101
|
Abdel-Azeem AM, Abdel-Rehiem ES, Farghali AA, Khidr FK, Abdul-Hamid M. Comparative toxicological evaluations of novel forms nano-pesticides in liver and lung of albino rats. J Mol Histol 2023; 54:157-172. [PMID: 37000336 PMCID: PMC10079706 DOI: 10.1007/s10735-023-10115-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/08/2023] [Indexed: 04/01/2023]
Abstract
Copper oxide Nanoparticles (CuONPs) are used in different agricultural applications. Large amounts of CuONPs cause organ dysfunction in animals. Our study aim to compare between the toxic effects of CuONanSphere (CuONSp) and CuONanoFlower (CuONF) as new nano-pesticides, determine a less toxic form when used in agricultural applications. To characterize CuONSp and CuONF, we used X-ray diffraction (XRD), Field emission scanning electron microscopy (SEM), and High resolution transmission electron microscopy (HRTEM) and Zeta-sizer device.18 adult male albino rats were divided into three groups (n = 6), (I) control group, (II) and (III) groups were given orally 50 mg/kg/day of CuONSp and CuONF 30 days respectively. CuONSp induced oxidant-antioxidant abnormalities, including an increase in malondialdhyde (MDA) and a decrease in glutathione (GSH) in comparison to CuONF-treated one. CuONSp induced an increase in liver enzymes activities compared to CuONF. Tumour necrosis factor-alfa (TNF-α) detected an increased in liver and lung compared to CuONF. However, histological examinations revealed changes in CuONSp group than CuONF group. Changes in immune-expressions of TNF-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kβ) and tumour suppressor gene (p53) were also more identified in CuONSp group than CuONF group. Ultrastructural studies of liver and lung tissues marked alternations were observed in CuONSp group than CuONF group. In conclusion, CuONSp induced biological alternation in liver and lung more than CuONF. So, CuONF is less toxic compared to CuONSp when used as nano-pesticide in agricultural applications.
Collapse
Affiliation(s)
- Abeer M Abdel-Azeem
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. BOX 62511, Beni-Suef, Egypt
| | - Eman S Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62511, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate studies for Advanced Sciences, Beni-Suef University, P.O. Box 62511, Beni-Suef, Egypt
| | - Fatma K Khidr
- Animal Research Department, Plant Protection Research Institute, Agricultural Research Center, Cairo, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. BOX 62511, Beni-Suef, Egypt.
| |
Collapse
|
102
|
Lazăr AI, Aghasoleimani K, Semertsidou A, Vyas J, Roșca AL, Ficai D, Ficai A. Graphene-Related Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1092. [PMID: 36985986 PMCID: PMC10051126 DOI: 10.3390/nano13061092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.
Collapse
Affiliation(s)
- Andreea-Isabela Lazăr
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | | | - Anna Semertsidou
- Charles River Laboratories, Margate, Manston Road, Kent CT9 4LT, UK
| | - Jahnavi Vyas
- Drug Development Solution, Newmarket road, Ely, CB7 5WW, UK
| | - Alin-Lucian Roșca
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050045 Bucharest, Romania
| |
Collapse
|
103
|
Cazier H, Malgorn C, Georgin D, Fresneau N, Beau F, Kostarelos K, Bussy C, Campidelli S, Pinault M, Mayne-L'Hermite M, Taran F, Junot C, Fenaille F, Sallustrau A, Colsch B. Correlative radioimaging and mass spectrometry imaging: a powerful combination to study 14C-graphene oxide in vivo biodistribution. NANOSCALE 2023; 15:5510-5518. [PMID: 36853236 DOI: 10.1039/d2nr06753f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Research on graphene based nanomaterials has flourished in the last decade due their unique properties and emerging socio-economic impact. In the context of their potential exploitation for biomedical applications, there is a growing need for the development of more efficient imaging techniques to track the fate of these materials. Herein we propose the first correlative imaging approach based on the combination of radioimaging and mass spectrometry imaging for the detection of Graphene Oxide (GO) labelled with carbon-14 in mice. In this study, 14C-graphene oxide nanoribbons were produced from the oxidative opening of 14C-carbon nanotubes, and were then intensively sonicated to provide nano-size 14C-GO flakes. After Intravenous administration in mice, 14C-GO distribution was quantified by radioimaging performed on tissue slices. On the same slices, MS-imaging provided a highly resolved distribution map of the nanomaterial based on the detection of specific radical anionic carbon clusters ranging from C2˙- to C9˙- with a base peak at m/z 72 (12C) and 74 (14C) under negative laser desorption ionization mass spectrometry (LDI-MS) conditions. This proof of concept approach synergizes the strength of each technique and could be advantageous in the pre-clinical development of future Graphene-based biomedical applications.
Collapse
Affiliation(s)
- Hélène Cazier
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - Carole Malgorn
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SiMos, 91191 Gif-sur-Yvette, France
| | - Dominique Georgin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Nathalie Fresneau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
- Université Paris Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Fabrice Beau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SiMos, 91191 Gif-sur-Yvette, France
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester M13 9PL, UK
- National Graphene Institute, University of Manchester, Manchester M13 9PL, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), UAB Campus Bellaterra, Barcelona 08193, Spain
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester M13 9PL, UK
- National Graphene Institute, University of Manchester, Manchester M13 9PL, UK
| | - Stéphane Campidelli
- Université Paris Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Mathieu Pinault
- Université Paris-Saclay, CEA, CNRS, NIMBE, LEDNA, 91191 Gif-sur-Yvette, France
| | | | - Frédéric Taran
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Christophe Junot
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - François Fenaille
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Benoit Colsch
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| |
Collapse
|
104
|
Lee SH, Kang MS, Jeon S, Jo HJ, Hong SW, Kim B, Han DW. 3D bioprinting of human mesenchymal stem cells-laden hydrogels incorporating MXene for spontaneous osteodifferentiation. Heliyon 2023; 9:e14490. [PMID: 36994406 PMCID: PMC10040522 DOI: 10.1016/j.heliyon.2023.e14490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Contemporary advances in three-dimensional (3D) bioprinting technologies have enabled the fabrication of tailored live 3D tissue mimetics. Furthermore, the development of advanced bioink materials has been highlighted to accurately reproduce the composition of a native extracellular matrix and mimic the intrinsic properties of laden cells. Recent research has shown that MXene is one of promising nanobiomaterials with osteogenic activity for bone grafts and scaffolds due to its unique atomic structure of three titanium layers between two carbon layers. In this study, the MXene-incorporated gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) (i.e., GelMA/HAMA-MXene) bioinks were prepared to explore if they have the potential to enable the spontaneous osteodifferentiation of human mesenchymal stem cells (hMSCs) when the hMSCs-laden GelMA/HAMA-MXene bioinks were 3D printed. The physicochemical and rheological characteristics of the GelMA/HAMA-MXene hydrogels were proven to be unprecedentedly favorable supportive matrices suited for the growth and survival of hMSCs. Furthermore, hMSCs were shown to spontaneously differentiate into osteoblasts within GelMA-HAMA/MXene composites to provide favorable microenvironments for osteogenesis. Therefore, our results suggest that the remarkable biofunctional advantages of the MXene-incorporated GelMA/HAMA bioink can be utilized in a wide range of strategies for the development of effective scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute / Innovation Research & Support Center for Dental Science, Seoul 8 National University Dental Hospital, Seoul, 03080, Republic of Korea
- Corresponding author.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
- Corresponding author. Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
105
|
Goemaere I, Punj D, Harizaj A, Woolston J, Thys S, Sterck K, De Smedt SC, De Vos WH, Braeckmans K. Response Surface Methodology to Efficiently Optimize Intracellular Delivery by Photoporation. Int J Mol Sci 2023; 24:ijms24043147. [PMID: 36834558 PMCID: PMC9962540 DOI: 10.3390/ijms24043147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Photoporation is an up-and-coming technology for the gentle and efficient transfection of cells. Inherent to the application of photoporation is the optimization of several process parameters, such as laser fluence and sensitizing particle concentration, which is typically done one factor at a time (OFAT). However, this approach is tedious and runs the risk of missing a global optimum. Therefore, in this study, we explored whether response surface methodology (RSM) would allow for more efficient optimization of the photoporation procedure. As a case study, FITC-dextran molecules of 500 kDa were delivered to RAW264.7 mouse macrophage-like cells, making use of polydopamine nanoparticles (PDNPs) as photoporation sensitizers. Parameters that were varied to obtain an optimal delivery yield were PDNP size, PDNP concentration and laser fluence. Two established RSM designs were compared: the central composite design and the Box-Behnken design. Model fitting was followed by statistical assessment, validation, and response surface analysis. Both designs successfully identified a delivery yield optimum five- to eight-fold more efficiently than when using OFAT methodology while revealing a strong dependence on PDNP size within the design space. In conclusion, RSM proves to be a valuable approach to efficiently optimize photoporation conditions for a particular cell type.
