101
|
Tao H, Zhang Y, Li J, Liu J, Yuan T, Wang W, Liang H, Zhang E, Huang Z. Oncogenic lncRNA BBOX1-AS1 promotes PHF8-mediated autophagy and elicits sorafenib resistance in hepatocellular carcinoma. Mol Ther Oncolytics 2022; 28:88-103. [PMID: 36699616 PMCID: PMC9852557 DOI: 10.1016/j.omto.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Some long non-coding RNAs (lncRNAs) have been documented to be involved in cancer progression and anticancer drug resistance in hepatocellular carcinoma (HCC). Thus, approaches designed to target these genes may facilitate the development of promising strategies for treating HCC. Previously, we showed that lncRNA BBOX1-AS1 was highly expressed and played an oncogenic role in HCC. However, the potential functions and mechanisms through which BBOX1-AS1 regulates HCC progression and drug resistance remain unclear. This study revealed that BBOX1-AS1 could promote tumor progression, autophagy, and drug resistance by upregulating PHF8 in HCC cells. Mechanistically, BBOX1-AS1 enhanced the stability of PHF8 mRNA by targeting the PHF8 inhibitor miR-361-3p to regulate tumor progression and autophagy in HCC. The functional rescue experiments showed that PHF8 acted as a key factor in regulating the biological effects induced by BBOX1-AS1 and miR-361-3p in HCC, indicating that BBOX1-AS1 promotes tumor progression and sorafenib resistance by regulating miR-361-3p/PHF8. Finally, mouse tumor models and patient-derived organoid models were established to further confirm these findings. Taken together, the results demonstrate that BBOX1-AS1 promotes HCC progression and sorafenib resistance via the miR-361-3p/PHF8 axis.
Collapse
Affiliation(s)
- Haisu Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jiang Li
- The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Beijing, China
| | - Junjie Liu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Wenqiang Wang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
- Corresponding author: Huifang Liang, Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
- Corresponding author: Erlei Zhang, Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
- Corresponding author: Zhiyong Huang, Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
102
|
Limpachayaporn P, Nuchpun S, Sirirak J, Charoensuksai P, Wongprayoon P, Chuaypen N, Tangkijvanich P, Suksamrarn A. meta-Ureidophenoxy-1,2,3-triazole hybrid as a novel scaffold for promising HepG2 hepatocellular carcinoma inhibitors: Synthesis, biological evaluation and molecular docking studies. Bioorg Med Chem 2022; 74:117048. [PMID: 36270111 DOI: 10.1016/j.bmc.2022.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022]
Abstract
Thirty-one meta-ureidophenoxymethyl-1,2,3-triazole derivatives were designed and synthesized via nucleophilic addition, nucleophilic substitution and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The evaluation of their cytotoxicity using MTT assay indicated that almost all derivatives exhibited significantly superior inhibitory activity against hepatocellular carcinoma cell line HepG2 compared to the parental molecule sorafenib (1). Among the series, 5r was the most potent anti-HepG2 agent with IC50 = 1.04 µM, which was almost 5-fold more active than sorafenib (IC50 = 5.06 µM), while the cytotoxic activity against human embryonal lung fibroblast cell line MRC-5 remained comparable to sorafenib. The synthetic derivative 5r, thus, possessed 5.2-time higher selectivity index (SI) than that of sorafenib. Molecular docking studies revealed an efficient interaction of 5r at the same sorafenib's binding region in both B-Raf and VEGFR-2 with lower binding energies than those of sorafenib, consistent with its cytotoxic effect. Furthermore, 5r was proven to induce apoptosis in a dose-dependent manner similar to sorafenib. In addition, the prediction using SwissADME suggested that 5r possessed appropriate drug properties conforming to Veber's studies. These findings revealed that the newly designed meta-ureidophenoxy-1,2,3-triazole hybrid scaffold was a promising structural feature for an efficient inhibition of HepG2. Moreover, derivative 5r emerged as a promising candidate for further development as a targeted anti-cancer agent for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Panupun Limpachayaporn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand.
