into an anti-tumorigenic effect in TC-1/dCD80-1 tumors and induced the pro-tumorigenic activity of CD4+ cells. Moreover, the frequency of lymphoid and myeloid cells and the CTLA-4 expression by T helper (Th)17 cells were increased in TC-1/dCD80-1- compared with that in the TC-1-induced tumors. CTLA-4 blockade downregulated the frequencies of most immune cell types and upregulated the frequency of M2 macrophages in the TC-1 tumors, while it increased the frequency of lymphoid cells in TC-1/dCD80-1-induced tumors. Furthermore, the anti-CTLA-4 therapy enhanced the frequency of CD8+ T cells as well as CD4+ T cells, especially for a Th1 subset. Regulatory T cells (Treg) formed the most abundant CD4+ T cell subset in untreated tumors. The anti-CTLA-4 treatment downregulated the frequency of Treg cells with limited immunosuppressive potential in the TC-1 tumors, whereas it enriched this type of Treg cells and decreased the Treg cells with high immunosuppressive potential in TC-1/dCD80-1-induced tumors. The immunosuppressive role of tumor-cell-expressed CD80 should be considered in research into biomarkers for the prediction of cancer patients' sensitivity to immune checkpoint inhibitors and for the development of a tumor-cell-specific CD80 blockade.
Collapse
Affiliation(s)
- Julie Vackova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic; (J.V.); (I.P.); (S.D.J.)
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Ingrid Polakova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic; (J.V.); (I.P.); (S.D.J.)
| | - Shweta Dilip Johari
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic; (J.V.); (I.P.); (S.D.J.)
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic; (J.V.); (I.P.); (S.D.J.)
- Correspondence: ; Tel.: +420-325-873-921
| |
Collapse
|
125
|
Wei J, Montalvo-Ortiz W, Yu L, Krasco A, Ebstein S, Cortez C, Lowy I, Murphy AJ, Sleeman MA, Skokos D. Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci Immunol 2021; 6:6/58/eabg0117. [PMID: 33837124 DOI: 10.1126/sciimmunol.abg0117] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Although radiotherapy has been used for over a century to locally control tumor growth, alone it rarely induces an abscopal response or systemic antitumor immunity capable of inhibiting distal tumors outside of the irradiation field. Results from recent studies suggest that combining immune checkpoint blockades to radiotherapy may enhance abscopal activity. However, the treatment conditions and underlying immune mechanisms that consistently drive an abscopal response during radiation therapy combinations remain unknown. Here, we analyzed the antitumor responses at primary and distal tumor sites, demonstrating that the timing of αPD-1 antibody administration relative to radiotherapy determined the potency of the induced abscopal response. Blockade of the PD-1 pathway after local tumor irradiation resulted in the expansion of polyfunctional intratumoral CD8+ T cells, a decrease in intratumoral dysfunctional CD8+ T cells, expansion of reprogrammable CD8+ T cells, and induction of potent abscopal responses. However, administration of αPD-1 before irradiation almost completely abrogated systemic immunity, which associated with increased radiosensitivity and death of CD8+ T cells. The subsequent reduction of polyfunctional effector CD8+ T cells at the irradiated tumor site generated a suboptimal systemic antitumor response and the loss of abscopal responses. Therefore, this report maximizes the potential synergy between radiotherapy and αPD-1 immunotherapy, information that will benefit clinical combinations of radiotherapy and immune checkpoint blockade.
Collapse
Affiliation(s)
- Joyce Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Welby Montalvo-Ortiz
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lola Yu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Amanda Krasco
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Sarah Ebstein
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Czrina Cortez
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dimitris Skokos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
126
|
Slingluff CL, Zarour HM, Tawbi HAH, Kirkwood JM, Postow MA, Friedlander P, Devoe CE, Gaughan EM, Mauldin IS, Olson WC, Smith KT, Macri MJ, Ricciardi T, Ryan A, Venhaus R, Wolchok JD. A phase 1 study of NY-ESO-1 vaccine + anti-CTLA4 antibody Ipilimumab (IPI) in patients with unresectable or metastatic melanoma. Oncoimmunology 2021; 10:1898105. [PMID: 33796406 PMCID: PMC8007150 DOI: 10.1080/2162402x.2021.1898105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ipilimumab (IPI) can enhance immunity to the cancer-testis antigen NY-ESO-1. A clinical trial was designed to assess safety, immunogenicity, and clinical responses with IPI + NY-ESO-1 vaccines and effects on the tumor microenvironment (TME). Patients with measurable NY-ESO-1+ tumors were enrolled among three arms: A) IPI + NY-ESO-1 protein + poly-ICLC (pICLC) + incomplete Freund’s adjuvant (IFA); B) IPI + NY-ESO-1 overlapping long