101
|
Li Y, Liu T, Wang X, Jia Y, Cui H. Autophagy and Glycometabolic Reprograming in the Malignant Progression of Lung Cancer: A Review. Technol Cancer Res Treat 2023; 22:15330338231190545. [PMID: 37605558 PMCID: PMC10467373 DOI: 10.1177/15330338231190545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide. However, there are currently limited treatment options that are widely available to patients with advanced lung cancer, and further research is required to inhibit or reverse disease progression more effectively. In lung and other solid tumor cancers, autophagy and glycometabolic reprograming are critical regulators of malignant development, including proliferation, drug resistance, invasion, and metastasis. To provide a theoretical basis for therapeutic strategies targeting autophagy and glycometabolic reprograming to prevent lung cancer, we review how autophagy and glycometabolism are regulated in the malignant development of lung cancer based on research progress in other solid tumors.
Collapse
Affiliation(s)
- Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tongzuo Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoqun Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
102
|
Zhu X, Lu Y, Lu S. Landscape of Savolitinib Development for the Treatment of Non-Small Cell Lung Cancer with MET Alteration-A Narrative Review. Cancers (Basel) 2022; 14:cancers14246122. [PMID: 36551608 PMCID: PMC9776447 DOI: 10.3390/cancers14246122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is increasingly being treated with targeted therapies. Savolitinib (Orpathys®) is highly selective mesenchymal epithelial transition (MET)-tyrosine kinase inhibitor (TKI), which is conditionally approved in China for advanced NSCLC with MET exon 14 skipping mutations (METex14). This article summarizes the clinical development of savolitinib, as a monotherapy in NSCLC with METex14 mutation and in combination with epidermal growth factor receptor (EGFR) inhibitor in post EGFR-TKI resistance NSCLC due to MET-based acquired resistance. Preclinical models demonstrated anti-tumor activities in MET-driven cancer cell line and xenograft tumor models. The Phase Ia/Ib study established an optimized, recommended phase II dose in Chinese NSCLC patients, while TATTON study of savolitinib plus osimertinib in patients with EGFR mutant, MET-amplified and TKI-progressed NSCLC showed beneficial efficacy with acceptable safety profile. In a pivotal phase II study, Chinese patients with pulmonary sarcomatoid carcinoma, brain metastasis and other NSCLC subtype positive for METex14 mutation showed notable responses and acceptable safety profile with savolitinib. Currently, results from ongoing clinical trials are eagerly anticipated to confirm the efficacious and safety benefits of savolitinib as monotherapy and in combination with EGFR-TKI in acquired resistance setting in advanced NSCLC and its subtypes with MET alterations.
Collapse
Affiliation(s)
- Xiaokuan Zhu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Lu
- AstraZeneca China, Shanghai 201200, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence:
| |
Collapse
|
103
|
Li H, Lin J, Yang F, Deng J, Lai J, Zeng J, Zou W, Jiang N, Huang Q, Li H, Liu J, Li M, Zhong Z, Wu J. Sanguisorba officinalis L. suppresses non-small cell lung cancer via downregulating the PI3K/AKT/mTOR signaling pathway based on network pharmacology and experimental investigation. Front Pharmacol 2022; 13:1054803. [PMID: 36506573 PMCID: PMC9729289 DOI: 10.3389/fphar.2022.1054803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Sanguisorba officinalis L. (SOL), a traditional Chinese herbal medicine called Diyu, has been shown to have potent antitumor effects. However, the role of SOL in suppressing NSCLC remains unknown. Methods: Network pharmacology was employed for acquiring the potential targets and mechanisms of SOL in NSCLC. Based on the predictions of network pharmacology, we used CCK8 and EdU assays to investigate cell proliferation, flow cytometry to investigate apoptosis, wound healing assay to investigate cell migration, and transwell assay to investigate cell invasion in vitro. Western blot was employed for detecting the potential proteins, including signaling pathways and apoptosis. The A549-bearing athymic nude mice were employed to verify the effect on cell proliferation and apoptosis in vivo. Results: SOL significantly inhibited the proliferation, migration and invasion of NSCLC cells in a dose-dependent manner. Flow cytometry showed that the apoptotic ratio and ROS level of NSCLC cells increased significantly with increasing concentrations. AKT and the PI3K-AKT signaling pathway were analyzed as the most relevant target and pathway via network pharmacology predictions. Western blotting revealed that the expression levels of p-PI3K, p-AKT, and p-mTOR in NSCLC cells treated with SOL were significantly downregulated, while cleaved PARP-1 and caspase-3 were upregulated in a dose-dependent manner. The results in the mouse xenograft model were consistent with those in NSCLC cell lines. Conclusion: SOL downregulated the PI3K/AKT/mTOR signaling pathway to suppress NSCLC.
Collapse
Affiliation(s)
- Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, China,Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junzhu Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China,The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China,The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mao Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhirong Zhong
- School of Pharmacy, Southwest Medical University, Luzhou, China,*Correspondence: Zhirong Zhong, ; Jianming Wu,
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China,The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China,School of Basic Medical University, Southwest Medical University, Luzhou, China,*Correspondence: Zhirong Zhong, ; Jianming Wu,
| |
Collapse
|
104
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
105
|
Hermawan A, Damai FI, Martin L, Chrisdianto M, Julianto NM, Pramanda IT, Gustiananda M. Immunoinformatics Analysis of Citrullinated Antigen as Potential Multi-peptide Lung Cancer Vaccine Candidates for Indonesian Population. Int J Pept Res Ther 2022; 28:162. [PMID: 36406283 PMCID: PMC9648882 DOI: 10.1007/s10989-022-10467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/12/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer which has the highest mortality rate in Indonesia. One of the trends in treating cancer is by utilizing peptide vaccines, an immunotherapeutic approach that aims to stimulate the cell-mediated adaptive immune system to recognize cancer-associated peptides. Currently, no peptide vaccines are available in the market for NSCLC treatment. Therefore, this project aims to develop a multi-epitope peptide-based vaccine for NSCLC utilizing citrullinated peptides. Citrullination is a post-translational modification that occurs in cancer cells during autophagy that functions to induce immune responses towards modified self-epitopes such as tumor cells, through activation of PAD enzymes within the APC and target cells. It was found that introducing a common citrullinated neo-antigen peptide such as vimentin and enolase to the immune system could stimulate a higher specific CD4+ T cell response against NSCLC. Moreover, carcinoembryonic antigen (CEA), an antigen that is highly expressed in cancer cells, is also added to increase the vaccine’s specificity and to mobilize both CD4+ and CD8+ T cells. These antigens bind strongly to the MHC Class II alleles such as HLA-DRB1*07:01 and HLA-DRB*11:01, which are predominant alleles in Indonesian populations. Through in silico approach, the peptides generated from CEA, citrullinated vimentin and enolase, were analyzed for their MHC binding strength, immunogenicity, ability to induce IFNγ response, and population coverage. It is expected that the immunodominant antigens presentation is able to induce a potent immune response in NSCLC patients in Indonesia, resulting in tumor eradication.
Collapse
Affiliation(s)
- Angelika Hermawan
- Biomedicine Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Fedric Intan Damai
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Leon Martin
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Matthew Chrisdianto
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | | | - Ihsan Tria Pramanda
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Marsia Gustiananda
- Biomedicine Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| |
Collapse
|
106
|
Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
107
|
Moreno V, Roda D, Pikiel J, Trigo J, Bosch-Barrera J, Drew Y, Kristeleit R, Hiret S, Bajor DL, Cruz P, Beck JT, Ghosh S, Dabrowski C, Antony G, Duan T, Veneris J, Zografos E, Subramanian J. Safety and Efficacy of Dostarlimab in Patients With Recurrent/Advanced Non-small Cell Lung Cancer: Results from Cohort E of the Phase I GARNET Trial. Clin Lung Cancer 2022; 23:e415-e427. [PMID: 35729005 DOI: 10.1016/j.cllc.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Dostarlimab is an anti-programmed cell death protein-1 antibody being evaluated in recurrent/advanced solid tumors, including non-small cell lung cancer (NSCLC), in the ongoing Phase I, multi-center, open-label, 2-part (dose escalation and cohort expansion) GARNET study (NCT02715284). MATERIALS AND METHODS Here, we report an interim analysis of patients with recurrent/advanced NSCLC who progressed following platinum-based chemotherapy. Patients received dostarlimab (500 mg IV every 3 weeks [Q3W] for Cycles 1-4, then 1000 mg Q6W) until disease progression or unacceptable toxicity for > 2 years. The primary endpoints were immune-related objective response rate (irORR) per investigator-assessed irRECIST and safety. RESULTS As of 8, July 2019, 67 patients with recurrent/advanced NSCLC were enrolled and treated with dostarlimab; the majority had programmed death ligand 1 (PD-L1) tumor proportion score (TPS) < 1% (35.8% of patients) or PD-L1 TPS 1%-49% (29.9% of patients); 7.5% had PD-L1 TPS ≥ 50%, and 26.9% had unknown PD-L1 TPS status. Median follow-up was 13.8 months (range: 0.0-22.6). irORR was 26.9%, including 2 complete and 16 partial responses. The median duration of response of 11.6 months (range: 2.8-19.4). Responses were observed in 2 of 24 (16.7%) patients with PD-L1 TPS < 1%, 4 of 20 (20.0%) patients with PD-L1 TPS 1%-49% and 2 of 5 (40.0%) patients with PD-L1 TPS ≥ 50%. Fatigue (4.5%) was the most common Grade ≥ 3 treatment-related treatment-emergent adverse event (TRAE). Immune-related TRAEs (any grade) were observed in 28.4% of patients. CONCLUSION Dostarlimab demonstrated promising antitumor activity in advanced/recurrent NSCLC that progressed following platinum-based chemotherapy, including across all PD-L1 subgroups, and has an acceptable safety profile.
Collapse
Affiliation(s)
- Victor Moreno
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Jose Trigo
- Hospital Universitario Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Joaquim Bosch-Barrera
- Catalan Institute of Oncology (ICO), Hospital Universitari Dr Josep Trueta, Girona, Spain
| | - Yvette Drew
- Clinical and Translational Institute, Newcastle University, Newcastle, UK
| | | | - Sandrine Hiret
- Institut de Cancérologie de l'Ouest, René Gauducheau, St Herblain, France
| | - David L Bajor
- University Hospitals Cleveland Medical Centre, Cleveland, OH
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Tang Z, Wang Q, Chen P, Guo H, Shi J, Pan Y, Li C, Zhou C. Computational recognition of LncRNA signatures in tumor-associated neutrophils could have implications for immunotherapy and prognostic outcome of non-small cell lung cancer. Front Genet 2022; 13:1002699. [PMID: 36386809 PMCID: PMC9649922 DOI: 10.3389/fgene.2022.1002699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cancer immune function and tumor microenvironment are governed by long noncoding RNAs (lncRNAs). Nevertheless, it has yet to be established whether lncRNAs play a role in tumor-associated neutrophils (TANs). Here, a computing framework based on machine learning was used to identify neutrophil-specific lncRNA with prognostic significance in squamous cell carcinoma and lung adenocarcinoma using univariate Cox regression to comprehensively analyze immune, lncRNA, and clinical characteristics. The risk score was determined using LASSO Cox regression analysis. Meanwhile, we named this risk score as “TANlncSig.” TANlncSig was able to distinguish between better and worse survival outcomes in various patient datasets independently of other clinical variables. Functional assessment of TANlncSig showed it is a marker of myeloid cell infiltration into tumor infiltration and myeloid cells directly or indirectly inhibit the anti-tumor immune response by secreting cytokines, expressing immunosuppressive receptors, and altering metabolic processes. Our findings highlighted the value of TANlncSig in TME as a marker of immune cell infiltration and showed the values of lncRNAs as indicators of immunotherapy.
