101
|
Lee S, Kelleher SL. Molecular regulation of lactation: The complex and requisite roles for zinc. Arch Biochem Biophys 2016; 611:86-92. [DOI: 10.1016/j.abb.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/10/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
|
102
|
Borges VF, Elder AM, Lyons TR. Deciphering Pro-Lymphangiogenic Programs during Mammary Involution and Postpartum Breast Cancer. Front Oncol 2016; 6:227. [PMID: 27853703 PMCID: PMC5090124 DOI: 10.3389/fonc.2016.00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
Postpartum breast cancers are a highly metastatic subset of young women’s breast cancers defined as breast cancers diagnosed in the postpartum period or within 5 years of last child birth. Women diagnosed with postpartum breast cancer are nearly twice as likely to develop metastasis and to die from breast cancer when compared with nulliparous women. Additionally, epidemiological studies utilizing multiple cohorts also suggest that nearly half of all breast cancers in women aged <45 qualify as postpartum cases. Understanding the biology that underlies this increased risk for metastasis and death may lead to identification of targeted interventions that will benefit the large number of young women with breast cancer who fall into this subset. Preclinical mouse models of postpartum breast cancer have revealed that breast tumor cells become more aggressive if they are present during the normal physiologic process of postpartum mammary gland involution in mice. As involution appears to be a period of lymphatic growth and remodeling, and human postpartum breast cancers have high peritumor lymphatic vessel density (LVD) and increased incidence of lymph node metastasis (1, 2), we propose that novel insight into is to be gained through the study of the biological mechanisms driving normal postpartum mammary lymphangiogenesis as well as in the microenvironment of postpartum tumors.
Collapse
Affiliation(s)
- Virginia F Borges
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO, USA; Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan M Elder
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO, USA; Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO, USA; Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
103
|
Shook B, Rivera Gonzalez G, Ebmeier S, Grisotti G, Zwick R, Horsley V. The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annu Rev Cell Dev Biol 2016; 32:609-631. [PMID: 27146311 PMCID: PMC5157158 DOI: 10.1146/annurev-cellbio-111315-125426] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Classically, white adipose tissue (WAT) was considered an inert component of connective tissue but is now appreciated as a major regulator of metabolic physiology and endocrine homeostasis. Recent work defining how WAT develops and expands in vivo emphasizes the importance of specific locations of WAT or depots in metabolic regulation. Interestingly, mature white adipocytes are integrated into several tissues. A new perspective regarding the in vivo regulation and function of WAT in these tissues has highlighted an essential role of adipocytes in tissue homeostasis and regeneration. Finally, there has been significant progress in understanding how mature adipocytes regulate the pathology of several diseases. In this review, we discuss these novel roles of WAT in the homeostasis and regeneration of epithelial, muscle, and immune tissues and how they contribute to the pathology of several disorders.
Collapse
Affiliation(s)
- Brett Shook
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Guillermo Rivera Gonzalez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Sarah Ebmeier
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | | | - Rachel Zwick
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520;
- Department of Dermatology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
104
|
Hwang WS, Bae JH, Yeom SC. Premature mammary gland involution with repeated corticosterone injection in interleukin 10-deficient mice. Biosci Biotechnol Biochem 2016; 80:2318-2324. [PMID: 27485250 DOI: 10.1080/09168451.2016.1214556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, we found that maternal stress could induce premature mammary gland involution in interleukin 10 knock out (IL-10-/-) mice. To elucidate correlation between stress, IL-10, and mammary gland involution, corticosterone was injected into the lactating wild type and IL-10-deficient mice and assessed mammary gland phenotype. Repetitive corticosterone injection developed premature mammary gland involution only in B6.IL-10-/- mice; moreover, it induced alopecia in nursing pups. Corticosterone injection induced several typical changes such as mammary gland epithelial cell apoptosis, macrophage infiltration, fat deposition in adipocyte, STAT3 phosphorylation, and upregulation of tyrosine hydroxylase gene in adrenal gland. Overall incidence of pup alopecia and mammary gland involution was relatively high in corticosterone than control B6.IL-10-/- group (57% vs. 20%). Our finding demonstrates that IL-10 is important for stress modulation, and B6.Il-10-/- with corticosterone has several advantage such as simple to establish, well-defined onset of mammary gland involution, high incidence, and inducing pup alopecia.
Collapse
Affiliation(s)
- Woo-Sung Hwang
- a Designed Animal and Transplantation Research Institute , Institute of Greenbio Science and Technology, Seoul National University , Pyeongchang , Korea
| | - Ji-Hyun Bae
- a Designed Animal and Transplantation Research Institute , Institute of Greenbio Science and Technology, Seoul National University , Pyeongchang , Korea
| | - Su-Cheong Yeom
- b Graduate School of International Agricultural Technology , Seoul National University , Pyeongchang , Korea
| |
Collapse
|
105
|
Zhu W, Harvey S, Macura KJ, Euhus DM, Artemov D. Invasive Breast Cancer Preferably and Predominantly Occurs at the Interface Between Fibroglandular and Adipose Tissue. Clin Breast Cancer 2016; 17:e11-e18. [PMID: 27568102 DOI: 10.1016/j.clbc.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Increasing evidence suggests adipocyte involvement in malignant breast tumor invasive front or margin. The aim of this study was to evaluate the location of invasive breast tumors in relation to fibroglandular and adipose tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). PATIENTS AND METHODS Pretreatment breast DCE-MRI images of 294 patients with biopsy-proven invasive breast cancer from 2008 to 2014 were studied. Invasive breast tumors were visualized as enhanced lesions in the postcontrast subtraction images. Positive identification of biopsy-confirmed invasive breast tumors on DCE-MRI images was achieved by correlation of findings from breast MRI and pathology reports. Tumor location in relation to fibroglandular and adipose tissue was investigated using precontrast T1-weighted MRI images. RESULTS Of 294 patients, 291 had DCE-MRI discernable invasive breast tumors located at the interface between fibroglandular and adipose tissues, regardless of the tumor size, type, receptor status, or breast composition. CONCLUSION Invasive breast cancer preferably and predominantly occurs adjacent to breast adipose tissue.
Collapse
Affiliation(s)
- Wenlian Zhu
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Susan Harvey
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katarzyna J Macura
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David M Euhus
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dmitri Artemov
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
106
|
Suárez-Trujillo A, Casey TM. Serotoninergic and Circadian Systems: Driving Mammary Gland Development and Function. Front Physiol 2016; 7:301. [PMID: 27471474 PMCID: PMC4945644 DOI: 10.3389/fphys.2016.00301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/29/2016] [Indexed: 12/23/2022] Open
Abstract
Since lactation is one of the most metabolically demanding states in adult female mammals, beautifully complex regulatory mechanisms are in place to time lactation to begin after birth and cease when the neonate is weaned. Lactation is regulated by numerous different homeorhetic factors, all of them tightly coordinated with the demands of milk production. Emerging evidence support that among these factors are the serotonergic and circadian clock systems. Here we review the serotoninergic and circadian clock systems and their roles in the regulation of mammary gland development and lactation physiology. We conclude by presenting our hypothesis that these two systems interact to accommodate the metabolic demands of lactation and thus adaptive changes in these systems occur to maintain mammary and systemic homeostasis through the reproductive cycles of female mammals.
Collapse
Affiliation(s)
- Aridany Suárez-Trujillo
- Animal Production and Biotechnology Group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran CanariaArucas, Spain
| | - Theresa M. Casey
- Department of Animal Sciences, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
107
|
Pharo EA, Cane KN, McCoey J, Buckle AM, Oosthuizen WH, Guinet C, Arnould JPY. A colostrum trypsin inhibitor gene expressed in the Cape fur seal mammary gland during lactation. Gene 2016; 578:7-16. [PMID: 26639991 DOI: 10.1016/j.gene.2015.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/13/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48 h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3 months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of β-casein (CSN2) and β-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk.
Collapse
Affiliation(s)
- Elizabeth A Pharo
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia.
| | - Kylie N Cane
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia.
| | - Julia McCoey
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - W H Oosthuizen
- Oceans and Coasts, Department of Environmental Affairs, Private Bag X2, Roggebaai 8012, South Africa.