peptides (OLP) + pICLC + IFA; and C) IPI + NY-ESO-1 OLP + pICLC. Clinical responses were assessed by irRC. T cell and Ab responses were assessed by ex vivo IFN-gamma ELIspot and ELISA. Tumor biopsies pre- and post-treatment were evaluated for immune infiltrates. Eight patients were enrolled: 5, 2, and 1 in Arms A-C, respectively. There were no DLTs. Best clinical responses were SD (4) and PD (4). T-cell and antibody (Ab) responses to NY-ESO-1 were detected in 6 (75%) and 7 (88%) patients, respectively, and were associated with SD. The breadth of Ab responses was greater for patients with SD than PD (p = .036). For five patients evaluable in the TME, treatment was associated with increases in proliferating (Ki67+) CD8+ T cells and decreases in RORγt+ CD4+ T cells. T cell densities increased for those with SD. Detection of T cell responses to NY-ESO-1 ex vivo in most patients suggests that IPI may have enhanced those responses. Proliferating intratumoral CD8+ T cells increased after vaccination plus IPI suggesting favorable impact of IPI plus NY-ESO-1 vaccines on the TME. List of Abbreviations: Ab = antibody; CTCAE = NCI Common Terminology Criteria for Adverse Events; DHFR/DHRP = dihydrofolate reductase; DLT = Dose-limiting toxicity; ELISA = enzyme-linked immunosorbent assay; IFA = incomplete Freund’s adjuvant (Montanide ISA-51); IFNγ = Interferon gamma; IPI = Ipilimumab; irRC = immune-related response criteria; mIFH = multispectral immunofluorescence histology; OLP = NY-ESO-1 overlapping long peptides; PBMC = peripheral blood mononuclear cells; PD = Progressive disease; pICLC = poly-ICLC (Hiltonol), a TLR3/MDA-5 agonist; RLT = Regimen-limiting Toxicity; ROI = regions of interest; RT = room temperature; SAE = serious adverse event; SD = stable disease; TEAE = treatment-emergent adverse events; TLR = toll-like receptor; TME = tumor microenvironment; TRAE = treatment-related adverse events.
Collapse
Affiliation(s)
- Craig L Slingluff
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Hassane M Zarour
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein Abdul-Hassan Tawbi
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - John M Kirkwood
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Philip Friedlander
- Department of Medicine, Hematology, and Medical Oncology, Mount Sinai Medical Center, New York, NY, USA
| | - Craig E Devoe
- Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Elizabeth M Gaughan
- Department of Medicine/Division of Hematology Oncology, University of Virginia, Charlottesville, VA, USA
| | - Ileana S Mauldin
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Walter C Olson
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Kelly T Smith
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Mary J Macri
- Ludwig Institute for Cancer Research, New York, NY, USA
| | | | - Aileen Ryan
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Ralph Venhaus
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center.,Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
127
|
Maza PAMA, Lee JH, Kim YS, Sun GM, Sung YJ, Ponomarenko LP, Stonik VA, Ryu M, Kwak JY. Inotodiol From Inonotus obliquus Chaga Mushroom Induces Atypical Maturation in Dendritic Cells. Front Immunol 2021; 12:650841. [PMID: 33777049 PMCID: PMC7994266 DOI: 10.3389/fimmu.2021.650841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) have the ability to stimulate naïve T cells that coordinate subsequent adaptive response toward an inflammatory response or tolerance depending on the DC differentiation level. Inotodiol, a lanostane triterpenoid found in Inonotus obliquus (wild Chaga mushroom), is a natural compound with a wide range of biological activities. In this study, we investigated whether inotodiol promotes the maturation of bone marrow-derived DCs (BMDCs) and inotodiol-treated BMDCs induce T cell activation. Inotodiol increased the expression of surface maturation markers, including MHC-I, MHC-II, CD86, and CD40, on BMDCs without affecting the production of various cytokines, including TNF-α and IL-12p40 in these cells. T cells primed with inotodiol-treated BMDCs proliferated and produced IL-2, without producing other cytokines, including IL-12p40 and IFN-γ. Injection of inotodiol into mice induced maturation of splenic DCs and IL-2 production, and the administration of inotodiol and inotodiol-treated BMDCs induced the proliferation of adoptively transferred CD8+ T cells in vivo. The phosphatidylinositol-3-kinase inhibitor wortmannin abrogated the upregulation of Akt phosphorylation and CD86 and MHC-II expression induced by inotodiol. However, inotodiol failed to induce phosphorylation of the IκB kinase and degradation of IκB-α, and increased expression of CD86 induced by inotodiol was not blocked by an IκB kinase inhibitor. These results suggest that inotodiol induces a characteristic type of maturation in DCs through phosphatidylinositol-3-kinase activation independent of NF-κB, and inotodiol-treated DCs enhance T cell proliferation and IL-2 secretion.