Collapse
Affiliation(s)
- Zhuoran Tang
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Qi Wang
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Peixin Chen
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Haoyue Guo
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Jinpeng Shi
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Yingying Pan
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin, China
- *Correspondence: Caicun Zhou, ; Chunyu Li,
| | - Caicun Zhou
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
- *Correspondence: Caicun Zhou, ; Chunyu Li,
| |
Collapse
|
109
|
Rekulapelli A, E. Flausino L, Iyer G, Balkrishnan R. Effectiveness of immunological agents in non-small cell lung cancer. Cancer Rep (Hoboken) 2022; 6:e1739. [PMID: 36289059 PMCID: PMC9981233 DOI: 10.1002/cnr2.1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 08/28/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIM Non-small cell lung cancer (NSCLC) continues to claim millions of lives worldwide. Although its poor prognosis is largely attributed to the lack of adequate and precise detection technologies, cancer cells' suppression of the immune system adds on to the difficulty of identifying abnormal NSCLC tumors in their early stages. Therefore, cancer immunotherapy, which activates the immune system and helps it fight tumors, has recently become the most sought-after technique, especially in the advanced stages of NSCLC, where surgery or chemotherapy may or may not bring about the desired survival benefits in patients. METHODS This review focuses on the various immunotherapeutic interventions and their efficacy in advanced NSCLC clinical trials. Monoclonal antibodies like anti-PD-1/PD-L1 agents and anti-CTLA-4 antibodies, cancer vaccines, oncolytic viruses and adoptive T cell therapy have been discussed in brief. Furthermore, the effects of gender, age, and race on the efficacy of immune checkpoint inhibitors and suggest plausible future approaches in the realm of immuno-oncology. RESULTS Immunotherapy is used alone or in combination either with other immunological agents or with chemotherapy. However, the efficacy of these strategies depends extensively on various demographic variables, as some patients respond perfectly well to immunotherapy, while others do not benefit at all or experience disease progression. By targeting a "hallmark" of cancer (immune evasion), immunotherapy has transformed NSCLC management, though several barriers prevent its complete effectiveness. CONCLUSIONS All these immunological strategies should be interpreted in the current setting of synergistic treatment, in which these agents can be combined with chemotherapy, radiotherapy, and, or surgery following patient and tumor characteristics to proportionate the best-individualized treatment and achieve superior results. To better pursue this goal, further investigations on cost-effectiveness and sex-gender, race, and age differences in immunotherapy are needed.
Collapse
Affiliation(s)
- Akhil Rekulapelli
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Lucas E. Flausino
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA,Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Gayatri Iyer
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Rajesh Balkrishnan
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
110
|
Xu Y, Wu H, Wang C, Ma Y, Zhang C. Case report: A balance of survival and quality of life in long-term survival case of lung adenocarcinoma with synchronous bone metastasis. Front Oncol 2022; 12:1045458. [PMID: 36387155 PMCID: PMC9644070 DOI: 10.3389/fonc.2022.1045458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Bone metastasis is one of the comorbidities of advanced lung cancer, eventually leading to an impaired quality of life. We present a case of a lung adenocarcinoma patient with synchronous bone metastasis. The patient possessed a superior survival time of more than five years under multidisciplinary treatment. Considering the balance of life expectancy and limb function, the metastatic site on the right humerus was successively surgically managed. Based on the present case, we emphasized the importance of treatment choice between anti-tumor and bone management in the long-term survival of cancer patients with synchronous bone metastasis.
Collapse
Affiliation(s)
- Yao Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
| | - Haixiao Wu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
| | - Cong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yulin Ma
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chao Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
111
|
Chow YP, Zainul Abidin N, Kow KS, Tho LM, Wong CL. Analytical and clinical validation of a custom 15-gene next-generation sequencing panel for the evaluation of circulating tumor DNA mutations in patients with advanced non-small-cell lung cancer. PLoS One 2022; 17:e0276161. [PMID: 36256645 PMCID: PMC9578623 DOI: 10.1371/journal.pone.0276161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This is a pilot proof-of-concept study to evaluate the utility of a custom 15-gene circulating tumor DNA (ctDNA) panel as a potential companion molecular next-generation sequencing (NGS) assay for identifying somatic single nucleotide variants and indels in non-small-cell lung cancer (NSCLC) patients. The custom panel covers the hotspot mutations in EGFR, KRAS, NRAS, BRAF, PIK3CA, ERBB2, MET, KIT, PDGFRA, ALK, ROS1, RET, NTRK1, NTRK2 and NTRK3 genes which serve as biomarkers for guiding treatment decisions in NSCLC patients. METHOD The custom 15-gene ctDNA NGS panel was designed using ArcherDX Assay Designer. A total of 20 ng or 50 ng input ctDNA was used to construct the libraries. The analytical performance was evaluated using reference standards at different allellic frequencies (0.1%, 1%, 5% and parental). The clinical performance was evaluated using plasma samples collected from 10 treatment naïve advanced stage III or IV NSCLC patients who were tested for tissue EGFR mutations. The bioinformatics analysis was performed using the proprietary Archer Analysis Software. RESULTS For the analytical validation, we achieved 100% sensitivity and specificity for the detection of known mutations in the reference standards. The limit of detection was 1% allelic frequency. Clinical validation showed that the clinical sensitivity and specificity of the assay for detecting EGFR mutation were 83.3% and 100% respectively. In addition, the NGS panel also detected other mutations of uncertain significance in 6 out of 10 patients. CONCLUSION This preliminary analysis showed that the custom 15-gene ctDNA NGS panel demonstrated good analytical and clinical performances for the EGFR mutation. Further studies incorporating the validation of other candidate gene mutations are warranted.
Collapse
Affiliation(s)
- Yock Ping Chow
- Clinical Research Centre, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Norziha Zainul Abidin
- Molecular Diagnostics Laboratory, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Ken Siong Kow
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Lye Mun Tho
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Chieh Lee Wong
- Clinical Research Centre, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Molecular Diagnostics Laboratory, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Haematology Unit, Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Centre for Haematology, Hammersmith Hospital, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
112
|
Treatment patterns for advanced non-small cell lung cancer in the US: A systematic review of observational studies. Cancer Treat Res Commun 2022; 33:100648. [PMID: 36270164 DOI: 10.1016/j.ctarc.2022.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The advent of immunotherapies (I-O) and targeted therapies has transformed the treatment landscape in advanced non-small cell lung cancer (NSCLC). However, adoption of new treatment guidelines and evolving treatment patterns in clinical practice are largely unknown. The aim of this systematic literature review (SLR) was to capture real-world first-line treatment patterns in advanced (staged IIIB-IV) or recurrent NSCLC patients in the US. METHODS Electronic databases were systematically searched for observational studies published 2012-2020 that reported on adult patients receiving first-line therapy for advanced NSCLC. Included studies were reviewed and treatment patterns were summarized descriptively. RESULTS Eighteen studies were included. Platinum-doublet (PD) chemotherapy and unspecified chemotherapy regimens were the most commonly used first-line treatments (up to 71% and 96%, respectively). Chemotherapy as monotherapy was mainly utilized in patients ≥65 years. While chemotherapy use was continuously high, I-O became the preferred front-line treatment in 2018 (32.9%). I-O monotherapy was more prevalent among patients with PD-L1 ≥50%, compared to patients with lower levels. First-line use of tyrosine kinase inhibitors and bevacizumab-based therapies was common in 2010 (33.4% and 21.7%, respectively), but gradually declined to <1% in 2018. CONCLUSION Consistent with the evolving first-line NSCLC treatment landscape in the US, this SLR captures the increasing use of I-O in recent years. While the brief lag in I-O use from the time of authorization may be attributable to an initial resistance to treatment adoption or publication delays, continued use of chemotherapy regimens may reflect an unmet treatment need, which warrants further research.
Collapse
|
113
|
Irshad R, Raj N, Gabr GA, Manzoor N, Husain M. Integrated network pharmacology and experimental analysis unveil multi-targeted effect of 18α- glycyrrhetinic acid against non-small cell lung cancer. Front Pharmacol 2022; 13:1018974. [PMID: 36313358 PMCID: PMC9596789 DOI: 10.3389/fphar.2022.1018974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant types of cancer with soaring incidence rates worldwide, attributed to its heterogeneity and complex etiology. Evidently, alternative anti-cancer therapies comprising traditional medicines and natural products have gained attention for their ability to act as chemopreventive agents with minimal toxicities, either alone or in combination. Accumulating studies have substantiated the inevitability of network pharmacology studies for effectively mapping molecular targets of natural products against multifaceted diseases, including cancer. The 18α-Glycyrrhetinic acid (18α-GA), a triterpenoid found in licorice plants, has shown promising medicinal properties, although, its mechanism of action against NSCLC yet remains elusive. The present study was conducted to explore the anti- NSCLC potential of 18α-GA, employing integrative network pharmacology, molecular docking, and experimental research. Initially, network analysis revealed 181 common targets of 18α-GA in NSCLC as shown in the “compound-target- disease” network employing Cytoscape 3.8.2. Further analyses identified EGFR, AKT1, PI3KR1, MAPK1, IGF1, and SRC as the most crucial hub targets of 18α-GA against NSCLC. Moreover, molecular docking simulations and functional enrichment analyses indicated the involvement of multiple signaling pathways in suppressing NSCLC. Subsequent in-vitro studies verified the antiproliferative effect of 18α-GA on two NSCLC cancer cell lines, H1299 and A549. Mechanistically, 18α-GA arrested cell cycle at the G1 phase, induced apoptosis, decreased migratory potential, and protein expression levels of EGFR-PI3K/AKT, as examined by flow cytometry, morphological assessment, RT-PCR, and western blot. In conclusion, this study delineates the therapeutic potential and underlying mechanism(s) of 18α-GA as a putative novel drug against NSCLC. However, further studies are warranted to elucidate the complete molecular mechanism(s) using animal models of NSCLC.
Collapse
Affiliation(s)
- Rasha Irshad
- Virology and Oncology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Nafis Raj
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Gamal A. Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al- Kharj, Saudi Arabia
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Husain
- Virology and Oncology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Mohammad Husain,
| |
Collapse
|
114
|
Chung JH, Choi HJ, Kang YJ, Kim YS, Lee SY, Kwon RJ, Jeong HS, Park SJ, Jeong Y, Kang D, Ko J, Noh S, Chung HY, Moon HR, Yoon SH. MHY4571, a novel diarylcyclohexanone derivative, exerts anti-cancer activity by regulating the PKA-cAMP-response element-binding protein pathway in squamous cell lung cancer. Exp Hematol Oncol 2022; 11:68. [PMID: 36209131 PMCID: PMC9547450 DOI: 10.1186/s40164-022-00324-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background The protein kinase A (PKA)/cAMP response element-binding protein (CREB) has been suggested to be related to the inhibition of the proliferation of non-small cell lung cancer (NSCLC) cells. This study aimed to investigate the efficacy of a novel diarylcyclohexanone derivative, MHY4571, in regulating the PKA-CREB pathway and to study its anti-tumor role in squamous NSCLC. Methods We designed MHY4571 as a novel PKA inhibitor with acceptable in silico ADME properties and tested it in vitro in lung cancer cell lines and in vivo in xenograft and orthotopic mouse models of squamous cell lung carcinoma. Results MHY4571 inhibited PKA activity (> 70% inhibition) and suppressed the expression of p-PKA and p-CREB dose-dependently. MHY4571 treatment reduced lung cancer cell viability and promoted caspase 3-dependent apoptotic cell death. Orally administered MHY4571 significantly suppressed lung tumor growth in xenograft and orthotopic mouse models. PKA catalytic subunit alpha-silencing by siRNA (siPKA) strongly attenuated CREB phosphorylation; siCREB did not alter PKA protein levels or its phosphorylation, suggesting that PKA is an upstream regulator of CREB activity. MHY4571 acted synergistically with cisplatin (on co-treatment) to induce apoptotic cell death in lung cancer cells. Conclusions Our results imply that MHY4571 may be a potential drug candidate for squamous cell lung cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00324-8.