| | - Sopon Nuchpun
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Purin Charoensuksai
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pawaris Wongprayoon
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| |
Collapse
|
103
|
Martínez MJ, Andreu AB, Barbini L. Cytotoxic activity of
Solanum tuberosum
polyphenolic extracts in human hepatocarcinoma cells is mediated by apoptosis and autophagy. J Food Sci 2022; 87:5303-5316. [DOI: 10.1111/1750-3841.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Affiliation(s)
- María Julia Martínez
- Instituto Investigaciones Biológicas, UE CONICET‐UNMDP, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata Deán Funes 3350 Mar del Plata Argentina
- Department of Molecular and Cellular Pharmacology University of Miami Miami USA
| | - Adriana Balbina Andreu
- Instituto Investigaciones Biológicas, UE CONICET‐UNMDP, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata Deán Funes 3350 Mar del Plata Argentina
| | - Luciana Barbini
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata Deán Funes 3350 2nd floor Mar del Plata Argentina
| |
Collapse
|
104
|
Optimization of 3D-aggregated spheroid model (3D-ASM) for selecting high efficacy drugs. Sci Rep 2022; 12:18937. [PMID: 36344810 PMCID: PMC9640609 DOI: 10.1038/s41598-022-23474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Various three-dimensional (3D) cell culture methods have been developed to implement tumor models similar to in vivo. However, the conventional 3D cell culture method has limitations such as difficulty in using an extracellular matrix (ECM), low experimental reproducibility, complex 3D cell culture protocol, and difficulty in applying to high array plates such as 96- or 384-plates. Therefore, detailed protocols related to robust 3D-aggregated spheroid model (3D-ASM) production were optimized and proposed. A specially designed wet chamber was used to implement 3D-ASM using the hepatocellular carcinoma (HCC) cell lines, and the conditions were established for the icing step to aggregate the cells in one place and optimized ECM gelation step. Immunofluorescence (IF) staining is mainly used to simultaneously analyze drug efficacy and changes in drug-target biomarkers. By applying the IF staining method to the 3D-ASM model, confocal microscopy imaging and 3D deconvolution image analysis were also successfully performed. Through a comparative study of drug response with conventional 2D-high throughput screening (HTS), the 3D-HTS showed a more comprehensive range of drug efficacy analyses for HCC cell lines and enabled selective drug efficacy analysis for the FDA-approved drug sorafenib. This suggests that increased drug resistance under 3D-HTS conditions does not reduce the analytical discrimination of drug efficacy, also drug efficacy can be analyzed more selectively compared to the conventional 2D-HTS assay. Therefore, the 3D-HTS-based drug efficacy analysis method using an automated 3D-cell spotter/scanner, 384-pillar plate/wet chamber, and the proposed 3D-ASM fabrication protocol is a very suitable platform for analyzing target drug efficacy in HCC cells.
Collapse
|
105
|
Leung RWH, Lee TKW. Wnt/β-Catenin Signaling as a Driver of Stemness and Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14215468. [PMID: 36358885 PMCID: PMC9656505 DOI: 10.3390/cancers14215468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Aberrant Wnt/β-catenin signaling has been reported to play crucial role in pathogenesis of hepatocellular carcinoma (HCC). In this review, we focus on the regulatory role of Wnt/β-catenin signaling in cancer stemness and metabolic reprogramming, which are two emerging hallmarks of cancer. Understanding the role of Wnt/β-catenin signaling in regulation of the above processes reveals novel therapeutic strategy against this deadly disease. Abstract Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide due to its high rates of tumor recurrence and metastasis. Aberrant Wnt/β-catenin signaling has been shown to play a significant role in HCC development, progression and clinical impact on tumor behavior. Accumulating evidence has revealed the critical involvement of Wnt/β-catenin signaling in driving cancer stemness and metabolic reprogramming, which are regarded as emerging cancer hallmarks. In this review, we summarize the regulatory mechanism of Wnt/β-catenin signaling and its role in HCC. Furthermore, we provide an update on the regulatory roles of Wnt/β-catenin signaling in metabolic reprogramming, cancer stemness and drug resistance in HCC. We also provide an update on preclinical and clinical studies targeting Wnt/β-catenin signaling alone or in combination with current therapies for effective cancer therapy. This review provides insights into the current opportunities and challenges of targeting this signaling pathway in HCC.