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, CNRS, 79360 Villiers en Bois, France.
| | - John P Y Arnould
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia; School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia.
| |
Collapse
|
108
|
Macrophages: Regulators of the Inflammatory Microenvironment during Mammary Gland Development and Breast Cancer. Mediators Inflamm 2016; 2016:4549676. [PMID: 26884646 PMCID: PMC4739263 DOI: 10.1155/2016/4549676] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Macrophages are critical mediators of inflammation and important regulators of developmental processes. As a key phagocytic cell type, macrophages evolved as part of the innate immune system to engulf and process cell debris and pathogens. Macrophages produce factors that act directly on their microenvironment and also bridge innate immune responses to the adaptive immune system. Resident macrophages are important for acting as sensors for tissue damage and maintaining tissue homeostasis. It is now well-established that macrophages are an integral component of the breast tumor microenvironment, where they contribute to tumor growth and progression, likely through many of the mechanisms that are utilized during normal wound healing responses. Because macrophages contribute to normal mammary gland development and breast cancer growth and progression, this review will discuss both resident mammary gland macrophages and tumor-associated macrophages with an emphasis on describing how macrophages interact with their surrounding environment during normal development and in the context of cancer.
Collapse
|
109
|
Herve L, Quesnel H, Lollivier V, Boutinaud M. Regulation of cell number in the mammary gland by controlling the exfoliation process in milk in ruminants. J Dairy Sci 2016; 99:854-63. [DOI: 10.3168/jds.2015-9964] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022]
|
110
|
Clonogenic assay allows for selection of a primitive mammary epithelial cell population in bovine. Exp Cell Res 2015; 338:245-50. [PMID: 26321394 DOI: 10.1016/j.yexcr.2015.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 01/23/2023]
Abstract
Adult mammary stem cells have been identified in several species including the bovine. They are responsible for the development of the gland and for cyclic remodeling during estrous cycles and pregnancy. Epithelial cell subpopulations exist within the mammary gland. We and others showed previously that the Colony Forming Cell (CFC) assay can be used to detect lineage-restricted mammary progenitors. We carried out CFCs with bovine mammary cells and manually separated colonies with specific morphologies associated with either a luminal or a myoepithelial phenotype. Expression of specific markers was assessed by immunocytochemistry or by flow cytometry to confirm that the manual separation resulted in isolation of phenotipically different cells. When transplanted in recipient immunodeficient mice, we found that only myoepithelial-like colonies gave rise to outgrowths that resembled bovine mammary alveoli, thus proving that adult stem cells were maintained during culture and segregated with myoepithelial cells. After recovery of the cells from the transplanted mice and subsequent progenitor content analysis, we found a tendency to detect a higher progenitor frequency when myoepithelial-like colonies were transplanted. We here demonstrate that bovine adult mammary stem cells can be sustained in short-term culture and that they can be enriched by manually selecting for basal-like morphology.
Collapse
|
111
|
Dang HV, Sakai T, Pham TA, Tran DH, Yorita K, Shishido Y, Fukui K. Nucling, a novel apoptosis-associated protein, controls mammary gland involution by regulating NF-κB and STAT3. J Biol Chem 2015; 290:24626-35. [PMID: 26269594 DOI: 10.1074/jbc.m115.673848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Postpartum mammary gland involution is the physiological process by which the lactating gland returns to its pre-pregnant state. In rodent models, the microenvironment of mammary gland involution is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Therefore, a deeper understanding of the physiological regulation of involution may provide in-depth information on breast cancer therapy. We herein identified Nucling as an important regulator of involution of the mammary gland. A knock-out mouse model was generated and revealed that postpartum involution were impaired in mice lacking Nucling. Involution is normally associated with an increase in the activation of NF-κB and STAT3, which is required for the organized regulation of involution, and was observed in WT glands, but not in the absence of Nucling. Furthermore, the loss of Nucling led to the suppression of Calpain-1, IL-6, and C/EBPδ factors, which are known to be essential for normal involution. The number of M2 macrophages, which are crucial for epithelial cell death and adipocyte repopulation after weaning, was also reduced in Nucling-KO glands. Taken together, the results of the present study demonstrated that Nucling played an important role in mammary gland involution by regulating NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Huy Van Dang
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takashi Sakai
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Tuan Anh Pham
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Diem Hong Tran
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kazuko Yorita
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuji Shishido
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kiyoshi Fukui
- From The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
112
|
Differential HIF-1α and HIF-2α Expression in Mammary Epithelial Cells during Fat Pad Invasion, Lactation, and Involution. PLoS One 2015; 10:e0125771. [PMID: 25955753 PMCID: PMC4425677 DOI: 10.1371/journal.pone.0125771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/25/2015] [Indexed: 01/12/2023] Open
Abstract
The development and functional cycle of the mammary gland involves a number of processes that are caricatured by breast cancer cells during invasion and metastasis. Expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 has been associated with metastatic, poor prognosis, and high-grade breast cancers. Since hypoxia affects normal epithelial differentiation, we hypothesise that HIFs are important for normal breast epithelial development and regeneration as well as cancer initiation and progression. Here, we investigated the expression of the oxygen-sensitive HIF-alpha subunits during mouse mammary gland development, lactation, and involution. In breast epithelial cells, HIF-1α was expressed during early development, prior to cell polarisation. In contrast, expression of HIF-2α occurred later and was restricted to a subpopulation of luminal epithelial cells in the lactating gland. Mammary gland involution is a developmental stage that involves extensive tissue remodelling with cell death but survival of tissue stem/progenitor cells. At this stage, HIF-2α, but little HIF-1α, was expressed in CK14-positive epithelial cells. The temporal but differential expression of the HIF-alpha subunits during the mammary gland life cycle indicates that their expression is controlled by additional factors to hypoxia. Further functional studies of the roles of these proteins in the mammary gland and breast cancer are warranted.
Collapse
|
113
|
Lee S, Hennigar SR, Alam S, Nishida K, Kelleher SL. Essential Role for Zinc Transporter 2 (ZnT2)-mediated Zinc Transport in Mammary Gland Development and Function during Lactation. J Biol Chem 2015; 290:13064-78. [PMID: 25851903 DOI: 10.1074/jbc.m115.637439] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 01/28/2023] Open
Abstract
The zinc transporter ZnT2 (SLC30A2) imports zinc into vesicles in secreting mammary epithelial cells (MECs) and is critical for zinc efflux into milk during lactation. Recent studies show that ZnT2 also imports zinc into mitochondria and is expressed in the non-lactating mammary gland and non-secreting MECs, highlighting the importance of ZnT2 in general mammary gland biology. In this study we used nulliparous and lactating ZnT2-null mice and characterized the consequences on mammary gland development, function during lactation, and milk composition. We found that ZnT2 was primarily expressed in MECs and to a limited extent in macrophages in the nulliparous mammary gland and loss of ZnT2 impaired mammary expansion during development. Secondly, we found that lactating ZnT2-null mice had substantial defects in mammary gland architecture and MEC function during secretion, including fewer, condensed and disorganized alveoli, impaired Stat5 activation, and unpolarized MECs. Loss of ZnT2 led to reduced milk volume and milk containing less protein, fat, and lactose compared with wild-type littermates, implicating ZnT2 in the regulation of mammary differentiation and optimal milk production during lactation. Together, these results demonstrate that ZnT2-mediated zinc transport is critical for mammary gland function, suggesting that defects in ZnT2 not only reduce milk zinc concentration but may compromise breast health and increase the risk for lactation insufficiency in lactating women.
Collapse
Affiliation(s)
- Sooyeon Lee
- From the Interdisciplinary Graduate Physiology Program and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, Departments of Cellular and Molecular Physiology
| | - Stephen R Hennigar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Samina Alam
- Departments of Cellular and Molecular Physiology, Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033
| | - Keigo Nishida
- Laboratory for Homeostatic Network, RCAI, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan, and Laboratory of Immune Regulation, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Shannon L Kelleher
- From the Interdisciplinary Graduate Physiology Program and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, Departments of Cellular and Molecular Physiology, Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, Pharmacology, and
| |
Collapse
|
114
|
Ingman WV, Glynn DJ, Hutchinson MR. Mouse models of mastitis - how physiological are they? Int Breastfeed J 2015; 10:12. [PMID: 25848399 PMCID: PMC4386103 DOI: 10.1186/s13006-015-0038-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/04/2015] [Indexed: 11/10/2022] Open
Abstract
Lactation mastitis is a common, but poorly understood, inflammatory breast disease that is a significant health burden. A better understanding of the aetiology of mastitis is urgently required, and will assist in the development of improved prevention and treatment strategies in both human and animal species. Studies in mice have the potential to greatly assist in identifying new drug candidates for clinical trials, and in developing a better understanding of the disease. Mouse models of mastitis involve administration of a mastitis-inducing agent to the mammary gland usually during lactation to examine the host immune response, and progression through to resolution of the disease. There are important variations in the protocols of these mouse models that critically affect the conclusions that can be drawn from the research. Some protocols involve weaning of offspring at the time of mastitis induction, and there are variations in the mastitis-inducing agent and its carrier. Induction of mammary gland involution through weaning of offspring limits the capacity to study the disease in the context of a lactating mammary gland. Administration of live bacteria in an aqueous carrier can cause sepsis, restricting the physiological relevance of the model. Mouse model research should employ appropriately designed controls and closely monitor the health of the mice. In this commentary, we discuss the advantages and study design limitations of each mouse model, and highlight the potential for further development of physiologically relevant mouse models of mastitis.