Collapse
Affiliation(s)
- Perry Ayn Mayson A Maza
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| | - Ji-Hyun Lee
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| | - Yong-Su Kim
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| | - Gyu-Min Sun
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| | - Youn-Joo Sung
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| | - Ludmila P Ponomarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Valentine A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Minsook Ryu
- Department of Allergy, School of Medicine, Ajou University, Suwon, South Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, South Korea.,Immune Network Pioneer Research Center, Ajou University, Suwon, South Korea.,3D Immune System Imaging Core Center, Ajou University, Suwon, South Korea
| |
Collapse
|
128
|
Wang Q, Zhou W. Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:201-210. [PMID: 32738520 PMCID: PMC7987556 DOI: 10.1016/j.jshs.2020.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 05/18/2023]
Abstract
Exercise can enhance motivation to change lifestyle behaviors, improve aerobic fitness, improve physical function, control fatigue, and enhance quality of life. Studies have demonstrated the benefits to be gained from physical exercise, highlighting the importance of popularizing the concept of physical exercise for individuals and making professional exercise-treatment programs available to patients with cancer. However, the correlation between physical exercise and carcinogenesis is easily overlooked, and exercise interventions are not routinely provided to patients with cancer, especially those with advanced cancer. In this article, we present a literature review of the effects of exercise on cancer development and progression and give recent evidence for the type of exercise best suited for different types of cancer and in different disease stages. Moreover, the molecular mechanisms about regulating metabolism and systemic immune function in cancer are summarized and discussed. In conclusion, physical exercise should be considered as an important intervention for preventing and treating cancer and its complications.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated of Tongji University School of Medicine, Shanghai 200081, China; Department of Oncology, The Second Affiliated Hospital of Soochow University, Soochow 215004, China
| | - Wenli Zhou
- Department of Medical Oncology, Changzheng Hospital, Navy Medical University, Shanghai 200070, China.
| |
Collapse
|
129
|
Willsmore ZN, Coumbe BGT, Crescioli S, Reci S, Gupta A, Harris RJ, Chenoweth A, Chauhan J, Bax HJ, McCraw A, Cheung A, Osborn G, Hoffmann RM, Nakamura M, Laddach R, Geh JLC, MacKenzie-Ross A, Healy C, Tsoka S, Spicer JF, Josephs DH, Papa S, Lacy KE, Karagiannis SN. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur J Immunol 2021; 51:544-556. [PMID: 33450785 DOI: 10.1002/eji.202048747] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and the Programmed Death Receptor 1 (PD-1) are immune checkpoint molecules that are well-established targets of antibody immunotherapies for the management of malignant melanoma. The monoclonal antibodies, Ipilimumab, Pembrolizumab, and Nivolumab, designed to interfere with T cell inhibitory signals to activate immune responses against tumors, were originally approved as monotherapy. Treatment with a combination of immune checkpoint inhibitors may improve outcomes compared to monotherapy in certain patient groups and these clinical benefits may be derived from unique immune mechanisms of action. However, treatment with checkpoint inhibitor combinations also present significant clinical challenges and increased rates of immune-related adverse events. In this review, we discuss the potential mechanisms attributed to single and combined checkpoint inhibitor immunotherapies and clinical experience with their use.
Collapse
Affiliation(s)
- Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Ben G T Coumbe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Sara Reci
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Ayushi Gupta
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Robert J Harris
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alexa McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Ricarda M Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Jenny L C Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie-Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sophie Papa
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- ImmunoEngineering, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
130
|
Dupont CA, Riegel K, Pompaiah M, Juhl H, Rajalingam K. Druggable genome and precision medicine in cancer: current challenges. FEBS J 2021; 288:6142-6158. [PMID: 33626231 DOI: 10.1111/febs.15788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
The past decades have seen tremendous developments with respect to "specific" therapeutics that target key signaling molecules to conquer cancer. The key advancements with multiomics technologies, especially genomics, have allowed physicians and molecular oncologists to design "tailor-made" solutions to the specific oncogenes that are deregulated in individual patients, a strategy which has turned out to be successful though the patients quickly develop resistance. The swift integration of multidisciplinary approaches has led to the development of "next generation" therapeutics and, with synergistic therapeutic regimes combined with immune checkpoint inhibitors to reactivate the dampened immune response, has provided the much-needed promise for cancer patients. Despite these advances, a large portion of the druggable genome remains understudied, and the role of druggable genome in the immune system needs further attention. Establishment of patient-derived organoid models has fastened the preclinical validation of novel therapeutics for swift clinical translation. We summarized the current advances and challenges and also stress the importance of biobanking and collection of longitudinal data sets with structured clinical information, as well as the critical role these "high content data sets" will play in designing new therapeutic regimes in a tailor-made fashion.
Collapse
Affiliation(s)
- Camille Amandine Dupont
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Riegel
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Malvika Pompaiah
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Juhl
- Indivumed GmbH, Hamburg, Germany.,Indivumed-IMCB joint lab, IMCB, A*Star, Singapore
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,University Cancer Center Mainz, University Medical Center Mainz, Germany.,Indivumed-IMCB joint lab, IMCB, A*Star, Singapore
| |
Collapse
|
131
|
Kim M, Tomek P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Front Immunol 2021; 12:636081. [PMID: 33708223 PMCID: PMC7940516 DOI: 10.3389/fimmu.2021.636081] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1 inhibitors had entered clinical trials so far, and those agents have generated disappointing clinical results. Improved understanding of molecular mechanisms involved in the immune-regulatory function of the tryptophan catabolism is likely to optimise therapeutic strategies to block this pathway. The immunosuppressive role of tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine. Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated immunosuppression by competing with kynurenine for entry into immune T-cells through the amino acid transporter called System L. This hypothesis stems from the observations that elevated tryptophan levels in TDO-knockout mice relieve immunosuppression instigated by IDO1, and that the vacancy of System L transporter modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral supplementation with System L substrates such as leucine represents a novel potential therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-tumour immunity.