Collapse
Affiliation(s)
- Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: ; Tel.: +852-3400-8799; Fax: +852-2364-9932
| |
Collapse
|
106
|
Belete TM. Recent Updates on the Development of Deuterium-Containing Drugs for the Treatment of Cancer. Drug Des Devel Ther 2022; 16:3465-3472. [PMID: 36217450 PMCID: PMC9547620 DOI: 10.2147/dddt.s379496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the deadliest diseases in the world. In 2020, 19.3 million cancer cases and 10 million deaths were reported in the world. It is supposed that the prevalence of cancer cases will rise to 28.4 million by 2040. Chemotherapy-based regimens have a narrow therapeutic index, severe adverse drug reactions, and lack metabolic stability. Besides, the metabolism of anticancer produces several non-active and toxic metabolites that reduce exposure of the target site to the parent drug. Therefore, developing better-tolerated and effective new anticancer drugs and modification of the existing anticancer drugs to minimize toxicity and increase efficacy has become a very urgent need. Deuterium incorporation reduces the metabolism of certain drugs that are breakdown by pathways involving hydrogen-carbon bond scission. For example, CYP450 mediated oxidative metabolism of drugs that involves the breakdown of a hydrogen-carbon bond affected by deuteration. Deuterium incorporation into the drug increases the half-life and reduces the dose, which provides better safety and efficacy. Deutetrabenazine is the first deuterated form of tetrabenazine approved to treat chorea associated with Huntington’s disease and tardive dyskinesia. The study revealed that Deutetrabenazine has fewer neuropsychiatric side effects with favorable safety than tetrabenazine. The current review highlights the deuterium kinetic isotope effect on drug metabolism, deuterated compound pharmacokinetic property, and safety profile. Besides, this review explains the deuterated anticancer drug development update status.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia,Correspondence: Tafere Mulaw Belete, Tel +251 918045943, Email
| |
Collapse
|
107
|
Wu JY, Wu JY, Li YN, Qiu FN, Zhou SQ, Yin ZY, Chen YF, Li B, Zhou JY, Yan ML. Lenvatinib combined with anti-PD-1 antibodies plus transcatheter arterial chemoembolization for neoadjuvant treatment of resectable hepatocellular carcinoma with high risk of recurrence: A multicenter retrospective study. Front Oncol 2022; 12:985380. [PMID: 36212494 PMCID: PMC9534527 DOI: 10.3389/fonc.2022.985380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023] Open
Abstract
Background Early recurrence is common after surgical resection (SR) for hepatocellular carcinoma (HCC) with high risk of recurrence and is associated with poor prognosis. The combinations of lenvatinib (LEN), anti-PD-1 antibodies (PD-1) and transcatheter arterial chemoembolization (TACE) (triple therapy) has shown better trend in tumor response and survival outcomes on unresectable HCC. It is unknown whether triple therapy for neoadjuvant treatment of resectable HCC with high risk of recurrence is effective. This article aimed to compare the outcomes of surgery alone and neoadjuvant combination treatment with triple therapy before SR in patients with HCC with high risk of recurrence. Methods A retrospective study was conducted on patients diagnosed with HCC with high risk of recurrence who received treatment with or without triple therapy. The records of 24 patients in the triple therapy group and 76 patients in the surgery-alone group were analyzed. Propensity score matching (PSM) was performed to minimize the influence of potential confounders. Results One hundred patients were enrolled. In the triple therapy group, 8 (33.3%) and 12 (50.0%) patients had complete and partial responses, respectively, as assessed by an investigator. Before PSM, the overall survival (OS) rates for the triple therapy group at 6, 12, 18, and 24 months were 100.0%, 100.0%, 100.0%, and 85.7%, respectively, compared with corresponding 92.1%, 73.7%, 53.9%, and 48.7% for the surgery-alone group (P<0.001). The disease-free survival (DFS) rates were 82.2%, 66.95%, 48.8%, and 48.8% for the triple therapy and 41.92%, 28.34%, 27.05%, and 22.99% for the surgery-alone group (P=0.003). After PSM, DFS and OS were significantly longer in the triple therapy group than in the surgery-alone group (DFS, p=0.019; OS, p=0.003). Conclusions Neoadjuvant combination treatment before SR had a high rate of tumor response and provided significantly better postoperative survival outcomes than surgery alone in patients with HCC with high risk of recurrence.