Collapse
Affiliation(s)
- Wendy V Ingman
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia ; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Danielle J Glynn
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia ; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Mark R Hutchinson
- Discipline Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
115
|
Fu NY, Rios AC, Pal B, Soetanto R, Lun ATL, Liu K, Beck T, Best SA, Vaillant F, Bouillet P, Strasser A, Preiss T, Smyth GK, Lindeman GJ, Visvader JE. EGF-mediated induction of Mcl-1 at the switch to lactation is essential for alveolar cell survival. Nat Cell Biol 2015; 17:365-75. [PMID: 25730472 DOI: 10.1038/ncb3117] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022]
Abstract
Expansion and remodelling of the mammary epithelium requires a tight balance between cellular proliferation, differentiation and death. To explore cell survival versus cell death decisions in this organ, we deleted the pro-survival gene Mcl-1 in the mammary epithelium. Mcl-1 was found to be essential at multiple developmental stages including morphogenesis in puberty and alveologenesis in pregnancy. Moreover, Mcl-1-deficient basal cells were virtually devoid of repopulating activity, suggesting that this gene is required for stem cell function. Profound upregulation of the Mcl-1 protein was evident in alveolar cells at the switch to lactation, and Mcl-1 deficiency impaired lactation. Interestingly, EGF was identified as one of the most highly upregulated genes on lactogenesis and inhibition of EGF or mTOR signalling markedly impaired lactation, with concomitant decreases in Mcl-1 and phosphorylated ribosomal protein S6. These data demonstrate that Mcl-1 is essential for mammopoiesis and identify EGF as a critical trigger of Mcl-1 translation to ensure survival of milk-producing alveolar cells.
Collapse
Affiliation(s)
- Nai Yang Fu
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anne C Rios
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bhupinder Pal
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rina Soetanto
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Aaron T L Lun
- 1] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia [2] Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Kevin Liu
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tamara Beck
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah A Best
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - François Vaillant
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philippe Bouillet
- 1] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia [2] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Andreas Strasser
- 1] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia [2] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Thomas Preiss
- 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Gordon K Smyth
- 1] Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J Lindeman
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia [3] Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane E Visvader
- 1] ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
116
|
ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution. Sci Rep 2015; 5:8033. [PMID: 25620235 PMCID: PMC4306139 DOI: 10.1038/srep08033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/22/2014] [Indexed: 01/13/2023] Open
Abstract
Mammary gland involution is the most dramatic example of physiological cell death. It occurs through an initial phase of lysosomal-mediated cell death (LCD) followed by mitochondrial-mediated apoptosis. Zinc (Zn) activates both LCD and apoptosis in vitro. The Zn transporter ZnT2 imports Zn into vesicles and mitochondria and ZnT2-overexpression activates cell death in mammary epithelial cells (MECs). We tested the hypothesis that ZnT2-mediated Zn transport is critical for mammary gland involution in mice. Following weaning, ZnT2 abundance increased in lysosomes and mitochondria, which paralleled Zn accumulation in each of these organelles. Adenoviral expression of ZnT2 in lactating mouse mammary glands in vivo increased Zn in lysosomes and mitochondria and activated LCD and apoptosis, promoting a profound reduction in MECs and alveoli. Injection of TNFα, a potent activator of early involution, into the mammary gland fat pads of lactating mice increased ZnT2 and Zn in lysosomes and activated premature involution. Exposure of cultured MECs to TNFα redistributed ZnT2 to lysosomes and increased lysosomal Zn, which activated lysosomal swelling, cathepsin B release, and LCD. Our data implicate ZnT2 as a critical mediator of cell death during involution and importantly, that as an initial involution signal, TNFα redistributes ZnT2 to lysosomes to activate LCD.
Collapse
|
117
|
Sundaram S, Freemerman AJ, Galanko JA, McNaughton KK, Bendt KM, Darr DB, Troester MA, Makowski L. Obesity-mediated regulation of HGF/c-Met is associated with reduced basal-like breast cancer latency in parous mice. PLoS One 2014; 9:e111394. [PMID: 25354395 PMCID: PMC4213021 DOI: 10.1371/journal.pone.0111394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
It is widely thought that pregnancy reduces breast cancer risk, but this lacks consideration of breast cancer subtypes. While a full term pregnancy reduces risk for estrogen receptor positive (ER+) and luminal breast cancers, parity is associated with increased risk of basal-like breast cancer (BBC) subtype. Basal-like subtypes represent less than 10% of breast cancers and are highly aggressive, affecting primarily young, African American women. Our previous work demonstrated that high fat diet-induced obesity in nulliparous mice significantly blunted latency in C3(1)-TAg mice, a model of BBC, potentially through the hepatocyte growth factor (HGF)/c-Met oncogenic pathway. Experimental studies have examined parity and obesity individually, but to date, the joint effects of parity and obesity have not been studied. We investigated the role of obesity in parous mice on BBC. Parity alone dramatically blunted tumor latency compared to nulliparous controls with no effects on tumor number or growth, while obesity had only a minor role in further reducing latency. Obesity-associated metabolic mediators and hormones such as insulin, estrogen, and progesterone were not significantly regulated by obesity. Plasma IL-6 was also significantly elevated by obesity in parous mice. We have previously reported a potential role for stromal-derived hepatocyte growth factor (HGF) via its cognate receptor c-Met in the etiology of obesity-induced BBC tumor onset and in both human and murine primary coculture models of BBC-aggressiveness. Obesity-associated c-Met concentrations were 2.5-fold greater in normal mammary glands of parous mice. Taken together, our studies demonstrate that, parity in C3(1)-TAg mice dramatically reduced BBC latency compared to nulliparous mice. In parous mice, c-Met is regulated by obesity in unaffected mammary gland and is associated with tumor onset. C3(1)-TAg mice recapitulate epidemiologic findings such that parity drives increased BBC risk and potential microenvironmental alterations in c-Met signaling may play a role in etiology.
Collapse
Affiliation(s)
- Sneha Sundaram
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alex J. Freemerman
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph A. Galanko
- UNC Nutrition Obesity Research Center, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kirk K. McNaughton
- Department of Cell and Molecular Physiology, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katharine M. Bendt
- Mouse Phase I Unit, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David B. Darr
- Mouse Phase I Unit, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Melissa A. Troester
- Lineberger Comprehensive Cancer Center, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Departments of Epidemiology, and Pathology and Laboratory Medicine, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liza Makowski
- UNC Nutrition Obesity Research Center, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
118
|
Uejyo T, Kuki C, Oyama S, Kumura H, Kobayashi K. Early down-regulation of milk production after weaning by pup removal and prior to involution in mouse mammary glands. Cell Tissue Res 2014; 359:643-653. [DOI: 10.1007/s00441-014-2013-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/18/2014] [Indexed: 01/20/2023]
|
119
|
Mammary fat of breast cancer: gene expression profiling and functional characterization. PLoS One 2014; 9:e109742. [PMID: 25291184 PMCID: PMC4188628 DOI: 10.1371/journal.pone.0109742] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Mammary fat is the main composition of breast, and is the most probable candidate to affect tumor behavior because the fat produces hormones, growth factors and adipokines, a heterogeneous group of signaling molecules. Gene expression profiling and functional characterization of mammary fat in Chinese women has not been reported. Thus, we collected the mammary fat tissues adjacent to breast tumors from 60 subjects, among which 30 subjects had breast cancer and 30 had benign lesions. We isolated and cultured the stromal vascular cell fraction from mammary fat. The expression of genes related to adipose function (including adipogenesis and secretion) was detected at both the tissue and the cellular level. We also studied mammary fat browning. The results indicated that fat tissue close to malignant and benign lesions exhibited distinctive gene expression profiles and functional characteristics. Although the mammary fat of breast tumors atrophied, it secreted tumor growth stimulatory factors. Browning of mammary fat was observed and browning activity of fat close to malignant breast tumors was greater than that close to benign lesions. Understanding the diversity between these two fat depots may possibly help us improve our understanding of breast cancer pathogenesis and find the key to unlock new anticancer therapies.
