101
|
Jiang L, Guo P, Ju J, Zhu X, Wu S, Dai J. Inhalation of L-arginine-modified liposomes targeting M1 macrophages to enhance curcumin therapeutic efficacy in ALI. Eur J Pharm Biopharm 2023; 182:21-31. [PMID: 36442537 DOI: 10.1016/j.ejpb.2022.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), characterized by uncontrolled lung inflammation, is one of the most devastating diseases with high morbidity and mortality. As the first line of defense system, macrophages play a crucial role in the pathogenesis of ALI/ARDS. Therefore, it has great potential to selectively target M1 macrophages to improve the therapeutic effect of anti-inflammatory drugs. l-arginine plays a key role in regulating the immune function of macrophages. The receptors mediating l-arginine uptake are highly expressed on the surface of M1-type macrophages. In this study, we designed an l-arginine-modified liposome for aerosol inhalation to target M1 macrophages in the lung, and the anti-inflammatory drug curcumin was encapsulated in liposomes as model drug. Compared with unmodified curcumin liposome (Cur-Lip), l-arginine functionalized Cur-Lip (Arg-Cur-Lip) exhibited higher uptake by M1 macrophages in vitro and higher accumulation in inflamed lungs in vivo. Furthermore, Arg-Cur-Lip showed more potent therapeutic effects in LPS-induced RAW 264.7 cells and the rat model of ALI. Overall, these findings indicate that l-arginine-modified liposomes have great potential to enhance curcumin treatment of ALI/ARDS by targeting M1 macrophages, which may provide an option for the treatment of acute lung inflammatory diseases such as coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome and middle east respiratory syndrome.
Collapse
Affiliation(s)
- Linxia Jiang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Pengchuan Guo
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jiarui Ju
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Xiaoyan Zhu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Shiyue Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China.
| |
Collapse
|
102
|
Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187:106566. [PMID: 36423789 DOI: 10.1016/j.phrs.2022.106566] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
103
|
Limberg AK, Salib CG, Tibbo ME, Vargas-Hernandez JS, Bettencourt JW, Bayram B, Berry CE, Dudakovic A, Bolon B, van Wijnen AJ, Morrey ME, Sanchez-Sotelo J, Berry DJ, Carter JM, Abdel MP. Immune cell populations differ in patients undergoing revision total knee arthroplasty for arthrofibrosis. Sci Rep 2022; 12:22627. [PMID: 36587032 PMCID: PMC9805429 DOI: 10.1038/s41598-022-22175-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 01/01/2023] Open
Abstract
Arthrofibrosis following total knee arthroplasty (TKA) is a debilitating condition typically diagnosed based on clinical findings. To gain insight into the histopathologic immune cell microenvironment of arthrofibrosis, we assessed the extent of tissue fibrosis and quantified immune cell populations in specific tissue regions of the posterior capsule. We investigated specimens from three prospectively-collected, matched cohorts, grouped as patients receiving a primary TKA for osteoarthritis, revision TKA for arthrofibrosis, and revision TKA for non-arthrofibrotic, non-infectious reasons. Specimens were evaluated using hematoxylin and eosin staining, picrosirius red staining, immunofluorescence, and immunohistochemistry with Aperio®-based digital image analysis. Increased collagen deposition and increased number of α-SMA/ACTA2 expressing myofibroblasts were present in the arthrofibrosis group compared to the two non-arthrofibrotic groups. CD163 + macrophages were the most abundant immune cell type in any capsular sample with specific enrichment in the synovial tissue. CD163 + macrophages were significantly decreased in the fibrotic tissue region of arthrofibrosis patients compared to the patients with primary TKA, and significantly increased in adipose tissue region of arthrofibrotic specimens compared to non-arthrofibrotic specimens. Synovial CD117 + mast cells were significantly decreased in arthrofibrotic adipose tissue. Together, these findings inform diagnostic and targeted therapeutic strategies by providing insight into the underlying pathogenetic mechanisms of arthrofibrosis.
Collapse
Affiliation(s)
- Afton K. Limberg
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Christopher G. Salib
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Meagan E. Tibbo
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Juan S. Vargas-Hernandez
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Jacob W. Bettencourt
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Banu Bayram
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Charlotte E. Berry
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Amel Dudakovic
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Brad Bolon
- GEMpath Inc, 1927 Lincoln Street, Longmount, CO 80501 USA
| | - Andre J. van Wijnen
- grid.59062.380000 0004 1936 7689Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405 USA
| | - Mark E. Morrey
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Joaquin Sanchez-Sotelo
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Daniel J. Berry
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Jodi M. Carter
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| | - Matthew P. Abdel
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN 55905 USA
| |
Collapse
|
104
|
Park J, Jang J, Cha SR, Baek H, Lee J, Hong SH, Lee HA, Lee TJ, Yang SR. L-carnosine Attenuates Bleomycin-Induced Oxidative Stress via NFκB Pathway in the Pathogenesis of Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:antiox11122462. [PMID: 36552670 PMCID: PMC9774395 DOI: 10.3390/antiox11122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Idiopathic Pulmonary fibrosis (IPF), a chronic interstitial lung disease, has pulmonary manifestations clinically characterized by collagen deposition, epithelial cell injury, and a decline in lung function. L-carnosine, a dipeptide consisting of β-alanine and L-histidine, has demonstrated a therapeutic effect on various diseases because of its pivotal function. Despite the effect of L-carnosine in experimental IPF mice, its anti-oxidative effect and associated intercellular pathway, particularly alveolar epithelial cells, remain unknown. Therefore, we demonstrated the anti-fibrotic and anti-inflammatory effects of L-carnosine via Reactive oxygen species (ROS) regulation in bleomycin (BLM)-induced IPF mice. The mice were intratracheally injected with BLM (3 mg/kg) and L-carnosine (150 mg/kg) was orally administrated for 2 weeks. BLM exposure increased the protein level of Nox2, Nox4, p53, and Caspase-3, whereas L-carnosine treatment suppressed the protein level of Nox2, Nox4, p53, and Caspase-3 cleavage in mice. In addition, the total SOD activity and mRNA level of Sod2, catalase, and Nqo1 increased in mice treated with L-carnosine. At the cellular level, a human fibroblast (MRC-5) and mouse alveolar epithelial cell (MLE-12) were exposed to TGFβ1 following L-carnosine treatment to induce fibrogenesis. Moreover, MLE-12 cells were exposed to cigarette smoke extract (CSE). Consequently, L-carnosine treatment ameliorated fibrogenesis in fibroblasts and alveolar epithelial cells, and inflammation induced by ROS and CSE exposure was ameliorated. These results were associated with the inhibition of the NFκB pathway. Collectively, our data indicate that L-carnosine induces anti-inflammatory and anti-fibrotic effects on alveolar epithelial cells against the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Hyosin Baek
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Gangwondaehakgil 1, Chuncheon 24341, Gangwon, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Gangwondaehakgil 1, Chuncheon 24341, Gangwon, Republic of Korea
| | - Tae-Jin Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
- Correspondence: (T.-J.L.); (S.-R.Y.); Tel.: +82-33-250-6481 (T.-J.L.); 82-33-250-7883 (S.-R.Y.)
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
- Correspondence: (T.-J.L.); (S.-R.Y.); Tel.: +82-33-250-6481 (T.-J.L.); 82-33-250-7883 (S.-R.Y.)
| |
Collapse
|
105
|
Wang H, Wen Y, Wang L, Wang J, Chen H, Chen J, Guan J, Xie S, Chen Q, Wang Y, Tao A, Du Y, Yan J. DDR1 activation in macrophage promotes IPF by regulating NLRP3 inflammasome and macrophage reaction. Int Immunopharmacol 2022; 113:109294. [DOI: 10.1016/j.intimp.2022.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
|
106
|
Liu B, Jiang Q, Chen R, Gao S, Xia Q, Zhu J, Zhang F, Shao C, Liu X, Li X, Zhou H, Yang C, Huang H. Tacrolimus ameliorates bleomycin-induced pulmonary fibrosis by inhibiting M2 macrophage polarization via JAK2/STAT3 signaling. Int Immunopharmacol 2022; 113:109424. [PMID: 36461589 DOI: 10.1016/j.intimp.2022.109424] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease of unknown cause and characterized by excessive proliferation of fibroblasts and the irregular remodeling of extracellular matrix (ECM), which ultimately cause the severe distortion of the alveolar architecture. The median survival of IPF patients is 2-5 years. IPF patients are predominantly infiltrated by M2 macrophages during the course of disease development and progression. Predominantly accumulation of M2 macrophages accelerates fibrosis progression by secreting multiple cytokines that promote fibroblast to myofibroblast transition. In the process of M2 macrophage polarization, JAK2/STAT3 signaling plays a key role, thus, targeting activated macrophages to inhibit the pro-fibrotic phenotype is considered as an approach to the potential treatment of IPF. Tacrolimus is a macrolide antibiotic that as a specific inhibitor of T-lymphocyte function and has been used widely as an immunosuppressant in human organ transplantation. In this study we explored the potential effect and mechanism of tacrolimus on pulmonary fibrosis in vivo and vitro. Here, we found that tacrolimus is capable of suppressing M2 macrophages polarization by inhibiting pro-fibrotic factors secreted by M2 macrophages. This effect further alleviates M2-induced myofibroblast activation, thus resulting in a decline of collagen deposition, pro-fibrotic cytokines secretion, recovering of lung function, ultimately relieving the progression of fibrosis in vivo. Mechanistically, we found that tacrolimus can inhibit the activation of JAK2/STAT3 signaling by targeting JAK2. Our findings indicate a potential anti-fibrotic effect of tacrolimus by regulating macrophage polarization and might be meaningful in clinical settings.
Collapse
Affiliation(s)
- Bowen Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Ruxuan Chen
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Qin Xia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Jingyan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Fangxia Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Chi Shao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiangning Liu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Hui Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
107
|
Hult EM, Gurczynski SJ, O’Dwyer DN, Zemans RL, Rasky A, Wang Y, Murray S, Crawford HC, Moore BB. Myeloid- and Epithelial-derived Heparin-Binding Epidermal Growth Factor-like Growth Factor Promotes Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:641-653. [PMID: 36036796 PMCID: PMC9743186 DOI: 10.1165/rcmb.2022-0174oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a poorly understood, progressive lethal lung disease with no known cure. In addition to alveolar epithelial cell (AEC) injury and excessive deposition of extracellular matrix proteins, chronic inflammation is a hallmark of IPF. Literature suggests that the persistent inflammation seen in IPF primarily consists of monocytes and macrophages. Recent work demonstrates that monocyte-derived alveolar macrophages (moAMs) drive lung fibrosis, but further characterization of critical moAM cell attributes is necessary. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an important epidermal growth factor receptor ligand that has essential roles in angiogenesis, wound healing, keratinocyte migration, and epithelial-mesenchymal transition. Our past work has shown HB-EGF is a primary marker of profibrotic M2 macrophages, and this study seeks to characterize myeloid-derived HB-EGF and its primary mechanism of action in bleomycin-induced lung fibrosis using Hbegff/f;Lyz2Cre+ mice. Here, we show that patients with IPF and mice with pulmonary fibrosis have increased expression of HB-EGF and that lung macrophages and transitional AECs of mice with pulmonary fibrosis and humans all express HB-EGF. We also show that Hbegff/f;Lyz2Cre+ mice are protected from bleomycin-induced fibrosis and that this protection is likely multifactorial, caused by decreased CCL2-dependent monocyte migration, decreased fibroblast migration, and decreased contribution of HB-EGF from AEC sources when HB-EGF is removed under the Lyz2Cre promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhuo Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Susan Murray
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Howard C. Crawford
- Henry Ford Pancreatic Center, Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - Bethany B. Moore
- Department of Microbiology and Immunology
- Department of Internal Medicine
| |
Collapse
|
108
|
[Research Progress on the Pathogenesis of Lung Cancer Associated with
Idiopathic Pulmonary Fibrosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:811-818. [PMID: 36419395 PMCID: PMC9720683 DOI: 10.3779/j.issn.1009-3419.2022.101.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease (ILD) of unknown causes, which is characterized by pulmonary fibrosis. The median survival period after diagnosis is about 2-4 years. In recent years, the incidence rate of lung cancer associated with IPF (IPF-LC) is increasing, and the prognosis is worse than that of IPF alone. Pulmonary fibrosis may be closely associated with the occurrence and development of lung cancer. Although the pathogenesis of IPF-LC is still unclear, the current research shows that there are similarities between the pathogenesis of these two diseases at molecular and cellular levels. At present, the research on the cellular and molecular mechanism of lung cancer related to pulmonary fibrosis has become the focus of researchers' attention. This article reviews the related literature, focusing on the latest status of the cellular and molecular mechanisms and treatment of IPF-LC, hoping to help clinicians understand IPF-LC.