Collapse
Affiliation(s)
- Jun-Yi Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Jia-Yi Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Yi-Nan Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Fu-Nan Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Song-Qiang Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Xiamen Traditional Chinese Medical Hospital, Xiamen, China
| | - Yu-Feng Chen
- Department of Hepatobiliary Surgery, The Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Bin Li
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jian-Yin Zhou
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Mao-Lin Yan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Mao-Lin Yan,
| |
Collapse
|
108
|
Kim N, Kim S, Song Y, Choi I, Lee SY, Kim KM, Rhu HC, Lee JY, Seo HR. Chromenopyrimidinone exhibit antitumor effects through inhibition of CAP1 (Adenylyl cyclase-associated protein 1) expression in hepatocellular carcinoma. Chem Biol Interact 2022; 365:110066. [PMID: 35931200 DOI: 10.1016/j.cbi.2022.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant human cancers, with a high mortality rate worldwide. Within an HCC tumor, cancer stem cells (CSCs) are responsible for tumor maintenance and progression and may contribute to resistance to standard HCC treatments. Previously, we characterized CD133+ cells as CSCs in primary HCC and identified chromenopyrimidinone (CPO) as a novel therapeutic for the effective treatment of CD133+ HCC. However, the biological function and molecular mechanism of CD133 remain unclear. Epigenetic alterations of CSCs have impacts on tumor initiation, progression, and therapeutic response. Here, we found that pharmacological and genetic depletion of CD133 in HCC attenuated the activity of DNA methyltransferases via control of DNMT3B stabilization. Genes were ranked by degree of promoter hypo/hyper methylation and significantly differential expression to create an "epigenetically activated by CPO" ranked genes list. Through this epigenetic analysis, we found that CPO treatment altered DNA methylation-mediated oncogenic signaling in HCCs. Specifically, CPO treatment inhibited Adenylyl cyclase-associated protein 1 (CAP1) expression, thereby reducing FAK/ERK activity and EMT-related proteins in HCC. Moreover, CPO improved the efficacy of sorafenib by inhibiting CAP1 expression and FAK/ERK activation in sorafenib-resistant HCC. These novel mechanistic insights may ultimately open up avenues for strategies targeting DNA methylation in liver cancer stem cells and provides novel therapeutic function of CPO for the effective treatment of sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Namjeong Kim
- Advanced Biomedical Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | - Sanghwa Kim
- Advanced Biomedical Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | - Yeonhwa Song
- Advanced Biomedical Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | - Su-Yeon Lee
- Advanced Biomedical Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Hyung Chul Rhu
- R&D Center, J2H Biotech, Saneop-ro 156 Beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, 16648, Republic of Korea
| | - Ju Young Lee
- R&D Center, J2H Biotech, Saneop-ro 156 Beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, 16648, Republic of Korea
| | - Haeng Ran Seo
- Advanced Biomedical Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea.