Collapse
Affiliation(s)
- Jae Heun Chung
- Department of Internal Medicine, Pusan National University, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea. .,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea.
| | - Ho Jung Choi
- Department of Internal Medicine, Pusan National University, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Yong Jung Kang
- Department of Internal Medicine, Pusan National University, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Yun Seong Kim
- Department of Internal Medicine, Pusan National University, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Sang-Yull Lee
- Department of Biochemistry, School of Medicine, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, Republic of Korea
| | - Ryuk Jun Kwon
- Department of Family Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Han-Sol Jeong
- School of Korean Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Su-Jung Park
- School of Korean Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yeongmu Jeong
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Dongwan Kang
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jeongin Ko
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - SangGyun Noh
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Seong Hoon Yoon
- Department of Internal Medicine, Pusan National University, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea. .,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
115
|
Uzhachenko R, Shimamoto A, Chirwa SS, Ivanov SV, Ivanova AV, Shanker A. Mitochondrial Fus1/Tusc2 and cellular Ca2 + homeostasis: tumor suppressor, anti-inflammatory and anti-aging implications. Cancer Gene Ther 2022; 29:1307-1320. [PMID: 35181743 PMCID: PMC9576590 DOI: 10.1038/s41417-022-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
FUS1/TUSC2 (FUSion1/TUmor Suppressor Candidate 2) is a tumor suppressor gene (TSG) originally described as a member of the TSG cluster from human 3p21.3 chromosomal region frequently deleted in lung cancer. Its role as a TSG in lung, breast, bone, and other cancers was demonstrated by several groups, but molecular mechanisms of its activities are starting to unveil lately. They suggest that Fus1-dependent mechanisms are relevant in etiologies of diseases beyond cancer, such as chronic inflammation, bacterial and viral infections, premature aging, and geriatric diseases. Here, we revisit the discovery of FUS1 gene in the context of tumor initiation and progression, and review 20 years of research into FUS1 functions and its molecular, structural, and biological aspects that have led to its use in clinical trials and gene therapy. We present a data-driven view on how interactions of Fus1 with the mitochondrial Ca2+ (mitoCa2+) transport machinery maintain cellular Ca2+ homeostasis and control cell apoptosis and senescence. This Fus1-mediated cellular homeostasis is at the crux of tumor suppressor, anti-inflammatory and anti-aging activities.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sergey V Ivanov
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA.
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
116
|
Lu L, Fang T, Pang T, Chen Z, Cheng L, Ma D, Xi Z. The potential application of branch-PCR assembled PTEN gene nanovector in lung cancer gene therapy. Chembiochem 2022; 23:e202200387. [PMID: 36073901 DOI: 10.1002/cbic.202200387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Indexed: 11/12/2022]
Abstract
Gene therapy offers an alternative and promising avenue to lung cancer treatment. Here, we used dibenzocyclooctyne (DBCO)-branched primers to construct a kind of PTEN gene nanovector (NP-PTEN) through branch-PCR. NP-PTEN showed the nanoscale structure with the biocompatible size (84.7 ± 11.2 nm) and retained the improved serum stability compared to linear DNA. When transfected into NCI-H1299 cancer cells, NP-PTEN could overexpress PTEN protein to restore PTEN function through the deactivation of PI3K-AKT-mTOR signaling pathway to inhibit cell proliferation and induce cell apoptosis. The apoptosis rate of NCI-H1299 cancer cells could reach up to 54.5% ± 4.6% when the transfection concentration of NP-PTEN was 4.0 μg/mL. In mice bearing NCI-H1299 tumor xenograft intratumorally administrated with NP-PTEN, the average tumor volume and tumor weight was separately reduced by 61.7% and 63.9% compared with the PBS group on the 18 th day of administration. The anticancer efficacy of NP-PTEN in NCI-H1299 tumor xenograft suggested the promising therapeutic potential of this branch-PCR assembled PTEN gene nanovectors in lung cancer gene therapy and also provided more opportunities to introduce two or more tumor suppressor genes as the all-in-one gene nanovectors for multiple gene-based cancer gene therapy.
Collapse
Affiliation(s)
- Liqing Lu
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tian Fang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tuo Pang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Ziyi Chen
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Longhuai Cheng
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Dejun Ma
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Zhen Xi
- Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Bi, 94 weijin road, 300071, Tianjin, CHINA
| |
Collapse
|
117
|
Jia X, Xin M, Xu J, Xiang X, Li X, Jiao Y, Wang L, Jiang J, Pang F, Zhang X, Zhang J. Inhibition of autophagy potentiates the cytotoxicity of the irreversible FGFR1-4 inhibitor FIIN-2 on lung adenocarcinoma. Cell Death Dis 2022; 13:750. [PMID: 36042213 PMCID: PMC9428205 DOI: 10.1038/s41419-022-05201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
For patients with platinum-resistant lung adenocarcinoma (LUAD), the exploration of new effective drug candidates is urgently needed. Fibroblast growth factor receptors (FGFRs) have been identified as promising targets for LUAD therapy. The purpose of this study was to determine the exact role of the irreversible FGFR1-4 inhibitor FIIN-2 in LUAD and to clarify its underlying molecular mechanisms. Our results demonstrated that FIIN-2 significantly inhibited the proliferation, colony formation, and migration of A549 and A549/DDP cells but induced the mitochondria-mediated apoptosis of these cells. Meanwhile, FIIN-2 increased the autophagy flux of A549 and A549/DDP cells by inhibiting the mammalian target of rapamycin (mTOR) and further activating the class III PI3K complex pathway. More importantly, in vivo and in vitro experiments showed that autophagy inhibitors could enhance the cytotoxicity of FIIN-2 on A549 and A549/DDP cells, confirming that FIIN-2 induced protective autophagy. These findings indicated that FIIN-2 is a potential drug candidate for LUAD treatment, and its use in combination with autophagy inhibitors might be an efficient treatment strategy, especially for patients with cisplatin resistance.
Collapse
Affiliation(s)
- Xiuqin Jia
- grid.27255.370000 0004 1761 1174Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong Province China ,grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Ming Xin
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Juanjuan Xu
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xindong Xiang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xuan Li
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Yuhan Jiao
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Lulin Wang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Jingjing Jiang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Feng Pang
- grid.415912.a0000 0004 4903 149XDepartment of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xianzhen Zhang
- grid.415912.a0000 0004 4903 149XDepartment of Oncology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Jian Zhang
- grid.27255.370000 0004 1761 1174Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong Province China
| |
Collapse
|
118
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
119
|
Chan Y, Singh SK, Gulati M, Wadhwa S, Prasher P, Kumar D, Kumar AP, Gupta G, Kuppusamy G, Haghi M, George Oliver BG, Adams J, Chellappan DK, Dua K. Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. J Drug Deliv Sci Technol 2022; 74:103541. [PMID: 35774068 PMCID: PMC9221924 DOI: 10.1016/j.jddst.2022.103541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022]
Abstract
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease, lung cancer, and the recently emerged COVID-19, are a huge threat to human health, and among the leading causes of global morbidity and mortality every year. Despite availability of various conventional therapeutics, many patients remain poorly controlled and have a poor quality of life. Furthermore, the treatment and diagnosis of these diseases are becoming increasingly challenging. In the recent years, the application of nanomedicine has become increasingly popular as a novel strategy for diagnosis, treatment, prevention, as well as follow-up of chronic lung diseases. This is attributed to the ability of nanoscale drug carriers to achieve targeted delivery of therapeutic moieties with specificity to diseased site within the lung, thereby enhancing therapeutic outcomes of conventional therapies whilst minimizing the risks of adverse reactions. For this instance, monoolein is a polar lipid nanomaterial best known for its versatility, thermodynamic stability, biocompatibility, and biodegradability. As such, it is commonly employed in liquid crystalline systems for various drug delivery applications. In this review, we present the applications of monoolein as a novel nanomaterial-based strategy for targeted drug delivery with the potential to revolutionize therapeutic approaches in chronic lung diseases.
Collapse
Affiliation(s)
- Yinghan Chan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avvaru Praveen Kumar
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Po Box 1888, Adama, Ethiopia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
120
|
Tang LY, Spezia M, Chen T, Shin JH, Wang F, Stappenbeck F, Lebensohn AM, Parhami F, Zhang YE. Oxysterol derivatives Oxy186 and Oxy210 inhibit WNT signaling in non-small cell lung cancer. Cell Biosci 2022; 12:119. [PMID: 35908024 PMCID: PMC9338492 DOI: 10.1186/s13578-022-00857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Developmental signaling pathways such as those of Hedgehog (HH) and WNT play critical roles in cancer stem cell self-renewal, migration, and differentiation. They are often constitutively activated in many human malignancies, including non-small cell lung cancer (NSCLC). Previously, we reported that two oxysterol derivatives, Oxy186 and Oxy210, are potent inhibitors of HH/GLI signaling and NSCLC cancer cell growth. In addition, we also showed that Oxy210 is a potent inhibitor of TGF-β/SMAD signaling. In this follow-up study, we further explore the mechanism of action by which these oxysterols control NSCLC cell proliferation and tumor growth. RESULTS Using a GLI-responsive luciferase reporter assay, we show here that HH ligand could not mount a signaling response in the NSCLC cell line A549, even though Oxy186 and Oxy210 still inhibited non-canonical GLI activity and suppressed the proliferation of A549 cells. Further, we uncover an unexpected activity of these two oxysterols in inhibiting the WNT/β-catenin signaling at the level of LRP5/6 membrane receptors. We also show that in a subcutaneous xenograft tumor model generated from A549 cells, Oxy186, but not Oxy210, exhibits strong inhibition of tumor growth. Subsequent RNA-seq analysis of the xenograft tumor tissue reveal that the WNT/β-catenin pathway is the target of Oxy186 in vivo. CONCLUSION The oxysterols Oxy186 and Oxy210 both possess inhibitory activity towards WNT/β-catenin signaling, and Oxy186 is also a potent inhibitor of NSCLC tumor growth.