Collapse
|
120
|
Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol 2014; 16:1057-1068. [PMID: 25283994 PMCID: PMC4216597 DOI: 10.1038/ncb3043] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that Stat3 regulates lysosomal-mediated programmed cell death (LM-PCD) during mouse mammary gland involution in vivo. However, the mechanism that controls the release of lysosomal cathepsins to initiate cell death in this context has not been elucidated. We show here that Stat3 regulates the formation of large lysosomal vacuoles that contain triglyceride. Furthermore, we demonstrate that milk fat globules (MFGs) are toxic to epithelial cells and that, when applied to purified lysosomes, the MFG hydrolysate oleic acid potently induces lysosomal leakiness. Additionally, uptake of secreted MFGs coated in butyrophilin 1A1 is diminished in Stat3-ablated mammary glands and loss of the phagocytosis bridging molecule MFG-E8 results in reduced leakage of cathepsins in vivo. We propose that Stat3 regulates LM-PCD in mouse mammary gland by switching cellular function from secretion to uptake of MFGs. Thereafter, perturbation of lysosomal vesicle membranes by high levels of free fatty acids results in controlled leakage of cathepsins culminating in cell death.
Collapse
|
121
|
Bagci H, Laurin M, Huber J, Muller WJ, Côté JF. Impaired cell death and mammary gland involution in the absence of Dock1 and Rac1 signaling. Cell Death Dis 2014; 5:e1375. [PMID: 25118935 PMCID: PMC4454313 DOI: 10.1038/cddis.2014.338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/23/2023]
Abstract
Throughout life, the tight equilibrium between cell death and the prompt clearance of dead corpses is required to maintain a proper tissue homeostasis and prevent inflammation. Following lactation, mammary gland involution is triggered and results in the death of excessive epithelial cells that are rapidly cleared by phagocytes to ensure that the gland returns to its prepregnant state. Orthologs of Dock1 (dedicator of cytokinesis 1), Elmo and Rac1 (ras-related C3 botulinum toxin substrate 1) in Caenorhabditis elegans are part of a signaling module in phagocytes that is linking apoptotic cell recognition to cytoskeletal reorganization required for engulfment. In mammals, Elmo1 was shown to interact with the phosphatidylserine receptor Bai1 and relay signals to promote phagocytosis of apoptotic cells. Still, the role of the RacGEF Dock1 in the clearance of dying cells in mammals was never directly addressed. We generated two mouse models with conditional inactivation of Dock1 and Rac1 and revealed that the expression of these genes is not essential in the mammary gland during puberty, pregnancy and lactation. We induced mammary gland involution in these mice to investigate the role of Dock1/Rac1 signaling in the engulfment of cell corpses. Unpredictably, activation of Stat3 (signal transducer and activator of transcription 3), a key regulator of mammary gland involution, was impaired in the absence of Rac1 and Dock1 expression. Likewise, failure to activate properly Stat3 was coinciding with a significant delay in the initiation and progression of mammary gland involution in mutant animals. By using an in vitro phagocytosis assay, we observed that Dock1 and Rac1 are essential to mediate engulfment in epithelial phagocytes. In vivo, cell corpses accumulated at late time points of involution in Dock1 and Rac1 mutant mammary glands. Overall, our study demonstrated an unsuspected role for Dock1/Rac1 signaling in the initiation of mammary gland involution, and also suggested a role for this pathway in the clearance of dead cells by epithelial phagocytes.
Collapse
Affiliation(s)
- H Bagci
- 1] Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada [2] Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - M Laurin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - J Huber
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - W J Muller
- Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | - J-F Côté
- 1] Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada [2] Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada [3] Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada [4] Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
122
|
Hughes K, Watson CJ. The spectrum of STAT functions in mammary gland development. JAKSTAT 2014; 1:151-8. [PMID: 24058764 PMCID: PMC3670238 DOI: 10.4161/jkst.19691] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/21/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) family of transcription factors have a spectrum of functions in mammary gland development. In some cases these roles parallel those of STATs in other organ systems, while in other instances the function of individual STATs in the mammary gland is specific to this tissue. In the immune system, STAT6 is associated with differentiation of T helper cells, while in the mammary gland, it has a fundamental role in the commitment of luminal epithelial cells to the alveolar lineage. STAT5A is required for the production of luminal progenitor cells from mammary stem cells and is essential for the differentiation of milk producing alveolar cells during pregnancy. By contrast, the initiation of regression following weaning heralds a dramatic and specific activation of STAT3, reflecting its pivotal role in the regulation of cell death and tissue remodeling during mammary involution. Although it has been demonstrated that STAT1 is regulated during a mammary developmental cycle, it is not yet determined whether it has a specific, non-redundant function. Thus, the mammary gland constitutes an unusual example of an adult organ in which different STATs are sequentially activated to orchestrate the processes of functional differentiation, cell death and tissue remodeling.
Collapse
|
123
|
Jindal S, Gao D, Bell P, Albrektsen G, Edgerton SM, Ambrosone CB, Thor AD, Borges VF, Schedin P. Postpartum breast involution reveals regression of secretory lobules mediated by tissue-remodeling. Breast Cancer Res 2014; 16:R31. [PMID: 24678808 PMCID: PMC4053254 DOI: 10.1186/bcr3633] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/06/2014] [Indexed: 01/05/2023] Open
Abstract
Introduction A postpartum diagnosis of breast cancer is an independent predictor of metastases, however the reason is unknown. In rodents, the window of postpartum mammary gland involution promotes tumor progression, suggesting a role for breast involution in the poor prognosis of human postpartum breast cancers. Rodent mammary gland involution is characterized by the programmed elimination of the secretory lobules laid down in preparation for lactation. This tissue involution process involves massive epithelial cell death, stromal remodeling, and immune cell infiltration with similarities to microenvironments present during wound healing and tumor progression. Here, we characterize breast tissue from premenopausal women with known reproductive histories to determine the extent, duration and cellular mechanisms of postpartum lobular involution in women. Methods Adjacent normal breast tissues from premenopausal women (n = 183) aged 20 to 45 years, grouped by reproductive categories of nulliparous, pregnant and lactating, and by time since last delivery were evaluated histologically and by special stain for lobular area, lobular type composition, apoptosis and immune cell infiltration using computer assisted quantitative methods. Results Human nulliparous glands were composed dominantly of small (approximately 10 acini per lobule) and medium (approximately 35 acini per lobule) sized lobules. With pregnancy and lactation, a >10 fold increase in breast epithelial area was observed compared to nulliparous cases, and lactating glands were dominated by mature lobules (>100 acini per lobule) with secretory morphology. Significant losses in mammary epithelial area and mature lobule phenotypes were observed within 12 months postpartum. By 18 months postpartum, lobular area content and lobule composition were indistinguishable from nulliparous cases, data consistent with postpartum involution facilitating regression of the secretory lobules developed in preparation for lactation. Analyses of apoptosis and immune cell infiltrate confirmed that human postpartum breast involution is characterized by wound healing-like tissue remodeling programs that occur within a narrowed time frame. Conclusions Human postpartum breast involution is a dominant tissue-remodeling process that returns the total lobular area of the gland to a level essentially indistinguishable from the nulliparous gland. Further research is warranted to determine whether the normal physiologic process of postpartum involution contributes to the poor prognosis of postpartum breast cancer.
Collapse
|
124
|
McCormick NH, Hennigar SR, Kiselyov K, Kelleher SL. The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution. J Mammary Gland Biol Neoplasia 2014; 19:59-71. [PMID: 24338187 DOI: 10.1007/s10911-013-9314-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023] Open
Abstract
Zinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death. In addition to functional needs, during lactation the mammary gland must balance providing optimal zinc for cellular requirements with the need to secrete a substantial amount of zinc into milk to meet the requirements of the developing neonate. Finally, the mammary gland exhibits the most profound example of programmed cell death, which is driven by both apoptotic and lysosomal-mediated cell death. Two families of zinc-specific transporters regulate zinc delivery for these diverse functions. Members of the ZIP family of zinc transporters (ZIP1-14) import zinc into the cytoplasm from outside the cell or from subcellular organelles, while members of the ZnT family (ZnT1-10) export zinc from the cytoplasm. Recently, the ion channel transient receptor potential mucolipin 1 (TRPML1) has also been implicated in zinc transport. Herein, we review our current understanding of the molecular mechanisms through which mammary epithelial cells utilize zinc with a focus on the transport of zinc into discrete subcellular organelles for specific cellular functions during mammary gland development, lactation, and involution.