Collapse
Affiliation(s)
- Minah Kim
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
132
|
李 浩, 王 敬. [Developments in Immunotherapy for Advanced Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:131-140. [PMID: 33508897 PMCID: PMC7936086 DOI: 10.3779/j.issn.1009-3419.2021.102.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/05/2022]
Abstract
Immunotherapy, in particular immune checkpoint inhibitors, has significantly improved the survival outcomes of advanced lung cancer patients and changed the treatment mode of lung cancer. In this article, we reviewed the mechanism of immunotherapy, the clinical trials that changed treatment guidelines, the important biomarkers, immune-related adverse events, and descripted the future of immunotherapy of advanced non-small cell lung cancer.
.
Collapse
Affiliation(s)
- 浩洋 李
- 101149 北京,北京市结核病胸部肿瘤研究所,首都医科大学附属北京胸科医院肿瘤内科Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - 敬慧 王
- 101149 北京,北京市结核病胸部肿瘤研究所,首都医科大学附属北京胸科医院肿瘤内科Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
- 101149 北京,北京市结核病胸部肿瘤研究所,首都医科大学附属北京胸科医院肿瘤研究中心Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
133
|
Relecom A, Merhi M, Inchakalody V, Uddin S, Rinchai D, Bedognetti D, Dermime S. Emerging dynamics pathways of response and resistance to PD-1 and CTLA-4 blockade: tackling uncertainty by confronting complexity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:74. [PMID: 33602280 PMCID: PMC7893879 DOI: 10.1186/s13046-021-01872-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Immune checkpoint inhibitors provide considerable therapeutic benefit in a range of solid cancers as well as in a subgroup of hematological malignancies. Response rates are however suboptimal, and despite considerable efforts, predicting response to immune checkpoint inhibitors ahead of their administration in a given patient remains elusive. The study of the dynamics of the immune system and of the tumor under immune checkpoint blockade brought insight into the mechanisms of action of these therapeutic agents. Equally relevant are the mechanisms of adaptive resistance to immune checkpoint inhibitors that have been uncovered through this approach. In this review, we discuss the dynamics of the immune system and of the tumor under immune checkpoint blockade emanating from recent studies on animal models and humans. We will focus on mechanisms of action and of resistance conveying information predictive of therapeutic response.
Collapse
Affiliation(s)
- Allan Relecom
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Darawan Rinchai
- Cancer Research Program, Research Branch, Sidra Medicine, Doha, Qatar
| | - Davide Bedognetti
- Cancer Research Program, Research Branch, Sidra Medicine, Doha, Qatar. .,Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Said Dermime
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
134
|
Heterodimeric IL-15 in Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13040837. [PMID: 33671252 PMCID: PMC7922495 DOI: 10.3390/cancers13040837] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The rapidly expanding field of cancer immunotherapy uses diverse technologies, including cytokines, T cells, and antibody administration, with the aim to induce effective immune responses leading to tumor control. Interleukin-15 (IL-15), a cytokine discovered in 1994, supports the homeostasis of cytotoxic immune cells and shows promise as an anti-tumor agent. Many studies have elucidated IL-15 synthesis, regulation and biological function and explored its therapeutic efficacy in preclinical cancer models. Escherichia coli-derived single-chain IL-15 was tested in the first in-human trial in cancer patients. Its effects were limited by the biology of IL-15, which in vivo comprises a complex of the IL-15 chain with the IL-15 receptor alpha (IL-15Rα) chain, together forming the IL-15 heterodimer (hetIL-15). Currently, single-chain IL-15 and several heterodimeric IL-15:IL-15Rα variants (hetIL-15, N-803 and RLI) are being tested in clinical trials. This review presents a summary of contemporary preclinical and clinical research on IL-15. Abstract Immunotherapy has emerged as a valuable strategy for the treatment of many cancer types. Interleukin-15 (IL-15) promotes the growth and function of cytotoxic CD8+ T and natural killer (NK) cells. It also enhances leukocyte trafficking and stimulates tumor-infiltrating lymphocytes expansion and activity. Bioactive IL-15 is produced in the body as a heterodimeric cytokine, comprising the IL-15 and the so-called IL-15 receptor alpha chain that are together termed “heterodimeric IL-15” (hetIL-15). hetIL-15, closely resembling the natural form of the cytokine produced in vivo, and IL-15:IL-15Rα complex variants, such as hetIL-15Fc, N-803 and RLI, are the currently available IL-15 agents. These molecules have showed favorable pharmacokinetics and biological function in vivo in comparison to single-chain recombinant IL-15. Preclinical animal studies have supported their anti-tumor activity, suggesting IL-15 as a general method to convert “cold” tumors into “hot”, by promoting tumor lymphocyte infiltration. In clinical trials, IL-15-based therapies are overall well-tolerated and result in the expansion and activation of NK and memory CD8+ T cells. Combinations with other immunotherapies are being investigated to improve the anti-tumor efficacy of IL-15 agents in the clinic.