Collapse
Affiliation(s)
- Ilia Goemaere
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Deep Punj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jessica Woolston
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Karen Sterck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Stefaan C. De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-2648098; Fax: +32-9-2648189
| |
Collapse
|
106
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
107
|
Riyal I, Badoni A, Kalura SS, Mishra K, Sharma H, Gambhir L, Dwivedi C. Antimicrobial activity of synthesized graphene oxide-selenium nanocomposites: A mechanistic insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19269-19277. [PMID: 36227490 DOI: 10.1007/s11356-022-23550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticles have recently gained interest as an anti-bacterial agent due to their large surface area/volume ratio and potential to compromise the integrity of bacterial cell membranes. Due to its versatility and anti-bacterial activity, graphene-based materials have drawn significant interest in biomedical applications. One of the greatest threats to life in the modern technological era is the pervasiveness of infectious diseases since bacteria cells are constantly updating themselves to resist antibiotics. In this presented study, GO-Se nanocomposite has been synthesized using polymer solution via a simple dispersion method. The structural and physicochemical properties of nanocomposite were investigated in detail. Staphylococcus aureus, Proteus vulgaris, and Bacillus subtilis bacterial strains were employed to study the anti-bacterial activity of GO-Se nanocomposite. The results show that the synthesized nanocomposites have good efficacy as an anti-bacterial agent. UV-vis spectroscopy, FTIR spectroscopy, HRTEM, XPS, and Raman spectroscopy were used to analyze the as-prepared GO and GO-Se nanocomposite.
Collapse
Affiliation(s)
- Isha Riyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India
| | - Ayush Badoni
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India
| | - Shubham S Kalura
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India
| | - Kavita Mishra
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India
| | - Himani Sharma
- Department of Physics, School of Physical Sciences, Doon University, Dehradun, 248001, India
| | - Lokesh Gambhir
- Department of Biotechnology, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, 248001, India
| | - Charu Dwivedi
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| |
Collapse
|
108
|
Wang L, Wang Y, Yang X, Duan K, Jiang X, Chen J, Liu P, Li M. Cytotoxicity and cell injuries of flavored electronic cigarette aerosol and mainstream cigarette smoke: A comprehensive in vitro evaluation. Toxicol Lett 2023; 374:96-110. [PMID: 36572074 DOI: 10.1016/j.toxlet.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Although electronic cigarettes (e-cigarettes) have attracted much attention due to their claimed harm-reduction effects compared with conventional cigarettes, the adverse effects of e-cigarette aerosol exposure on human health are still unclear. In this work we compared the cytotoxic effects of combustion cigarettes with four commercially available flavored electronic cigarettes and their main components on ten cell lines. Cell injury mechanism of e-cigarette aerosol and combustible cigarette smoke was also explored using cellular models. METHODS Eleven kinds of e-cigarettes aerosol condensates (ECSCs) and cigarette smoke constituent's condensates (CSC) were collected by Cambridge filter pad, and the nicotine contents were determined by UPLC to provide an equivalent nicotine dosage. The CCK-8 assay was used to measure the cell viability differences between ECSC and CSC. Based on RNA-seq results, we compared the effects of ECSC and CSC on various cell injury pathways. Oxidative stress and inflammatory responses were further tested by Western Blot, immunofluorescence, and qRT-PCR assays. RESULTS CSC was found to be more cytotoxic than flavored ECSC and their main components, and BEAS-2B cell line was the most sensitive cells by comparing the IC50 value. With prolonged exposure duration and higher doses, ECSC began to exhibit cytotoxicity at and above 72 µg/mL. The IC50 values of ECSC were 15-fold higher than that of CSC. Transcriptome analyses indicated that cell injury-related processes were enriched after the treatment of CSC. CSC could significantly induce more oxidative stress and inflammatory signals than ECSC. CONCLUSION ECSCs and their components induced significantly less cytotoxicity than CSC under the laboratory exposure conditions, and CSC caused much severe cell injuries. Our study adds to the body of scientific evidence for a more comprehensive safety evaluation of e-cigarette products as compared to cigarettes.
Collapse
Affiliation(s)
- Lilan Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Yao Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Xuemin Yang
- RELX Lab, Shenzhen RELX Tech. Co. Ltd., Shenzhen, Guangdong 518000, China
| | - Kun Duan
- RELX Lab, Shenzhen RELX Tech. Co. Ltd., Shenzhen, Guangdong 518000, China
| | - Xingtao Jiang
- RELX Lab, Shenzhen RELX Tech. Co. Ltd., Shenzhen, Guangdong 518000, China
| | - Jianwen Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China.
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
109
|
Costanzo H, Gooch J, Frascione N. Nanomaterials for optical biosensors in forensic analysis. Talanta 2023; 253:123945. [PMID: 36191514 DOI: 10.1016/j.talanta.2022.123945] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Biosensors are compact analytical devices capable of transducing a biological interaction event into a measurable signal outcome in real-time. They can provide sensitive and affordable analysis of samples without the need for additional laboratory equipment or complex preparation steps. Biosensors may be beneficial for forensic analysis as they can facilitate large-scale high-throughput, sensitive screening of forensic samples to detect target molecules that are of high evidential value. Nanomaterials are gaining attention as desirable components of biosensors that can enhance detection and signal efficiency. Biosensors that incorporate nanomaterials within their design have been widely reported and developed for medical purposes but are yet to find routine employment within forensic science despite their proven potential. In this article, key examples of the use of nanomaterials within optical biosensors designed for forensic analysis are outlined. Their design and mechanism of detection are both considered throughout, discussing how nanomaterials can enhance the detection of the target analyte. The critical evaluation of the optical biosensors detailed within this review article should help to guide future optical biosensor design via the incorporation of nanomaterials, for not only forensic analysis but alternative analytical fields where such biosensors may prove a valuable addition to current workflows.
Collapse
Affiliation(s)
- Hayley Costanzo
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - James Gooch
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
110
|
Rasyida A, Halimah S, Wijayanti ID, Wicaksono ST, Nurdiansah H, Silaen YMT, Ni’mah YL, Ardhyananta H, Purniawan A. A Composite of Hydrogel Alginate/PVA/r-GO for Scaffold Applications with Enhanced Degradation and Biocompatibility Properties. Polymers (Basel) 2023; 15:polym15030534. [PMID: 36771834 PMCID: PMC9921136 DOI: 10.3390/polym15030534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
We reported in this study the interrelation between the addition of 0.4, 0.8, 1.2, and 1.6 wt. % reduced graphene oxide (r-GO) into PVA/Alginate and their degradation and biocompatibility properties. The r-GO was synthesized by using the Hummer's method. A crosslinker CaSO4 was added to prepare Alginate/PVA/r-GO Hydrogel composite. A Field Emission in Lens (FEI)-scanning electron microscopy (SEM), along with X-ray energy dispersive spectroscopy (EDS), was performed, characterizing the morphology of the composite. A compressive test was conducted, determining the mechanical properties of the composite with the highest achieved 0.0571 MPa. Furthermore, in vitro cytotoxicity was conducted to determine the biocompatibility properties of the studied composite. An MTT assay was applied to measure cell viability. In general, the presence of r-GO was found to have no significant effect on the morphology of the hydrogel. Indeed, adding 0.4% r-GO to the PVA/Alginate increased the cell viability up to 122.26 ± 0.93, indicating low toxicity. The studied composites have almost no changes in weight and shape, which proves that low degradation occurred in addition to this after 28 days of immersion in saline phosphate buffer solution. In conclusion, achieving minimal degradation and outstanding biocompatibility lead to PVA/Alginate/r-GO hydrogel composites being the most attractive materials for tissue engineering applications.