| |
Collapse
|
109
|
Xu L, Zou C, Zhang S, Chu TSM, Zhang Y, Chen W, Zhao C, Yang L, Xu Z, Dong S, Yu H, Li B, Guan X, Hou Y, Kong FM. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol 2022; 15:87. [PMID: 35799264 PMCID: PMC9264569 DOI: 10.1186/s13045-022-01307-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
The development of combination immunotherapy based on the mediation of regulatory mechanisms of the tumor immune microenvironment (TIME) is promising. However, a deep understanding of tumor immunology must involve the systemic tumor immune environment (STIE) which was merely illustrated previously. Here, we aim to review recent advances in single-cell transcriptomics and spatial transcriptomics for the studies of STIE, TIME, and their interactions, which may reveal heterogeneity in immunotherapy responses as well as the dynamic changes essential for the treatment effect. We review the evidence from preclinical and clinical studies related to TIME, STIE, and their significance on overall survival, through different immunomodulatory pathways, such as metabolic and neuro-immunological pathways. We also evaluate the significance of the STIE, TIME, and their interactions as well as changes after local radiotherapy and systemic immunotherapy or combined immunotherapy. We focus our review on the evidence of lung cancer, hepatocellular carcinoma, and nasopharyngeal carcinoma, aiming to reshape STIE and TIME to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, Guangdong, 518020, China.,Key Laboratory of Medical Electrophysiology of Education Ministry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, China
| | - Shanshan Zhang
- Department of Chemical Biology, School of Life and Marine Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Timothy Shun Man Chu
- Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.,Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yan Zhang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Weiwei Chen
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Caining Zhao
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Yang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Zhiyuan Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Hao Yu
- Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, 518055, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China. .,Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 528200, China.
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Feng-Ming Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China. .,Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
110
|
He XX, Ye DW. Editorial: Hepatocellular Carcinoma: From Basic Research to Clinical Trials. Front Oncol 2022; 12:905654. [PMID: 35719944 PMCID: PMC9198591 DOI: 10.3389/fonc.2022.905654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xing-Xing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
111
|
Chakraborty E, Sarkar D. Emerging Therapies for Hepatocellular Carcinoma (HCC). Cancers (Basel) 2022; 14:2798. [PMID: 35681776 PMCID: PMC9179883 DOI: 10.3390/cancers14112798] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises from hepatocytes and accounts for 90% of primary liver cancer. According to Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN) 2020, globally HCC is the sixth most common cancer and the third most common cause of cancer-related deaths. Reasons for HCC prognosis remaining dismal are that HCC is asymptomatic in its early stages, leading to late diagnosis, and it is markedly resistant to conventional chemo- and radiotherapy. Liver transplantation is the treatment of choice in early stages, while surgical resection, radiofrequency ablation (RFA) and trans arterial chemoembolization (TACE) are Food and Drug Administration (FDA)-approved treatments for advanced HCC. Additional first line therapy for advanced HCC includes broad-spectrum tyrosine kinase inhibitors (TKIs), such as sorafenib and lenvatinib, as well as a combination of immunotherapy and anti-angiogenesis therapy, namely atezolizumab and bevacizumab. However, these strategies provide nominal extension in the survival curve, cause broad spectrum toxic side effects, and patients eventually develop therapy resistance. Some common mutations in HCC, such as in telomerase reverse transcriptase (TERT), catenin beta 1 (CTNNB1) and tumor protein p53 (TP53) genes, are still considered to be undruggable. In this context, identification of appropriate gene targets and specific gene delivery approaches create the potential of gene- and immune-based therapies for the safe and effective treatment of HCC. This review elaborates on the current status of HCC treatment by focusing on potential gene targets and advanced techniques, such as oncolytic viral vectors, nanoparticles, chimeric antigen receptor (CAR)-T cells, immunotherapy, and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), and describes future prospects in HCC treatment.