Collapse
Affiliation(s)
- Liu-Ya Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Marie Spezia
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Ting Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Jee-Hye Shin
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Feng Wang
- Max Biopharma. Inc, 2870 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Frank Stappenbeck
- Max Biopharma. Inc, 2870 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Farhad Parhami
- Max Biopharma. Inc, 2870 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA.
| |
Collapse
|
121
|
Integrative pharmacogenomics revealed three subtypes with different immune landscapes and specific therapeutic responses in lung adenocarcinoma. Comput Struct Biotechnol J 2022; 20:3449-3460. [PMID: 35832634 PMCID: PMC9271977 DOI: 10.1016/j.csbj.2022.06.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Pharmacogenomics is crucial for individualized drug therapy and plays an increasingly vital role in precision medicine decision-making. However, pharmacogenomics-based molecular subtypes and their potential clinical significance remain primarily unexplored in lung adenocarcinoma (LUAD). Methods A total of 2065 samples were recruited from eight independent cohorts. Pharmacogenomics data were generated from the profiling of relative inhibition simultaneously in mixtures (PRISM) and the genomics of drug sensitivity in cancer (GDSC) databases. Multiple bioinformatics approaches were performed to identify pharmacogenomics-based subtypes and find subtype-specific properties. Results Three reproducible molecular subtypes were found, which were independent prognostic factors and highly associated with stage, survival status, and accepted molecular subtypes. Pharmacogenomics-based subtypes had distinct molecular characteristics: S-Ⅰ was inflammatory, proliferative, and immune-evasion; S-Ⅱ was proliferative and genetics-driven; S-III was metabolic and methylation-driven. Finally, our study provided subtype-guided personalized treatment strategies: Immune checkpoint blockers (ICBs), doxorubicin, tipifarnib, AZ628, and AZD6244 were for S-Ⅰ; Cisplatin, camptothecin, roscovitine, and A.443654 were for S-Ⅱ; Docetaxel, paclitaxel, vinorelbine, and BIBW2992 were for S-III. Conclusion We provided a novel molecular classification strategy and revealed three pharmacogenomics-based subtypes for LUAD patients, which uncovered potential subtype-related and patient-specific therapeutic strategies.
Collapse
|
122
|
Zhou J, Xu Y, Wang G, Mei T, Yang H, Liu Y. The TLR7/8 agonist R848 optimizes host and tumor immunity to improve therapeutic efficacy in murine lung cancer. Int J Oncol 2022; 61:81. [PMID: 35552764 PMCID: PMC9162053 DOI: 10.3892/ijo.2022.5371] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Treatment with the Toll‑like receptor 7 (TLR7) agonist, resiquimod (R848), is effective in various types of cancer, such as breast, pancreatic and colorectal cancer. The reported antitumor effect of R848 in lung cancer is considered to be achieved by targeting macrophages. In the present study, it was demonstrated that TLR7 expression on various immune cell types initially rises, then declines in the late stage of lung cancer. Intraperitoneal injection of R848 resulted in a reduction in tumor burden and prolonged survival in both subcutaneous and metastatic lung cancer models in C57BL/6 mice. Initial treatment with R848 at an early stage was found to be the optimal choice. Systemic injection of R848 promoted the activation of innate and adaptive immune responses. Systemic administration of R848 upregulated TLR7 expression in dendritic cells (DCs) and enhanced the activation of DCs and natural killer (NK) cells. Moreover, this treatment also resulted in increased production of T helper cell‑associated cytokines in serum, including IFN‑γ, TNF‑α and IL‑2. In addition, continuous treatment with R848 increased the proportion of DCs, NK and CD8+ T cells, and reduced that of Foxp3+ regulatory T cells in the tumor microenvironment. These findings supported the use of R848 treatment for lung cancer via TLR7 targeting and provided insight into the underlying therapeutic mechanism.
Collapse
Affiliation(s)
- Jianchun Zhou
- Respiratory Medicine Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu Xu
- Institute of Respiratory Diseases, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Tonghua Mei
- Respiratory Medicine Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hao Yang
- Respiratory Medicine Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuliang Liu
- Respiratory Medicine Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
123
|
Lu S, Wu L, Jian H, Chen Y, Wang Q, Fang J, Wang Z, Hu Y, Sun M, Han L, Miao L, Ding C, Cui J, Li B, Pan Y, Li X, Ye F, Liu A, Wang K, Cang S, Zhou H, Sun X, Ferry D, Lin Y, Wang S, Zhang W, Zhang C. Sintilimab plus bevacizumab biosimilar IBI305 and chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): first interim results from a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 2022; 23:1167-1179. [DOI: 10.1016/s1470-2045(22)00382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/16/2022]
|
124
|
Production of bioactive compounds from callus of Pueraria thomsonii Benth with promising cytotoxic and antibacterial activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
125
|
Liu J, Zhang Y. Intratumor microbiome in cancer progression: current developments, challenges and future trends. Biomark Res 2022; 10:37. [PMID: 35642013 PMCID: PMC9153132 DOI: 10.1186/s40364-022-00381-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a complicated disease attributed to multifactorial changes, which causes difficulties with treatment strategies. Various factors have been regarded as the main contributors, and infectious etiological factors have recently attracted interest. Several microbiomes contribute to carcinogenesis, cancer progression, and modulating cancer treatment by inducing cancerous epithelial cells and chronic inflammation. Most of our knowledge on the role of microbiota in tumor oncogenesis and clinical efficiency is associated with the intestinal microbiome. However, compelling evidence has also confirmed the contribution of the intratumor microbiome in cancer. Indeed, the findings of clinical tumor samples, animal models, and studies in vitro have revealed that many intratumor microbiomes promote tumorigenesis and immune evasion. In addition, the intratumor microbiome participates in regulating the immune response and even affects the outcomes of cancer treatment. This review summarizes the interplay between the intratumor microbiota and cancer, focusing on the contribution and mechanism of intratumor microbiota in cancer initiation, progression, and potential applications to cancer therapy.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| |
Collapse
|
126
|
Wang X, Liu Z, Wang Y, Gou S. Platinum(IV) Prodrugs with Cancer Stem Cell Inhibitory Effects on Lung Cancer for Overcoming Drug Resistance. J Med Chem 2022; 65:7933-7945. [DOI: 10.1021/acs.jmedchem.2c00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanjiang Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
127
|
Li W, Wan R, Guo L, Chang G, Jiang D, Meng L, Ying J. Reliability analysis of exonic-breakpoint fusions identified by DNA sequencing for predicting the efficacy of targeted therapy in non-small cell lung cancer. BMC Med 2022; 20:160. [PMID: 35534835 PMCID: PMC9087946 DOI: 10.1186/s12916-022-02362-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Diverse genomic breakpoints of fusions that localize to intronic, exonic, or intergenic regions have been identified by DNA next-generation sequencing (NGS), but the role of exonic breakpoints remains elusive. We investigated whether exonic-breakpoint fusions could predict matched targeted therapy efficacy in non-small cell lung cancer (NSCLC). METHODS NSCLC samples were analyzed by DNA NGS, RNA NGS, immunohistochemistry (IHC), and fluorescence in situ hybridization. RESULTS Using DNA NGS, kinase fusions were identified in 685 of 7148 (9.6%) NSCLCs, with 74 harboring exonic-breakpoint fusions, mostly anaplastic lymphoma kinase (ALK) fusions. RNA NGS and IHC revealed that 11 of 55 (20%) exonic-breakpoint fusions generated no aberrant transcript/protein, possibly due to open reading frame disruption or different gene transcriptional orientations. Four cases of genomic-positive but RNA/protein-negative fusions were treated with matched targeted therapy, but progressive disease developed within 2 months. Nevertheless, 44 of 55 (80%) exonic-breakpoint fusions produced chimeric transcripts/proteins, possibly owing to various alternative splicing patterns, including exon skipping, alternative splice site selection, and intron retention. Most of these genomic- and RNA/protein-positive fusion cases showed a clinical response to matched targeted therapy. Particularly, there were no differences in objective response rate (P = 0.714) or median progression-free survival (P = 0.500) between intronic-breakpoint (n = 56) and exonic-breakpoint ALK fusion subtypes (n = 11) among ALK RNA/protein-validated patients who received first-line crizotinib. CONCLUSIONS Exonic-breakpoint fusions may generate in-frame fusion transcripts/proteins or not, and thus are unreliable for predicting the efficacy of targeted therapy, which highlights the necessity of implementing RNA or protein assays for functional validation in exonic-breakpoint fusion cases.
Collapse
Affiliation(s)
- Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Beijing, 100021, China.
| | - Rui Wan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Beijing, 100021, China
| | - Geyun Chang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Jiang
- Beijing Novogene Bioinformatics Technology Co., Ltd., Beijing, China
| | - Lin Meng
- Beijing Novogene Bioinformatics Technology Co., Ltd., Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Beijing, 100021, China.
| |
Collapse
|
128
|
Wang J, Han X, Yuan Y, Gu H, Liao X, Jiang M. The Value of Dysregulated LncRNAs on Clinicopathology and Survival in Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front Genet 2022; 13:821675. [PMID: 35450214 PMCID: PMC9016135 DOI: 10.3389/fgene.2022.821675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: There is growing evidence that a number of lncRNAs are involved in the pathogenesis of non-small-cell lung cancer (NSCLC). However, studies on lncRNA expression in NSCLC patients are far from conclusive. Therefore, we performed a systematic review of such studies to collect and examine the evidence on the potential role of lncRNAs in the development of NSCLC. Methods: We systematically searched seven literature databases to identify all published studies that evaluated the expression of one or more lncRNAs in human samples with NSCLC (cases) and without NSCLC (controls) from January 1, 1995 to May 24, 2021. Quality assessment of studies was conducted by using the “Quality in Prognosis Studies” (QUIPS) tool, and the heterogeneity across studies was analyzed with the I-squared statistic and chi-square-based Q-tests. Either fixed or random-effect meta-analysis was performed to summarize effect size to investigate the association between lncRNA expression and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and clinicopathological features. The R statistical software program was used to conduct standard meta-analysis. Results: We finally obtained 48 studies with 5,211 patients included in this review after screening. Among the 48 lncRNAs, 38 lncRNAs were consistently upregulated, and 10 were deregulated in patients with NSCLC compared with the control groups. The upregulated lncRNAs were positively associated with histological type: study number (n) = 18, odds ratio (OR) = 0.78, 95% CI: 0.65–0.95 and OR = 1.30, 95% CI: 1.08–1.57, p < 0.01; TNM stages: n = 20, OR = 0.41, 95% CI: 0.29–0.57 and OR = 2.44, 95% CI: 1.73–3.44, p < 0.01; lymph node metastasis: n = 29, OR = 0.49, 95% CI: 0.34–0.71 and OR = 2.04, 95% CI: 1.40–2.96, p < 0.01; differentiation grade: n = 6, OR = 0.61, 95% CI: 0.38–0.99 and OR = 1.63, 95% CI: 1.01–2.64, p < 0.01; distant metastasis: n = 9, OR = 0.37, 95% CI: 0.26–0.53 and OR = 2.72, 95% CI: 1.90–3.90, p < 0.01; tumor size: n = 16, OR = 0.52, 95% CI: 0.43–0.64 and OR = 1.92, 95% CI: 1.57–2.34, p < 0.01; and overall survival [n = 38, hazard ratio (HR) = 1.79, 95% CI = 1.59–2.02, p < 0.01]. Especially, five upregulated lncRNAs (linc01234, ZEB1-AS1, linc00152, PVT1, and BANCR) were closely associated with TNM Ⅲa stage (n = 5, OR = 4.07, 95% CI: 2.63–6.28, p < 0.01). However, 10 deregulated lncRNAs were not significantly associated with the pathogenesis and overall survival in NSCLC in the meta-analysis (p ≥ 0.05). Conclusion: This systematic review suggests that the upregulated lncRNAs could serve as biomarkers for predicting promising prognosis of NSCLC. The prognostic value of downregulated lncRNA in NSCLC needs to be further explored. Systematic Review Registration: (http://www.crd.york.ac.uk/PROSPERO).identifier CRD42021240635.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
129
|
Shen Y, Cai H, Ma S, Zhu W, Zhao H, Li J, Ye H, Yang L, Zhao C, Huang X, Xiao Z. Telocinobufagin Has Antitumor Effects in Non-Small-Cell Lung Cancer by Inhibiting STAT3 Signaling. JOURNAL OF NATURAL PRODUCTS 2022; 85:765-775. [PMID: 35200033 DOI: 10.1021/acs.jnatprod.1c00761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-small-cell lung carcer (NSCLC), the main histological subtype of lung cancer, is responsible for significant morbidity and mortality worldwide. Telocinobufagin, an active compound of the Chinese traditional medicine ChanSu, has antitumor effects, but its mechanism of action remains unknown. Therefore, we investigated the effect of telocinobufagin on NSCLC growth and metastasis and its possible mechanism of action, in vitro and in vivo. Cell proliferation, migration, and apoptosis were measured by methyl thiazol tetrazolium assay, colony formation, 5-ethynyl-2'-deoxyuridine incorporation, Transwell migration, wound healing, and flow cytometry analysis. A mouse xenograft model was used to evaluate tumor formation in vivo. Telocinobufagin was found to suppress proliferation and metastasis and induce apoptosis in human NSCLC cells. Moreover, telocinobufagin was able to significantly inhibit STAT3 phosphorylation at tyrosine 705 (Y705) and its downstream targets. Additionally, telocinobufagin also impaired the IL-6-induced nuclear translocation of STAT3. Consistent with the in vitro experiments, telocinobufagin reduced the A549 xenograft tumor burden and the levels of P-STAT3Y705, MCL1, BCL2, and cleaved PARP1 in vivo. These results support telocinobufagin as a promising STAT3 signaling inhibitor candidate for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Yili Shen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haijian Cai
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shenjie Ma
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjing Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haiyang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jifa Li
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Hua Ye
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengguang Zhao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhongxiao Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| |
Collapse
|
130
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
131
|
Li K, Liu J, Wu L, Xiao Y, Li J, Du H, Zhao Z, Sun C, Zhao Y, Yang J, Wu D, Zhao Z, Chen B. Genomic correlates of programmed cell death ligand 1 (PD-L1) expression in Chinese lung adenocarcinoma patients. Cancer Cell Int 2022; 22:138. [PMID: 35346207 PMCID: PMC8962080 DOI: 10.1186/s12935-022-02488-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Although PD-L1 expression is a crucial predictive biomarker for immunotherapy, it can be influenced by many factors.