.
Collapse
|
109
|
Savic I, Farver C, Milovanovic P. Pathogenesis of Pulmonary Calcification and Homologies with Biomineralization in Other Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1496-1505. [PMID: 36030837 DOI: 10.1016/j.ajpath.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lungs often present tissue calcifications and even ossifications, both in the context of high or normal serum calcium levels. Precise mechanisms governing lung calcifications have not been explored. Herein, we emphasize recent advances about calcification processes in other tissues (especially vascular and bone calcifications) and discuss potential sources of calcium precipitates in the lungs, involvement of mineralization promoters and crystallization inhibitors, as well as specific cytokine milieu and cellular phenotypes characteristic for lung diseases, which may be involved in pulmonary calcifications. Further studies are necessary to demonstrate the exact mechanisms underlying calcifications in the lungs, document homologies in biomineralization processes between various tissues in physiological and pathologic conditions, and unravel any locally specific characteristics of mineralization processes that may be targeted to reduce or prevent functionally relevant lung calcifications without negatively affecting the skeleton.
Collapse
Affiliation(s)
- Ivana Savic
- Institute of Pathology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Carol Farver
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, University of Belgrade Faculty of Medicine, Belgrade, Serbia; Center of Bone Biology, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
110
|
Consequences of telomere dysfunction in fibroblasts, club and basal cells for lung fibrosis development. Nat Commun 2022; 13:5656. [PMID: 36202783 PMCID: PMC9537293 DOI: 10.1038/s41467-022-32771-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
TRF1 is an essential component of the telomeric protective complex or shelterin. We previously showed that dysfunctional telomeres in alveolar type II (ATII) cells lead to interstitial lung fibrosis. Here, we study the lung pathologies upon telomere dysfunction in fibroblasts, club and basal cells. TRF1 deficiency in lung fibroblasts, club and basal cells induced telomeric damage, proliferative defects, cell cycle arrest and apoptosis. While Trf1 deletion in fibroblasts does not spontaneously lead to lung pathologies, upon bleomycin challenge exacerbates lung fibrosis. Unlike in females, Trf1 deletion in club and basal cells from male mice resulted in lung inflammation and airway remodeling. Here, we show that depletion of TRF1 in fibroblasts, Club and basal cells does not lead to interstitial lung fibrosis, underscoring ATII cells as the relevant cell type for the origin of interstitial fibrosis. Our findings contribute to a better understanding of proper telomere protection in lung tissue homeostasis.
Collapse
|
111
|
Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, Wei X. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med 2022; 12:e1036. [PMID: 36178087 PMCID: PMC9523675 DOI: 10.1002/ctm2.1036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Emerging evidence provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), and rare anti-PF therapeutic method has promising effect in its treatment. Rho-associated coiled-coil kinases (ROCK) inhibition significantly ameliorates bleomycin-induced PF and decreases macrophage infiltration, but the mechanism remains unclear. We established bleomycin and radiation-induced PF to identify the activity of WXWH0265, a newly designed unselective ROCK inhibitor in regulating macrophages. METHODS Bleomycin-induced PF was induced by intratracheal instillation and radiation-induced PF was induced by bilateral thoracic irradiation. Histopathological techniques (haematoxylin and eosin, Masson's trichrome and immunohistochemistry) and hydroxyproline were used to evaluate PF severity. Western blot, quantitative real-time reverse transcription-polymerase chain reaction and flow cytometry were performed to explore the underlying mechanisms. Bone marrow-derived macrophages (BMDMs) were used to verify their therapeutic effect. Clodronate liposomes were applied to deplete macrophages and to identify the therapeutic effect of WXWH0265. RESULTS Therapeutic administration of ROCK inhibitor ameliorates bleomycin-induced PF by inhibiting M2 macrophages polarisation. ROCK inhibitor showed no significant anti-fibrotic effect in macrophages-depleted mice. Treatment with WXWH0265 demonstrated superior protection effect in bleomycin-induced PF compared with positive drugs. In radiation-induced PF, ROCK inhibitor effectively ameliorated PF. Fibroblasts co-cultured with supernatant from various M2 macrophages phenotypes revealed that M2 macrophages stimulated by interleukin-4 promoted extracellular matrix production. Polarisation of M2 macrophages was inhibited by ROCK inhibitor treatment in vitro. The p-signal transducer and activator of transcription 3 (STAT3) in lung tissue and BMDMs was significantly decreased in PF in vivo and vitro after treated with ROCK inhibitors. CONCLUSION Inhibiting ROCK could significantly attenuate bleomycin- and radiation-induced PF by regulating the macrophages polarisation via phosphorylation of STAT3. WXWH0265 is a kind of efficient unselective ROCK inhibitor in ameliorating PF. Furthermore, the results provide empirical evidence that ROCK inhibitor, WXWH0265 is a potential drug to prevent the development of PF.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| |
Collapse
|
112
|
Gu Y, Lawrence T, Mohamed R, Liang Y, Yahaya BH. The emerging roles of interstitial macrophages in pulmonary fibrosis: A perspective from scRNA-seq analyses. Front Immunol 2022; 13:923235. [PMID: 36211428 PMCID: PMC9536737 DOI: 10.3389/fimmu.2022.923235] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is an irreversible and progressive disease affecting the lungs, and the etiology remains poorly understood. This disease can be lethal and currently has no specific clinical therapeutic regimen. Macrophages, the most common type of immune cell in the lungs, have been reported to play a key role in the pathogenesis of fibrotic disease. The lung macrophage population is mostly composed of alveolar macrophages and interstitial macrophages, both of which have not been thoroughly studied in the pathogenesis of lung fibrosis. Interstitial macrophages have recently been recognised for their participation in lung fibrosis due to new technology arising from a combination of bioinformatics and single-cell RNA sequencing analysis. This paper reviews recent developments regarding lung macrophage classification and summarizes the origin and replenishment of interstitial macrophages and their function in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Toby Lawrence
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Centre for Inflammation Biology and Cancer Immunology, Cancer Research UK King’s Health Partners Centre, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Rafeezul Mohamed
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Badrul Hisham Yahaya,
| | - Badrul Hisham Yahaya
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
- *Correspondence: Yinming Liang, ; Badrul Hisham Yahaya,
| |
Collapse
|
113
|
Rasaei R, Tyagi A, Rasaei S, Lee SJ, Yang SR, Kim KS, Ramakrishna S, Hong SH. Human pluripotent stem cell-derived macrophages and macrophage-derived exosomes: therapeutic potential in pulmonary fibrosis. Stem Cell Res Ther 2022; 13:433. [PMID: 36056418 PMCID: PMC9438152 DOI: 10.1186/s13287-022-03136-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary fibrosis (PF) is a fatal chronic disease characterized by accumulation of extracellular matrix and thickening of the alveolar wall, ultimately leading to respiratory failure. PF is thought to be initiated by the dysfunction and aberrant activation of a variety of cell types in the lung. In particular, several studies have demonstrated that macrophages play a pivotal role in the development and progression of PF through secretion of inflammatory cytokines, growth factors, and chemokines, suggesting that they could be an alternative therapeutic source as well as therapeutic target for PF. In this review, we describe the characteristics, functions, and origins of subsets of macrophages involved in PF and summarize current data on the generation and therapeutic application of macrophages derived from pluripotent stem cells for the treatment of fibrotic diseases. Additionally, we discuss the use of macrophage-derived exosomes to repair fibrotic lung tissue.
Collapse
Affiliation(s)
- Roya Rasaei
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Shima Rasaei
- Department of Cellular and Molecular Science, Falavarjan Branch, Islamic Azad University, Falavarjan, Iran
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea.
- Institute of Medical Science, Kangwon National University, Chuncheon, 24341, South Korea.
- KW-Bio Co., Ltd, Wonju, South Korea.
| |
Collapse
|
114
|
Rui Y, Han X, Jiang A, Hu J, Li M, Liu B, Qian F, Huang L. Eucalyptol prevents bleomycin-induced pulmonary fibrosis and M2 macrophage polarization. Eur J Pharmacol 2022; 931:175184. [PMID: 35964659 DOI: 10.1016/j.ejphar.2022.175184] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial pneumonia with limited therapeutic options. Eucalyptol, a terpenoid oxide isolated from eucalyptus species, reportedly exhibits various biological activities such as anti-inflammatory and antioxidant effects. In the present study, we aimed to determine whether eucalyptol could alleviate bleomycin (BLM)-induced pulmonary fibrosis and inhibit interleukin (IL)-13-induced M2 macrophage polarization. Upon treatment with eucalyptol, BLM-induced pulmonary fibrosis and lung inflammation were significantly reduced. The pulmonary neutrophil accumulation and pulmonary permeability were inhibited and the expression of hydroxyproline, alpha-smooth muscle actin, and fibronectin was significantly down-regulated. Eucalyptol also markedly inhibited the expression of arginase-1, Ym-1, IL-13, and transforming growth factor (TGF)-β1, reduced the production of IL-13, IL-6, tumor necrosis factor (TNF)-α, and attenuated the activity of TGF-β1 in bronchoalveolar lavage fluid (BALF). Furthermore, the in vitro assay revealed that eucalyptol disturbed M2 macrophage polarization and reduced the macrophage-mediated secretion of the profibrotic factor TGF-β1. Eucalyptol inhibited the nuclear location of signal transducer and activator of transcription 6 (STAT6) and the phosphorylation of STAT6 and p38 mitogen-activated protein kinase (p38 MAPK), and reduced the expression of their downstream transcription factors, krupple-like factor 4 (KLF4) and peroxisome proliferator-activated receptor gamma (PPAR-γ). These findings indicated that eucalyptol alleviates BLM-induced pulmonary fibrosis by regulating M2 macrophage polarization, which, in turn, inhibits the activation of signaling molecules (e.g., STAT6 and p38 MAPK) and the expression of transcription factors (e.g., KLF4 and PPAR-γ). Thus, eucalyptol might be a potential therapeutic agent for IPF.