Collapse
Affiliation(s)
- Nicholas H McCormick
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
125
|
Pharo EA. Expression of the mammary gland-specific tammar wallaby early lactation protein gene is maintained in vitro in the absence of prolactin. Mol Cell Endocrinol 2014; 382:871-80. [PMID: 24189438 DOI: 10.1016/j.mce.2013.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 09/23/2013] [Accepted: 10/25/2013] [Indexed: 01/20/2023]
Abstract
Marsupial ELP (early lactation protein) and its eutherian orthologue, CTI (colostrum trypsin inhibitor) are expressed in the mammary gland only for the first 100 days postpartum (Phase 2A) in the tammar wallaby and during the bovine and canine colostrogenesis period 24-36h postpartum respectively. The factors which regulate temporal ELP and CTI expression are unknown. A tammar mammary gland explant culture model was used to investigate ELP gene regulation during pregnancy and early- and mid-lactation (Phase 1, 2A and 2B respectively). Tammar ELP expression could only be manipulated in explants in vitro if the gene was already expressed in vivo. ELP expression was maximal in Phase 1 explants treated with lactogenic hormones (insulin, hydrocortisone and prolactin), but unlike LGB (β-lactoglobulin), ELP expression was maintained in insulin or insulin and hydrocortisone over a 12-day culture period. In contrast, ELP was down-regulated when cultured without hormones. ELP could not be induced in explants cultured from mid-lactation which suggested that transcriptional repressors may prevent ELP expression during this period.
Collapse
Affiliation(s)
- Elizabeth A Pharo
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia; Victorian Institute of Animal Science, Department of Primary Industries, Attwood, Victoria 3049, Australia.
| |
Collapse
|
126
|
Chang THT, Kunasegaran K, Tarulli GA, De Silva D, Voorhoeve PM, Pietersen AM. New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res 2014; 16:R1. [PMID: 24398145 PMCID: PMC3978646 DOI: 10.1186/bcr3593] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/10/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction Parity-identified mammary epithelial cells (PI-MECs) are an interesting cellular subset because they survive involution and are a presumptive target for transformation by human epidermal growth factor receptor 2 (HER2)/neu in mammary tumors. Depending on the type of assay, PI-MECs have been designated lobule-restricted progenitors or multipotent stem/progenitor cells. PI-MECs were reported to be part of the basal population of mammary epithelium based on flow cytometry. We investigated the cellular identity and lineage potential of PI-MECs in intact mammary glands. Methods We performed a quantitative and qualitative analysis of the contribution of PI-MECs to mammary epithelial cell lineages in pregnant and involuted mammary glands by immunohistochemistry, fluorescence-activated cells sorting (FACS), and quantitative polymerase chain reaction. PI-MECs were labeled by the activation of Whey Acidic Protein (WAP)-Cre during pregnancy that results in permanent expression of yellow fluorescent protein. Results After involution, PI-MECs are present exclusively in the luminal layer of mammary ducts. During pregnancy, PI-MECs contribute to the luminal layer but not the basal layer of alveolar lobules. Strikingly, whereas all luminal estrogen receptor (ER)-negative cells in an alveolus can be derived from PI-MECs, the alveolar ER-positive cells are unlabeled and reminiscent of Notch2-traced L cells. Notably, we observed a significant population of unlabeled alveolar progenitors that resemble PI-MECs based on transcriptional and histological analysis. Conclusions Our demonstration that PI-MECs are luminal cells underscores that not only basal cells display multi-lineage potential in transplantation assays. However, the lineage potential of PI-MECs in unperturbed mammary glands is remarkably restricted to luminal ER-negative cells of the secretory alveolar lineage. The identification of an unlabeled but functionally similar population of luminal alveolar progenitor cells raises the question of whether PI-MECs are a unique population or the result of stochastic labeling. Interestingly, even when all luminal ER-negative cells of an alveolus are PI-MEC-derived, the basal cells and hormone-sensing cells are derived from a different source, indicating that cooperative outgrowth of cells from different lineages is common in alveologenesis.
Collapse
|
127
|
Campbell JJ, Botos LA, Sargeant TJ, Davidenko N, Cameron RE, Watson CJ. A 3-D in vitro co-culture model of mammary gland involution. Integr Biol (Camb) 2014; 6:618-26. [DOI: 10.1039/c3ib40257f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An in vitro model of mammary gland supporting 3D cell–cell and cell–matrix interactions demonstrates complete in vivo-like neo-tissue formation and remodelling processes (involution) under hormonal control.
Collapse
Affiliation(s)
| | | | | | | | - Ruth E. Cameron
- Department of Materials Science and Metallurgy
- Cambridge CB3 0FS, UK
| | | |
Collapse
|
128
|
Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. ACTA ACUST UNITED AC 2013; 203:47-56. [PMID: 24100291 PMCID: PMC3798243 DOI: 10.1083/jcb.201307046] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Notch3 expression characterizes a highly clonogenic and transiently quiescent luminal progenitor population in the mammary gland, the expansion of which is restricted by Notch3 receptor activity. The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive “triple negative” human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2SAT transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.
Collapse
Affiliation(s)
- Daniel Lafkas
- Institut Curie, Centre de Recherche, 75248 Paris, Cedex 05, France
| | | | | | | | | | | |
Collapse
|
129
|
Vela Hinojosa C, León Galván MA, Tapia Rodríguez M, López Ortega G, Cerbón Cervantes MA, Rodríguez CAM, Cortés PP, Méndez LAM, Trejo FJJ. Differential expression of serotonin, tryptophan hydroxylase and monoamine oxidase A in the mammary gland of the Myotis velifer bat. PLoS One 2013; 8:e75062. [PMID: 24086437 PMCID: PMC3782485 DOI: 10.1371/journal.pone.0075062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
The mammary gland has long drawn the attention of the scientific community due to the limited knowledge of some fundamental aspects involved in the control of its function. Myotis velifer, a microchiropteran species, provides an interesting model to study some of the regulatory factors involved in the control of the mammary gland cycle. Having an asynchronous, monoestrous reproductive pattern, female M. velifer bats undergo drastic morphological changes of the breast during the reproductive cycle. Current research on non-chiropteran mammals indicates that serotonin (5-HT) plays a major role in the intraluminal volume homeostasis of the mammary gland during lactation; however, an analysis of both the expression and localization of the main components of the serotonergic system in the bat mammary gland is lacking. Thus, the objectives of the present study were: to describe the gross and histological anatomy of the mammary gland of M. velifer to establish the lactation period for this species; to analyze the distribution and expression of the main serotonergic components in the mammary tissues of these bats under the physiological conditions of lactation, involution and the resting phase; and to provide information on the involvement of 5-HT in the regulation of the physiological function of this organ. To assess the expression and localization of serotonergic components, multiple immunofluorescence, Western blot and HPLC methods were used. 5-HT and the enzyme that catalyzes its synthesis (TPH) were located in both myoepithelial and luminal epithelial cells, while the enzyme responsible for the catabolism of this neurohormone (MAO A) was found in luminal epithelial cells as well as in secreted products. We also found an increased expression of serotonergic components during lactation, indicating that elements of the serotonergic system may play an important role in lactation in this species of bat in a way similar to that of other mammal species.
Collapse
Affiliation(s)
| | | | - Miguel Tapia Rodríguez
- Microscopy and HPLC Units, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Gerardo López Ortega
- Department of Biology, Universidad Autónoma Metropolitana-Iztapalapa, México D.F., Mexico
| | | | | | - Patricia Padilla Cortés
- Microscopy and HPLC Units, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | |
Collapse
|
130
|
Hwang WS, Kim HI, Kim YJ, Kang BC, Lee HS, Oh KH, Lee DS, Yeom SC. Pregnancy in postpartum estrus induces inflammatory milk production and catagen specific pup skin inflammation in interleukin-10 deficient mice. J Dermatol Sci 2013; 72:225-32. [PMID: 23928228 DOI: 10.1016/j.jdermsci.2013.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The interleukin 10 deficient mice (IL-10(-/-)) showed high incidence of pup alopecia compared to other strains, and pup alopecia was caused by skin inflammation and was recoverable. Pup alopecia of B6.IL-10(-/-) might be related with maternal factor and interleukin-10 deficient phenotype. OBJECTIVE The objectives of this study were elucidating of maternal factors for inflammatory milk production and characterization of pup alopecia in IL-10(-/-) mice. METHODS Incidences of pup alopecia were analyzed with 13 breeding cases. Comparison between control and alopecia pups and its dams, were conducted with histological examination (H&E, TUNEL assay, immunohistochemistry for F4/80, iNOS, CD206, Gr-1, CD4, CD8, CD11c and CD326), fostering test, forced weaning test, qPCR for tyrosine hydroxylase, flow cytometry, IL-10 inhibition test, BMDM stimulation test and LC/MS analysis. RESULTS Presence of pregnancy in postpartum estrus showed significant correlation with inflammatory milk production and mammary gland involution in B6.IL-10(-/-) mice. There were no different mass in inflammatory milk, but different ionization intensity was detected. Inflammatory milk directly induced hepatocyte steatosis, catagen stage specific hair breaking and alopeicia in pups. Histologically, hypertropy of outer root sheath and macrophage/neutrophil infiltration were typical. CONCLUSION B6.IL-10(-/-) dam with stress such as PPE could produce untimely mammary gland involution and inflammatory milk production. Interleukin 10 is important for maternal stress regulation and protecting inflammatory milk production, also influence severity of pup skin inflammation and alopecia. Remarkably, inflammatory milk induced hepatocyte steatosis, and it could indicate there is abnormal lipid metabolism. This was first report for catagen specific alopecia in mouse.