Methods
A total of 248 Chinese patients with lung adenocarcinoma was retrospectively identified. Data for clinical features, gene alternations, signaling pathways and immune signatures was analyzed among negative expression group (TPS < 1%, n = 124), intermediate expression group (1% ≤ TPS < 50%, n = 93), and high expression group (TPS ≥ 50%, n = 38). Clinical outcomes among different expression groups were also evaluated from public database.
Results
Firstly, high tumor mutation burden was significantly associated with high PD-L1 expression in these Chinese patients with lung adenocarcinoma. In addition, gene alternations including TP53, PRKDC, KMT2D, TET1 and SETD2 apparently occurred in high PD-L1 expression group. Moreover, pathway analysis showed that mutations involving in DDR pathway, TP53 pathway, cell-cycle pathway and NOTCH pathway were obviously varied among three PD-L1 expression groups. Besides, most of patients in high PD-L1 expression group from TCGA database were determined as high-grade immune subtypes (C2-C4), showing significant higher proportions of IFN-gamma, CD8+ T-cells, NK cells, NK CD56 dim cells, Th1 cells, Th2 cells (P < 0.0001). Moreover, SETD2 mutation slightly correlated with overall survival from MSKCC cohort (HR 1.92 [95%CI 0.90–4.10], P = 0.085), and the percentage of IFN-gamma was significantly higher in SETD2 mutant group than in wild-type group (P < 0.01).
Conclusions
This study illustrated in-depth genomic correlates of PD-L1 expression in Chinese lung adenocarcinoma patients and relevant immune signatures from public database, which might interpret more potential molecular mechanisms for immunotherapy in NSCLC.
Collapse
|
132
|
Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol 2022; 15:34. [PMID: 35331296 PMCID: PMC8943941 DOI: 10.1186/s13045-022-01252-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer microenvironment is critical for tumorigenesis and cancer progression. The extracellular matrix (ECM) interacts with tumor and stromal cells to promote cancer cells proliferation, migration, invasion, angiogenesis and immune evasion. Both ECM itself and ECM stiffening-induced mechanical stimuli may activate cell membrane receptors and mechanosensors such as integrin, Piezo1 and TRPV4, thereby modulating the malignant phenotype of tumor and stromal cells. A better understanding of how ECM stiffness regulates tumor progression will contribute to the development of new therapeutics. The rapidly expanding evidence in this research area suggests that the regulators and effectors of ECM stiffness represent potential therapeutic targets for cancer. This review summarizes recent work on the regulation of ECM stiffness in cancer, the effects of ECM stiffness on tumor progression, cancer immunity and drug resistance. We also discuss the potential targets that may be druggable to intervene ECM stiffness and tumor progression. Based on these advances, future efforts can be made to develop more effective and safe drugs to interrupt ECM stiffness-induced oncogenic signaling, cancer progression and drug resistance.
Collapse
|
133
|
Wang X, Li R, Feng L, Wang J, Qi Q, Wei W, Yu Z. Hsa_circ_0001666 promotes non-small cell lung cancer migration and invasion through miR-1184/miR-548I/AGO1 axis. Mol Ther Oncolytics 2022; 24:597-611. [PMID: 35284630 PMCID: PMC8892028 DOI: 10.1016/j.omto.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Accumulating evidence has revealed that the dysregulation of circular RNAs (circRNAs) plays crucial roles in the occurrence and progression of cancers. However, the aberrant expression profile and dysfunction of circRNAs in non-small cell lung cancer (NSCLC) have not been fully explored. Herein, we discovered that a circRNA, hsa_circ_0001666 (circ0001666), was highly expressed in NSCLC tissues and cell lines, and it was positively correlated with NSCLC tumor pathological grade and lymph node metastasis. Moreover, Kaplan-Meier survival analysis implied that NSCLC patients with high circ0001666 expression were negatively correlated with favorable survival. Functionally, circ0001666 could promote migration and invasion of NSCLC cells in vitro and in vivo. Mechanistically, circ0001666 could act as a sponge to miR-1184/miR-548I and upregulate the expression of AGO1, thereby promoting the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway in NSCLC cells. Collectively, these findings demonstrated that circ0001666 could serve as an oncogene to promote the migration and invasion of NSCLC via a novel miR-1184/miR-548I/AGO1 axis, which might be a promising therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Rui Li
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Lingxin Feng
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Jing Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Qi Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Wenjie Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| |
Collapse
|
134
|
Darabi S, Elliott A, Braxton DR, Zeng J, Hodges K, Poorman K, Swensen J, Shanthappa BU, Hinton JP, Gibney GT, Moser J, Phung T, Atkins MB, In GK, Korn WM, Eisenberg BL, Demeure MJ. Transcriptional Profiling of Malignant Melanoma Reveals Novel and Potentially Targetable Gene Fusions. Cancers (Basel) 2022; 14:cancers14061505. [PMID: 35326655 PMCID: PMC8946593 DOI: 10.3390/cancers14061505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Malignant melanoma is a complex disease that is estimated to claim over 7000 lives in the United States in 2021. Although recent advances in genomic technology have helped with the identification of driver variants, molecular studies and clinical trials have often focused on prevalent alterations, such as the BRAF-V600E mutation. With the inclusion of whole transcriptome sequencing, molecular profiling of melanomas has identified gene fusions and revealed gene expression profiles that are consistent with the activation of signaling pathways by common driver mutations. Patients harboring such fusions may benefit from currently approved targeted therapies and should be considered in the design of future clinical trials to further personalize treatments for patients with malignant melanoma. Abstract Invasive melanoma is the deadliest type of skin cancer, with 101,110 expected cases to be diagnosed in 2021. Recurrent BRAF and NRAS mutations are well documented in melanoma. Biologic implications of gene fusions and the efficacy of therapeutically targeting them remains unknown. Retrospective review of patient samples that underwent next-generation sequencing of the exons of 592 cancer-relevant genes and whole transcriptome sequencing for the detection of gene fusion events and gene expression profiling. Expression of PDL1 and ERK1/2 was assessed by immunohistochemistry (IHC). There were 33 (2.6%) cases with oncogenic fusions (14 novel), involving BRAF, RAF1, PRKCA, TERT, AXL, and FGFR3. MAPK pathway-associated genes were over-expressed in BRAF and RAF1 fusion-positive tumors in absence of other driver alterations. Increased expression in tumors with PRKCA and TERT fusions was concurrent with MAPK pathway alterations. For a subset of samples with available tissue, increased phosphorylation of ERK1/2 was observed in BRAF, RAF1, and PRKCA fusion-positive tumors. Oncogenic gene fusions are associated with transcriptional activation of the MAPK pathway, suggesting they could be therapeutic targets with available inhibitors. Additional analyses to fully characterize the oncogenic effects of these fusions may support biomarker driven clinical trials.
Collapse
Affiliation(s)
- Sourat Darabi
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Correspondence:
| | - Andrew Elliott
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - David R. Braxton
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
| | - Jia Zeng
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Kurt Hodges
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Kelsey Poorman
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Jeff Swensen
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Basavaraja U. Shanthappa
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - James P. Hinton
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Geoffrey T. Gibney
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC 20007, USA; (G.T.G.); (M.B.A.)
| | - Justin Moser
- Honor Health Research Institute, Scottsdale, AZ 85258, USA;
| | - Thuy Phung
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA;
| | - Michael B. Atkins
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC 20007, USA; (G.T.G.); (M.B.A.)
| | - Gino K. In
- Division of Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
| | - Wolfgang M. Korn
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Burton L. Eisenberg
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Division of Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
| | - Michael J. Demeure
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Translational Genomics Research Institution, Phoenix, AZ 85004, USA
| |
Collapse
|
135
|
Rocco D, Della Gravara L, Maione P, Palazzolo G, Gridelli C. Identification of drug combinations for lung cancer patients whose tumors are unresponsive to targeted therapy: clinical bases and future directions. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, Naples, Italy
| | - Luigi Della Gravara
- Department of Experimental Medicine, Università degli studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paolo Maione
- Division of Medical Oncology, “S.g. Moscati” Hospital, Avellino, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, “S.g. Moscati” Hospital, Avellino, Italy
| |
Collapse
|
136
|
Kaya IH, Al-Harazi O, Kaya MT, Colak D. Integrated Analysis of Transcriptomic and Genomic Data Reveals Blood Biomarkers With Diagnostic and Prognostic Potential in Non-small Cell Lung Cancer. Front Mol Biosci 2022; 9:774738. [PMID: 35309509 PMCID: PMC8930812 DOI: 10.3389/fmolb.2022.774738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Lung cancer is the second most common cancer and the main leading cause of cancer-associated death worldwide. Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancer diagnoses and more than 50% of all lung cancer cases are diagnosed at an advanced stage; hence have poor prognosis. Therefore, it is important to diagnose NSCLC patients reliably and as early as possible in order to reduce the risk of mortality.Methods: We identified blood-based gene markers for early NSCLC by performing a multi-omics approach utilizing integrated analysis of global gene expression and copy number alterations of NSCLC patients using array-based techniques. We also validated the diagnostic and the prognostic potential of the gene signature using independent datasets with detailed clinical information.Results: We identified 12 genes that are significantly expressed in NSCLC patients’ blood, at the earliest stages of the disease, and associated with a poor disease outcome. We then validated 12-gene signature’s diagnostic and prognostic value using independent datasets of gene expression profiling of over 1000 NSCLC patients. Indeed, 12-gene signature predicted disease outcome independently of other clinical factors in multivariate regression analysis (HR = 2.64, 95% CI = 1.72–4.07; p = 1.3 × 10−8). Significantly altered functions, pathways, and gene networks revealed alterations in several key genes and cancer-related pathways that may have importance for NSCLC transformation, including FAM83A, ZNF696, UBE2C, RECK, TIMM50, GEMIN7, and XPO5.Conclusion: Our findings suggest that integrated genomic and network analyses may provide a reliable approach to identify genes that are associated with NSCLC, and lead to improved diagnosis detecting the disease in early stages in patients’ blood instead of using invasive techniques and also have prognostic potential for discriminating high-risk patients from the low-risk ones.