Collapse
Affiliation(s)
- Eesha Chakraborty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
112
|
Gao W, Fan X, Bi Y, Zhou Z, Yuan Y. Preparation of NIR-Responsive Gold Nanocages as Efficient Carrier for Controlling Release of EGCG in Anticancer Application. Front Chem 2022; 10:926002. [PMID: 35720982 PMCID: PMC9201208 DOI: 10.3389/fchem.2022.926002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer that has a restricted therapy option. Epigallocatechin gallate (EGCG) is one of the main biologically active ingredients in tea. A large number of studies have shown that EGCG has preventive and therapeutic effects on various tumors. In addition, the development of near-infrared (NIR)-responsive nano-platforms has been attracting cancer treatment. In this work, we designed and synthesized a strategy of gold nanocages (AuNCs) as an efficient carrier for controlling release of EGCG for anti-tumor to achieve the synergistic functions of NIR-response and inhibited tumor cell proliferation. The diameter of AuNCs is about 50 nm and has a hollow porous (8 nm) structure. Thermal imaging-graphic studies proved that the AuNCs-EGCG obtained have photothermal response to laser irradiation under near-infrared light and still maintain light stability after multiple cycles of laser irradiation. The resulted AuNCs-EGCG reduced the proliferation rate of HepG2 cells to 50% at 48 h. Western blot analysis showed that NIR-responsive AuNCs-EGCG can promote the expression of HepG2 cell apoptosis-related proteins HSP70, Cytochrome C, Caspase-9, Caspase-3, and Bax, while the expression of Bcl-2 is inhibited. Cell confocal microscopy analysis proved that AuNCs-EGCG irradiated by NIR significantly upregulates Caspase-3 by nearly 2-fold and downregulates Bcl-2 by nearly 0.33-fold, which is beneficial to promote HepG2 cell apoptosis. This study provides useful information for the NIR-responsive AuNCs-EGCG as a new type of nanomedicine for HCC.
Collapse
Affiliation(s)
- Weiran Gao
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiangyi Fan
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yunlong Bi
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zipeng Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Zipeng Zhou, ; Yajiang Yuan,
| | - Yajiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Zipeng Zhou, ; Yajiang Yuan,
| |
Collapse
|
113
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
114
|
Yang F, Deng K, Zheng H, Liu Z, Zheng Y. Progress of targeted and immunotherapy for hepatocellular carcinoma and the application of next-generation sequencing. Ann Hepatol 2022; 27:100677. [PMID: 35093601 DOI: 10.1016/j.aohep.2022.100677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC), leading cancer worldwide, has a high degree of genetic heterogeneity; next-generation sequencing (NGS) technology has contributed significantly to the discovery of driving genes as well as high-frequency mutations in HCC. The detection of gene alterations may allow us to predict prognosis and adverse drug reactions for individuals, paving the way for personalized medicine in HCC patients. In this review, we summarized the common systemic therapy regimens for HCC and the predictive efficacy of genetic biomarkers on the prognosis of patients under these treatments. Finally, we put forward a future perspective on the potential of NGS technology for the guidance of targeted therapy and immunotherapy in HCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Kaige Deng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Haoran Zheng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Zhenting Liu
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Yongchang Zheng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China.
| |
Collapse
|
115
|
Mohi El-Deen EM, Anwar MM, Abd El-Gwaad AA, Karam EA, El-Ashrey MK, Kassab RR. Design and synthesis of some novel pyridothienopyrimidine derivatives and their biological evaluation as antimicrobial and anticancer agents targeting EGFR enzyme. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
116
|
Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves HL, Wang XW, Gores GJ, Villanueva A. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. NATURE CANCER 2022; 3:386-401. [PMID: 35484418 PMCID: PMC9060366 DOI: 10.1038/s43018-022-00357-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and deadliest cancers. The poor outcome associated with HCC is dramatically changing due to the advent of effective systemic therapies. Here we discuss the molecular pathogenesis of HCC, molecular classes and determinants of heterogeneity. In addition, effective single-agent and combination systemic therapies involving immunotherapies as standard of care are analyzed. Finally, we propose a flowchart of sequential therapies, explore mechanisms of resistance and address the need for predictive biomarkers.