Collapse
Affiliation(s)
- Yan Rui
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xiaojing Han
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Anbang Jiang
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Junfeng Hu
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Miao Li
- Department of General Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Bangzhu Liu
- Department of Respiratory Medicine, The Second People's Hospital of Anhui, Wuhu, Anhui, 233000, China
| | - Feng Qian
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233000, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Linian Huang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China.
| |
Collapse
|
115
|
Qian Q, Ma Q, Wang B, Qian Q, Zhao C, Feng F, Dong X. Downregulated miR-129-5p expression inhibits rat pulmonary fibrosis by upregulating STAT1 gene expression in macrophages. Int Immunopharmacol 2022; 109:108880. [PMID: 35689956 DOI: 10.1016/j.intimp.2022.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study investigated the mechanism by which microRNA-129-5p (miR-129-5p) in macrophages affects pulmonary fibrosis in rats by regulating the expression of the signal transducer and activator of transcription 1 (STAT1) gene. METHODS After the establishment of a pulmonary fibrosis rat model, quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expression of miR-129-5p in the sham group and model group. The binding sites between miR-129-5p and STAT1 were predicted online and verified by using a dual luciferase reporter system. qRT-PCR and Western blot analyses were used to test the effect of miR-129-5p on STAT1 gene expression. M2 macrophages were isolated and induced, and exosomes were extracted. Cell proliferation was detected by EdU. Furthermore, qRT-PCR was performed to detect the expression of STAT1, collagen type I A2 (COL1A2), collagen type III A1 (COL3A1), fibronectin, and α-SMA in cells and tissues followed by the detection of CD9, CD63, CD81, CD31 and STAT1 protein expression using a Western blot analysis. The pulmonary fibrosis area was detected by Masson staining followed by the immunohistochemical detection of α-smooth muscle actin (α-SMA) and type I collagen (COL-I) expression in pulmonary fibroblasts. RESULTS Compared with the sham group, the expression level of miR-129-5p in the model group was significantly increased (P < 0.05). miR-129-5p was observed to negatively regulate the expression of STAT1 (P < 0.05). The in vitro cell transfection experiments showed that after inhibiting the expression of miR-129-5p, the expression of STAT1 was increased, and the proliferation of fibroblasts and pulmonary fibrosis were inhibited (all P < 0.05). Furthermore, compared with the fibroblasts without coculture, the proliferation of the fibroblasts cocultured with M2 macrophage-secreted exosomes was clearly increased, and the expression levels of COL1A2, COL3A1, fibronectin and α-SMA were significantly increased (all P < 0.05). Compared with the mimic NC-exo group, the miR-129-5p-exo group had significantly increased proliferation of fibroblasts, decreased expression of STAT1, and significantly increased expression of COL1A2, COL3A1, fibronectin and α-SMA, and M2 macrophage-secreted exosomes could carry miR-129-5p to fibroblasts. Furthermore, the in vivo experiment confirmed that the exosomes of M2 macrophages could carry miR-129-5p, which could regulate M2 macrophages with pulmonary fibrosis in vivo. CONCLUSION M2 macrophages can carry miR-129-5p to pulmonary interstitial fibroblasts and inhibit STAT1 gene expression, which may lead to the proliferation of fibroblasts and promote pulmonary fibrosis. The downregulation of miR-129-5p can significantly promote STAT1 gene expression in macrophages to inhibit pulmonary fibrosis in rats.
Collapse
Affiliation(s)
- Qingzeng Qian
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qinghua Ma
- Department of Preventive Health, The Third People's Hospital Of Xiangcheng District In Suzhou, Suzhou 215134, Jiangsu, China
| | - Bin Wang
- Department of Pediatrics, North China University of Science and Technology Affiliated Hospital, Tangshan 063210, Hebei, China
| | - Qingqiang Qian
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Changsong Zhao
- Department of Emergency, Tangshan Hospital of Traditional Chinese Medicine, Tangshan, Hebei, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaona Dong
- Department of Respiratory Medicine, Tangshan People's Hospital, Tangshan 063001, Hebei, China.
| |
Collapse
|
116
|
Sehgal M, Jakhete SM, Manekar AG, Sasikumar S. Specific epigenetic regulators serve as potential therapeutic targets in idiopathic pulmonary fibrosis. Heliyon 2022; 8:e09773. [PMID: 36061031 PMCID: PMC9434059 DOI: 10.1016/j.heliyon.2022.e09773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/27/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a disorder observed mostly in older human beings, is characterised by chronic and progressive lung scarring leading to an irreversible decline in lung function. This health condition has a dismal prognosis and the currently available drugs only delay but fail to reverse the progression of lung damage. Consequently, it becomes imperative to discover improved therapeutic compounds and their cellular targets to cure IPF. In this regard, a number of recent studies have targeted the epigenetic regulation by histone deacetylases (HDACs) to develop and categorise antifibrotic drugs for lungs. Therefore, this review focuses on how aberrant expression or activity of Classes I, II and III HDACs alter TGF-β signalling to promote events such as epithelial-mesenchymal transition, differentiation of activated fibroblasts into myofibroblasts, and excess deposition of the extracellular matrix to propel lung fibrosis. Further, this study describes how certain chemical compounds or dietary changes modulate dysregulated HDACs to attenuate five faulty TGF-β-dependent profibrotic processes, both in animal models and cell lines replicating IPF, thereby identifying promising means to treat this lung disorder.
Collapse
Affiliation(s)
- Manas Sehgal
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Sharayu Manish Jakhete
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Amruta Ganesh Manekar
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Satish Sasikumar
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| |
Collapse
|
117
|
Jonigk D, Werlein C, Acker T, Aepfelbacher M, Amann KU, Baretton G, Barth P, Bohle RM, Büttner A, Büttner R, Dettmeyer R, Eichhorn P, Elezkurtaj S, Esposito I, Evert K, Evert M, Fend F, Gaßler N, Gattenlöhner S, Glatzel M, Göbel H, Gradhand E, Hansen T, Hartmann A, Heinemann A, Heppner FL, Hilsenbeck J, Horst D, Kamp JC, Mall G, Märkl B, Ondruschka B, Pablik J, Pfefferle S, Quaas A, Radbruch H, Röcken C, Rosenwald A, Roth W, Rudelius M, Schirmacher P, Slotta-Huspenina J, Smith K, Sommer L, Stock K, Ströbel P, Strobl S, Titze U, Weirich G, Weis J, Werner M, Wickenhauser C, Wiech T, Wild P, Welte T, von Stillfried S, Boor P. Organ manifestations of COVID-19: what have we learned so far (not only) from autopsies? Virchows Arch 2022; 481:139-159. [PMID: 35364700 PMCID: PMC8975445 DOI: 10.1007/s00428-022-03319-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023]
Abstract
The use of autopsies in medicine has been declining. The COVID-19 pandemic has documented and rejuvenated the importance of autopsies as a tool of modern medicine. In this review, we discuss the various autopsy techniques, the applicability of modern analytical methods to understand the pathophysiology of COVID-19, the major pathological organ findings, limitations or current studies, and open questions. This article summarizes published literature and the consented experience of the nationwide network of clinical, neuro-, and forensic pathologists from 27 German autopsy centers with more than 1200 COVID-19 autopsies. The autopsy tissues revealed that SARS-CoV-2 can be found in virtually all human organs and tissues, and the majority of cells. Autopsies have revealed the organ and tissue tropism of SARS-CoV-2, and the morphological features of COVID-19. This is characterized by diffuse alveolar damage, combined with angiocentric disease, which in turn is characterized by endothelial dysfunction, vascular inflammation, (micro-) thrombosis, vasoconstriction, and intussusceptive angiogenesis. These findings explained the increased pulmonary resistance in COVID-19 and supported the recommendations for antithrombotic treatment in COVID-19. In contrast, in extra-respiratory organs, pathological changes are often nonspecific and unclear to which extent these changes are due to direct infection vs. indirect/secondary mechanisms of organ injury, or a combination thereof. Ongoing research using autopsies aims at answering questions on disease mechanisms, e.g., focusing on variants of concern, and future challenges, such as post-COVID conditions. Autopsies are an invaluable tool in medicine and national and international interdisciplinary collaborative autopsy-based research initiatives are essential.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
| | | | - Till Acker
- Institute of Neuropathology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin U Amann
- Department of Nephropathology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Gustavo Baretton
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - Peter Barth
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Rainer M Bohle
- Department of Pathology, University Hospital Saarland Homburg, Homburg, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, University Medical Center Rostock, Rostock, Germany
| | - Reinhard Büttner
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Dettmeyer
- Department of Legal Medicine, University Hospital Giessen and Marburg, Giessen, Germany
| | - Philip Eichhorn
- Department of Pathology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Sefer Elezkurtaj
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Irene Esposito
- Department of Pathology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Katja Evert
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Evert
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Falko Fend
- Department of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Nikolaus Gaßler
- Department of Pathology, University Hospital Jena, Jena, Germany
| | - Stefan Gattenlöhner
- Department of Pathology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heike Göbel
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Elise Gradhand
- Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Torsten Hansen
- Department of Pathology, University Hospital OWL of the Bielefeld University, Campus Lippe, Detmold, Germany
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Axel Heinemann
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Julia Hilsenbeck
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - David Horst
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan C Kamp
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Gita Mall
- Department of Legal Medicine, University Hospital Jena, Jena, Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, University Hospital Augsburg, Augsburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessica Pablik
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Wilfried Roth
- Department of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Peter Schirmacher
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Slotta-Huspenina
- Department of Pathology, TUM School of Medicine of Technical University of Munich, Munich, Germany
| | - Kevin Smith
- Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Linna Sommer
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - Konrad Stock
- Department of Nephrology, TUM School of Medicine of Technical University of Munich, Munich, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Strobl
- Department of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ulf Titze
- Department of Pathology, University Hospital OWL of the Bielefeld University, Campus Lippe, Detmold, Germany
| | - Gregor Weirich
- Department of Pathology, TUM School of Medicine of Technical University of Munich, Munich, Germany
| | - Joachim Weis
- Department of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Claudia Wickenhauser
- Department of Pathology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Thorsten Wiech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Wild
- Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.