Collapse
|
135
|
Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L. Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT. Front Immunol 2021; 12:638841. [PMID: 33679798 PMCID: PMC7928402 DOI: 10.3389/fimmu.2021.638841] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloid derived suppressor cells (MDSC) are heterogeneous populations that through the release of soluble factors and/or by cell-to-cell interactions suppress both innate and adaptive immune effector cells. In pathological conditions, characterized by the presence of inflammation, a partial block in the differentiation potential of myeloid precursors causes an accumulation of these immunosuppressive cell subsets both in peripheral blood and in tissues. On the contrary, NK cells represent a major player of innate immunity able to counteract tumor growth. The anti-tumor activity of NK cells is primarily related to their cytolytic potential and to the secretion of soluble factors or cytokines that may act on tumors either directly or indirectly upon the recruitment of other cell types. NK cells have been shown to play a fundamental role in haploidentical hemopoietic stem cell transplantation (HSCT), for the therapy of high-risk leukemias. A deeper analysis of MDSC functional effects demonstrated that these cells are capable, through several mechanisms, to reduce the potent GvL activity exerted by NK cells. It is conceivable that, in this transplantation setting, the MDSC-removal or -inactivation may represent a promising strategy to restore the anti-leukemia effect mediated by NK cells. Thus, a better knowledge of the cellular interactions occurring in the tumor microenvironment could promote the development of novel therapeutic strategies for the treatment of solid and hematological malignances.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Laura Di Pace
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
136
|
Yao Y, Liang H, Fang X, Zhang S, Xing Z, Shi L, Kuang C, Seliger B, Yang Q. What is the prospect of indoleamine 2,3-dioxygenase 1 inhibition in cancer? Extrapolation from the past. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:60. [PMID: 33557876 PMCID: PMC7869231 DOI: 10.1186/s13046-021-01847-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), a monomeric heme-containing enzyme, catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan metabolism, which plays an important role in immunity and neuronal function. Its implication in different pathophysiologic processes including cancer and neurodegenerative diseases has inspired the development of IDO1 inhibitors in the past decades. However, the negative results of the phase III clinical trial of the would-be first-in-class IDO1 inhibitor (epacadostat) in combination with an anti-PD1 antibody (pembrolizumab) in patients with advanced malignant melanoma call for a better understanding of the role of IDO1 inhibition. In this review, the current status of the clinical development of IDO1 inhibitors will be introduced and the key pre-clinical and clinical data of epacadostat will be summarized. Moreover, based on the cautionary notes obtained from the clinical readout of epacadostat, strategies for the identification of reliable predictive biomarkers and pharmacodynamic markers as well as for the selection of the tumor types to be treated with IDO1inhibitors will be discussed.
Collapse
Affiliation(s)
- Yu Yao
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Zikang Xing
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Lei Shi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, China
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06112, Halle (Saale), Germany
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China.
| |
Collapse
|
137
|
Han C, Zhang A, Liu Z, Moore C, Fu YX. Small molecular drugs reshape tumor microenvironment to synergize with immunotherapy. Oncogene 2021; 40:885-898. [PMID: 33288883 DOI: 10.1038/s41388-020-01575-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023]
Abstract
Recently, immune checkpoint blockade (ICB), especially anti-programmed death 1 (anti-PD-1) and anti-programmed death-ligand 1 (anti-PD-L1) therapy, has become an increasingly appealing therapeutic strategy for cancer patients. However, only a small portion of patients responds to anti-PD treatment. Therefore, treatment strategies are urgently needed to reverse the ICB-resistant tumor microenvironment (TME). It has become clear that the TME has diminished innate sensing that is critical to activate adaptive immunity. In addition, tumor cells upregulate various immunosuppressive factors to diminish the immune response and resist immunotherapy. In this review, we briefly update the current small molecular drugs that could synergize with immunotherapy, especially anti-PD therapy. We will discuss the modes of action by those drugs including inducing innate sensing and limiting immunosuppressive factors in the TME.