Collapse
Affiliation(s)
- Amaliya Rasyida
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
- Correspondence: or
| | - Salma Halimah
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Ika Dewi Wijayanti
- Department of Mechanical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Sigit Tri Wicaksono
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Haniffudin Nurdiansah
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Yohannes Marudut Tua Silaen
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Yatim Lailun Ni’mah
- Department of Chemistry, Faculty of Sains and Analytica Data, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Hosta Ardhyananta
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Agung Purniawan
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
111
|
Kołodziej A, Wesełucha-Birczyńska A, Długoń E, Świętek M, Gubernat M, Skalniak Ł, Błażewicz M. A study of the interactions between human osteoblast-like cells and polymer composites with functionalized graphene derivatives using 2D correlation spectroscopy (2D-COS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121862. [PMID: 36122465 DOI: 10.1016/j.saa.2022.121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
In response to the growing need for development of modern biomaterials for applications in regenerative medicine strategies, the research presented here investigated the biological potential of two types of polymer nanocomposites. Graphene oxide (GO) and partially reduced graphene oxide (rGO) were incorporated into a poly(ε-caprolactone) (PCL) matrix, creating PCL/GO and PCL/rGO nanocomposites in the form of membranes. Proliferation of osteoblast-like cells (human U-2 OS cell line) on the surface of the studied materials confirmed their biological activity. Fluorescence microscopy was able to distinguish the different patterns of interaction between cells (depending on the type of material) after 15 days of the test run. Raman micro-spectroscopy and two-dimensional correlation spectroscopy (2D-COS) applied to Raman spectra distinguished the nature of cell-material interactions after only 8 days. Combination of these two techniques (Raman micro-spectroscopy and 2D-COS analysis) facilitated identification of a much more complex cellular response (especially from proteins) on the surface of PCL/GO. The presented approach can be regarded as a method for early study of the bioactivity of membrane materials.
Collapse
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Elżbieta Długoń
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague, Czech Republic
| | - Maciej Gubernat
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Łukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marta Błażewicz
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
112
|
Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine 2023; 18:1695-1708. [PMID: 37020689 PMCID: PMC10069520 DOI: 10.2147/ijn.s402954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Graphene-family nanomaterials (GFNs) possess mechanical stiffness, optical properties, and biocompatibility making them promising materials for biomedical applications. However, to realize the potential of graphene in biomedicine, it must overcome several challenges that arise when it enters the body's circulatory system. Current research focuses on the development of tumor-targeting devices using graphene, but GFNs accumulated in different tissues and cells through different pathways, which can cause toxic reactions leading to cell apoptosis and body dysfunction when the accumulated amount exceeds a certain limit. In addition, as a foreign substance, graphene can induce complex inflammatory reactions with immune cells and inflammatory factors, potentially enhancing or impairing the body's immune function. This review discusses the biomedical applications of graphene, the effects of graphene materials on human immune function, and the biotoxicity of graphene materials.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Correspondence: Ge Ban, Email
| | - Yingze Hou
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Department of Biomedical Research, Research and Innovation Center, Xinjiang Institute of Technology, Xinjiang, 843100, People’s Republic of China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Lei Chai
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chongyang Ma
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| |
Collapse
|
113
|
Yang F, He Q, Dai X, Zhang X, Song D. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Front Pharmacol 2023; 14:1143102. [PMID: 36909177 PMCID: PMC9992554 DOI: 10.3389/fphar.2023.1143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignant tumor among women in the world. BC is the heterogeneous tumor with different subtypes including luminal A-like, luminal B-like (HER2-/HER2+), HER2 enriched, and triple-negative BC. The therapeutic strategies including surgery, chemotherapy, radiotherapy, targeted therapy, and endocrine therapy are well developed and commonly used in the treatment of BC. However, some adverse effects of these conventional treatments limited their wide application in clinical. Therefore, it is necessary to develop more safe and more efficient individualized treatment strategies of the BC. Nanomedicine, as the most promising strategy for controlled and targeted drug delivery, is widely used in multiple aspects of cancer therapy. Importantly, accumulative evidences show that nanomedicine has achieved good outcomes in the treatment of BC and a huge amount of BC patients benefited from the nanomedicine related treatments. In this review, we summarized and discussed the major problems occurred during the administration of conventional treatment strategies for BC and the potential roles of nanomedicine in promoting the treatment efficacy of BC by overcoming obstacles of current treatment of BC.
Collapse
Affiliation(s)
- Fan Yang
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Qingjie He
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
114
|
Oz T, Kaushik AK, Kujawska M. Advances in graphene-based nanoplatforms and their application in Parkinson's disease. MATERIALS ADVANCES 2023; 4:6464-6477. [DOI: 10.1039/d3ma00623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Graphene and GBNs offer diverse PD management modalities by targeting neurodegeneration, exerting regenerative properties and their use as carriers, biosensors, and imaging agents.
Collapse
Affiliation(s)
- Tuba Oz
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
115
|
Kazlauskas M, Jurgelėnė Ž, Šemčuk S, Jokšas K, Kazlauskienė N, Montvydienė D. Effect of graphene oxide on the uptake, translocation and toxicity of metal mixture to Lepidium sativum L. plants: Mitigation of metal phytotoxicity due to nanosorption. CHEMOSPHERE 2023; 312:137221. [PMID: 36403815 DOI: 10.1016/j.chemosphere.2022.137221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Due to its unique structure and exceptional properties, graphene oxide (GO) is increasingly used in various fields of industry and therefore is inevitably released into the environment, where it interacts with different contaminants. However, the information relating to the ability of GO to affect the toxicity of contaminants is still limited. Therefore, the aim of our study was to synthesize GO, to examine the phytotoxicity of different concentrations of GO and its co-exposure with the metal mixture using garden cress (Lepidium sativum L.) as a test organism and to evaluate the potential of GO to affect toxicity of metals and their uptake by plants. The metal mixture (MIX) containing Ni (II), Zn (II), Cr (III) and Cu (II) was prepared in accordance with the maximum-permissible-concentrations (MPC) accepted for the inland waters in the EU. Additionally, the capacity of GO to adsorb metals was studied in specific conditions of the phytotoxicity test and assessed using adsorption isotherms. Our data indicate that in most cases the tested concentrations of MIX, GO and MIX + GO did not affect seed germination, root growth and biomass of roots and seedlings, however, they were found to alter photosynthesis processes, enhance production of carotenoids and H2O2 as well as to activate lipid peroxidation. Additionally, our study revealed that GO affects the accumulation of tested metals in roots and shoots of the MIX-exposed L. sativum. This is due to the capacity of GO to adsorb metals from the growth medium. Therefore, low concentrations of GO can be used for water decontamination.
Collapse
Affiliation(s)
- M Kazlauskas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Ž Jurgelėnė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - S Šemčuk
- SRI Center for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300, Vilnius, Lithuania
| | - K Jokšas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225, Vilnius, Lithuania
| | - N Kazlauskienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - D Montvydienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
116
|
Zanelli D, Candotto Carniel F, Fortuna L, Pavoni E, Jehová González V, Vázquez E, Prato M, Tretiach M. Interactions of airborne graphene oxides with the sexual reproduction of a model plant: When production impurities matter. CHEMOSPHERE 2023; 312:137138. [PMID: 36343732 DOI: 10.1016/j.chemosphere.2022.137138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The increasing use of graphene-related materials (GRMs) in everyday-life products raises concerns for their possible release into the environment and consequent impact on organisms. GRMs have widely varying effects on plants and, according to recent evidences, graphene oxide (GO) has the potential to interfere with the sexual reproduction owing to its acidic properties and production residues. Here, stigmas of the model plant Cucurbita pepo (summer squash) were subjected to simulated dry depositions of GO and GO purified from production residues (PGO). Stigmas were then hand-pollinated and GRM deposition was checked by ESEM and confocal microscopy. Analysis of stigma integrity, pH homeostasis and pollen-stigma interactions did not reveal negative effects. Fruit and seed production were not affected, but GO depositions of 22.1 ± 7.2 ng mm-2 affected the normal development of seeds, decreasing seed dimensions, seed germination and germination speed. The elemental analysis revealed that GO has significant quantities of production residues, such as strong acids and oxidants, while PGO has only traces, which justifies the differences observed in the effects caused by the two materials. Our results show that GO depositions of up to 11.1 ± 3.6 ng mm-2, which fall within the variation range of total dry particulate matter depositions reported in the literature, are safe for reproduction of C. pepo. This is the first "safety" limit ever recorded for depositions of "out-of-the-box" GO concerning the reproduction of a seed plant. If confirmed for wind-pollinated species, it might be considered for policymaking of GRMs emissions in the air.