- Department of Nephrology and Immunology, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
118
|
Surtaieva YV, Mazurkevich AY, Bokotko RR. Effects of transplanted mesenchymal stem cells on repair of the lung tissue of rats with experimental pulmonary fibrosis. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pulmonary fibrosis is one of the commonest forms of interstitial lung diseases with poorly studied methods of its treatment in both human and veterinary medicines. Therefore, this paper focused on seeking alternative methods of its diagnostics and treatment. The article provides the results of the study of bronchoalveolar lavage fluid of rats with experimental lung fibrosis and influence of transplanted allogeneic mesenchymal stem cells of the bone marrow on stimulation of regenerative processes in damaged lung tissues. The studies were conducted on female Wistar rats with pulmonary fibrosis modeled using single transthoracic injection of solution of bleomycin hydrochloride. For the purpose of treatment, we used allogeneic mesenchymal stem cells introduced by various methods and the traditional treatment. We determined that best normalization of the parameters of the studied brochoalveolar lavage occurred in animals that received mesenchymal stem cells. The most active repair processes were in the experimental group that received the mesenchymal stem cells directly to the lung tissue. The animals that received intravenous injection of mesenchymal stemm cells were observed to have lower clinical parameters of the brochoalveolar lavage, but still better than such in the group treated traditionally. The lowest parameters were in animals that received the traditional treatment; they were greater than the phisological parameters, but significantly exceeded them in animals of the control group, indicating presence of inflammatory process in the lung tissue. The conducted cytological assays of the samples of the brochoalveolar lavage revealed that experimental animals with experimental pulmonary fibrosis had development of macrophage and lymphocytic reactions under the influence of transplanted mesenchymal stemm cells. We observed no atypical cells in all the experimental groups. This allows us to draw a conclusion that using stem cells by various methods of transplantation does not stimulate the onset of negative reactons (formation of atypical cells, metastatic processes, etc). Thus, the results of the study of the influence of transplanted mesenchymal stem cells demonstrate that in the conditions of experimental pulmonary fibrosis, the activity of regenerative processes in pathologically altered lung tissue may be an effective method of treatment of animals with this kind of pathology.
Collapse
|
119
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
120
|
Penke LR, Speth JM, Huang SK, Fortier SM, Baas J, Peters-Golden M. KLF4 is a therapeutically tractable brake on fibroblast activation which promotes resolution of pulmonary fibrosis. JCI Insight 2022; 7:160688. [PMID: 35852857 PMCID: PMC9462506 DOI: 10.1172/jci.insight.160688] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
There is a paucity of information about potential molecular brakes on the activation of fibroblasts that drive tissue fibrosis. The transcription factor Krüppel-like factor 4 (KLF4) is best known as a determinant of cell stemness and a tumor suppressor. We found that its expression was diminished in fibroblasts from fibrotic lung. Gain- and loss-of-function studies showed that KLF4 inhibited fibroblast proliferation, collagen synthesis, and differentiation to myofibroblasts, while restoring their sensitivity to apoptosis. Conditional deletion of KLF4 from fibroblasts potentiated the peak degree of pulmonary fibrosis and abrogated the subsequent spontaneous resolution in a model of transient fibrosis. A small molecule inducer of KLF4 was able to restore its expression in fibrotic fibroblasts and elicit resolution in an experimental model characterized by more clinically relevant persistent pulmonary fibrosis. These data identify KLF4 as a pivotal brake on fibroblast activation whose induction represents a therapeutic approach in fibrosis of the lung and perhaps other organs.
Collapse
|
121
|
Transcriptome Classification Reveals Molecular Subgroups in Idiopathic Pulmonary Fibrosis. Genet Res (Camb) 2022; 2022:7448481. [PMID: 35919036 PMCID: PMC9308534 DOI: 10.1155/2022/7448481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a high mortality rate. This study aimed to uncover the underlying molecular features for different types of IPF. IPF microarray datasets were retrieved from GEO databases. Weighted gene co-expression analysis (WGCNA) was used and identified subgroup-specific WGCNA modules. Infiltration-level immune cells in different subgroups of microenvironments were analyzed with CIBERSORT algorithms. The result is we classified 173 IPF cases into two subgroups based on gene expression profiles, which were retrieved from the GEO databases. The SGRQ score and age were significantly higher in C2 than in C1. Using WGCNA, five subgroup-specific modules were identified. M4 was mainly enriched by MAPK signaling, which was mainly expressed in C2; M1, M2, and M3 were mainly enriched by metabolic pathways and Chemokine signaling, and the pathway of M5 was phagosome inflammation; M1, M2, M3, and M5 were mainly expressed in C1. Utilizing the CIBERSORT, we showed that the number of M1 macrophage cells, CD8 T cells, regulatory T cells (Tregs), and Plasma cells was significantly different between C1 and C2. We found the molecular subgroups of IPF revealed that cases from different subgroups may have their unique patterns and provide novel information to understand the mechanisms of IPF itself.
Collapse
|
122
|
Guo X, Adeyanju O, Sunil C, Mandlem V, Olajuyin A, Huang S, Chen SY, Idell S, Tucker TA, Qian G. DOCK2 contributes to pulmonary fibrosis by promoting lung fibroblast to myofibroblast transition. Am J Physiol Cell Physiol 2022; 323:C133-C144. [PMID: 35584329 PMCID: PMC9273279 DOI: 10.1152/ajpcell.00067.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common chronic interstitial lung disease and is characterized by progressive scarring of the lung. Transforming growth factor-β (TGF-β) signaling plays an essential role in IPF and drives fibroblast to myofibroblast transition (FMT). Dedicator of cytokinesis 2 (DOCK2) is known to regulate diverse immune functions by activating Rac and has been recently implicated in pleural fibrosis. We now report a novel role of DOCK2 in pulmonary fibrosis development by mediating FMT. In primary normal and IPF human lung fibroblasts (HLFs), TGF-β induced DOCK2 expression concurrent with FMT markers, smooth muscle α-actin (α-SMA), collagen-1, and fibronectin. Knockdown of DOCK2 significantly attenuated TGF-β-induced expression of these FMT markers. In addition, we found that the upregulation of DOCK2 by TGF-β is dependent on both Smad3 and ERK pathways as their respective inhibitors blocked TGF-β-mediated induction. TGF-β also stabilized DOCK2 protein, which contributes to increased DOCK2 expression. In addition, DOCK2 was also dramatically induced in the lungs of patients with IPF and in bleomycin, and TGF-β induced pulmonary fibrosis in C57BL/6 mice. Furthermore, increased lung DOCK2 expression colocalized with the FMT marker α-SMA in the bleomycin-induced pulmonary fibrosis model, implicating DOCK2 in the regulation of lung fibroblast phenotypic changes. Importantly, DOCK2 deficiency also attenuated bleomycin-induced pulmonary fibrosis and α-SMA expression. Taken together, our study demonstrates a novel role of DOCK2 in pulmonary fibrosis by modulating FMT and suggests that targeting DOCK2 may present a potential therapeutic strategy for the prevention or treatment of IPF.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Oluwaseun Adeyanju
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Christudas Sunil
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Venkatakirankumar Mandlem
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ayobami Olajuyin
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Shi-You Chen
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, Missouri
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
- The Texas Lung Injury Institute, Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
- The Texas Lung Injury Institute, Tyler, Texas
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
123
|
Tanner L, Bergwik J, Single AB, Bhongir RKV, Erjefält JS, Egesten A. Zoledronic Acid Targeting of the Mevalonate Pathway Causes Reduced Cell Recruitment and Attenuates Pulmonary Fibrosis. Front Pharmacol 2022; 13:899469. [PMID: 35721132 PMCID: PMC9201219 DOI: 10.3389/fphar.2022.899469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aim: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease causing irreparable scarring of lung tissue, with most patients succumbing rapidly after diagnosis. The mevalonate pathway, which is involved in the regulation of cell proliferation, survival, and motility, is targeted by the bisphosphonate zoledronic acid (ZA). The aim of this study was to assess the antifibrotic effects of ZA and to elucidate the mechanisms by which potential IPF treatment occurs. Methods: A series of in vitro and in vivo models were employed to identify the therapeutic potential of ZA in treating IPF. In vitro transwell assays were used to assess the ability of ZA to reduce fibrotic-related immune cell recruitment. Farnesyl diphosphate synthase (FDPS) was screened as a potential antifibrotic target using a bleomycin mouse model. FDPS-targeting siRNA and ZA were administered to mice following the onset of experimentally-induced lung fibrosis. Downstream analyses were conducted on murine lung tissues and lung fluids including 23-plex cytokine array, flow cytometry, histology, Western blotting, immunofluorescent staining, and PCR analysis. Results:In vitro administration of ZA reduced myofibroblast transition and blocked NF-κB signaling in macrophages leading to impaired immune cell recruitment in a transwell assay. FDPS-targeting siRNA administration significantly attenuated profibrotic cytokine production and lung damage in a murine lung fibrosis model. Furthermore, ZA treatment of mice with bleomycin-induced lung damage displayed decreased cytokine levels in the BALF, plasma, and lung tissue, resulting in less histologically visible fibrotic scarring. Bleomycin-induced upregulation of the ZA target, FDPS, was reduced in lung tissue and fibroblasts upon ZA treatment. Confirmatory increases in FDPS immunoreactivity was seen in human IPF resected lung samples compared to control tissue indicating potential translational value of the approach. Additionally, ZA polarized macrophages towards a less profibrotic phenotype contributing to decreased IPF pathogenesis. Conclusion: This study highlights ZA as an expedient and efficacious treatment option against IPF in a clinical setting.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Andrew B Single
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K V Bhongir
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jonas S Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
124
|
Qin W, Spek CA, Scicluna BP, van der Poll T, Duitman J. Myeloid DNA methyltransferase3b deficiency aggravates pulmonary fibrosis by enhancing profibrotic macrophage activation. Respir Res 2022; 23:162. [PMID: 35725453 PMCID: PMC9210707 DOI: 10.1186/s12931-022-02088-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and severe disease characterized by excessive matrix deposition in the lungs. Macrophages play crucial roles in maintaining lung homeostasis but are also central in the pathogenesis of lung diseases like pulmonary fibrosis. Especially, macrophage polarization/activation seems to play a crucial role in pathology and epigenetic reprograming is well-known to regulate macrophage polarization. DNA methylation alterations in IPF lungs have been well documented, but the role of DNA methylation in specific cell types, especially macrophages, is poorly defined. METHODS In order to determine the role of DNA methylation in macrophages during pulmonary fibrosis, we subjected macrophage specific DNA methyltransferase (DNMT)3B, which mediates the de novo DNA methylation, deficient mice to the bleomycin-induced pulmonary fibrosis model. Macrophage polarization and fibrotic parameters were evaluated at 21 days after bleomycin administration. Dnmt3b knockout and wild type bone marrow-derived macrophages were stimulated with either interleukin (IL)4 or transforming growth factor beta 1 (TGFB1) in vitro, after which profibrotic gene expression and DNA methylation at the Arg1 promotor were determined. RESULTS We show that DNMT3B deficiency promotes alternative macrophage polarization induced by IL4 and TGFB1 in vitro and also enhances profibrotic macrophage polarization in the alveolar space during pulmonary fibrosis in vivo. Moreover, myeloid specific deletion of DNMT3B promoted the development of experimental pulmonary fibrosis. CONCLUSIONS In summary, these data suggest that myeloid DNMT3B represses fibrotic macrophage polarization and protects against bleomycin induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105AZ, Amsterdam, The Netherlands.