Collapse
Affiliation(s)
- Chuanhui Han
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anli Zhang
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhida Liu
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Casey Moore
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
138
|
Weng CY, Kao CX, Chang TS, Huang YH. Immuno-Metabolism: The Role of Cancer Niche in Immune Checkpoint Inhibitor Resistance. Int J Mol Sci 2021; 22:1258. [PMID: 33514004 PMCID: PMC7865434 DOI: 10.3390/ijms22031258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
The use of immune checkpoint inhibitors (ICI) in treating cancer has revolutionized the approach to eradicate cancer cells by reactivating immune responses. However, only a subset of patients benefits from this treatment; the majority remains unresponsive or develops resistance to ICI therapy. Increasing evidence suggests that metabolic machinery in the tumor microenvironment (TME) plays a role in the development of ICI resistance. Within the TME, nutrients and oxygen are scarce, forcing immune cells to undergo metabolic reprogramming to adapt to harsh conditions. Cancer-induced metabolic deregulation in immune cells can attenuate their anti-cancer properties, but can also increase their immunosuppressive properties. Therefore, targeting metabolic pathways of immune cells in the TME may strengthen the efficacy of ICIs and prevent ICI resistance. In this review, we discuss the interactions of immune cells and metabolic alterations in the TME. We also discuss current therapies targeting cellular metabolism in combination with ICIs for the treatment of cancer, and provide possible mechanisms behind the cellular metabolic rewiring that may improve clinical outcomes.
Collapse
Affiliation(s)
- Chao-Yuan Weng
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Cheng-Xiang Kao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
139
|
Yu T, Dong T, Eyvani H, Fang Y, Wang X, Zhang X, Lu X. Metabolic interventions: A new insight into the cancer immunotherapy. Arch Biochem Biophys 2021; 697:108659. [PMID: 33144083 PMCID: PMC8638212 DOI: 10.1016/j.abb.2020.108659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming confers cancer cells plasticity and viability under harsh conditions. Such active alterations lead to cell metabolic dependency, which can be exploited as an attractive target in development of effective antitumor therapies. Similar to cancer cells, activated T cells also execute global metabolic reprogramming for their proliferation and effector functions when recruited to the tumor microenvironment (TME). However, the high metabolic activity of rapidly proliferating cancer cells can compete for nutrients with immune cells in the TME, and consequently, suppressing their anti-tumor functions. Thus, therapeutic strategies could aim to restore T cell metabolism and anti-tumor responses in the TME by targeting the metabolic dependence of cancer cells. In this review, we highlight current research progress on metabolic reprogramming and the interplay between cancer cells and immune cells. We also discuss potential therapeutic intervention strategies for targeting metabolic pathways to improve cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tianhan Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuanzhang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiyu Wang
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
140
|
Angelicola S, Ruzzi F, Landuzzi L, Scalambra L, Gelsomino F, Ardizzoni A, Nanni P, Lollini PL, Palladini A. IFN-γ and CD38 in Hyperprogressive Cancer Development. Cancers (Basel) 2021; 13:309. [PMID: 33467713 PMCID: PMC7830527 DOI: 10.3390/cancers13020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) improve the survival of patients with multiple types of cancer. However, low response rates and atypical responses limit their success in clinical applications. The paradoxical acceleration of tumor growth after treatment, defined as hyperprogressive disease (HPD), is the most difficult problem facing clinicians and patients alike. The mechanisms that underlie hyperprogression (HP) are still unclear and controversial, although different factors are associated with the phenomenon. In this review, we propose two factors that have not yet been demonstrated to be directly associated with HP, but upon which it is important to focus attention. IFN-γ is a key cytokine in antitumor response and its levels increase during ICI therapy, whereas CD38 is an alternative immune checkpoint that is involved in immunosuppressive responses. As both factors are associated with resistance to ICI therapy, we have discussed their possible involvement in HPD with the conclusion that IFN-γ may contribute to HP onset through the activation of the inflammasome pathway, immunosuppressive enzyme IDO1 and activation-induced cell death (AICD) in effector T cells, while the role of CD38 in HP may be associated with the activation of adenosine receptors, hypoxia pathways and AICD-dependent T-cell depletion.
Collapse
Affiliation(s)
- Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Francesco Gelsomino
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.A.)
| | - Andrea Ardizzoni
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.A.)
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (S.A.); (F.R.); (L.S.); (A.P.)
| |
Collapse
|
141
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
142
|
Gong Y, Chang C, Liu X, He Y, Wu Y, Wang S, Zhang C. Stimulator of Interferon Genes Signaling Pathway and its Role in Anti-tumor Immune Therapy. Curr Pharm Des 2021; 26:3085-3095. [PMID: 32520678 DOI: 10.2174/1381612826666200610183048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes is an important innate immune signaling molecule in the body and is involved in the innate immune signal transduction pathway induced by pathogen-associated molecular patterns or damage-associated molecular patterns. Stimulator of interferon genes promotes the production of type I interferon and thus plays an important role in the innate immune response to infection. In addition, according to a recent study, the stimulator of interferon genes pathway also contributes to anti-inflammatory and anti-tumor reactions. In this paper, current researches on the Stimulator of interferon genes signaling pathway and its relationship with tumor immunity are reviewed. Meanwhile, a series of critical problems to be addressed in subsequent studies are discussed as well.