Collapse
Affiliation(s)
- Ibrahim H. Kaya
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mustafa T. Kaya
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- King Faisal School, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- *Correspondence: Dilek Colak,
| |
Collapse
|
137
|
Kaewjanthong P, Sooksai S, Sasano H, Hutvagner G, Bajan S, McGowan E, Boonyaratanakornkit V. Cell-penetrating peptides containing the progesterone receptor polyproline domain inhibits EGF signaling and cell proliferation in lung cancer cells. PLoS One 2022; 17:e0264717. [PMID: 35235599 PMCID: PMC8890653 DOI: 10.1371/journal.pone.0264717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for the majority (80-85%) of all lung cancers. All current available treatments have limited efficacy. The epidermal growth factor receptor (EGFR) plays a critical role in the development and progression of NSCLC, with high EGFR expression associated with increased cell proliferation and poor prognosis. Thus, interfering with EGFR signaling has been shown to effectively reduce cell proliferation and help in the treatment of NSCLC. We previously demonstrated that the progesterone receptor (PR) contains a polyproline domain (PPD) that directly interacts with Src homology 3 (SH3) domain-containing molecules and expression of PR-PPD peptides inhibits NSCLC cell proliferation. In this study, we investigated whether the introduction of PR-PPD by cell-penetrating peptides (CPPs) could inhibit EGF-induced cell proliferation in NSCLC cells. PR-PPD was attached to a cancer-specific CPP, Buforin2 (BR2), to help deliver the PR-PPD into NSCLC cells. Interestingly, addition of BR2-2xPPD peptides containing two PR-PPD repeats was more effective in inhibiting NSCLC proliferation and significantly reduced EGF-induced phosphorylation of Erk1/2. BR2-2xPPD treatment induced cell cycle arrest by inhibiting the expression of cyclin D1 and CDK2 genes in EGFR-wild type A549 cells. Furthermore, the combination treatment of EGFR-tyrosine kinase inhibitors (TKIs), including Gefitinib or Erlotinib, with BR2-2xPPD peptides further suppressed the growth of NSCLC PC9 cells harboring EGFR mutations as compared to EGFR-TKIs treatment alone. Importantly, BR2-2xPPD peptides mediated growth inhibition in acquired Gefitinib- and Erlotinib- resistant lung adenocarcinoma cells. Our data suggests that PR-PPD is the minimal protein domain sufficient to inhibit NSCLC cell growth and has the potential to be developed as a novel NSCLC therapeutic agent.
Collapse
Affiliation(s)
- Panthita Kaewjanthong
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
| | - Sarah Bajan
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
138
|
Computational Analyses of YY1 and Its Target RKIP Reveal Their Diagnostic and Prognostic Roles in Lung Cancer. Cancers (Basel) 2022; 14:cancers14040922. [PMID: 35205667 PMCID: PMC8869872 DOI: 10.3390/cancers14040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lung cancer (LC) is the tumor with the highest global mortality rate. Novel personalized therapies are currently being tested (e.g., targeted inhibitors, the immune-checkpoint inhibitors), but they cannot yet prevent the very frequent relapse and generalized metastases observed in a large population of LC patients. Currently, there is an urgent need for novel reliable biomarkers for the prognosis and diagnosis of LC. Through the systematic analysis of multiple deposited expression datasets, this report aims to explore the role of the Yin-Yang 1 (YY1) transcription factor and its target the Raf Kinase Inhibitory Protein (RKIP) in LC. The computational analysis suggested the predictive diagnostic and prognostic roles for both YY1 and RKIP stimulating further studies for proving their implication as novel biomarkers, as well as therapeutically druggable targets in LC. Abstract Lung cancer (LC) represents a global threat, being the tumor with the highest mortality rate. Despite the introduction of novel therapies (e.g., targeted inhibitors, immune-checkpoint inhibitors), relapses are still very frequent. Accordingly, there is an urgent need for reliable predictive biomarkers and therapeutically druggable targets. Yin-Yang 1 (YY1) is a transcription factor that may work either as an oncogene or a tumor suppressor, depending on the genotype and the phenotype of the tumor. The Raf Kinase Inhibitory Protein (RKIP), is a tumor suppressor and immune enhancer often found downregulated in the majority of the examined cancers. In the present report, the role of both YY1 and RKIP in LC is thoroughly explored through the analysis of several deposited RNA and protein expression datasets. The computational analyses revealed that YY1 negatively regulates RKIP expression in LC, as corroborated by the deposited YY1-ChIP-Seq experiments and validated by their robust negative correlation. Additionally, YY1 expression is significantly higher in LC samples compared to normal matching ones, whereas RKIP expression is lower in LC and high in normal matching tissues. These observed differences, unlike many current biomarkers, bear a diagnostic significance, as proven by the ROC analyses. Finally, the survival data support the notion that both YY1 and RKIP might represent strong prognostic biomarkers. Overall, the reported findings indicate that YY1 and RKIP expression levels may play a role in LC as potential biomarkers and therapeutic targets. However, further studies will be necessary to validate the in silico results.
Collapse
|
139
|
Choudhury Y, Tan MH, Shi JL, Tee A, Ngeow KC, Poh J, Goh RR, Mong J. Complementing Tissue Testing With Plasma Mutation Profiling Improves Therapeutic Decision-Making for Patients With Lung Cancer. Front Med (Lausanne) 2022; 9:758464. [PMID: 35223889 PMCID: PMC8873935 DOI: 10.3389/fmed.2022.758464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTissue biopsy is an integral part of the diagnostic approach to lung cancer. It is however invasive and limited by heterogeneity. Liquid biopsies may complement tissue testing by providing additional molecular information and may be particularly helpful in patients from whom obtaining sufficient tissue for genomic profiling is challenging.MethodsPatients with suspected lung cancer (n = 71) were prospectively recruited. Blood and diagnostic tissue samples were collected within 48 h of each other. Plasma cell-free DNA (cfDNA) testing was done using an ultrasensitive amplicon-based next-generation sequencing (NGS) panel (plasma NGS testing). For cases diagnosed as non-small cell lung carcinoma (NSCLC) via histology or cytology, targeted testing for epidermal growth factor receptor (EGFR) mutations was performed using tissue biopsy samples (tissue EGFR testing), where available. Concordance of clinically actionable mutations between methods and sample types was assessed.ResultsFor confirmed NSCLC cases (n = 54), tissue EGFR test results were available only for 70.3% (38/54) due to sample inadequacies, compared to blood samples for 98.1% (53/54) cases. Tissue EGFR testing identified sensitizing EGFR (L858R or exon 19 deletion) mutation in 31.6% (12/38) of cases. Plasma NGS identified clinically actionable mutations in 37.7% (20/53) of cases, including EGFR mutations in two cases with no tissue EGFR results, and mutations in KRAS, BRAF, and MET. The overall sensitivity of sensitizing EGFR mutation detection by plasma NGS was 75% (9/12), and specificity was 100% (25/25) in patients tested in both tissue EGFR and plasma NGS (n = 37). In this cohort of patients, tissue EGFR testing alone informed clinical decisions in 22.2% (12/54) of cases. Adding plasma NGS to tissue EGFR testing increased the detection rate of actionable mutations to 42.6% (23/54), representing a 1.9-fold increase in clinically relevant findings. The average turnaround time of plasma NGS was shorter than standard tissue testing (10 vs. 29.9 days, p < 0.05).ConclusionsIn the first-line setting, plasma NGS was highly concordant with tissue EGFR testing. Plasma NGS increases the detection of actionable findings with a shorter time to results. This study outlines the clinical utility of complementary plasma mutation profiling in the routine management of lung cancer patients.
Collapse
Affiliation(s)
| | - Min-Han Tan
- Lucence Health Inc, Palo Alto, CA, United States
| | - Jun Li Shi
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Augustine Tee
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore
| | | | - Jonathan Poh
- Lucence Diagnostics Pte. Ltd., Singapore, Singapore
| | - Ruth Rosalyn Goh
- Lucence Diagnostics Pte. Ltd., Singapore, Singapore
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jamie Mong
- Institute of Bioengineering and Bioimaging, Singapore, Singapore
- *Correspondence: Jamie Mong
| |
Collapse
|
140
|
Shah P, Forget MA, Frank ML, Jiang P, Sakellariou-Thompson D, Federico L, Khairullah R, Neutzler CA, Wistuba I, Chow CWB, Long Y, Fujimoto J, Lin SY, Maitra A, Negrao MV, Mitchell KG, Weissferdt A, Vaporciyan AA, Cascone T, Roth JA, Zhang J, Sepesi B, Gibbons DL, Heymach JV, Haymaker CL, McGrail DJ, Reuben A, Bernatchez C. Combined IL-2, agonistic CD3 and 4-1BB stimulation preserve clonotype hierarchy in propagated non-small cell lung cancer tumor-infiltrating lymphocytes. J Immunother Cancer 2022; 10:jitc-2021-003082. [PMID: 35110355 PMCID: PMC8811607 DOI: 10.1136/jitc-2021-003082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TIL) yielded clinical benefit in patients with checkpoint blockade immunotherapy-refractory non-small cell lung cancer (NSCLC) prompting a renewed interest in TIL-ACT. This preclinical study explores the feasibility of producing a NSCLC TIL product with sufficient numbers and enhanced attributes using an improved culture method. Methods TIL from resected NSCLC tumors were initially cultured using (1) the traditional method using interleukin (IL)-2 alone in 24-well plates (TIL 1.0) or (2) IL-2 in combination with agonistic antibodies against CD3 and 4-1BB (Urelumab) in a G-Rex flask (TIL 3.0). TIL subsequently underwent a rapid expansion protocol (REP) with anti-CD3. Before and after the REP, expanded TIL were phenotyped and the complementarity-determining region 3 β variable region of the T-cell receptor (TCR) was sequenced to assess the T-cell repertoire. Results TIL 3.0 robustly expanded NSCLC TIL while enriching for CD8+ TIL in a shorter manufacturing time when compared with the traditional TIL 1.0 method, achieving a higher success rate and producing 5.3-fold more TIL per successful expansion. The higher proliferative capacity and CD8 content of TIL 3.0 was also observed after the REP. Both steps of expansion did not terminally differentiate/exhaust the TIL but a lesser differentiated population was observed after the first step. TIL initially expanded with the 3.0 method exhibited higher breadth of clonotypes than TIL 1.0 corresponding to a higher repertoire homology with the original tumor, including a higher proportion of the top 10 most prevalent clones from the tumor. TIL 3.0 also retained a higher proportion of putative tumor-specific TCR when compared with TIL 1.0. Numerical expansion of TIL in a REP was found to perturb the clonal hierarchy and lessen the proportion of putative tumor-specific TIL from the TIL 3.0 process. Conclusions We report the feasibility of robustly expanding a T-cell repertoire recapitulating the clonal hierarchy of the T cells in the NSCLC tumor, including a large number of putative tumor-specific TIL clones, using the TIL 3.0 methodology. If scaled up and employed as a sole expansion platform, the robustness and speed of TIL 3.0 may facilitate the testing of TIL-ACT approaches in NSCLC.