Collapse
Affiliation(s)
- Woo-Sung Hwang
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Espina V, Wysolmerski J, Edmiston K, Liotta LA. Attacking breast cancer at the preinvasion stage by targeting autophagy. ACTA ACUST UNITED AC 2013; 9:157-70. [PMID: 23477322 DOI: 10.2217/whe.13.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preinvasive breast carcinoma cells that proliferate and accumulate within the nonvascular, closed intraductal niche are under severe hypoxic and metabolic stress. Understanding the survival mechanisms used by these cells has revealed therapeutic strategies for killing preinvasive neoplasms. We have found that autophagy ('self-eating') is a major survival strategy used by preinvasive carcinoma and breast cancer stem-like cells. Based on this finding, we have opened a clinical trial that is exploring neoadjuvant oral chloroquine antiautophagy therapy for ductal carcinoma in situ. We envision that antiautophagy therapy can be administered in combination with other treatments such as those that elevate intracellular calcium, to create a state of intolerable stress for preinvasive neoplastic cells, and thereby stop breast cancer before it starts.
Collapse
Affiliation(s)
- Virginia Espina
- George Mason University, Center for Applied Proteomics & Molecular Medicine, Manassas, VA 20110, USA
| | | | | | | |
Collapse
|
132
|
Martinson HA, Lyons TR, Giles ED, Borges VF, Schedin P. Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. Exp Cell Res 2013; 319:1671-8. [PMID: 23664839 PMCID: PMC3980135 DOI: 10.1016/j.yexcr.2013.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 12/12/2022]
Abstract
The magnitude of the breast cancer problem implores researchers to aggressively investigate prevention strategies. However, several barriers currently reduce the feasibility of breast cancer prevention. These barriers include the inability to accurately predict future breast cancer diagnosis at the individual level, the need for improved understanding of when to implement interventions, uncertainty with respect to optimal duration of treatment, and negative side effects associated with currently approved chemoprevention therapies. None-the-less, the unique biology of the mammary gland, with its postnatal development and conditional terminal differentiation, may permit the resolution of many of these barriers. Specifically, lifecycle-specific windows of breast cancer risk have been identified that may be amenable to risk-reducing strategies. Here, we argue for prevention research focused on two of these lifecycle windows of risk: postpartum mammary gland involution and peri-menopause. We provide evidence that these windows are highly amenable to targeted, limited duration treatments. Such approaches could result in the prevention of postpartum and postmenopausal breast cancers, correspondingly.
Collapse
Affiliation(s)
- Holly A Martinson
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC1S, 8401K, 12801 East 17th Avenue, Aurora, CO 80045, USA; Program in Cancer Biology, University of Colorado Anschutz Medical Campus, MS8104, RC1S, 5117, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC1S, 8401K, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Erin D Giles
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, RC1S, Room 7103, 12801 East 17th Avenue, Mail Stop 8106, Aurora, CO 80045, USA; Anschutz Health and Wellness Center, 12348 East Montview Boulevard, Campus Box C263, Aurora, CO 80045, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC1S, 8401K, 12801 East 17th Avenue, Aurora, CO 80045, USA; University of Colorado Cancer Center, Building 500, Suite 6004C, 13001 East 17th Place, Aurora, CO 80045, USA; Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Pepper Schedin
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC1S, 8401K, 12801 East 17th Avenue, Aurora, CO 80045, USA; Program in Cancer Biology, University of Colorado Anschutz Medical Campus, MS8104, RC1S, 5117, 12801 East 17th Avenue, Aurora, CO 80045, USA; University of Colorado Cancer Center, Building 500, Suite 6004C, 13001 East 17th Place, Aurora, CO 80045, USA; Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA.
| |
Collapse
|
133
|
Estradiol, progesterone and prolactin modulate mammary gland morphogenesis in adult female plains vizcacha (Lagostomus maximus). J Mol Histol 2013; 44:299-310. [DOI: 10.1007/s10735-012-9477-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/14/2012] [Indexed: 11/30/2022]
|
134
|
Teplova I, Lozy F, Price S, Singh S, Barnard N, Cardiff RD, Birge RB, Karantza V. ATG proteins mediate efferocytosis and suppress inflammation in mammary involution. Autophagy 2013; 9:459-75. [PMID: 23380905 PMCID: PMC3627664 DOI: 10.4161/auto.23164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Involution is the process of post-lactational mammary gland regression to quiescence and it involves secretory epithelial cell death, stroma remodeling and gland repopulation by adipocytes. Though reportedly accompanying apoptosis, the role of autophagy in involution has not yet been determined. We now report that autophagy-related (ATG) proteins mediate dead cell clearance and suppress inflammation during mammary involution. In vivo, Becn1+/− and Atg7-deficient mammary epithelial cells (MECs) produced ‘competent’ apoptotic bodies, but were defective phagocytes in association with reduced expression of the MERTK and ITGB5 receptors, thus pointing to defective apoptotic body engulfment. Atg-deficient tissues exhibited higher levels of involution-associated inflammation, which could be indicative of a tumor-modulating microenvironment, and developed ductal ectasia, a manifestation of deregulated post-involution gland remodeling. In vitro, ATG (BECN1 or ATG7) knockdown compromised MEC-mediated apoptotic body clearance in association with decreased RAC1 activation, thus confirming that, in addition to the defective phagocytic processing reported by other studies, ATG protein defects also impair dead cell engulfment.
Using two different mouse models with mammary gland-associated Atg deficiencies, our studies shed light on the essential role of ATG proteins in MEC-mediated efferocytosis during mammary involution and provide novel insights into this important developmental process. This work also raises the possibility that a regulatory feedback loop exists, by which the efficacy of phagocytic cargo processing in turn regulates the rate of engulfment and ultimately determines the kinetics of phagocytosis and dead cell clearance.
Collapse
Affiliation(s)
- Irina Teplova
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Lee K, Nelson CM. Determining the role of matrix compliance in the differentiation of mammary stem cells. Methods Mol Biol 2013; 1202:79-94. [PMID: 24014310 DOI: 10.1007/7651_2013_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multipotent stem cells maintain the structure and function of the mammary gland throughout its development and respond to the physiological demands associated with pregnancy and lactation. The ability of mammary stem cells to maintain themselves as well as to give rise to differentiated progeny is not only affected by soluble factors but has increasingly become linked to mechanical cues including the elastic modulus of the extracellular matrix (ECM). Here we describe a protocol for determining how the mechanical properties of the ECM regulate the fate of mammary stem or progenitor cells. This protocol includes detailed methods for the fabrication of substrata with varying stiffness, culture of mammary progenitor cells on synthetic substrata, pharmacological modulation of actomyosin contractility, and analysis of gene expression to define the resulting fate of human mammary stem cells.
Collapse
Affiliation(s)
- KangAe Lee
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | | |
Collapse
|
136
|
Faupel-Badger JM, Arcaro KF, Balkam JJ, Eliassen AH, Hassiotou F, Lebrilla CB, Michels KB, Palmer JR, Schedin P, Stuebe AM, Watson CJ, Sherman ME. Postpartum remodeling, lactation, and breast cancer risk: summary of a National Cancer Institute-sponsored workshop. J Natl Cancer Inst 2012; 105:166-74. [PMID: 23264680 DOI: 10.1093/jnci/djs505] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pregnancy-lactation cycle (PLC) is a period in which the breast is transformed from a less-developed, nonfunctional organ into a mature, milk-producing gland that has evolved to meet the nutritional, developmental, and immune protection needs of the newborn. Cessation of lactation initiates a process whereby the breast reverts to a resting state until the next pregnancy. Changes during this period permanently alter the morphology and molecular characteristics of the breast (molecular histology) and produce important, yet poorly understood, effects on breast cancer risk. To provide a state-of-the-science summary of this topic, the National Cancer Institute invited a multidisciplinary group of experts to participate in a workshop in Rockville, Maryland, on March 2, 2012. Topics discussed included: 1) the epidemiology of the PLC in relation to breast cancer risk, 2) breast milk as a biospecimen for molecular epidemiological and translational research, and 3) use of animal models to gain mechanistic insights into the effects of the PLC on breast carcinogenesis. This report summarizes conclusions of the workshop, proposes avenues for future research on the PLC and its relationship with breast cancer risk, and identifies opportunities to translate this knowledge to improve breast cancer outcomes.