Collapse
Affiliation(s)
- Yuanjin Gong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chang Chang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xi Liu
- Center of Cardiovascular Disease, Inner Mongolia People's Hospital, Hohhot, China
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yiqi Wu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Song Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chongyou Zhang
- Basic Medical College, Harbin Medical University, Harbin, China
| |
Collapse
|
143
|
Breakstone R. Colon cancer and immunotherapy-can we go beyond microsatellite instability? Transl Gastroenterol Hepatol 2021; 6:12. [PMID: 33409406 PMCID: PMC7724178 DOI: 10.21037/tgh.2020.03.08] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint blockade (ICB) has changed the landscape of cancer therapy in multiple tumor types since the first agent, Ipilimumab, was first FDA approved for the treatment of metastatic melanoma in 2011. Its role in GI Cancers, particularly in colon cancers, has not been as robust as in other tumor types but select patients with DNA mismatch repair defects, even those who has progressed on multiple standard chemotherapeutic regimens have demonstrated significant, almost unprecedented, responses in this multidrug refractory population. Unfortunately, these cases represent only a small percentage of colon cancer patients with little efficacy in the 95% of metastatic colon cancers who have proficient DNA mismatch repair. Multiple strategies have been, and are currently being, evaluated to determine the potential benefits of this drug class to microsatellite stable (MSS) patients.
Collapse
Affiliation(s)
- Rimini Breakstone
- Lifespan Cancer Institute, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| |
Collapse
|
144
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
145
|
Engin AB, Engin A. Indoleamine 2,3-Dioxygenase Activity-Induced Acceleration of Tumor Growth, and Protein Kinases-Related Novel Therapeutics Regimens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:339-356. [PMID: 33539022 DOI: 10.1007/978-3-030-49844-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is overexpressed in response to interferon-gamma (IFN-γ). IDO-mediated degradation of tryptophan (Trp) along the kynurenine (Kyn) pathway by immune cells is associated with the anti-microbial, and anti-tumor defense mechanisms. In contrast, IDO is constitutively expressed by various tumors and creates an immunosuppressive microenvironment around the tumor tissue both by depletion of the essential amino acid Trp and by formation of Kyn, which is immunosuppressive metabolite of Trp. IDO may activate its own expression in human cancer cells via an autocrine aryl hydrocarbon receptor (AhR)- interleukin 6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) signaling loop. Although IDO is not a unique marker, in many clinical trials serum IDO activity is suggested to be an important parameter in the pathogenesis of cancer development and growth. Measuring IDO activity in serum seems to be an indicator of cancer growth rate, however, it is controversial whether this approach can be used as a reliable guide in cancer patients treated with IDO inhibitors. Thus, IDO immunostaining is strongly recommended for the identification of higher IDO producing tumors, and IDO inhibitors should be included in post-operative complementary therapy in IDO positive cancer cases only. Novel therapies that target the IDO pathway cover checkpoint protein kinases related combination regimens. Currently, multi-modal therapies combining IDO inhibitors and checkpoint kinase blockers in addition to T regulatory (Treg) cell-modifying treatments seem promising.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
146
|
Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L. Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT. Front Immunol 2021. [PMID: 33679798 DOI: 10.3389/fimmu.2021.638841.pmid:33679798;pmcid:pmc7928402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid derived suppressor cells (MDSC) are heterogeneous populations that through the release of soluble factors and/or by cell-to-cell interactions suppress both innate and adaptive immune effector cells. In pathological conditions, characterized by the presence of inflammation, a partial block in the differentiation potential of myeloid precursors causes an accumulation of these immunosuppressive cell subsets both in peripheral blood and in tissues. On the contrary, NK cells represent a major player of innate immunity able to counteract tumor growth. The anti-tumor activity of NK cells is primarily related to their cytolytic potential and to the secretion of soluble factors or cytokines that may act on tumors either directly or indirectly upon the recruitment of other cell types. NK cells have been shown to play a fundamental role in haploidentical hemopoietic stem cell transplantation (HSCT), for the therapy of high-risk leukemias. A deeper analysis of MDSC functional effects demonstrated that these cells are capable, through several mechanisms, to reduce the potent GvL activity exerted by NK cells. It is conceivable that, in this transplantation setting, the MDSC-removal or -inactivation may represent a promising strategy to restore the anti-leukemia effect mediated by NK cells. Thus, a better knowledge of the cellular interactions occurring in the tumor microenvironment could promote the development of novel therapeutic strategies for the treatment of solid and hematological malignances.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Laura Di Pace
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
147
|
The Landscape of Immunotherapy in Advanced NSCLC: Driving Beyond PD-1/PD-L1 Inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Curr Oncol Rep 2021; 23:126. [PMID: 34453261 PMCID: PMC8397682 DOI: 10.1007/s11912-021-01124-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we analyzed the current landscape of non-PD-(L)1 targeting immunotherapy. RECENT FINDINGS The advent of immunotherapy has completely changed the standard approach toward advanced NSCLC. Inhibitors of the PD-1/PD-L1 axis have quickly taken place as first-line treatment for NSCLC patients without targetable "driver" mutations. However, a non-negligible portion of patients derive modest benefit from immune-checkpoint inhibitors, and valid second-line alternatives are lacking, pushing researchers to analyze other molecules and pathways as potentially viable targets in the struggle against NSCLC. Starting from the better characterized CTLA-4 inhibitors, we then critically collected the actual knowledge on NSCLC vaccines as well as on other emerging molecules, many of them in their early phase of testing, to provide to the reader a comprehensive overview of the state of the art of immunotherapy in NSCLC beyond PD-1/PD-L1 inhibitors.