Collapse
Affiliation(s)
- Davide Zanelli
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | | - Lorenzo Fortuna
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Elena Pavoni
- Department of Mathematics and Geosciences, University of Trieste, 34128, Trieste, Italy
| | - Viviana Jehová González
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain; Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, 13071, Ciudad Real, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013, Bilbao, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
117
|
Atabay M, Sardroodi JJ, Ebrahimzadeh AR, Avestan MS. Modeling the Interaction of Anticancer Protein Azurin with the Nanosheets for Medical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maryam Atabay
- Molecular Simulation Lab Azarbaijan Shahid Madani University Tabriz Iran
- Molecular Science and Engineering Research Group (MSERG) Azarbaijan Shahid Madani University Tabriz Iran
- Department of Chemistry Azarbaijan Shahid Madani University Tabriz Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Lab Azarbaijan Shahid Madani University Tabriz Iran
- Molecular Science and Engineering Research Group (MSERG) Azarbaijan Shahid Madani University Tabriz Iran
- Department of Chemistry Azarbaijan Shahid Madani University Tabriz Iran
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation Lab Azarbaijan Shahid Madani University Tabriz Iran
- Molecular Science and Engineering Research Group (MSERG) Azarbaijan Shahid Madani University Tabriz Iran
- Department of Physics Azarbaijan Shahid Madani University Tabriz Iran
| | | |
Collapse
|
118
|
Perkucin I, Lau KSK, Morshead CM, Naguib HE. Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces. Biomed Mater 2022; 18. [PMID: 36537718 DOI: 10.1088/1748-605x/aca578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.
Collapse
Affiliation(s)
- Ivana Perkucin
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Canada
| | - Kylie S K Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Surgery, Division of Anatomy, University of Toronto, Toronto, Canada
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
119
|
Chen L, Zhou X, Mo M. The response of RAW264.7 cells to dicalcium silicate nanoparticles and the effect of the nanoparticle-regulated immune environment on osteogenesis. JOURNAL OF MATERIALS RESEARCH 2022; 37:4268-4283. [DOI: 10.1557/s43578-022-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2025]
|
120
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
121
|
Daniluk K, Lange A, Pruchniewski M, Małolepszy A, Sawosz E, Jaworski S. Delivery of Melittin as a Lytic Agent via Graphene Nanoparticles as Carriers to Breast Cancer Cells. J Funct Biomater 2022; 13:278. [PMID: 36547538 PMCID: PMC9787603 DOI: 10.3390/jfb13040278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Melittin, as an agent to lyse biological membranes, may be a promising therapeutic agent in the treatment of cancer. However, because of its nonspecific actions, there is a need to use a delivery method. The conducted research determined whether carbon nanoparticles, such as graphene and graphene oxide, could be carriers for melittin to breast cancer cells. The studies included the analysis of intracellular pH, the potential of cell membranes, the type of cellular transport, and the expression of receptor proteins. By measuring the particle size, zeta potential, and FT-IT analysis, we found that the investigated nanoparticles are connected by electrostatic interactions. The level of melittin encapsulation with graphene was 86%, while with graphene oxide it was 78%. A decrease in pHi was observed for all cell lines after administration of melittin and its complex with graphene. The decrease in membrane polarization was demonstrated for all lines treated with melittin and its complex with graphene and after exposure to the complex of melittin with graphene oxide for the MDA-MB-231 and HFFF2 lines. The results showed that the investigated melittin complexes and the melittin itself act differently on different cell lines (MDA-MB-231 and MCF-7). It has been shown that in MDA-MD-231 cells, melittin in a complex with graphene is transported to cells via caveolin-dependent endocytosis. On the other hand, the melittin-graphene oxide complex can reach breast cancer cells through various types of transport. Other differences in protein expression changes were also observed for tumor lines after exposure to melittin and complexes.
Collapse
Affiliation(s)
- Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-654 Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
122
|
Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
123
|
Ghazimoradi MM, Azad FV, Jalali F, Rafieian-Kopaei M. The Neurotoxic Mechanisms of Graphene Family Nanomaterials at the Cellular Level: A Solution-based Approach Review. Curr Pharm Des 2022; 28:3572-3581. [PMID: 36464882 DOI: 10.2174/1381612829666221202093813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 12/09/2022]
Abstract
The graphene family nanomaterials (GFNs) have been recognized to have potential applications in biomedicine, especially in the rag nostic, drug delivery and neuroimaging. Multiple studies have examined the neurotoxicity of GFNs to assay their toxic effects on organisms and ecosystems. In this article, we reviewed the different neurotoxicity effects of GFNs at intracellular levels, including nucleus-related effects and cytosolic mechanisms, as well as extracellular levels, including effects on enzyme activity, oxidative stress, behavior, neurotransmitters, and central nervous system (CNS). Furthermore, for the sake of the solution, we discussed the reducing ways of graphene toxicity. A schematic description is shown in Fig. (1).
Collapse
Affiliation(s)
| | - Farhan Vahdat Azad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Jalali
- Medical Laboratory Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
124
|
Eltahir S, Al homsi R, Jagal J, Ahmed IS, Haider M. Graphene Oxide/Chitosan Injectable Composite Hydrogel for Controlled Release of Doxorubicin: An Approach for Enhanced Intratumoral Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4261. [PMID: 36500884 PMCID: PMC9736459 DOI: 10.3390/nano12234261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Intratumoral (IT) injection of chemotherapeutics into needle-accessible solid tumors can directly localize the anticancer drug in the tumor site, thus increasing its local bioavailability and reducing its undesirable effects compared to systemic administration. In this study, graphene oxide (GO)-based chitosan/β-glycerophosphate (CS/GP) thermosensitive injectable composite hydrogels (CH) were prepared and optimized for the localized controlled delivery of doxorubicin (DOX). A quality-by-design (QbD) approach was used to study the individual and combined effects of several formulation variables to produce optimal DOX-loaded GO/CS/GP CH with predetermined characteristics, including gelation time, injectability, porosity, and swelling capacity. The surface morphology of the optimal formulation (DOX/opt CH), chemical interaction between its ingredients and in vitro release of DOX in comparison to GO-free CS/GP CH were investigated. Cell viability and cellular uptake after treatment with DOX/opt CH were studied on MCF 7, MDB-MB-231 and FaDu cell lines. The statistical analysis of the measured responses revealed significant effects of the concentration of GO, the concentration of CS, and the CS:GP ratio on the physicochemical characteristics of the prepared GO/CS/GP CH. The optimization process showed that DOX-loaded GO/CS/GP CH prepared using 0.1% GO and 1.7% CS at a CS: GO ratio of 3:1 (v/v) had the highest desirability value. DOX/opt CH showed a porous microstructure and chemical compatibility between its ingredients. The incorporation of GO resulted in an increase in the ability of the CH matrices to control DOX release in vitro. Finally, cellular characterization showed a time-dependent increase in cytotoxicity and cellular uptake of DOX after treatment with DOX/opt CH. The proposed DOX/opt CH might be considered a promising injectable platform to control the release and increase the local bioavailability of chemotherapeutics in the treatment of solid tumors.