Collapse
Affiliation(s)
- Parin Shah
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marie-Andrée Forget
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Biologics Development, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Meredith L Frank
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peixin Jiang
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Lorenzo Federico
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roohussaba Khairullah
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Ignacio Wistuba
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chi-Wan B Chow
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yan Long
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marcelo V Negrao
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyle Gregory Mitchell
- Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Annikka Weissferdt
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ara A Vaporciyan
- Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tina Cascone
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack A Roth
- Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianjun Zhang
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Boris Sepesi
- Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Don L Gibbons
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V Heymach
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cara L Haymaker
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel J McGrail
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Reuben
- Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chantale Bernatchez
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA .,Biologics Development, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
141
|
CWHM-1008 Induces Apoptosis and Protective Autophagy through the Akt/mTOR Axis in LUAD Cells. JOURNAL OF ONCOLOGY 2022; 2021:5548128. [PMID: 35096055 PMCID: PMC8799368 DOI: 10.1155/2021/5548128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Recent studies have revealed that antiparasitic agents showed promising inhibitory effects on tumors, raising a possibility that repositioning this class of drugs may shed new light on clinical therapy against tumors. CWHM-1008 is a novel class of antimalarial drug; however, the inhibitory impact of CWHM-1008 on lung adenocarcinoma (LUAD) cells remains unclear. This study aimed to explore the anticancer effect and underlying mechanisms of CWHM-1008 on LUAD cells in vitro and in vivo. Human LUAD cells, H358 and A549, were treated with varying concentrations of CWHM-1008 at different lengths of time. Cell viability, colony formation, cell count, flow cytometry findings, microtubule-associated protein-1 light chain 3-green- (LC3-) GFP/RFP adenovirus infection status, and the expression of apoptosis and autophagy-related proteins were examined. Potential effects of an autophagy inhibitor (LY294002) and constitutively active Akt plasmid (CA-Akt) on CWHM-1008-induced apoptosis were also examined. Our results showed that CWHM-1008 significantly inhibited proliferation, induced apoptosis, and enhanced autophagy flux by blocking the RAC-alpha serine/threonine-protein kinase/the mammalian target of rapamycin (Akt/mTOR) axis in two LUAD cells. In addition, autophagy inhibited by LY294002 or CA-Akt transfection accelerated CWHM-1008-induced apoptosis in those LUAD cells. Moreover, CWHM-1008 significantly inhibited the growth and induced apoptosis of A549 cell in nude mice in vivo. The present findings provide new insights into anticancer properties of CWHM-1008, suggesting that it may be an adjuvant treatment for LUAD treatment, warranting further study.
Collapse
|
142
|
Liu N, Mao J, Tao P, Chi H, Jia W, Dong C. The relationship between NLR/PLR/LMR levels and survival prognosis in patients with non-small cell lung carcinoma treated with immune checkpoint inhibitors. Medicine (Baltimore) 2022; 101:e28617. [PMID: 35060536 PMCID: PMC8772656 DOI: 10.1097/md.0000000000028617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The relationship between neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and lymphocyte to monocyte ratio (LMR) and the dire prognosis of non-small cell lung carcinoma patients who received immune checkpoint inhibitors (ICIs) are not known yet. METHODS We screened the articles that meet the criteria from the database. The relationship between NLR/PLR/LMR levels and the survival and prognosis of non-small cell lung cancer patients treated with ICIs was analyzed. Summarize hazard ratio (HR) with 95% confidence interval (CI) to study progression-free survival (PFS) and overall survival (OS). RESULTS Thirty-four studies involving 3124 patients were enrolled in the final analysis. In short, high pre-treatment NLR was related to poor OS (HR = 2.13, 95% CI:1.74-2.61, P < .001, I2 = 83.3%, P < .001) and PFS (HR = 1.77, 95% CI:1.44-2.17, P < .001, I2 = 79.5%, P < .001). Simultaneously, high pre-treatment PLR was related to poor OS (HR = 1.49, 95% CI:1.17-1.91, P < .001, I2 = 57.6%, P = .003) and PFS (HR = 1.62, 95% CI:1.38-1.89, P < .001, I2 = 47.1%, P = .036). In all subgroup analysis, most subgroups showed that low LMR was related to poor OS (HR = 0.45, 95% CI: 0.34-0.59, P < .001) and PFS (HR = 0.60, 95% CI: 0.47-0.77, P < 0.001, I2 = 0.0%, P < .001). CONCLUSION High pre-treatment NLR and pre-treatment PLR in non-small cell lung carcinoma patients treated with ICIs are associated with low survival rates. Low pre-treatment and post-treatment LMR are also related to unsatisfactory survival outcomes. However, the significance of post-treatment NLR and post-treatment PLR deserve further prospective research to prove.
Collapse
|
143
|
The association between gut microbiome affecting concomitant medication and the effectiveness of immunotherapy in patients with stage IV NSCLC. Sci Rep 2021; 11:23331. [PMID: 34857829 PMCID: PMC8640057 DOI: 10.1038/s41598-021-02598-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Several observational studies suggested that gut microbiome-affecting-medication impairs the effectiveness of immunotherapy in patients with metastatic non-small-cell lung cancer (NSCLC). We postulated that if the effectiveness of immunotherapy is affected by drug-related changes of the microbiome, a stronger association between the use of co-medication and overall survival (OS) will be observed in patients treated with immunotherapy as compared to patients treated with chemotherapy. In a retrospective matched cohort study, immunotherapy patients were matched (1:1) to patients treated with chemotherapy in the pre immunotherapy era. The association between the use of antibiotics, opioids, proton pump inhibitors, metformin and other antidiabetics on OS was assessed with multivariable cox-regression analyses. Interaction tests were applied to investigate whether the association differs between patients treated with immuno- or chemotherapy. A total of 442 patients were studied. The use of antibiotics was associated with worse OS (adjusted Hazard Ratio (aHR) 1.39, p = 0.02) independent of the type of therapy (chemotherapy or immunotherapy). The use of opioids was also associated with worse OS (aHR 1.33, p = 0.01). The other drugs studied showed no association with OS. Interaction term testing showed no effect modification by immuno- or chemotherapy for the association of antibiotics and opioids with OS. The use of antibiotics and opioids is similarly associated with worse outcomes in both chemotherapy and immunotherapy treated NSCLC patients. This suggests that the association is likely to be a consequence of confounding rather than disturbing the composition of the microbiome.
Collapse
|
144
|
Tyczynski JE, Potluri R, Kilpatrick R, Mazumder D, Ghosh A, Liede A. Incidence and Risk Factors of Pneumonitis in Patients with Non-Small Cell Lung Cancer: An Observational Analysis of Real-World Data. Oncol Ther 2021; 9:471-488. [PMID: 33909273 PMCID: PMC8593090 DOI: 10.1007/s40487-021-00150-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The incidence of pneumonitis, a treatment-related adverse event (AE) in non-small cell lung cancer (NSCLC) patients, has been studied in the United States mostly through clinical trials and retrospective chart reviews. Few analyses of real-world data have been published. This study of a large nationally representative health records database estimated the incidence and predictors of pneumonitis among treated NSCLC patients between 2008 and 2018. METHODS The Optum® electronic health records (EHR) database includes data on over 80 million patients from more than 50 healthcare plans. The cohort of primary NSCLC patients was identified using ICD-9/10 codes. Natural language processing of unstructured data from physicians' notes facilitated extraction of biomarker (epidermal growth factor receptor [EGFR] and programmed death ligand-1 [PD-L1]) status. Cumulative incidence was estimated as the proportion with pneumonitis overall, by clinical characteristics, and line of therapy (LOT) after diagnosis and treatment. Univariate analysis of incidence rates (cases/1000 person-years) enabled the identification of significant predictors of risk. Competing risk regression identified predictors of pneumonitis. RESULTS The cohort included 81,628 patients. Overall, 19.0% developed pneumonitis during any LOT, with a cumulative incidence of 33.7% and 17.0% for patients with a prior history of pneumonitis and those without, respectively. Univariate analyses revealed several factors associated with pneumonitis (p < 0.05). While factors varied between LOTs, common factors included male gender, squamous histology, history of diabetes or pneumonitis, EGFR-negative status, monotherapy immunomodulatory drugs, or history of radiation therapy. Multivariable competing risk regression showed that male gender, history of pneumonitis, EGFR-negative status, use of other targeted therapies, use of immunomodulatory drugs, and history of radiation therapy predicted pneumonitis. CONCLUSION Pneumonitis is significantly associated with NSCLC treatment. Knowledge of its predictors identified in this study may help devise strategies to mitigate its impact, enhancing treatment adherence and improving outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Liede
- AbbVie Inc, North Chicago, IL, USA
- AbbVie Limited, Dublin, Ireland
| |
Collapse
|
145
|
Socinski MA, Waller CF, Idris T, Bondarenko I, Luft A, Beckmann K, Vishweswaramurthy A, Loganathan S, Donnelly C, Hummel MA, Shapiro R, Woods M, Rao A, Nayak VG, Ranganna G, Barve A. Phase III double-blind study comparing the efficacy and safety of proposed biosimilar MYL-1402O and reference bevacizumab in stage IV non-small-cell lung cancer. Ther Adv Med Oncol 2021; 13:17588359211045845. [PMID: 34819997 PMCID: PMC8606731 DOI: 10.1177/17588359211045845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose: This phase III study compared the efficacy and safety of proposed biosimilar MYL-1402O with reference bevacizumab (BEV), as first-line treatment for patients with stage IV non-squamous non-small-cell lung cancer. Patients and methods: Patients were randomly assigned (1:1) to receive MYL-1402O or bevacizumab with carboplatin-paclitaxel up to 18 weeks (6 cycles), followed by up to 24 weeks (8 cycles) of bevacizumab monotherapy. The primary objective was comparison of overall response rate (ORR), based on independently reviewed best tumor responses as assessed during the first 18 weeks. ORR was analyzed per US Food and Drug Administration (ratio of ORR) and European Medicines Agency (difference in ORRs) requirements for equivalence evaluation. Secondary end points included progression-free survival, disease control rate, duration of response, overall survival, safety, and immunogenicity over a period of 42 weeks, and pharmacokinetics (up to 18 weeks). Results: A total of 671 patients were included in the intent-to-treat population. The ratio of ORR was 0.96 [confidence interval (CI) 0.83, 1.12] and the difference in ORR was −1.6 (CI −9.0, 5.9) between treatment arms; CIs were within the predefined equivalence margins. Overall, the incidence of treatment-emergent adverse events and serious adverse events was comparable. Treatment-emergent anti-drug antibody (ADA) positivity was transient, with no notable differences between treatment arms (6.5% versus 4.8% ADA positivity rate in MYL-1402O versus BEV, respectively). The incidence of neutralizing antibody post-baseline was lower in the MYL-1402O arm (0.6%) compared to the bevacizumab arm (2.5%). Conclusions: MYL-1402O is therapeutically equivalent to bevacizumab, based on the ORR analyses, with comparable secondary endpoints. Trial Registry Information EU Clinical Trials Register, Registration # EudraCT no. 2015-005141-32https://www.clinicaltrialsregister.eu/ctr-search/search?query=2015-005141-32 Plain language summary Previous studies established bioequivalence of the proposed bevacizumab biosimilar MYL-1402O to reference bevacizumab. In this randomized, double-blind, phase III trial, MYL-1402O (n = 337) demonstrated comparable efficacy to bevacizumab (n = 334) in treating advanced non-squamous non-small-cell lung cancer per Food and Drug Administration and European Medicines Agency requirements for equivalence; the ratio of objective response rate (ORR) was 0.96 [90% confidence interval (CI) 0.83, 1.12] and the difference in ORR (MYL-1402O:bevacizumab) was −1.6 (95% CI −9.0, 5.9). Median progression-free survival at 42 weeks was comparable: 7.6 (7.0, 9.5) with MYL-1402O versus 9.0 (7.2, 9.7) months (p = 0.0906) with bevacizumab, by independent review. Treatment-emergent adverse events leading to death (2.4% vs 1.5%), serious adverse events (17.6% vs 16.7%), and antidrug antibodies (6.5% vs 4.8%), were comparable in the MYL-1402O vs bevacizumab arms, respectively. The incidence of neutralizing antibody post-baseline was lower with MYL-1402O (0.6%) than with bevacizumab (2.5%). These findings confirm therapeutic equivalence of MYL-1402O to bevacizumab, providing opportunities for improving access to bevacizumab.