Collapse
|
148
|
Wisdom AJ, Mowery YM, Hong CS, Himes JE, Nabet BY, Qin X, Zhang D, Chen L, Fradin H, Patel R, Bassil AM, Muise ES, King DA, Xu ES, Carpenter DJ, Kent CL, Smythe KS, Williams NT, Luo L, Ma Y, Alizadeh AA, Owzar K, Diehn M, Bradley T, Kirsch DG. Single cell analysis reveals distinct immune landscapes in transplant and primary sarcomas that determine response or resistance to immunotherapy. Nat Commun 2020; 11:6410. [PMID: 33335088 PMCID: PMC7746723 DOI: 10.1038/s41467-020-19917-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy fails to cure most cancer patients. Preclinical studies indicate that radiotherapy synergizes with immunotherapy, promoting radiation-induced antitumor immunity. Most preclinical immunotherapy studies utilize transplant tumor models, which overestimate patient responses. Here, we show that transplant sarcomas are cured by PD-1 blockade and radiotherapy, but identical treatment fails in autochthonous sarcomas, which demonstrate immunoediting, decreased neoantigen expression, and tumor-specific immune tolerance. We characterize tumor-infiltrating immune cells from transplant and primary tumors, revealing striking differences in their immune landscapes. Although radiotherapy remodels myeloid cells in both models, only transplant tumors are enriched for activated CD8+ T cells. The immune microenvironment of primary murine sarcomas resembles most human sarcomas, while transplant sarcomas resemble the most inflamed human sarcomas. These results identify distinct microenvironments in murine sarcomas that coevolve with the immune system and suggest that patients with a sarcoma immune phenotype similar to transplant tumors may benefit most from PD-1 blockade and radiotherapy.
Collapse
Affiliation(s)
- Amy J Wisdom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA.
- Duke Cancer Institute, Durham, NC, 27708, USA.
| | - Cierra S Hong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Jonathon E Himes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Barzin Y Nabet
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Oncology Biomarker Development, Genentech, South San Francisco, CA, 94080, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Durham, NC, 27708, USA
| | | | - Lan Chen
- Merck & Co., Inc, Kenilworth, NJ, 07033, USA
| | - Hélène Fradin
- Duke Center for Genomic and Computational Biology, Durham, NC, 27708, USA
| | - Rutulkumar Patel
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Alex M Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | | | - Daniel A King
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Eric S Xu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - David J Carpenter
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | | | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Ash A Alizadeh
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kouros Owzar
- Duke Cancer Institute, Durham, NC, 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Todd Bradley
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27708, USA.
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27708, USA.
- Duke Cancer Institute, Durham, NC, 27708, USA.
| |
Collapse
|
149
|
Zhu GX, Gao D, Shao ZZ, Chen L, Ding WJ, Yu QF. Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol Med Rep 2020; 23:105. [PMID: 33300082 PMCID: PMC7723170 DOI: 10.3892/mmr.2020.11744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in humans. Chemotherapy is used for the treatment of CRC. However, the effect of chemotherapy remains unsatisfactory due to drug resistance. Growing evidence has shown that the presence of highly metastatic tumor stem cells, regulation of non-coding RNAs and the tumor microenvironment contributes to drug resistance mechanisms in CRC. Wnt/β-catenin signaling mediates the chemoresistance of CRC in these three aspects. Therefore, the present study analyzed the abundant evidence of the contribution of Wnt/β-catenin signaling to the development of drug resistance in CRC and discussed its possible role in improving the chemosensitivity of CRC, which may provide guidelines for its clinical treatment.
Collapse
Affiliation(s)
- Gui-Xian Zhu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Jie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong-Fang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
150
|
Abstract
Immune checkpoint inhibitors (ICIs), monoclonal antibodies to cytotoxic T-lymphocyte-associated protein 4, programmed cell death 1 or its ligand PD-L1 are rapidly changing the treatment landscape and prognosis of many cancer types. Following their initial approval in melanoma in 2011, ICIs are now approved in many other cancers. Despite the long-term, durable response that can be noted with ICIs, the majority of patients do not respond to ICIs and some of the initial responders develop relapsed disease during their treatment course. In order to improve the response rate to ICIs, an understanding of the mechanisms of resistance is critical. Given the number of different ways cancers can become resistant to ICIs, patient-rather than population-based strategies to reverse resistance will likely be needed. We review the currently defined mechanisms of resistance to ICIs and discuss possible methods to overcome these mechanisms.
Collapse
Affiliation(s)
| | - Siwen Hu-Lieskovan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|