Collapse
Affiliation(s)
- Safaa Eltahir
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Reem Al homsi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
125
|
Wu L, Zhang P, Zhou H, Li J, Shen X, Li T, Kong Z, Hu W, Zhang Y. Molecular Dynamics Simulation of the Interaction between Graphene Oxide Quantum Dots and DNA Fragment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8506. [PMID: 36500001 PMCID: PMC9737461 DOI: 10.3390/ma15238506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Due to their excellent physical properties, graphene oxide quantum dots (GOQDs) are widely used in various fields, especially biomedicine. However, due to the short study period, their biosafety and potential genotoxicity to human and animal cells are not well elucidated. In this study, the adsorption of GOQDs with different concentrations and oxidation degrees on DNA was investigated using a molecular dynamics simulation method. The toxicity to DNA depended on the interaction mechanism that GOQDs adsorbed on DNA fragments, especially in the minor groove of DNA. When the number of the adsorbed GOQDs in the minor groove of DNA is small, the GOQD inserts into the interior of the base pair. When there are more GOQDs in the minor groove of DNA, the base pairs at the adsorption sites of DNA unwind directly. This interaction way damaged the double helix structure of DNA seriously. We also compare the different functional groups of -1COOH. The results show that the interaction energy between 1COOH-GQD and DNA is stronger than that between 1OH-GQD and DNA. However, the damage to DNA is the opposite. These findings deepen our understanding of graphene nanotoxicity in general.
Collapse
Affiliation(s)
- Lingxiao Wu
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Pengzhen Zhang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hanxing Zhou
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jing Li
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xin Shen
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyu Li
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong 250353, China
| | - Yongjun Zhang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
126
|
Liu X, Yang C, Chen P, Zhang L, Cao Y. The uses of transcriptomics and lipidomics indicated that direct contact with graphene oxide altered lipid homeostasis through ER stress in 3D human brain organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157815. [PMID: 35931159 DOI: 10.1016/j.scitotenv.2022.157815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The potential uses of graphene-based nanomaterials (NMs) in various fields lead to the concern about their neurotoxicity, considering that graphene-based NMs are capable to cross blood brain barrier (BBB) and enter central nervous system (CNS). Although previous studies reported the possibility of graphene-based NM exposure to alter lipid homeostasis in animals or cultured neurons, recent studies suggested the need to use 3D human brain organoids for mechanism-based toxicological studies as this model might better recapitulate the complex human brains. Herein, we used multi-omics techniques to investigate the mechanisms of graphene oxide (GO) on lipid homeostasis in a novel 3D brain organoid model. We found that 50 μg/mL GO induced cytotoxicity but not superoxide. RNA-sequencing data showed that 50 μg/mL GO significantly up-regulated and down-regulated 80 and 121 genes, respectively. Furthermore, we found that GO exposure altered biological molecule metabolism pathways including lipid metabolism. Consistently, lipidomics data supported dose-dependent alteration of lipid profiles by GO in 3D brain organoids. Interestingly, co-exposure to GO and endoplasmic reticulum (ER) stress inhibitor 4-phenylbutyric acid (4-PBA) decreased most of the lipid classes compared with the exposure of GO only. We further verified that exposure to GO promoted ER stress marker GRP78 proteins, which in turn activated IRE1α/XBP-1 axis, and these changes were partially or completely inhibited by 4-PBA. These results proved that direct contact with GO disrupted lipid homeostasis through the activation of ER stress. As 3D brain organoids resemble human brains, these data might be better extrapolated to humans.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Food science and Engineering, Moutai Institute, Renhuai 564507, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China.
| |
Collapse
|
127
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
128
|
Tang X, Song F, Zhao W, Zhang Z, Cao Y. Intratracheal instillation of graphene oxide decreases anti-virus responses and lipid contents via suppressing Toll-like receptor 3 in mouse livers. J Appl Toxicol 2022; 42:1822-1831. [PMID: 35727742 DOI: 10.1002/jat.4359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
Recent studies revealed a causal relationship between Toll-like receptors (TLRs) and lipid droplet biogenesis. Interestingly, it has been reported before that nanomaterials (NMs) were capable to modulate TLRs, but it remains unclear if NMs could affect lipid levels via TLR signaling pathways. In this study, we investigated the influences of airway exposure to graphene oxide (GO) on TLR3 signaling pathways and lipid levels in mouse livers. Intratracheal instillation of GO (0.1, 1, and 5 mg/kg, once a day, totally 5 days) induced inflammatory cell infiltrations as indicated by hematoxylin-eosin (H&E) staining and fibrosis as indicated by Masson staining in lungs, accompanying with decreased TLR3 proteins. Consistently, a TLR3-regulated anti-virus protein, namely interferon induced protein with tetratricopeptide repeats 1 (IFIT1), as well as two TLR3-regulated lipid proteins, namely radical S-adenosyl methionine domain containing 2 (RSAD2) and perilipin 2 (PLIN2), were decreased in lungs. The protein levels of interferon-β in serum were also decreased. In livers, GO exposure induced disorganization of liver cells but not fibrosis. In agreement with the trends observed in lungs, TLR3, IFIT1, RSAD2, and PLIN2 proteins were decreased in livers. As a possible consequence, GO exposure dose-dependently decreased lipid levels in livers as indicated by oil red O and BODIPY 493/503 staining. We concluded that airway exposure to GO decreased anti-virus responses and lipid levels in mouse livers via the suppression of TLR3.
Collapse
Affiliation(s)
- Xiaomin Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhaohui Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
129
|
Armaković S, Mirjanić Đ, Pelemiš SS, Armaković SJ. Understanding interactions between graphene and local anesthetic molecules applied in dentistry – Towards the prolonged effects of local anesthesia. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
130
|
Liu J, Zhao W, Song F, Huang C, Zhang Z, Cao Y. Graphene oxide exposure suppresses immune responses and increases the sensitivities of zebrafishes to lipopolysaccharides via the down-regulation of Toll-like receptors. ECOLOGICAL INDICATORS 2022; 144:109563. [DOI: 10.1016/j.ecolind.2022.109563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
|
131
|
Tharani S, Durgalakshmi D, Balakumar S, Rakkesh RA. Futuristic Advancements in Biomass‐Derived Graphene Nanoassemblies: Versatile Biosensors for Point‐of‐Care Devices. ChemistrySelect 2022. [DOI: 10.1002/slct.202203603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- S. Tharani
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| | - D. Durgalakshmi
- Department of Medical Physics Anna University Chennai 600 025 TN India
- Department of Physics Ethiraj College for Women Chennai 600 008 TN India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology University of Madras Chennai 600 025 TN India
| | - R. Ajay Rakkesh
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| |
Collapse
|
132
|
Akhtar N, Mohammed HA, Yusuf M, Al-Subaiyel A, Sulaiman GM, Khan RA. SPIONs Conjugate Supported Anticancer Drug Doxorubicin's Delivery: Current Status, Challenges, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3686. [PMID: 36296877 PMCID: PMC9611558 DOI: 10.3390/nano12203686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Considerable efforts have been directed towards development of nano-structured carriers to overcome the limitations of anticancer drug, doxorubicin's, delivery to various cancer sites. The drug's severe toxicity to cardio and hepatic systems, low therapeutic outcomes, inappropriate dose-demands, metastatic and general resistance, together with non-selectivity of the drug have led to the development of superparamagnetic iron oxide nanoparticles (SPIONs)-based drug delivery modules. Nano-scale polymeric co-encapsulation of the drug, doxorubicin, with SPIONs, the SPIONs surface end-groups' cappings with small molecular entities, as well as structural modifications of the SPIONs' surface-located functional end-groups, to attach the doxorubicin, have been achieved through chemical bonding by conjugation and cross-linking of natural and synthetic polymers, attachments of SPIONs made directly to the non-polymeric entities, and attachments made through mediation of molecular-spacer as well as non-spacer mediated attachments of several types of chemical entities, together with the physico-chemical bondings of the moieties, e.g., peptides, proteins, antibodies, antigens, aptamers, glycoproteins, and enzymes, etc. to the SPIONs which are capable of targeting multiple kinds of cancerous sites, have provided stable and functional SPIONs-based nano-carriers suitable for the systemic, and in vitro deliveries, together with being suitable for other biomedical/biotechnical applications. Together with the SPIONs inherent properties, and ability to respond to magnetic resonance, fluorescence-directed, dual-module, and molecular-level tumor imaging; as well as multi-modular cancer cell targeting; magnetic-field-inducible drug-elution capacity, and the SPIONs' magnetometry-led feasibility to reach cancer action sites have made sensing, imaging, and drug and other payloads deliveries to cancerous sites for cancer treatment a viable option. Innovations in the preparation of SPIONs-based delivery modules, as biocompatible carriers; development of delivery route modalities; approaches to enhancing their drug delivery-cum-bioavailability have explicitly established the SPIONs' versatility for oncological theranostics and imaging. The current review outlines the development of various SPIONs-based nano-carriers for targeted doxorubicin delivery to different cancer sites through multiple methods, modalities, and materials, wherein high-potential nano-structured platforms have been conceptualized, developed, and tested for, both, in vivo and in vitro conditions. The current state of the knowledge in this arena have provided definite dose-control, site-specificity, stability, transport feasibility, and effective onsite drug de-loading, however, with certain limitations, and these shortcomings have opened the field for further advancements by identifying the bottlenecks, suggestive and plausible remediation, as well as more clear directions for future development.