| | - C Arnold Spek
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105AZ, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105AZ, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105AZ, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| |
Collapse
|
125
|
Tang D, Cao F, Yan C, Fang K, Ma J, Gao L, Sun B, Wang G. Extracellular Vesicle/Macrophage Axis: Potential Targets for Inflammatory Disease Intervention. Front Immunol 2022; 13:705472. [PMID: 35769456 PMCID: PMC9234271 DOI: 10.3389/fimmu.2022.705472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) can regulate the polarization of macrophages in a variety of inflammatory diseases by mediating intercellular signal transduction and affecting the occurrence and development of diseases. After macrophages are regulated by EVs, they mainly show two phenotypes: the proinflammatory M1 type and the anti-inflammatory M2 type. A large number of studies have shown that in diseases such as mastitis, inflammatory bowel disease, Acute lung injury, and idiopathic pulmonary fibrosis, EVs promote the progression of the disease by inducing the M1-like polarization of macrophages. In diseases such as liver injury, asthma, and myocardial infarction, EVs can induce M2-like polarization of macrophages, inhibit the inflammatory response, and reduce the severity of the disease, thus indicating new pathways for treating inflammatory diseases. The EV/macrophage axis has become a potential target for inflammatory disease pathogenesis and comprehensive treatment. This article reviews the structure and function of the EV/macrophage axis and summarizes its biological functions in inflammatory diseases to provide insights for the diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Desheng Tang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Changsheng Yan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kun Fang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Ma
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Gang Wang,
| |
Collapse
|
126
|
An Overview of Herbal Medicines for Idiopathic Pulmonary Fibrosis. Processes (Basel) 2022. [DOI: 10.3390/pr10061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung scarring condition with the histological characteristic of typical interstitial pneumonia. Injury to alveolar epithelial cells is a critical precursor in the pathogenesis of this disease. The prevalence of IPF is growing exponentially, with substantial morbidity and mortality rates increasing the burden on economic healthcare costs. A multidisciplinary approach for diagnosis is used to rule out the alternative causes of interstitial lung disease. Pirfenidone and nintedanib, two innovative antifibrotic medicines introduced in recent years, have provided therapeutic benefits to many IPF patients, and several IPF medications are in the early phases of clinical trials. However, available medications can cause unpleasant symptoms such as nausea and diarrhoea. More efforts have been made to uncover alternative treatments towards a more personalised patient-centred care and hence improve the outcomes in the IPF patients. Through a multi-level and multi-target treatment approach, herbal medicines, such as Traditional Chinese Medicine (TCM), have been identified as revolutionary medical treatment for IPF. Due to their natural properties, herbal medicines have shown to possess low adverse effects, stable therapeutic impact, and no obvious drug dependencies. Herbal medicines have also shown anti-inflammatory and anti-fibrotic effects, which make them a promising therapeutic target for IPF. A growing number of formulas, herbal components, and various forms of Chinese herbal medicine extracts are available for IPF patients in China. This review summarises the role of herbal medicines in the prevention and treatment of IPF.
Collapse
|
127
|
De Sadeleer LJ, Verleden SE, Schupp JC, McDonough JE, Goos T, Yserbyt J, Bargagli E, Rottoli P, Kaminski N, Prasse A, Wuyts WA. BAL Transcriptomes Characterize Idiopathic Pulmonary Fibrosis Endotypes With Prognostic Impact. Chest 2022; 161:1576-1588. [PMID: 35063449 PMCID: PMC9424328 DOI: 10.1016/j.chest.2021.12.668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Given the plethora of pathophysiologic mechanisms described in idiopathic pulmonary fibrosis (IPF), we hypothesize that the mechanisms driving fibrosis in IPF may be different from one patient to another. RESEARCH QUESTION Do IPF endotypes exist and are they associated with outcome? STUDY DESIGN AND METHODS Using a publicly available gene expression dataset retrieved from BAL samples of patients with IPF and control participants (GSE70867), we clustered IPF samples based on a dimension reduction algorithm specifically designed for -omics data, called DDR Tree. After clustering, gene set enrichment analysis was performed for functional annotation, associations with clinical variables and prognosis were investigated, and differences in transcriptional regulation were determined using motif enrichment analysis. The findings were validated in three independent publicly available gene expression datasets retrieved from IPF blood samples. RESULTS One hundred seventy-six IPF samples from three centers were clustered in six IPF clusters, with distinct functional enrichment. Although clinical characteristics did not differ between the clusters, one cluster conferred worse sex-age-physiology score-corrected survival, whereas another showed a numeric trend toward worse survival (P = .08). The first was enriched for increased epithelial and innate and adaptive immunity signatures, whereas the other showed important telomere and mitochondrial dysfunction, loss of proteostasis, and increased myofibroblast signatures. The existence of these two endotypes, including the impact on survival of the immune endotype, was validated in three independent validation cohorts. Finally, we identified transcription factors regulating the expression of endotype-specific survival-associated genes. INTERPRETATION Gene expression-based endotyping in IPF is feasible and can inform clinical evolution. As endotype-specific pathways and survival-associated transcription factors are identified, endotyping may open up the possibility of endotype-tailored therapy.
Collapse
Affiliation(s)
- Laurens J De Sadeleer
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium; Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.
| | - Stijn E Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium; Antwerp Surgical Training, Anatomy and Research Centre, Antwerp University, Antwerp, Belgium
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT; Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - John E McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT
| | - Tinne Goos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium; Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation Unit, AOUS and Siena University, Siena, Italy
| | - Paola Rottoli
- Specialization School in Respiratory Diseases, Siena University, Siena, Italy
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; German Centre for Lung Research, BREATH, Hannover, Germany; Department of Pneumology, University Medical Centre, Freiburg, Germany
| | - Wim A Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium; Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
128
|
Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. Int J Mol Sci 2022; 23:ijms23116064. [PMID: 35682743 PMCID: PMC9181498 DOI: 10.3390/ijms23116064] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
CTGF is upregulated in patients with idiopathic pulmonary fibrosis (IPF), characterized by the deposition of a pathological extracellular matrix (ECM). Additionally, many omics studies confirmed that aberrant cellular senescence-associated mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, alveolar endothelial cells, fibroblasts, and macrophages). Here, we reviewed the role of the CTGF in IPF lung cells to mediate anomalous senescence-related metabolic mechanisms that support the fibrotic environment in IPF.
Collapse
|
129
|
Majewski S, Szewczyk K, Jerczyńska H, Miłkowska-Dymanowska J, Białas AJ, Gwadera Ł, Piotrowski WJ. Longitudinal and Comparative Measures of Serum Chitotriosidase and YKL-40 in Patients With Idiopathic Pulmonary Fibrosis. Front Immunol 2022; 13:760776. [PMID: 35222369 PMCID: PMC8866556 DOI: 10.3389/fimmu.2022.760776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Although chitin is absent in humans, chitinases are present in healthy subjects and show dysregulated expression in a variety of diseases resulting from abnormal tissue injury and repair responses. It was shown that chitotriosidase (chitinase 1/CHIT1) and structurally-related chitinase 3-like 1 protein (CHI3L1/YKL-40) play important roles in the pathobiology of idiopathic pulmonary fibrosis (IPF), however little is known about their longitudinal serum levels and relationship to clinical measures in IPF. Methods The present study is the first to evaluate serial measurements of serum CHIT1 activity and YKL-40 concentrations in patients with IPF starting antifibrotic treatment and followed up for 24 months. In addition, baseline serum CHIT1 and YKL-40 were compared between patients with IPF and control subjects, and possible CHIT1 and YKL-40 relationships to longitudinal clinical assessments in IPF were explored. Results Baseline serum CHIT1 activity and YKL-40 concentrations were significantly elevated in patients with IPF compared to control subjects and showed similar discriminatory ability in distinguishing IPF from controls. No significant differences between the median serum CHIT1 activity and YKL-40 concentration measured over a study follow-up were noted. We found significantly elevated baseline serum CHIT1 activity in the progressors compared with the stables in the first year, while significantly increased baseline serum CHIT1 activity was noted in the stables compared to the progressors in the second year. Additionally, we observed a significant negative correlation between a change in serum YKL-40 concentration and a change in forced vital capacity (FVC) % predicted (% pred.) in the stables subgroup, whereas, a change in serum CHIT1 activity correlated negatively with a change in FVC% pred. in the progressors subgroup. Conclusions This explorative study findings add further evidence that CHIT1 and YKL-40 are upregulated in patients with IPF, and suggest that longitudinally stable serum CHIT1 activity and YKL-40 concentration levels may potentially be associated with the antifibrotic treatment response. In addition, our findings are supporting the possible role of CHIT1 and YKL-40 as candidate diagnostic and prognostic biomarkers in IPF. Further research is needed to validate present study findings.
Collapse
Affiliation(s)
| | - Karolina Szewczyk
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, Lodz, Poland
| | - Hanna Jerczyńska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Lodz, Poland
| | | | - Adam J Białas
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, Lodz, Poland
| | - Łukasz Gwadera
- Department of Pneumology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
130
|
Cai H, Chen S, Li X, Liu H, Zhang Y, Zhuang Q. The Combined Model of CX3CR1-Related Immune Infiltration Genes to Evaluate the Prognosis of Idiopathic Pulmonary Fibrosis. Front Immunol 2022; 13:837188. [PMID: 35222428 PMCID: PMC8866189 DOI: 10.3389/fimmu.2022.837188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/23/2022] Open
Abstract
Background High expression of chemokine (C-X3-C motif) receptor 1 (CX3CR1) was shown to contribute to the progression of many fibrotic diseases. However, there is still no study for the role of CX3CR1 in idiopathic pulmonary fibrosis (IPF). Therefore, we aimed to identify CX3CR1-related immune infiltration genes (IIGs) in IPF and establish a combined risk model to evaluate the prognosis of IPF. Methods A discovery cohort of IPF patients (GSE70867) was downloaded from the Gene Expression Omnibus dataset. We identified the composition of 22 kinds of immune cells infiltration by CIBERSORT. The Cox regression model with the LASSO method was used for identifying prognostic genes and developing CX3CR1-related IIGs. Kaplan–Meier was applied to plot the survival curve of prognosis model. Peripheral blood mononuclear cell (PBMC) and bronchoalveolar lavage fluid (BALF) were collected to be tested by quantitative reverse transcriptase-PCR (qRT-PCR) from 15 clinical samples, including 8 healthy controls (HC), 4 patients with usual interstitial pneumonia (UIP) and 3 patients with pulmonary fibrosis (FIB). Results We found that high expression of CX3CR1 in BALF contributed to the poor prognosis in IPF patients. ALR4C, RAB37, GPR56, MARCKS, PXN and RASSF2 were identified as CX3CR1-related IIGs, which were highly expressed in PBMC of UIP/FIB patients than that of HC. Moreover, the expression of PXN was higher in FIB patients’ PBMC than that of UIP ones. In the cohort of IPF patients, high infiltration of activated NK cells in BALF caused poor survival compared to low infiltration group. The infiltration of activated NK was regulated by CX3CR1-related IIGs. The combined risk model predicted that high expression of CX3CR1-related IIGs and high infiltrated activated NK cells caused poor prognosis in IPF patients. Conclusion We identified a group of CX3CR1-related IIGs in IPF patients. This combined risk model provided new insights in the prognosis and therapy of IPF.