Collapse
Affiliation(s)
- Josep M Llovet
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Roser Pinyol
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Robin K Kelley
- Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Anthony El-Khoueiry
- Keck School of Medicine, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Helen L Reeves
- Newcastle University Translational and Clinical Research Institute and Newcastle University Centre for Cancer, Medical School, Newcastle Upon Tyne, UK
- Hepatopancreatobiliary Multidisciplinary Team, Newcastle upon Tyne NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
117
|
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022; 41:119. [PMID: 35361234 PMCID: PMC8969382 DOI: 10.1186/s13046-022-02327-z] [Citation(s) in RCA: 339] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) immunotherapy has made tremendous progress with five CAR T therapies approved by the US Food and Drug Administration for hematological malignancies. However, CAR immunotherapy in solid tumors lags significantly behind. Some of the major hurdles for CAR immunotherapy in solid tumors include CAR T cell manufacturing, lack of tumor-specific antigens, inefficient CAR T cell trafficking and infiltration into tumor sites, immunosuppressive tumor microenvironment (TME), therapy-associated toxicity, and antigen escape. CAR Natural Killer (NK) cells have several advantages over CAR T cells as the NK cells can be manufactured from pre-existing cell lines or allogeneic NK cells with unmatched major histocompatibility complex (MHC); can kill cancer cells through both CAR-dependent and CAR-independent pathways; and have less toxicity, especially cytokine-release syndrome and neurotoxicity. At least one clinical trial showed the efficacy and tolerability of CAR NK cell therapy. Macrophages can efficiently infiltrate into tumors, are major immune regulators and abundantly present in TME. The immunosuppressive M2 macrophages are at least as efficient as the proinflammatory M1 macrophages in phagocytosis of target cells; and M2 macrophages can be induced to differentiate to the M1 phenotype. Consequently, there is significant interest in developing CAR macrophages for cancer immunotherapy to overcome some major hurdles associated with CAR T/NK therapy, especially in solid tumors. Nevertheless, both CAR NK and CAR macrophages have their own limitations. This comprehensive review article will discuss the current status and the major hurdles associated with CAR T and CAR NK therapy, followed by the structure and cutting-edge research of developing CAR macrophages as cancer-specific phagocytes, antigen presenters, immunostimulators, and TME modifiers.
Collapse
Affiliation(s)
- Kevin Pan
- Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Hizra Farrukh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Huihong Xu
- Boston University, Boston, MA, USA.,VA Boston Healthcare System, West Roxbury, MA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,VA Boston Healthcare System, West Roxbury, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| | - Zheng Zhu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| |
Collapse
|
118
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
119
|
Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022; 22:73. [PMID: 35148789 PMCID: PMC8840552 DOI: 10.1186/s12935-021-02435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treatments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenvironment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and is associated with tumour progression partially through the epithelial-mesenchymal transition. Specifically, the TME of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Administration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyroptosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated neutrophils, and induction of the epithelial-mesenchymal transition. In conclusion, the effect of TKIs on TME can enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, including combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
Collapse
|
120
|
Castelli S, Desideri E, Rosa Ciriolo M. ROS-mediated activation of p38 protects hepatocellular carcinoma cells from caspase-independent death elicited by lysosomal damage. Biochem Pharmacol 2022; 198:114983. [DOI: 10.1016/j.bcp.2022.114983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023]
|
121
|
Wu T, Zhang L, Zeng Z, Yan T, Cheng J, Miao X, Lu Y. Complete Response to PD-1 Inhibitor in Primary Hepatocellular Carcinoma Patients Post-Progression on Bi-Specific Antibody Conjugated CIK Cell Treatment: A Report of Two Cases. Onco Targets Ther 2022; 14:5447-5453. [PMID: 34984004 PMCID: PMC8702989 DOI: 10.2147/ott.s333604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background Programmed death receptor-1 (PD-1) immune checkpoint inhibitors (ICIs) have produced encouraging results in hepatocellular carcinoma (HCC) patients. Cytokine-induced killer (CIK) cells treatment can specifically identify tumor-associated antigens and has encouraging preliminary efficacy for HCC. This study reported two cases of HCC patients achieved complete response (CR) by anti-PD-1 antibody therapy post-progression on bi-specific antibody conjugated CIK immunotherapy. Case Presentation Case one, a 75-year-old male, was diagnosed with the intrahepatic cholangiocarcinoma (ICC) in October 2017. After interventional, CIK, ablation and other comprehensive therapy, ICC was gradually cured. When new occurrence of HCC, he was treated with anti-PD-1 antibody therapy and achieved CR. Case two, a 65-year-old female, was diagnosed with HCC in July 2016. After progression on several ablation treatments, she received 8 cycles of CIK treatment and achieved stable disease (SD). After disease progressed on CIK treatment, she received 4 cycles of anti-PD-1 antibody therapy, finally achieved CR. Conclusion Anti-PD-1 antibody therapy after prior progression on bi-specific antibody conjugated CIK immunotherapy may be efficacy and safety for HCC patients.