Collapse
Affiliation(s)
- Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry & Pharmacy, Buraydah Private Colleges, P.O. Box 31717, Buraydah 51418, Qassim, Saudi Arabia
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Mohammed Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Mecca, Saudi Arabia
| | - Amal Al-Subaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Riaz A. Khan
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| |
Collapse
|
133
|
Wang SX, Lu YB, Wang XX, Wang Y, Song YJ, Wang X, Nyamgerelt M. Graphene and graphene-based materials in axonal repair of spinal cord injury. Neural Regen Res 2022; 17:2117-2125. [PMID: 35259817 PMCID: PMC9083163 DOI: 10.4103/1673-5374.335822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023] Open
Abstract
Graphene and graphene-based materials have the ability to induce stem cells to differentiate into neurons, which is necessary to overcome the current problems faced in the clinical treatment of spinal cord injury. This review summarizes the advantages of graphene and graphene-based materials (in particular, composite materials) in axonal repair after spinal cord injury. These materials have good histocompatibility, and mechanical and adsorption properties that can be targeted to improve the environment of axonal regeneration. They also have good conductivity, which allows them to make full use of electrical nerve signal stimulation in spinal cord tissue to promote axonal regeneration. Furthermore, they can be used as carriers of seed cells, trophic factors, and drugs in nerve tissue engineering scaffolds to provide a basis for constructing a local microenvironment after spinal cord injury. However, to achieve clinical adoption of graphene and graphene-based materials for the repair of spinal cord injury, further research is needed to reduce their toxicity.
Collapse
Affiliation(s)
- Shi-Xin Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xue-Xi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, Gansu Province, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu-Jun Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiao Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Munkhtuya Nyamgerelt
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
134
|
Huang S, Fu Y, Mo A. Electrophoretic-deposited MXene titanium coatings in regulating bacteria and cell response for peri-implantitis. Front Chem 2022; 10:991481. [PMID: 36247682 PMCID: PMC9558740 DOI: 10.3389/fchem.2022.991481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Two-dimensional(2D)MXenes have continued to receive increasing interest from researchers due to their graphene-like properties, in addition to their versatile properties for applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, their construction and biological properties as titanium coatings to prevent peri-implantitis are still unclear. Materials and methods: In this work, few-layer Ti3C2Tx MXene coatings with different thicknesses at varied depositing voltages (30, 40, and 50 V) were constructed by anodic electrophoretic deposition without adding any electrolytic ions. In vitro cytocompatibility assay was performed on preosteoblasts (MC3T3-E1) cell lines after the characterization of the coating. Meanwhile, the antibacterial activity against bacteria which are closely related to peri-implantitis including Staphylococcus aureus (S. aureus) and its drug-resistant strain MRSA was further investigated. Results: MXene-coated titanium models with different thicknesses were successfully assembled by analyzing the results of characterization. The compounding of Ti3C2Tx could significantly improve the initial adhesion and proliferation of MC3T3-E1 cells. Moreover, the coating can effectively inhibit the adhesion and cell activity of S. aureus and MRSA, and MRSA expressed greater restricting behavior than S. aureus. The ability to promote antibacterial activity is proportional to the content of Ti3C2Tx. Its antioxidant capacity to reduce ROS in the culture environment and bacterial cells was first revealed. Conclusion: In summary, this work shows a new avenue for MXene-based nano-biomaterials under the clinical problem of multiple antibiotic resistance.
Collapse
Affiliation(s)
- Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Anchun Mo,
| |
Collapse
|
135
|
Luo Y, Li J, Huang C, Wang X, Long D, Cao Y. Graphene oxide links alterations of anti-viral signaling pathways with lipid metabolism via suppressing TLR3 in vascular smooth muscle cells. Mol Omics 2022; 18:779-790. [PMID: 35912640 DOI: 10.1039/d2mo00086e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Vascular smooth muscle cells (VSMCs), the main cells constructing blood vessels, are important in the regulation of the pathophysiology of vascular systems; however, relatively few studies have investigated the influence of nanomaterials (NMs) on VSMCs. In this study, we found that the interaction between graphene oxide and human VSMCs led to the cytotoxicity and morphological changes of cells. Because transcriptomic data suggested that graphene oxide decreased anti-viral signaling pathways via decreasing Toll-like receptor 3 (TLR3), we further verified that graphene oxide decreased interferon induced protein with tetratricopeptide repeats 1 (IFIT1) and the radical S-adenosyl methionine domain containing 2 (RSAD2), and TLR3-downstream genes involved in anti-viral responses. Due to the involvement of RSAD2 in lipid dysfunction, we also verified that graphene oxide disrupted lipid homeostasis and increased adipose triglyceride lipase (ATGL). Adding TLR3 agonist polyinosinic:polycytidylic acid (Poly IC) partially increased TLR3-downstream protein interleukin-8 (IL-8) and some lipid classes, particularly lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), in graphene oxide-exposed VSMCs. In mice receiving repeated intravenous injection of graphene oxide, significantly decreased TLR3, IFIT1 and RSAD2 but increased ATGL proteins were observed in aortas. We conclude that graphene oxide altered anti-viral signaling pathways and lipid metabolism via decreasing TLR3 in VSMCs.
Collapse
Affiliation(s)
- Yingmei Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510632, China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
136
|
Liu L, Liu B, Zhang B, Ye Y, Jiang W. Polystyrene micro(nano)plastics damage the organelles of RBL-2H3 cells and promote MOAP-1 to induce apoptosis. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129550. [PMID: 35999725 DOI: 10.1016/j.jhazmat.2022.129550] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The ubiquity of microplastics increases the exposure risks and health threats to humans. In this study, rat basophilic leukemia (RBL-2H3) cells were exposed to polystyrene particles (PS-particles) of 50 nm, 500 nm and 5 µm to investigate organelle damage and the mechanism of cell death. PS-particles induced oxidative stress, which in turn led to mitochondrial and lysosomal damage, arrested the cell cycle in the G0/G1 phase, and finally caused apoptosis. Anti-apoptotic genes (Bcl-2) were down regulated, and pro-apoptotic genes (Bax) and a key gene (caspase-3) in apoptosis were upregulated. The molecular mechanism of apoptosis was further explored via the combination of transcriptome sequencing, RT-qPCR verification and small interfering RNA (siRNA) technology. The modulator of apoptosis-1 (MOAP-1) was significantly upregulated, and apoptosis was abolished by knocking down MOAP-1. This finding clarifies that PS-particles promote MOAP-1 to induce apoptosis. Hence, PS-particles may promote the binding of MOAP-1 and Bax, which ultimately activates caspase-3 and causes apoptosis through the mitochondrial pathway. The 50-nm PS-particles resulted in the most serious mitochondrial damage and apoptosis. Eventually, PS-particles cause oxidative stress, damage organelles and induce apoptosis by promoting MOAP-1. Altogether, our study emphasizes the need to assess the cytotoxicity of micro(nano)plastics and helps to predict the health risks.