Collapse
Affiliation(s)
- Haozheng Cai
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Shijie Chen
- Department of Spine Surgery, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hanying Liu
- Department of Respiratory Diseases, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
131
|
Xu Q, Mei S, Nie F, Zhang Z, Feng J, Zhang J, Qian X, Gao Y, He Z, Xing S. The role of macrophage-fibroblast interaction in lipopolysaccharide-induced pulmonary fibrosis: an acceleration in lung fibroblast aerobic glycolysis. J Transl Med 2022; 102:432-439. [PMID: 34775492 DOI: 10.1038/s41374-021-00701-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung fibroblasts is closely associated with the pathogenesis of septic pulmonary fibrosis. Nevertheless, the underlying mechanism remains poorly defined. In this study, we demonstrate that LPS promotes c-Jun N-terminal kinase (JNK) signaling pathway activation and endogenous tumor necrosis factor-α (TNF-α) secretion in pulmonary macrophages. This, in turn, could significantly promote aerobic glycolysis and increase lactate production in lung fibroblasts through 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) activation. Culturing human lung fibroblast MRC-5 cell line with TNF-α or endogenous TNF-α (cell supernatants of macrophages after LPS stimulation) both enhanced the aerobic glycolysis and increased lactate production. These effects could be prevented by treating macrophages with JNK pathway inhibitor, by administering TNF-α receptor 1 (TNFR1) siRNA, PFKFB3 inhibitor, or by silencing PFKFB3 with fibroblasts-specific shRNA. In addition, the inhibition of TNF-α secretion and PFKFB3 expression prevented LPS-induced pulmonary fibrosis in vivo. In conclusion, this study revealed that LPS-induced macrophage secretion of TNF-α could initiate fibroblast aerobic glycolysis and lactate production, implying that inflammation-metabolism interactions between lung macrophages and fibroblasts might play an essential role in LPS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Nie
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junqi Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyuan Zhang
- Department of Anesthesiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
132
|
Lu P, Li J, Liu C, Yang J, Peng H, Xue Z, Liu Z. Salvianolic acid B dry powder inhaler for the treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 2022; 17:447-461. [PMID: 35782322 PMCID: PMC9237582 DOI: 10.1016/j.ajps.2022.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious and fatal pulmonary inflammatory disease with an increasing incidence worldwide. The drugs nintedanib and pirfenidone, are listed as conditionally recommended drugs in the “Evidence-Based Guidelines for the Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis”. However, these two drugs have many adverse reactions in clinical application. Salvianolic acid B (Sal B), a water-soluble component of Salvia miltiorrhiza, could alleviate bleomycin-induced peroxidative stress damage, and prevent or delay the onset of IPF by regulating inflammatory factors and fibrotic cytokines during the disease's progression. However, Sal B is poorly absorbed orally, and patient compliance is poor when administered intravenously. Therefore, there is an urgent need to find a new non-injection route of drug delivery. In this study, Sal B was used as model drug and l-leucine (LL) as excipient to prepare Sal B dry powder inhaler (Sal B-DPI) by spray drying method. Modern preparation evaluation methods were used to assess the quality of Sal B-DPI. Sal B-DPI is promising for the treatment of IPF, according to studies on pulmonary irritation evaluation, in vivo and in vitro pharmacodynamics, metabolomics, pharmacokinetics, and lung tissue distribution.
Collapse
Affiliation(s)
- Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuanxin Liu
- Endocrine and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-center of National Clinical Research Center for Metabolic Diseases, Luoyang, Henan 471003, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
133
|
Kou L, Kou P, Luo G, Wei S. Progress of Statin Therapy in the Treatment of Idiopathic Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6197219. [PMID: 35345828 PMCID: PMC8957418 DOI: 10.1155/2022/6197219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease (ILD) characterized by the proliferation of fibroblasts and aberrant accumulation of extracellular matrix. These changes are accompanied by structural destruction of the lung tissue and the progressive decline of pulmonary function. In the past few decades, researchers have investigated the pathogenesis of IPF and sought a therapeutic approach for its treatment. Some studies have shown that the occurrence of IPF is related to pulmonary inflammatory injury; however, its specific etiology and pathogenesis remain unknown, and no effective treatment, with the exception of lung transplantation, has been identified yet. Several basic science and clinical studies in recent years have shown that statins, the traditional lipid-lowering drugs, exert significant antifibrotic effects, which can delay the progression of IPF and impairment of pulmonary function. This article is aimed at summarizing the current understanding of the pathogenesis of IPF, the progress of research on the use of statins in IPF models and clinical trials, and its main molecular targets.
Collapse
Affiliation(s)
- Leiya Kou
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Pei Kou
- Department of Medical Record, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Guangwei Luo
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
134
|
Choi S, Choi J, Cheon S, Song J, Kim SY, Kim JE, Nam DH, Manzar G, Kim SM, Kang HS, Kim KK, Jeong SH, Lee JH, Park EK, Lee M, Lee HA, Kim KS, Park HJ, Oh WK, Park C, Lee CH, Kim EM. Pulmonary fibrosis model using micro-CT analyzable human PSC-derived alveolar organoids containing alveolar macrophage-like cells. Cell Biol Toxicol 2022; 38:557-575. [PMID: 35267148 PMCID: PMC8907399 DOI: 10.1007/s10565-022-09698-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Human lung organoids (hLOs) are useful for disease modelling and drug screening. However, a lack of immune cells in hLOs limits the recapitulation of in vivo cellular physiology. Here, we generated hLOs containing alveolar macrophage (AMφ)–like cells derived from pluripotent stem cells (PSC). To bridge hLOs with advanced human lung high-resolution X-ray computed tomography (CT), we acquired quantitative micro-CT images. Three hLO types were observed during differentiation. Among them, alveolar hLOs highly expressed not only lung epithelial cell markers but also AMφ-specific markers. Furthermore, CD68+ AMφ-like cells were spatially organized on the luminal epithelial surface of alveolar hLOs. Bleomycin-treated alveolar hLOs showed upregulated expression of fibrosis-related markers and extracellular matrix deposits in the alveolar sacs. Alveolar hLOs also showed structural alterations such as excessive tissue fraction under bleomycin treatment. Therefore, we suggest that micro-CT analyzable PSC-derived alveolar hLOs are a promising in vitro model to predict lung toxicity manifestations, including fibrosis.
Collapse
Affiliation(s)
- Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.,Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jihong Song
- Department of Internal Medicine, Santa Clara Valley Medical Center, San Jose, CA, 95128, USA
| | - Seung-Yeon Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.,Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji-Eun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Dae-Hwan Nam
- Immune Research Institute, Seegene Medical Foundation, Seoul, 04805, Republic of Korea
| | - Gohar Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77025, USA
| | - Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, Republic of Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, 49267, Republic of Korea
| | - Minseob Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Ki-Suk Kim
- R&D Center for Advanced Pharmaceuticals and Evaluation, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Chang Hyun Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
135
|
Kanno Y, Shu E. α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life (Basel) 2022; 12:life12030396. [PMID: 35330147 PMCID: PMC8953682 DOI: 10.3390/life12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin that is characterized by immune system abnormalities, vascular damage, and extensive fibrosis of the skin and visceral organs. α2-antiplasmin is known to be the main plasmin inhibitor and has various functions such as cell differentiation and cytokine production, as well as the regulation of the maintenance of the immune system, endothelial homeostasis, and extracellular matrix metabolism. The expression of α2-antiplasmin is elevated in dermal fibroblasts from systemic sclerosis patients, and the blockade of α2-antiplasmin suppresses fibrosis progression and vascular dysfunction in systemic sclerosis model mice. α2-antiplasmin may have promise as a potential therapeutic target for systemic sclerosis. This review considers the role of α2-antiplasmin in the progression of systemic sclerosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Correspondence: ; Tel.:+81-0774-65-8629
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| |
Collapse
|
136
|
Finicelli M, Digilio FA, Galderisi U, Peluso G. The Emerging Role of Macrophages in Chronic Obstructive Pulmonary Disease: The Potential Impact of Oxidative Stress and Extracellular Vesicle on Macrophage Polarization and Function. Antioxidants (Basel) 2022; 11:antiox11030464. [PMID: 35326114 PMCID: PMC8944669 DOI: 10.3390/antiox11030464] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common airway diseases, and it is considered a major global health problem. Macrophages are the most representative immune cells in the respiratory tract, given their role in surveying airways, removing cellular debris, immune surveillance, and resolving inflammation. Macrophages exert their functions by adopting phenotypical changes based on the stimuli they receive from the surrounding tissue. This plasticity is described as M1/M2 macrophage polarization, which consists of a strictly coordinated process leading to a difference in the expression of surface markers, the production of specific factors, and the execution of biological activities. This review focuses on the role played by macrophages in COPD and their implication in inflammatory and oxidative stress processes. Particular attention is on macrophage polarization, given macrophage plasticity is a key feature in COPD. We also discuss the regulatory influence of extracellular vesicles (EVs) in cell-to-cell communications. EV composition and cargo may influence many COPD-related aspects, including inflammation, tissue remodeling, and macrophage dysfunctions. These findings could be useful for better addressing the role of macrophages in the complex pathogenesis and outcomes of COPD.
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Correspondence: (M.F.); (G.P.); Tel.: +39-0816132553 (M.F.); +39-0816132280 (G.P.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy;
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Correspondence: (M.F.); (G.P.); Tel.: +39-0816132553 (M.F.); +39-0816132280 (G.P.)
| |
Collapse
|
137
|
He J, Du Y, Li G, Xiao P, Sun X, Song W, Lai L, Xia M, Zhang J, Wang Q. Myeloid Fbxw7 Prevents Pulmonary Fibrosis by Suppressing TGF-β Production. Front Immunol 2022; 12:760138. [PMID: 35069531 PMCID: PMC8767095 DOI: 10.3389/fimmu.2021.760138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by an inexorable decline in lung function with limited treatment options. The abnormal expression of transforming growth factor-β (TGF-β) in profibrotic macrophages is linked to severe pulmonary fibrosis, but the regulation mechanisms of TGF-β expression are incompletely understood. We found that decreased expression of E3 ubiquitin ligase Fbxw7 in peripheral blood mononuclear cells (PBMCs) was significantly related to the severity of pulmonary fibrosis in IPF patients. Fbxw7 is identified to be a crucial suppressing factor for pulmonary fibrosis development and progression in a mouse model induced by intratracheal bleomycin treatment. Myeloid cell-specific Fbxw7 deletion increases pulmonary monocyte-macrophages accumulation in lung tissue, and eventually promotes bleomycin-induced collagen deposition and progressive pulmonary fibrosis. Notably, the expression of TGF-β in profibrotic macrophages was significantly upregulated in myeloid cell-specific Fbxw7 deletion mice after bleomycin treatment. C-Jun has long been regarded as a critical transcription factor of Tgfb1, we clarified that Fbxw7 inhibits the expression of TGF-β in profibrotic macrophages by interacting with c-Jun and mediating its K48-linked ubiquitination and degradation. These findings provide insight into the role of Fbxw7 in the regulation of macrophages during the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yue Du
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Gaopeng Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Peng Xiao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Xingzheng Sun
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Wenjun Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Jianhua Zhang
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
138
|
Gan C, Zhang Q, Liu H, Wang G, Wang L, Li Y, Tan Z, Yin W, Yao Y, Xie Y, Ouyang L, Yu L, Ye T. Nifuroxazide ameliorates pulmonary fibrosis by blocking myofibroblast genesis: a drug repurposing study. Respir Res 2022; 23:32. [PMID: 35172837 PMCID: PMC8848910 DOI: 10.1186/s12931-022-01946-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a serious interstitial lung disease with a complex pathogenesis and high mortality. The development of new drugs is time-consuming and laborious; therefore, research on the new use of old drugs can save time and clinical costs and even avoid serious side effects. Nifuroxazide (NIF) was originally used to treat diarrhoea, but more recently, it has been found to have additional pharmacological effects, such as anti-tumour effects and inhibition of inflammatory diseases related to diabetic nephropathy. However, there are no reports regarding its role in pulmonary fibrosis. Methods The therapeutic effect of NIF on pulmonary fibrosis in vivo was measured by ELISA, hydroxyproline content, H&E and Masson staining, immunohistochemistry (IHC) and western blot. Immune cell content in lung tissue was also analysed by flow cytometry. NIF cytotoxicity was evaluated in NIH/3T3 cells, human pulmonary fibroblasts (HPFs), A549 cells and rat primary lung fibroblasts (RPLFs) using the MTT assay. Finally, an in vitro cell model created by transforming growth factor-β1 (TGF-β1) stimulation was assessed using different experiments (immunofluorescence, western blot and wound migration assay) to evaluate the effects of NIF on the activation of NIH/3T3 and HPF cells and the epithelial-mesenchymal transition (EMT) and migration of A549 cells. Results In vivo, intraperitoneal injection of NIF relieved and reversed pulmonary fibrosis caused by bleomycin (BLM) bronchial instillation. In addition, NIF inhibited the expression of a variety of cellular inflammatory factors and immune cells. Furthermore, NIF suppressed the activation of fibroblasts and EMT of epithelial cells induced by TGF-β1. Most importantly, we used an analytical docking experiment and thermal shift assay to further verify that NIF functions in conjunction with signal transducer and activator of transcription 3 (Stat3). Moreover, NIF inhibited the TGF-β/Smad pathway in vitro and decreased the expression of phosphorylated Stat3 in vitro and in vivo. Conclusion Taken together, we conclude that NIF inhibits and reverses pulmonary fibrosis, and these results support NIF as a viable therapeutic option for IPF treatment. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01946-6.