Collapse
Affiliation(s)
- Jessica M Faupel-Badger
- Cancer Prevention Fellowship Program and Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Mammary gland stem cells (MaSC) have not been identified in spite of extensive research spanning over several decades. This has been primarily due to the complexity of mammary gland structure and its development, cell heterogeneity in the mammary gland and the insufficient knowledge about MaSC markers. At present, Lin (-) CD29 (i) CD49f (i) CD24 (+/mod) Sca- 1 (-) cells of the mammary gland have been reported to be enriched with MaSCs. We suggest that the inclusion of stem cell markers like Oct4, Sox2, Nanog and the mammary gland differentiation marker BRCA-1 may further narrow down the search for MaSCs. In addition, we have discussed some of the other unresolved puzzles on the mammary gland stem cells, such as their similarities and/or differences with mammary cancer stem cells, use of milk as source of mammary stem cells and the possibility of in vitro differentiation of embryonic stem (ES) cells into functional mammary gland structures in this review. Nevertheless, it is the lack of identity for a MaSC that is curtailing the advances in some of the above and other related areas.
Collapse
Affiliation(s)
- Suneesh Kaimala
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | | | | |
Collapse
|
138
|
Rejniak KA. Homeostatic imbalance in epithelial ducts and its role in carcinogenesis. SCIENTIFICA 2012; 2012:132978. [PMID: 24278670 PMCID: PMC3820568 DOI: 10.6064/2012/132978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/25/2012] [Indexed: 05/27/2023]
Abstract
An epithelial duct is a well-defined multicellular structure composed of tightly packed cells separating and protecting body compartments that are used for enzyme secretion and its transport across the internal. The structural and functional integrity (homeostasis) of such ducts is vital in carrying many life functions (breathing, lactation, production of hormones). However, the processes involved in maintaining the homeostatic balance are not yet fully understood. On the other hand, the loss of epithelial tissue architecture, such as filled lumens or ductal disorganization, are among the first symptoms of the emerging epithelial tumors (carcinomas). Using the previously developed biomechanical model of epithelial ducts: IBCell, we investigated how different signals and mechanical stimuli imposed on individual epithelial cells can impact the homeostatic (im)balance and integrity of the whole epithelial tissue. We provide a link between erroneous responses of individual epithelial cells to specific signals and the emerging ductal morphologies characteristic for preinvasive cancers observed in pathology specimens, or characteristic for multicellular structures arising from mutated cells cultured in vitro. We summarize our finding in terms of altered properties of epithelial cell polarization, and discuss the relative importance of various polarization signals on the formation of tumor-like multicellular structures.
Collapse
Affiliation(s)
- Katarzyna A. Rejniak
- Depatment of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Room SRB-4 24000G, Tampa, FL 33612, USA
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
139
|
Kobayashi S, Sugiura H, Ando Y, Shiraki N, Yanagi T, Yamashita H, Toyama T. Reproductive history and breast cancer risk. Breast Cancer 2012; 19:302-8. [PMID: 22711317 PMCID: PMC3479376 DOI: 10.1007/s12282-012-0384-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/30/2012] [Indexed: 12/23/2022]
Abstract
The fact that reproductive factors have significant influence on the risk of breast cancer is well known. Early age of first full-term birth is highly protective against late-onset breast cancers, but each pregnancy, including the first one, increases the risk of early-onset breast cancer. Estradiol and progesterone induce receptor activator of NF-kappa B ligand (RANKL) in estrogen receptor (ER)- and progesterone receptor (PgR)-positive luminal cells. RANKL then acts in a paracrine fashion on the membranous RANK of ER/PgR-negative epithelial stem cells of the breast. This reaction cascade is triggered by chorionic gonadotropin during the first trimester of pregnancy and results in the morphological and functional development of breast tissue. On the other hand, the administration of non-steroidal anti-inflammatory drugs in the early steps of weaning protects against tumor growth through reduction of the acute inflammatory reaction of post lactation remodeling of breast tissue. This is experimental evidence that may explain the short-term tumor-promoting effect of pregnancy. The protective effect of prolonged breast feeding may also be explained, at least in a part, by a reduced inflammatory reaction due to gradual weaning. Delay of first birth together with low parity and short duration of breast feeding are increasing social trends in developed countries. Therefore, breast cancer risk as a result of reproductive factors will not decrease in these countries in the foreseeable future. In this review, the significance of reproductive history with regard to the risk of breast cancers will be discussed, focusing on the age of first full-term birth and post lactation involution of the breast.
Collapse
Affiliation(s)
- Shunzo Kobayashi
- Department of Breast and Endocrine Surgery, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan.
| | | | | | | | | | | | | |
Collapse
|
140
|
Conklin MW, Keely PJ. Why the stroma matters in breast cancer: insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adh Migr 2012; 6:249-60. [PMID: 22568982 PMCID: PMC3427239 DOI: 10.4161/cam.20567] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival and recurrence rates in breast cancer are variable for common diagnoses, and therefore the biological underpinnings of the disease that determine those outcomes are yet to be fully understood. As a result, translational medicine is one of the fastest growing arenas of study in tumor biology. With advancements in genetic and imaging techniques, archived biopsies can be examined for purposes other than diagnosis. There is a great deal of evidence that points to the stroma as the major regulator of tumor progression following the initial stages of tumor formation, and the stroma may also contribute to risk factors determining tumor formation. Therefore, aspects of stromal biology are well-suited to be a focus for studies of patient outcome, where statistical differences in survival among patients provide evidence as to whether that stromal component is a signpost for tumor progression. In this review we summarize the latest research done where breast cancer patient survival was correlated with aspects of stromal biology, which have been put into four categories: reorganization of the extracellular matrix (ECM) to promote invasion, changes in the expression of stromal cell types, changes in stromal gene expression, and changes in cell biology signaling cascades to and from the stroma.
Collapse
Affiliation(s)
- Matthew W Conklin
- Department of Cell and Regenerative Biology, the Laboratory for Cell and Molecular Biology, Laboratory for Optical and Computational Instrumentation (LOCI), UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
141
|
Borges VF, Schedin P. Could NSAIDs become a preventative therapy in pregnancy-associated breast cancer? BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Pregnancy-associated breast cancer (PABC) is a unique type of young women’s breast cancer that includes two biologically distinct conditions: those diagnosed during pregnancy and those diagnosed postpartum. It is the dominant subset of postpartum PABC that is more consistently associated with higher breast cancer mortality. Preclinical work has identified the normal event of postpartum involution as a wound-healing milieu rich in immune cells. We have shown that the involution environment drives tumor growth, proliferation and metastasis. Moreover, we have demonstrated in animal models that this ‘involution effect’ can be abrogated with drug therapy, namely NSAIDs, which target normal involution pathways implicated in PABC tumor promotion. In this perspective, we review the contemporary understanding of PABC, our preclinical modeling and its implications and the unmet research needs required for future translation of these preclinical studies into rational and safe human clinical trials.
Collapse
Affiliation(s)
- Virginia F Borges
- University of Colorado Denver Anschutz Medical Campus, 12801 E. 17th Avenue, Room 8112, Aurora, CO 80045, USA
| | - Pepper Schedin
- AMC Cancer Research Center, 3401 Quebec Street, Suite 3200, Denver, CO 80207, USA
| |
Collapse
|
142
|
O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 2012; 139:269-75. [DOI: 10.1242/dev.071696] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammary gland development is dependent on macrophages, as demonstrated by their requirement during the expansion phases of puberty and pregnancy. Equally dramatic tissue restructuring occurs following lactation, when the gland regresses to a state that histologically resembles pre-pregnancy through massive programmed epithelial cell death and stromal repopulation. Postpartum involution is characterized by wound healing-like events, including an influx of macrophages with M2 characteristics. Macrophage levels peak after the initial wave of epithelial cell death, suggesting that initiation and execution of cell death are macrophage independent. To address the role of macrophages during weaning-induced mammary gland involution, conditional systemic deletion of macrophages expressing colony stimulating factor 1 receptor (CSF1R) was initiated just prior to weaning in the Mafia mouse model. Depletion of CSF1R+ macrophages resulted in delayed mammary involution as evidenced by loss of lysosomal-mediated and apoptotic epithelial cell death, lack of alveolar regression and absence of adipocyte repopulation 7 days post-weaning. Failure to execute involution occurred in the presence of milk stasis and STAT3 activation, indicating that neither is sufficient to initiate involution in the absence of CSF1R+ macrophages. Injection of wild-type bone marrow-derived macrophages (BMDMs) or M2-differentiated macrophages into macrophage-depleted mammary glands was sufficient to rescue involution, including apoptosis, alveolar regression and adipocyte repopulation. BMDMs exposed to the postpartum mammary involution environment upregulated the M2 markers arginase 1 and mannose receptor. These data demonstrate the necessity of macrophages, and implicate M2-polarized macrophages, for epithelial cell death during normal postpartum mammary gland involution.