Collapse
Affiliation(s)
- Ling Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China; Marine College, Shandong University, Weihai 264209, China
| | - Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bowen Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
137
|
Hung JN, Kha Vo DN, Thanh Ho HP, Tsai MH. PEDOT:PSS in Solution Form Exhibits Strong Potential in Inhibiting SARS-CoV-2 Infection of the Host Cells by Targeting Viruses and Also the Host Cells. Biomacromolecules 2022; 23:3535-3548. [PMID: 35918797 PMCID: PMC9364979 DOI: 10.1021/acs.biomac.2c00271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic with over 5 million fatalities. Vaccines against this virus have been globally administered; however, SARS-CoV-2 variants with spike protein mutations are continuously identified with strong capability to escape vaccine-elicited protection. Due to the high mutation rate and transmission ability, the development of a broad-spectrum SARS-CoV-2 inhibitor is highly in demand. In this study, the effect of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) against SARS-CoV-2 was investigated. The treatment of pseudoviruses carrying the SARS-CoV-2 spike protein with PEDOT:PSS strongly blocked SARS-CoV-2 pseudovirus infection in human ACE2-expressing cells without causing cytotoxicity. Specifically, PEDOT:PSS showed great potential in both inactivating viruses and rendering antiviral activity to the treated cells. The effects of other PEDOT:PSS solutions with different chemical ratios and properties were also validated to find the high inhibition capacity against SARS-CoV-2 pseudovirus infection. The transcriptomic data reveal that PEDOT:PSS-treated cells were endowed with transcriptional alteration, and it could be reverted after the removal of PEDOT:PSS from the culture medium. Importantly, PEDOT:PSS also exhibited broad-spectrum inhibition effects on the pseudovirus carrying the spike protein isolated from different variants. In combination with the advantage of high biocompatibility, PEDOT:PSS could thus be considered a potential therapeutic and prophylactic material against SARS-CoV-2.
Collapse
Affiliation(s)
- Jo-Ning Hung
- Institute of Microbiology and Immunology,
National Yang Ming Chiao Tung University, No. 155, Sec. 2,
Linong Street, Taipei City 11221, Taiwan
| | - Di Ngoc Kha Vo
- Institute of Microbiology and Immunology,
National Yang Ming Chiao Tung University, No. 155, Sec. 2,
Linong Street, Taipei City 11221, Taiwan
| | - Ha Phan Thanh Ho
- Institute of Microbiology and Immunology,
National Yang Ming Chiao Tung University, No. 155, Sec. 2,
Linong Street, Taipei City 11221, Taiwan
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology,
National Yang Ming Chiao Tung University, No. 155, Sec. 2,
Linong Street, Taipei City 11221, Taiwan
| |
Collapse
|
138
|
Jurgelėnė Ž, Montvydienė D, Šemčuk S, Stankevičiūtė M, Sauliutė G, Pažusienė J, Morkvėnas A, Butrimienė R, Jokšas K, Pakštas V, Kazlauskienė N, Karabanovas V. The impact of co-treatment with graphene oxide and metal mixture on Salmo trutta at early development stages: The sorption capacity and potential toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156525. [PMID: 35679940 DOI: 10.1016/j.scitotenv.2022.156525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO) are novel nanomaterials with a wide range of applications due to their high absorption capacity. This study was undertaken with a view to assess the bioaccumulation and acute toxicity of GO used in combination with the heavy metal mixture (Cr, Cu, Ni and Zn) to fish embryos and larvae. For this purpose, Salmo trutta embryos and larvae were subjected to the 4-day long treatment with three different concentrations of GO, the metal mixture, which was prepared of four metals at the concentrations corresponding to the maximum-permissible-concentrations for EU inland waters (Cr-0.01, Cu-0.01, Ni-0.034, and Zn-0.1 mg/L), and with GO in combination with MIX (GO+MIX). When used in combination with the metal mixture, GO exhibited a high metal sorption capacity. The obtained confocal fluorescence microscopy results showed that GO located in the embryo chorion causing its damage; in larvae, however, GO were found only in the gill region. Results of these experiments confirmed the hypothesis that GO affects the accumulation of metals and mitigates their toxic effects on organism. In embryos, the acute toxicity of exposure to GO and co-exposure to MIX+GO was found to manifest itself through the decreased heart rate (HR) and malondialdehyde (MDA) level and through the increased metallothionein (MT) concentration. Meanwhile, in larvae, GO and MIX+GO were found to induce genotoxicity effects. However, changes in HR, MDA, MT, gill ventilation frequency, yolk sack absorption and cytotoxicity compared with those of the control group were not recorded in larvae. The obtained results confirmed our hypothesis: the combined effect of MIX and GO was less toxic to larvae (especially survival) than individual effects of MIX components. However, our results emphasize that fish exposure to GO alone and in combination with heavy metal contaminants (MIX+GO) even at environmentally relevant concentrations causes health risks that cannot be ignored.
Collapse
Affiliation(s)
- Živilė Jurgelėnė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania; Laboratory of Biomedical Physics, National Cancer Institute, Baublio St. 3b, LT-08660 Vilnius, Lithuania.
| | | | - Sergej Šemčuk
- SRI Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | | | - Gintarė Sauliutė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania
| | - Janina Pažusienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania
| | - Augustas Morkvėnas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio St. 3b, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| | - Renata Butrimienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania
| | - Kęstutis Jokšas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Vidas Pakštas
- SRI Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | | | - Vitalijus Karabanovas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio St. 3b, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania.
| |
Collapse
|
139
|
Falsini S, Colzi I, Chelazzi D, Dainelli M, Schiff S, Papini A, Coppi A, Gonnelli C, Ristori S. Plastic is in the air: Impact of micro-nanoplastics from airborne pollution on Tillandsia usneoides (L.) L. (Bromeliaceae) as a possible green sensor. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129314. [PMID: 35728311 DOI: 10.1016/j.jhazmat.2022.129314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Due to the increasing evidence of widespread plastic pollution in the air, the impact on plants of airborne particles of polycarbonate (PC), polyethyleneterephthalate (PET), polyethylene (PE), and polyvinylchloride (PVC) was tested by administering pristine and aged airborne micro-nanoplastics (MNPs) to Tillandsia usneoides for two weeks. Here we showed that exposure to pristine MNPs, significantly reduced plant growth with respect to controls. Particularly, PVC almost halved plant development at the end of the treatment, while the other plastics exerted negative effects on growth only at the beginning of the exposure, with final stages comparable to those of controls. Plants exposed to aged MNPs showed significantly decreased growth at early stages with PC, later in the growth with PE, and even later with PET. Aged PVC did not exert a toxic effect on plants. When present, the plastic-mediated reduction in plant growth was coupled with a decrease in photosynthetic activity and alterations in the plant concentration of macro- and micronutrients. The plastic particles were showed to adhere to the plant surface and, preferentially, on the trichome wings. Our results reported, for the first time, evidence of negative effects of airborne plastic pollution on plant health, thus raising concerns for related environmental risks.
Collapse
Affiliation(s)
- Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - David Chelazzi
- Department of Chemistry and CSGI, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Silvia Schiff
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Sandra Ristori
- Department of Chemistry and CSGI, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
140
|
Javaid A, Imran M, Latif S, Hussain N, Iqbal HMN, Bilal M. Multifunctional attributes of nanostructured materials, toxicology, safety considerations, and regulations. JOURNAL OF MATERIALS SCIENCE 2022; 57:17021-17051. [DOI: 10.1007/s10853-022-07679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/22/2022] [Indexed: 12/17/2024]
|
141
|
Potara M, Suarasan S, Craciun AM, Focsan M, Hada AM, Astilean S. Probing polyvinylpyrrolidone-passivated graphene oxide nanoflakes as contrast agents inside tissue-like phantoms via multimodal confocal microscopy. Talanta 2022; 247:123581. [DOI: 10.1016/j.talanta.2022.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
|
142
|
Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Tok TT. Derivation of an anti-cancer drug nanocarrier using a malonic acid-based deep eutectic solvent as a functionalization agent. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
143
|
3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14091834. [PMID: 36145582 PMCID: PMC9503344 DOI: 10.3390/pharmaceutics14091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Graphene-based materials have recently gained attention for regenerating various tissue defects including bone, nerve, cartilage, and muscle. Even though the potential of graphene-based biomaterials has been realized in tissue engineering, there are significantly many more studies reporting in vitro and in vivo data in bone tissue engineering. Graphene constructs have mainly been studied as two-dimensional (2D) substrates when biological organs are within a three-dimensional (3D) environment. Therefore, developing 3D graphene scaffolds is the next clinical standard, yet most have been fabricated as foams which limit control of consistent morphology and porosity. To overcome this issue, 3D-printing technology is revolutionizing tissue engineering, due to its speed, accuracy, reproducibility, and overall ability to personalize treatment whereby scaffolds are printed to the exact dimensions of a tissue defect. Even though various 3D-printing techniques are available, practical applications of 3D-printed graphene scaffolds are still limited. This can be attributed to variations associated with fabrication of graphene derivatives, leading to variations in cell response. This review summarizes selected works describing the different fabrication techniques for 3D scaffolds, the novelty of graphene materials, and the use of 3D-printed scaffolds of graphene-based nanoparticles for bone tissue engineering.