Collapse
Affiliation(s)
- Mark A Socinski
- AdventHealth Cancer Institute, 2501 North Orange Avenue, Suite 289, Orlando, FL 32803, USA
| | - Cornelius F Waller
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Centre Freiburg, Freiburg, Germany
| | | | - Igor Bondarenko
- Dnipropetrovsk Medical Academy, Dnipropetrovsk Oblast, Ukraine
| | - Alexander Luft
- Leningrad Regional Clinical Hospital, St. Petersburg, Russian Federation
| | - Katrin Beckmann
- Mylan Healthcare GmbH (A Viatris Company), Hannover, Germany
| | | | | | | | | | | | | | - Anita Rao
- Biocon Research Ltd., Bangalore, India
| | | | | | | |
Collapse
|
146
|
Al-Azawi A, Sulaiman S, Arafat K, Yasin J, Nemmar A, Attoub S. Impact of Sodium Dichloroacetate Alone and in Combination Therapies on Lung Tumor Growth and Metastasis. Int J Mol Sci 2021; 22:ijms222212553. [PMID: 34830434 PMCID: PMC8624089 DOI: 10.3390/ijms222212553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023] Open
Abstract
Metabolic reprogramming has been recognized as an essential emerging cancer hallmark. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been reported to have anti-cancer effects by reversing tumor-associated glycolysis. This study was performed to explore the anti-cancer potential of DCA in lung cancer alone and in combination with chemo- and targeted therapies using two non-small cell lung cancer (NSCLC) cell lines, namely, A549 and LNM35. DCA markedly caused a concentration- and time-dependent decrease in the viability and colony growth of A549 and LNM35 cells in vitro. DCA also reduced the growth of tumor xenografts in both a chick embryo chorioallantoic membrane and nude mice models in vivo. Furthermore, DCA decreased the angiogenic capacity of human umbilical vein endothelial cells in vitro. On the other hand, DCA did not inhibit the in vitro cellular migration and invasion and the in vivo incidence and growth of axillary lymph nodes metastases in nude mice. Treatment with DCA did not show any toxicity in chick embryos and nude mice. Finally, we demonstrated that DCA significantly enhanced the anti-cancer effect of cisplatin in LNM35. In addition, the combination of DCA with gefitinib or erlotinib leads to additive effects on the inhibition of LNM35 colony growth after seven days of treatment and to synergistic effects on the inhibition of A549 colony growth after 14 days of treatment. Collectively, this study demonstrates that DCA is a safe and promising therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Aya Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Javed Yasin
- Department of Medicine, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates;
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
- Correspondence:
| |
Collapse
|
147
|
Wiest N, Majeed U, Seegobin K, Zhao Y, Lou Y, Manochakian R. Role of Immune Checkpoint Inhibitor Therapy in Advanced EGFR-Mutant Non-Small Cell Lung Cancer. Front Oncol 2021; 11:751209. [PMID: 34868953 PMCID: PMC8634952 DOI: 10.3389/fonc.2021.751209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
Over the last decade, the treatment of advanced non-small cell lung cancer (NSCLC) has undergone rapid changes with innovations in oncogene-directed therapy and immune checkpoint inhibitors. In patients with epidermal growth factor receptor (EGFR) gene mutant (EGFRm) NSCLC, newer-generation tyrosine kinase inhibitors (TKIs) are providing unparalleled survival benefit and tolerability. Unfortunately, most patients will experience disease progression and thus an urgent need exists for improved subsequent lines of therapies. The concurrent revolution in immune checkpoint inhibitor (ICI) therapy is providing novel treatment options with improved clinical outcomes in wild-type EGFR (EGFRwt) NSCLC; however, the application of ICI therapy to advanced EGFRm NSCLC patients is controversial. Early studies demonstrated the inferiority of ICI monotherapy to EGFR TKI therapy in the first line setting and inferiority to chemotherapy in the second line setting. Additionally, combination ICI and EGFR TKI therapies have demonstrated increased toxicities, and EGFR TKI therapy given after first-line ICI therapy has been correlated with severe adverse events. Nonetheless, combination therapies including dual-ICI blockade and ICI, chemotherapy, and angiogenesis inhibitor combinations are areas of active study with some intriguing signals in preliminary studies. Here, we review previous and ongoing clinical studies of ICI therapy in advanced EGFRm NSCLC. We discuss advances in understanding the differences in the tumor biology and tumor microenvironment (TME) of EGFRm NSCLC tumors that may lead to novel approaches to enhance ICI efficacy. It is our goal to equip the reader with a knowledge of current therapies, past and current clinical trials, and active avenues of research that provide the promise of novel approaches and improved outcomes for patients with advanced EGFRm NSCLC.
Collapse
Affiliation(s)
- Nathaniel Wiest
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Umair Majeed
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Karan Seegobin
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Yujie Zhao
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Yanyan Lou
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Rami Manochakian
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
148
|
Peng LX, Jie GL, Li AN, Liu SY, Sun H, Zheng MM, Zhou JY, Zhang JT, Zhang XC, Zhou Q, Zhong WZ, Yang JJ, Tu HY, Su J, Yan HH, Wu YL. MET amplification identified by next-generation sequencing and its clinical relevance for MET inhibitors. Exp Hematol Oncol 2021; 10:52. [PMID: 34758872 PMCID: PMC8579577 DOI: 10.1186/s40164-021-00245-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background MET amplification plays an important role in the development of non-small-cell lung cancer (NSCLC) either de novo or in resistance to epidermal growth factor receptor tyrosine–kinase inhibitor (EGFR-TKI) settings. Fluorescence in situ hybridization (FISH) is the standard method for MET amplification. With more and more discoveries of oncogenic driver genes, next-generation sequencing (NGS) plays a significant role in precision oncology. Meanwhile, the role of NGS in MET amplification remains uncertain. Methods Forty patients diagnosed with advanced NSCLC were included. FISH and NGS were conducted prior to MET inhibitors treatment. MET amplification by FISH was defined as a MET/CEP7 ratio of > 2.0 and/or copy number (CN) > 5. MET amplification by NGS was defined as gene copy number (GCN) ≥ 5. Results The concordance rate among FISH and NGS was 62.5% (25/40). MET amplification identified by FISH showed the optimal predictive value. The partial response (PR) rate was 68.0% (17/25 with MET amplification) vs. 6.7% (1/15 without MET amplification); the median progression-free survival (PFS) was 5.4 months versus 1.0 months (P < 0.001). MET amplification identified by NGS failed to distinguish significant clinical outcomes. The PR rate was 60.0% (6/10, with MET GCN ≥ 5) vs. 40.0% (12/30, with MET GCN < 5); the median PFS was 4.8 months vs. 2.2 months (P = 0.357). The PR rate was 68.8% (11/16) and the median PFS was 4.8 months in patients with focal amplification by NGS. Conclusions MET amplification identified by FISH remains the optimal biomarker to identify suitable candidates for MET-TKI therapy. In comparison, amplification identified by NGS seems not as robust to be effective predictive biomarker. Further exploration is needed regarding the focal amplification by NGS in predicting the efficacy. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-021-00245-y.
Collapse
Affiliation(s)
- Lun-Xi Peng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Guang-Ling Jie
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - An-Na Li
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mei-Mei Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia-Ying Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia-Tao Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xu-Chao Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Qing Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wen-Zhao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jin-Ji Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yi-Long Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China. .,School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
149
|
Systemic Therapy in Nonsmall Cell Lung Cancer and the Role of Biomarkers in Selection of Treatment. Thorac Surg Clin 2021; 31:399-406. [PMID: 34696852 DOI: 10.1016/j.thorsurg.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increasingly, systemic treatment decisions in nonsmall cell lung cancer require the determination of predictive biomarkers on biopsy or surgical specimens. Although currently these have their major role in the advanced setting, these tumor-specific treatments are increasingly moving into earlier stage disease. As part of the multidisciplinary team managing those with nonsmall cell lung cancer, thoracic surgeons need to be aware of these biomarkers and in particular of the need for adequate biopsy specimens containing sufficient tissue to perform the necessary analyses that guide treatment selection.
Collapse
|
150
|
Yu W, Zhang X, Zhang W, Xiong M, Lin Y, Chang M, Xu L, Lu Y, Liu Y, Zhang J. 19-Hydroxybufalin inhibits non-small cell lung cancer cell proliferation and promotes cell apoptosis via the Wnt/β-catenin pathway. Exp Hematol Oncol 2021; 10:48. [PMID: 34696818 PMCID: PMC8543904 DOI: 10.1186/s40164-021-00243-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Bufadienolides derived from the skin of toads are often regarded as the main active components with antitumor effects. 19-Hydroxybufalin (19-HB) is a monomer of bufadienolides; however, its effects and underlying molecular mechanisms on tumor growth remain to be ascertained. In this report, we focused on the antitumor effects of 19-HB on non-small cell lung cancer to provide a scientific basis for its further development and utilization. Methods The antitumor effects of 19-HB on the human NSCLC cell lines NCI-H1299 and NCI-H838 were examined in vitro. The cells were treated with different concentrations of 19-HB, and the inhibition of cell growth was measured by CCK-8 and colony formation assays. Furthermore, cell apoptosis was analyzed by flow cytometry, TUNEL staining, JC-1 staining, and western blotting. The effects on migration and invasion were evaluated by wound-healing assay, transwell assay, and western blotting. Finally, the antitumor effects of 19-HB were evaluated in vivo using a xenograft mouse model. Results 19-HB-treated NSCLC cells showed inhibited cell viability and increased apoptosis. The expression levels of cleaved caspase-3, cleaved-PARP, and Bax/Bcl-2 were upregulated, while the mitochondrial membrane potential decreased. In contrast, migration, invasion, as well as the expression of MMP2, MMP7, MMP9, the epithelial–mesenchymal transition-related proteins N-cadherin and Vimentin, and the transcription factors Snail and Slug were inhibited. Furthermore, the expression levels of the key molecules in the Wnt/β-catenin signaling pathway (CyclinD1, c-Myc, and β-catenin) were decreased. In vivo, the growth of xenograft tumors in nude mice was also significantly inhibited by 19-HB, and there were no significant changes in biochemical indicators of hepatic and renal function. Conclusions 19-HB inhibited the proliferation, migration, and invasion, and promoted the apoptosis of NSCLC cells via the Wnt/β-catenin pathway. In addition, 19-HB inhibited the growth of xenograft tumors in nude mice with little toxicity to the liver and kidney. Thus, 19-HB may be a potential antitumor agent for treating NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-021-00243-0.
Collapse
Affiliation(s)
- Wei Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiao Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Wei Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Minggang Xiong
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yuhan Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ming Chang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lin Xu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|