Collapse
Affiliation(s)
- Cailing Gan
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Qianyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Guan Wang
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu, 610041, China.,Innovation Center of Nursing Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,Nursing Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Liqun Wang
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yali Li
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zui Tan
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Wenya Yin
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yuqin Yao
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yongmei Xie
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Liang Ouyang
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Luoting Yu
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Tinghong Ye
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu, 610041, China.
| |
Collapse
|
139
|
Characterizing cellular heterogeneity in fibrotic hypersensitivity pneumonitis by single-cell transcriptional analysis. Cell Death Dis 2022; 8:38. [PMID: 35091537 PMCID: PMC8795750 DOI: 10.1038/s41420-022-00831-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Fibrotic hypersensitivity pneumonitis (FHP) remains one of fatal interstitial pulmonary disease. Comprehensively dissecting the cellular heterogeneity of FHP paves the way for developing general gene therapeutic solutions for FHP. Here, utilizing an integrated strategy based on scRNA-seq, scTCR-seq, and bulk RNA-seq analysis of FHP profiles, we identified ten major cell types and 19 unique subtypes. FHP exhibited higher features of EMT and inflammation-promoting than normal control. In distinct subsets of lung macrophages in FHP, FN1high, PLA2G7high, and MS4A6Ahigh macrophages with predominant M2 phenotype exhibited higher activity of inflammatory responses and para-inflammation than other macrophages. KRT17high basal-like epithelial cells were significantly increased in FHP, and showed higher ability to induce EMT. We identified roles for ACTA2high, COL1A1high, and PLA2G2Ahigh fibroblasts in FHP, which were significantly related to interstitial fibrosis. NK cells and KLRG1+ effector CD8+ T cells had greater activity in inflammation-promoting. Our results provide a comprehensive portrait of cellular heterogeneity in FHP, and highlight the indispensable role of cell subpopulations in shaping the complexity and heterogeneity of FHP. These subpopulations are potentially key players for FHP pathogenesis.
Collapse
|
140
|
Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers (Basel) 2022; 14:cancers14030552. [PMID: 35158821 PMCID: PMC8833582 DOI: 10.3390/cancers14030552] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled inflammation is a salient factor in multiple chronic inflammatory diseases and cancers. In this review, we provided an in-depth analysis of the relationships and distinctions between uncontrolled inflammation, fibrosis and cancers, while emphasizing the challenges and opportunities of developing novel therapies for the treatment and/or management of these diseases. We described how drug delivery systems, combination therapy and the integration of tissue-targeted and/or pathways selective strategies could overcome the challenges of current agents for managing and/or treating chronic inflammatory diseases and cancers. We also recognized the value of the re-evaluation of the disease-specific roles of multiple pathways implicated in the pathophysiology of chronic inflammatory diseases and cancers-as well as the application of data from single-cell RNA sequencing in the success of future drug discovery endeavors.
Collapse
|
141
|
Geng J, Liu Y, Dai H, Wang C. Fatty Acid Metabolism and Idiopathic Pulmonary Fibrosis. Front Physiol 2022; 12:794629. [PMID: 35095559 PMCID: PMC8795701 DOI: 10.3389/fphys.2021.794629] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acid metabolism, including the de novo synthesis, uptake, oxidation, and derivation of fatty acids, plays several important roles at cellular and organ levels. Recent studies have identified characteristic changes in fatty acid metabolism in idiopathic pulmonary fibrosis (IPF) lungs, which implicates its dysregulation in the pathogenesis of this disorder. Here, we review the evidence for how fatty acid metabolism contributes to the development of pulmonary fibrosis, focusing on the profibrotic processes associated with specific types of lung cells, including epithelial cells, macrophages, and fibroblasts. We also summarize the potential therapeutics that target this metabolic pathway in treating IPF.
Collapse
Affiliation(s)
- Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Huaping Dai,
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chen Wang,
| |
Collapse
|
142
|
Hu Y, Wang Q, Yu J, Zhou Q, Deng Y, Liu J, Zhang L, Xu Y, Xiong W, Wang Y. Tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis by modulating β-catenin signaling. Nat Commun 2022; 13:114. [PMID: 35013220 PMCID: PMC8748833 DOI: 10.1038/s41467-021-27684-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Tartrate-resistant acid phosphatase 5 (ACP5) performs a variety of functions. However, its role in IPF remains unclear. Here, we demonstrate that the levels of ACP5 are increased in IPF patient samples and mice with bleomycin (BLM)-induced pulmonary fibrosis. In particular, higher levels of ACP5 are present in the sera of IPF patients with a diffusing capacity of the lungs for carbonmonoxide (DLCO) less than 40% of the predicted value. Additionally, Acp5 deficiency protects mice from BLM-induced lung injury and fibrosis coupled with a significant reduction of fibroblast differentiation and proliferation. Mechanistic studies reveal that Acp5 is upregulated by transforming growth factor-β1 (TGF-β1) in a TGF-β receptor 1 (TGFβR1)/Smad family member 3 (Smad3)-dependent manner, after which Acp5 dephosphorylates p-β-catenin at serine 33 and threonine 41, inhibiting the degradation of β-catenin and subsequently enhancing β-catenin signaling in the nucleus, which promotes the differentiation, proliferation and migration of fibroblast. More importantly, the treatment of mice with Acp5 siRNA-loaded liposomes or Acp5 inhibitor reverses established lung fibrosis. In conclusions, Acp5 is involved in the initiation and progression of pulmonary fibrosis and strategies aimed at silencing or suppressing Acp5 could be considered as potential therapeutic approaches against pulmonary fibrosis. Idiopathic pulmonary fibrosis is a fatal lung disease with limited treatment options. Here the authors show that tartrate-resistant acid phosphatase 5 (Acp5) promotes lung fibrosis by enhancing beta-catenin signaling and that inhibition of Acp5 can reverse stablished pulmonary fibrosis.
Collapse
Affiliation(s)
- Yinan Hu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Qi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qing Zhou
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yanhan Deng
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Juan Liu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Weining Xiong
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China. .,Department of Pulmonary and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai, 200011, China.
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
143
|
Lyu Y, Guo C, Zhang H. Fatty acid metabolism-related genes in bronchoalveolar lavage fluid unveil prognostic and immune infiltration in idiopathic pulmonary fibrosis. Front Endocrinol (Lausanne) 2022; 13:1001563. [PMID: 36267568 PMCID: PMC9576944 DOI: 10.3389/fendo.2022.1001563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive condition with an unfavorable prognosis. A recent study has demonstrated that IPF patients exhibit characteristic alterations in the fatty acid metabolism in their lungs, suggesting an association with IPF pathogenesis. Therefore, in this study, we have explored whether the gene signature associated with fatty acid metabolism could be used as a reliable biological marker for predicting the survival of IPF patients. METHODS Data on the fatty acid metabolism-related genes (FAMRGs) were extracted from databases like Kyoto Encyclopedia of Genes and Genomes (KEGG), Hallmark, and Reactome pathway. The GSE70866 dataset with information on IPF patients was retrieved from the Gene Expression Omnibus (GEO). Next, the consensus clustering method was used to identify novel molecular subgroups. Gene Set Enrichment Analysis (GSEA) was performed to understand the mechanisms involved. The Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to evaluate the level of immune cell infiltration in the identified subgroups based on gene expression signatures of immune cells. Finally, the Least Absolute Shrinkage and Selection Operator (LASSO) regression and multivariate Cox regression analysis were performed to develop a prognostic risk model. RESULTS The gene expression signature associated with fatty acid metabolism was used to create two subgroups with significantly different prognoses. GSEA reveals that immune-related pathways were significantly altered between the two subgroups, and the two subgroups had different metabolic characteristics. High infiltration of immune cells, mainly activated NK cells, monocytes, and activated mast cells, was observed in the subgroup with a poor prognosis. A risk model based on FAMRGs had an excellent ability to predict the prognosis of IPF. The nomogram constructed using the clinical features and the risk model could accurately predict the prognosis of IPF patients. CONCLUSION The fatty acid metabolism-related gene expression signature could be used as a potential biological marker for predicting clinical outcomes and the level of infiltration of immune cells. This could eventually enhance the accuracy of the treatment of IPF patients.
Collapse
Affiliation(s)
- Yin Lyu
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chen Guo
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Hao Zhang,
| |
Collapse
|
144
|
Yin YQ, Peng F, Situ HJ, Xie JL, Tan L, Wei J, Jiang FF, Zhang SQ, Liu J. Construction of prediction model of inflammation related genes in idiopathic pulmonary fibrosis and its correlation with immune microenvironment. Front Immunol 2022; 13:1010345. [PMID: 36601116 PMCID: PMC9806212 DOI: 10.3389/fimmu.2022.1010345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The role of inflammation in the formation of idiopathic pulmonary fibrosis (IPF) has gained a lot of attention recently. However, the involvement of genes related to inflammation and immune exchange environment status in the prognosis of IPF remains to be further clarified. The objective of this research is to establish a new model for the prediction of the overall survival (OS) rate of inflammation-related IPF. METHODS Gene Expression Omnibus (GEO) was employed to obtain the three expression microarrays of IPF, including two from alveolar lavage fluid cells and one from peripheral blood mononuclear cells. To construct the risk assessment model of inflammation-linked genes, least absolute shrinkage and selection operator (lasso), univariate cox and multivariate stepwise regression, and random forest method were used. The proportion of immune cell infiltration was evaluated by single sample Gene Set Enrichment Analysis (ssGSEA) algorithm. RESULTS The value of genes linked with inflammation in the prognosis of IPF was analyzed, and a four-genes risk model was constructed, including tpbg, Myc, ffar2, and CCL2. It was highlighted by Kaplan Meier (K-M) survival analysis that patients with high-risk scores had worse overall survival time in all training and validation sets, and univariate and multivariate analysis highlighted that it has the potential to act as an independent risk indicator for poor prognosis. ROC analysis showed that the prediction efficiency of 1-, 3-, and 5-year OS time in the training set reached 0.784, 0.835, and 0.921, respectively. Immune infiltration analysis showed that Myeloid-Derived Suppressor Cells (MDSC), macrophages, regulatory T cells, cd4+ t cells, neutrophils, and dendritic cells were more infiltrated in the high-risk group than in the low-risk group. CONCLUSION Inflammation-related genes can be well used to evaluate the IPF prognosis and impart a new idea for the treatment and follow-up management of IPF patients.