Collapse
Affiliation(s)
- Jenean O'Brien
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave, Aurora, CO 80045, USA
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, MS8104, RC-1S, 5117, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Holly Martinson
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave, Aurora, CO 80045, USA
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, MS8104, RC-1S, 5117, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Clarissa Durand-Rougely
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Pepper Schedin
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave, Aurora, CO 80045, USA
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, MS8104, RC-1S, 5117, 12801 E 17th Ave, Aurora, CO 80045, USA
- University of Colorado Cancer Center, Bldg 500, Suite 6004C, 13001 E 17th Place, Aurora, CO 80045 USA
- AMC Cancer Research Center, Bldg 500, Suite 6004C, 13001 E 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
143
|
Falconer C, Kenny PA, Smart CE, Monteith GR, Roberts-Thomson SJ. Peroxisome proliferator-activated receptor subtypes in mammary gland development and breast cancer. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2049-7962-1-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
144
|
TIMP3 regulates mammary epithelial apoptosis with immune cell recruitment through differential TNF dependence. PLoS One 2011; 6:e26718. [PMID: 22053204 PMCID: PMC3203873 DOI: 10.1371/journal.pone.0026718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/03/2011] [Indexed: 01/14/2023] Open
Abstract
Post-lactation mammary involution is a homeostatic process requiring epithelial apoptosis and clearance. Given that the deficiency of the extracellular metalloproteinase inhibitor TIMP3 impacts epithelial apoptosis and heightens inflammatory response, we investigated whether TIMP3 regulates these distinct processes during the phases of mammary gland involution in the mouse. Here we show that TIMP3 deficiency leads to TNF dysregulation, earlier caspase activation and onset of mitochondrial apoptosis. This accelerated first phase of involution includes faster loss of initiating signals (STAT3 activation; TGFβ3) concurrent with immediate luminal deconstruction through E-cadherin fragmentation. Epithelial apoptosis is followed by accelerated adipogenesis and a greater macrophage and T-cell infiltration in Timp3(-/-) involuting glands. Crossing in Tnf deficiency abrogates caspase 3 activation, but heightens macrophage and T-cell influx into Timp3(-/-) glands. The data indicate that TIMP3 differentially impacts apoptosis and inflammatory cell influx, based on involvement of TNF, during the process of mammary involution. An understanding of the molecular factors and wound healing microenvironment of the postpartum mammary gland may have implications for understanding pregnancy-associated breast cancer risk.
Collapse
|
145
|
Distinct behavior of claudin-3 and -4 around lactation period in mammary alveolus in mice. Histochem Cell Biol 2011; 136:587-94. [DOI: 10.1007/s00418-011-0863-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 01/12/2023]
|
146
|
Abstract
The mammary gland undergoes a spectacular series of changes as it develops, and maintains a remarkable capacity to remodel and regenerate for several decades. Mammary morphogenesis has been investigated for over 100 years, motivated by the dairy industry and cancer biologists. Over the past decade, the gland has emerged as a major model system in its own right for understanding the cell biology of tissue morphogenesis. Multiple signalling pathways from several cell types are orchestrated together with mechanical cues and cell rearrangements to establish the pattern of the mammary gland. The integrated mechanical and molecular pathways that control mammary morphogenesis have implications for the developmental regulation of other epithelial organs.
Collapse
|
147
|
Reichenstein M, Rauner G, Barash I. Conditional repression of STAT5 expression during lactation reveals its exclusive roles in mammary gland morphology, milk-protein gene expression, and neonate growth. Mol Reprod Dev 2011; 78:585-96. [PMID: 21688337 DOI: 10.1002/mrd.21345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/29/2011] [Indexed: 11/07/2022]
Abstract
The role of Stat5 in maintaining adequate lactation was studied in Stat5a(-/-) mice expressing a conditionally suppressed transgenic STAT5 in their mammary glands. This system enables distinguishing STAT5's effects on lactation from its contribution to mammary development during gestation. Females were allowed to express STAT5 during their first pregnancy. After delivery, STAT5 levels were manipulated by doxycycline administration and withdrawal. In two lines of genetically modified mice, the absence of STAT5 expression during the first 10 days of lactation resulted in a decrease of 29% or 41% in newborn weight gain. The STAT5-dependent decrease in growth was recoverable, but not completely reversible, particularly when STAT5 expression was omitted for the first 4 days of lactation. Within the first 10 days of STAT5-omitted lactation, alveolar occupancy regressed by 50% compared to that measured at delivery. By Day 10, only 18% of the fat-pad area was involved in milk production. The alveolar regression caused by 4 days of STAT5 deficiency was reversible, but neonate growth remained delayed. STAT5 deficiency resulted in reduced estrogen receptor α and connexin 32 gene expression, accompanied by delayed induction of both anti- and pro-apoptotic Bcl-2 family members. An increase in Gata-3 expression may reflect an attempt to maintain alveolar progenitors. A decrease of 39% and 23% in WAP and α-lactalbumin expression, respectively, with no associated effects on β-casein, also resulted from lack of STAT5 expression in the first 10 days of lactation. This deficiency enhances the major effect of alveolar regression on delayed weight gain in newborns.
Collapse
|
148
|
Rudolph MC, Russell TD, Webb P, Neville MC, Anderson SM. Prolactin-mediated regulation of lipid biosynthesis genes in vivo in the lactating mammary epithelial cell. Am J Physiol Endocrinol Metab 2011; 300:E1059-68. [PMID: 21467304 PMCID: PMC3118595 DOI: 10.1152/ajpendo.00083.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolactin (PRL) is known to play an essential role in mammary alveolar proliferation in the pregnant mouse, but its role in lactation has been more difficult to define. Genetic manipulations that alter expression of the PRL receptor and its downstream signaling molecules resulted in developmental defects that may directly or indirectly impact secretory activation and lactation. To examine the in vivo role of PRL specifically in lactation, bromocriptine (BrCr) was administered every 8 h to lactating mice on the second day postpartum, resulting in an ~95% decrease in serum PRL levels. Although morphological changes in secretory alveoli were slight, by 8 h of BrCr, pup growth was inhibited significantly. Phosphorylated STAT5 fell to undetectable levels within 4 h. Decreased milk protein gene expression, β-casein, and α-lactalbumin, was observed after 8 h of treatment. To assess mammary-specific effects on lipid synthesis genes, we isolated mammary epithelial cells (MECs) depleted of mammary adipocytes. Expression of genes involved in glucose uptake, glycolysis, pentose phosphate shunt, de novo synthesis of fatty acids, and biosynthesis of triacylglycerides was decreased up to 19-fold in MECs by just 8 h of BrCr treatment. Glands from BrCr-treated mice showed a twofold reduction in intracellular cytoplasmic lipid droplets and a reduction in cytosolic β-casein. These data demonstrate that PRL signaling regulates MEC-specific lipogenic gene expression and that PRL signals coordinate the milk synthesis and mammary epithelial cell survival during lactation in the mouse.
Collapse
Affiliation(s)
- Michael C Rudolph
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
149
|
Khokha R, Werb Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004333. [PMID: 21106646 DOI: 10.1101/cshperspect.a004333] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adult mammary structure provides for the rapid growth, development, and immunological protection of the live-born young of mammals through its production of milk. The dynamic remodeling of the branched epithelial structure of the mammary gland in response to physiological stimuli that allow its programmed branching morphogenesis at puberty, cyclical turnover during the reproductive cycle, differentiation into a secretory organ at parturition, postlactational involution, and ultimately, regression with age is critical for these processes. Extracellular metalloproteinases are essential for the remodeling programs that operate in the tissue microenvironment at the interface of the epithelium and the stroma, coupling form with function. Deregulated proteolytic activity drives the transition of a physiological mammary microenvironment into a tumor microenvironment, facilitating malignant transformation.
Collapse
Affiliation(s)
- Rama Khokha
- Ontario Cancer Institute/University Health Network, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
150
|
Watson CJ, Oliver CH, Khaled WT. Cytokine signalling in mammary gland development. J Reprod Immunol 2011; 88:124-9. [DOI: 10.1016/j.jri.2010.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/17/2010] [Accepted: 11/27/2010] [Indexed: 10/18/2022]
|