Collapse
|
144
|
Krętowski R, Cechowska-Pasko M. The Reduced Graphene Oxide (rGO) Induces Apoptosis, Autophagy and Cell Cycle Arrest in Breast Cancer Cells. Int J Mol Sci 2022; 23:9285. [PMID: 36012549 PMCID: PMC9409172 DOI: 10.3390/ijms23169285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced graphene oxide (rGO) has already been reported as a potential cytostatic agent in various cancers. However, the mechanisms underlying rGO's cytotoxicity are still insufficiently understood. Thus, the aim of the study was to investigate the molecular and cellular effects of rGO in breast cancer. Given this, two cell lines, MDA-MB-231 and ZR-75-1, were analyzed using MTT test, flow cytometry and Western blot assay. Incubation with rGO resulted in a multitude of effects, including the stimulation of autophagy, cell cycle arrest and, finally, the apoptotic death of cancer cells. Notably, rGO had minimal effect on normal human fibroblasts. Apoptosis in cancer cells was accompanied by decreased mitochondrial membrane potential, the deregulated expression of mitochondrial proteins and the activation of caspase 9 and caspase 3, suggesting that rGO predominantly induced apoptosis via intrinsic pathway. The analysis of LC3 protein expression revealed that rGO also caused autophagy in breast cancer cells. Moreover, rGO treatment resulted in cell cycle arrest, which was accompanied by deregulated p21 expression. Altogether, rGO seems to have multidirectional cytostatic and cytotoxic effects in breast cancer cells, making it a promising agent worthy of further investigation.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222 Białystok, Poland
| | | |
Collapse
|
145
|
Cai Y, Chang SY, Gan SW, Ma S, Lu WF, Yen CC. Nanocomposite bioinks for 3D bioprinting. Acta Biomater 2022; 151:45-69. [PMID: 35970479 DOI: 10.1016/j.actbio.2022.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
Collapse
Affiliation(s)
- Yanli Cai
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soon Yee Chang
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soo Wah Gan
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Sha Ma
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Wen Feng Lu
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ching-Chiuan Yen
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Division of Industrial Design, National University of Singapore, Singapore 117356, Singapore.
| |
Collapse
|
146
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
147
|
Rezaeipour Y, Zolghadr E, Alizadeh P, Sadri G, Wujcik EK, Afkhami FA, Elliott M, Dadashi Firouzjaei M. The anticancer properties of metal-organic frameworks and their heterogeneous nanocomposites. BIOMATERIALS ADVANCES 2022; 139:213013. [PMID: 35882158 DOI: 10.1016/j.bioadv.2022.213013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Herein, silver-based metal-organic framework (AgMOF) and its graphene oxide (GO)-decorated nanocomposite (GO-AgMOF) are proposed for use in emerging biomedical applications. The nanocomposites are characterized, and hence, in vitro apoptotic and antibacterial features of AgMOF and GO-AgMOF nanomaterials were investigated. An MTT cytocompatibility assay indicates that these nanomaterials have dose-dependent toxicity in contact with SW480, colon adenocarcinoma cells. In addition, the cell death mechanism was explored by analyzing flow cytometry and caspase activity. Furthermore, the expressions of pro-apoptotic and anti-apoptotic genes were investigated using quantitative polymerase chain reaction (qPCR). Comparing the control group with the groups treated by the nanomaterials indicates up-regulation of the BAX/BCl2 ratio. We also measured the minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of these nanomaterials acting on S. mutans and S. aureus, which indicates excellent antibacterial properties. Showing inhibition effect on the viability of cancerous cells through apoptosis and antibacterial effects simultaneously, AgMOF and GO-AgMOF can be regarded as potential therapeutics for cancer.
Collapse
Affiliation(s)
- Yashar Rezaeipour
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Ehsan Zolghadr
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Parvin Alizadeh
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran.
| | - Ghazal Sadri
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Evan K Wujcik
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Farhad Akbari Afkhami
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mark Elliott
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Mostafa Dadashi Firouzjaei
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
148
|
Current advanced drug delivery systems: Challenges and potentialities. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
149
|
Cavallo D, Ursini CL, Fresegna AM, Ciervo A, Boccuni F, Ferrante R, Tombolini F, Maiello R, Chiarella P, Buresti G, Del Frate V, Poli D, Andreoli R, Di Cristo L, Sabella S, Iavicoli S. A follow-up study on workers involved in the graphene production process after the introduction of exposure mitigation measures: evaluation of genotoxic and oxidative effects. Nanotoxicology 2022; 16:776-790. [PMID: 36427224 DOI: 10.1080/17435390.2022.2149359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During nanomaterial (NM) production, workers could be exposed, particularly by inhalation, to NMs and other chemicals used in the synthesis process, so it is important to have suitable biomarkers to monitor potential toxic effects. Aim of this study was to evaluate the effectiveness of the introduction of exposure mitigation measures on workers unintentionally exposed to graphene co-pollutants during production process monitoring the presumable reduction of workplace NM contamination and of early genotoxic and oxidative effects previously found on these workers. We used Buccal Micronucleus Cytome (BMCyt) assay and Fpg-comet test, resulted the most sensitive biomarkers on our first biomonitoring work, to measure the genotoxic effects. We also detected urinary oxidized nucleic acid bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo to evaluate oxidative damage. The genotoxic and oxidative effects were assessed on the same graphene workers (N = 6) previously studied, comparing the results with those found in the first biomonitoring and with the control group (N = 11). This was achieved 6 months after the installation of a special filter hood (where to perform the phases at higher risk of NM emission) and the improvement of environmental and personal protective equipment. Particle number concentration decreased after the mitigation measures. We observed reduction of Micronucleus (MN) frequency and oxidative DNA damage and increase of 8-oxodGuo excretion compared to the first biomonitoring. These results, although limited by the small subject number, showed the efficacy of adopted exposure mitigation measures and the suitability of used sensitive and noninvasive biomarkers to bio-monitor over time workers involved in graphene production process.
Collapse
Affiliation(s)
- Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Fabio Boccuni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Riccardo Ferrante
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Francesca Tombolini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Pieranna Chiarella
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Giuliana Buresti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Valentina Del Frate
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Diana Poli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, Laboratory of Industrial Toxicology, University of Parma, Parma, Italy
| | | | | | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| |
Collapse
|
150
|
Vidallon MLP, Teo BM, Bishop AI, Tabor RF. Next-Generation Colloidal Materials for Ultrasound Imaging Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1373-1396. [PMID: 35641393 DOI: 10.1016/j.ultrasmedbio.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound has important applications, predominantly in the field of diagnostic imaging. Presently, colloidal systems such as microbubbles, phase-change emulsion droplets and particle systems with acoustic properties and multiresponsiveness are being developed to address typical issues faced when using commercial ultrasound contrast agents, and to extend the utility of such systems to targeted drug delivery and multimodal imaging. Current technologies and increasing research data on the chemistry, physics and materials science of new colloidal systems are also leading to the development of more complex, novel and application-specific colloidal assemblies with ultrasound contrast enhancement and other properties, which could be beneficial for multiple biomedical applications, especially imaging-guided treatments. In this article, we review recent developments in new colloids with applications that use ultrasound contrast enhancement. This work also highlights the emergence of colloidal materials fabricated from or modified with biologically derived and bio-inspired materials, particularly in the form of biopolymers and biomembranes. Challenges, limitations, potential developments and future directions of these next-generation colloidal systems are also presented and discussed.
Collapse
Affiliation(s)
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|