Collapse
Affiliation(s)
- Ying-Qiu Yin
- Department of Respiratory Medicine, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Feng Peng
- Department of Respiratory Medicine, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Hui-Jing Situ
- Department of Radiotherapy, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun-Ling Xie
- Department of Respiratory Medicine, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Liming Tan
- Department of Respiratory Medicine, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jie Wei
- Department of Respiratory Medicine, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Fang-fang Jiang
- Department of Respiratory Medicine, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Shan-Qiang Zhang
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun Liu
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
145
|
Nienhuis WA, Grutters JC. Potential therapeutic targets to prevent organ damage in chronic pulmonary sarcoidosis. Expert Opin Ther Targets 2021; 26:41-55. [PMID: 34949145 DOI: 10.1080/14728222.2022.2022123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sarcoidosis is a granulomatous inflammatory disease with high chances of reduced quality of life, irreversible organ damage, and reduced life expectancy when vital organs are involved. Any organ system can be affected, and the lungs are most often affected. There is no preventive strategy as the exact etiology is unknown, and complex immunogenetic and environmental factors determine disease susceptibility and phenotype. Present-day treatment options originated from clinical practice and are effective in many patients. However, a substantial percentage of patients suffer from unacceptable side effects or still develop refractory, threatening pulmonary or extrapulmonary disease. AREAS COVERED As non-caseating granulomas, the pathological hallmark of disease, are assigned to divergent activation and regulation of the immune system, targets in relation to the possible triggers of granuloma formation and their sequelae were searched and reviewed. EXPERT OPINION :The immunopathogenesis underlying sarcoidosis has been a dynamic field of study. Several recent new insights give way to promising new therapeutic targets, such as certain antigenic triggers (e.g. from Aspergillus nidulans), mTOR, JAK-STAT and PPARγ pathways, the NRP2 receptor and MMP-12, which await further exploration. Clinical and trigger related phenotyping, and molecular endotyping in sarcoidosis will likely hold the key for precision medicine in the future.
Collapse
Affiliation(s)
- W A Nienhuis
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - J C Grutters
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearth and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
146
|
The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. Int J Mol Sci 2021; 23:ijms23010171. [PMID: 35008597 PMCID: PMC8745434 DOI: 10.3390/ijms23010171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (Hh) pathway is a sophisticated conserved cell signaling pathway that plays an essential role in controlling cell specification and proliferation, survival factors, and tissue patterning formation during embryonic development. Hh signal activity does not entirely disappear after development and may be reactivated in adulthood within tissue-injury-associated diseases, including idiopathic pulmonary fibrosis (IPF). The dysregulation of Hh-associated activating transcription factors, genomic abnormalities, and microenvironments is a co-factor that induces the initiation and progression of IPF.
Collapse
|
147
|
Generation of macrophage containing alveolar organoids derived from human pluripotent stem cells for pulmonary fibrosis modeling and drug efficacy testing. Cell Biosci 2021; 11:216. [PMID: 34922627 PMCID: PMC8684607 DOI: 10.1186/s13578-021-00721-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
Macrophages are a central immune component in various types of in vitro human organoid systems to recapitulate normal and pathological development. However, to date, generation of human alveolar organoids (AOs) containing macrophages for use as a pulmonary fibrosis (PF) model and drug efficacy evaluation has not been reported. Here, we generated multicellular alveolar organoids (Mac-AOs) containing functional macrophages derived from human pluripotent stem cells based on stepwise direct differentiation by mimicking developmental cues in a temporally controlled manner. Derived Mac-AOs contained the expected range of cell types, including alveolar progenitors, mesenchymal cells, alveolar epithelial cells (type 1 and 2), and macrophages. Treatment with transforming growth factor (TGF-β1) induced inflammation and fibrotic changes in Mac-AOs, offering a PF model for validating the therapeutic potential of new drugs. TGF-β1-induced fibrotic responses and collagen accumulation in these Mac-AOs were effectively ameliorated by treatment with Pirfenidone, Nintedanib, and NP-011 via suppression of extracellular signal-regulated kinase signaling. To the best of our knowledge, this is the first report to provide non-epithelial functional macrophage-containing human AO system, which will better recapitulate the complexity of in vivo alveolar tissues and advance our understanding of the pathogenesis and development of effective therapies for PF.
Collapse
|
148
|
Endria Gunadi E, Wisnu Prajoko Y, Putra A. Effectiveness of Mesenchymal Stem Cells and Bovine Colostrum on Decreasing Tumor Necrosis Factor-Α Levels and Enhancement of Macrophages M2 in Remnant Liver. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Mesenchymal stem cells (MSCs) and bovine colostrum are potential therapies for the treatment of various degenerative and immune diseases.
AIM: This study aimed to analyze the effect of MSCs on levels of tumor necrosis factor-Α (TNF-α) and macrophages M2 in the liver fibrosis of Wistar rats after 50% resection.
METHODS: This study is a quasi-experimental post-test-only control group design to analyze the effect of giving bovine colostrum and MSCs to test animals on the process of regeneration of the remaining 50% liver with fibrosis. The study was conducted at the Stem Cell and Cancer Research Universitas Sultan Agung. The number of samples used was 40 male Wistar rats. The independent variables included MSC 1.000.0000 cells and bovine colostrum at a dose of 15 μL/g. Dependent variables used were macrophages M2 and levels of TNF-α ELISA.
RESULTS: TNF-α levels on day 3 were (p = 0.001), day 7 were (p = 0.01), and day 10 were (p = 0.01) in liver tissue in various study groups analyzed using ELISA on day three*. The results showed differences which were significant between the control and treatment groups (p < 0.05). The expression of CD163 marked brown in liver tissue had more expression than the control group.
CONCLUSION: The combination of MSCs and bovine colostrum can reduce TNF-α levels and significantly increase macrophages expression in the liver fibrosis of Wistar rats after 50% resection on the 3th, 7th, and 10th days.
Collapse
|
149
|
Yang J, Wang Y, Yang D, Ma J, Wu S, Cai Q, Xue J, Yuan C, Wang J, Liu X. Wnt/β-catenin signaling regulates lipopolysaccharide-altered polarizations of RAW264.7 cells and alveolar macrophages in mouse lungs. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211059362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Macrophages are capable of exerting both proinflammatory and anti-inflammatory functions in response to distinct environmental stimuli, by polarizing into classically inflammatory state (M1) and anti-inflammatory phenotype (M2), respectively. The Wnt/β-catenin signaling plays an important role in the tissue homeostasis and immune regulations, including the macrophage polarizations. However, the molecular mechanism of Wnt/β-catenin signaling in regulating alveolar macrophage polarization in an inflammatory state remains unclear. Methods The Wnt/β-catenin signaling-altered phenotypes of murine macrophage-like RAW264.7 cells in vitro and alveolar macrophage in vivo in both of naïve and lipopolysaccharide-induced inflammation states were accessed by immunoblotting and immunostaining assays. Results The activation of Wnt/β-catenin signaling inhibited macrophage M1 polarization, but promoted alternative M2 polarization in murine RAW264.7 cells under a naïve state. Interestingly, in an LPS-induced inflammation condition, the enhanced Wnt/β-catenin activity suppressed both M1 and M2 polarizations in RAW264.7 cells in vitro, and primary alveolar macrophages of LPS-challenged mice in vivo. Molecular analysis further demonstrated an involvement of Stat signing in regulating Wnt/β-catenin signaling-altered polarizations in mouse alveolar macrophages. Conclusion These results suggest a mechanism by which Wnt/β-catenin signaling modulates macrophage polarization in an inflammation state by regulating the Stat signaling pathway.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Ying Wang
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Dandan Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Qian Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Chao Yuan
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Wang
- Center of Clinical and Diagnostic Laboratory, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
150
|
Tsitoura E, Trachalaki A, Vasarmidi E, Mastrodemou S, Margaritopoulos GA, Kokosi M, Fanidis D, Galaris A, Aidinis V, Renzoni E, Tzanakis N, Wells AU, Antoniou KM. Collagen 1a1 Expression by Airway Macrophages Increases In Fibrotic ILDs and Is Associated With FVC Decline and Increased Mortality. Front Immunol 2021; 12:645548. [PMID: 34867934 PMCID: PMC8635798 DOI: 10.3389/fimmu.2021.645548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Within the Interstitial Lung Diseases (ILD), patients with idiopathic pulmonary fibrosis (IPF) and a subset of those with non-IPF fibrotic ILD have a distinct clinical phenotype of progression despite management. This group of patients has been collectively termed the progressive fibrotic phenotype (PFP). Their early recognition may facilitate access to antifibrotic therapies to prevent or slow progression. Macrophages/monocytes within the lung orchestrate the progression and maintenance of fibrosis. A novel role for monocyte-derived macrophages during tissue damage and wound healing is the expression of collagens. We examined Collagen 1a1 expression in airway macrophages from ILD patients at diagnosis. COL1A1 mRNA levels from BAL cells were elevated in IPF and Non-IPF patients. The presence of a UIP pattern and a subsequent progressive phenotype were significantly associated with the higher BAL COL1A1 levels. In Non-IPF patients, higher COL1A1 levels were associated with a more than twofold increase in mortality. The intracellular localisation of COL1A1 in airway macrophages was demonstrated by confocal microscopy in CD45 and CD163 co-staining assays. Additionally, airway macrophages co-expressed COL1A1 with the profibrotic SPP1 gene product osteopontin. The levels of SPP1 mRNA and OPN in the BAL were significantly higher in IPF and Non-IPF patients relative to healthy. Our results suggest that profibrotic airway macrophages are increased in the BAL of patients with IPF and other ILDs and co-express COL1A1 and OPN. Importantly, COL1A1 expression by pro-fibrotic airway macrophages could be a marker of disease progression and poor survival in ILDs.
Collapse
Affiliation(s)
- Eliza Tsitoura
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Athina Trachalaki
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Eirini Vasarmidi
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Semeli Mastrodemou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - George A. Margaritopoulos
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Dionysios Fanidis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Centre, Athens, Greece
| | - Apostolos Galaris
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Centre, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Centre, Athens, Greece
| | - Elizabeth Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Nikos Tzanakis
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Athol U. Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospital National Health Service (NHS) Foundation Trust, Imperial College, London, United Kingdom
| | - Katerina M. Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
- *Correspondence: Katerina M. Antoniou,
| |
Collapse
|