Collapse
Affiliation(s)
- Tong Wu
- Comprehensive Liver Cancer Center, The 5th Medicine Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Linzhi Zhang
- Comprehensive Liver Cancer Center, The 5th Medicine Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Zhen Zeng
- Comprehensive Liver Cancer Center, The 5th Medicine Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Tao Yan
- Comprehensive Liver Cancer Center, The 5th Medicine Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Jiamin Cheng
- Comprehensive Liver Cancer Center, The 5th Medicine Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xiaojie Miao
- Comprehensive Liver Cancer Center, The 5th Medicine Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The 5th Medicine Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| |
Collapse
|
122
|
Rodriguez S, Skeet K, Mehmetoglu-Gurbuz T, Goldfarb M, Karri S, Rocha J, Shahinian M, Yazadi A, Poudel S, Subramani R. Phytochemicals as an Alternative or Integrative Option, in Conjunction with Conventional Treatments for Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13225753. [PMID: 34830907 PMCID: PMC8616323 DOI: 10.3390/cancers13225753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is globally ranked as the sixth most diagnosed cancer, and the second most deadly cancer. To worsen matters, there are only limited therapeutic options currently available; therefore, it is necessary to find a reservoir from which new HCC treatments may be acquired. The field of phytomedicine may be the solution to this problem, as it offers an abundance of plant-derived molecules, which show capabilities of being effective against HCC proliferation, invasion, migration, and metastasis. In our review, we collect and analyze current evidence regarding these promising phytochemical effects on HCC, and delve into their potential as future chemotherapies. Additionally, information on the signaling behind these numerous phytochemicals is provided, in an attempt to understand their mechanisms. This review makes accessible the current body of knowledge pertaining to phytochemicals as HCC treatments, in order to serve as a reference and inspiration for further research into this subject. Abstract Hepatocellular carcinoma (HCC) is the most abundant form of liver cancer. It accounts for 75–85% of liver cancer cases and, though it ranks globally as the sixth most common cancer, it ranks second in cancer-related mortality. Deaths from HCC are usually due to metastatic spread of the cancer. Unfortunately, there are many challenges and limitations with the latest HCC therapies and medications, making it difficult for patients to receive life-prolonging care. As there is clearly a high demand for alternative therapy options for HCC, it is prudent to turn to plants for the solution, as their phytochemicals have long been used and revered for their many medicinal purposes. This review explores the promising phytochemical compounds identified from pre-clinical and clinical trials being used either independently or in conjunction with already existing cancer therapy treatments. The phytochemicals discussed in this review were classified into several categories: lipids, polyphenols, alkaloids, polysaccharides, whole extracts, and phytochemical combinations. Almost 80% of the compounds failed to progress into clinical studies due to lack of information regarding the toxicity to normal cells and bioavailability. Although large obstacles remain, phytochemicals can be used either as an alternative or integrative therapy in conjunction with existing HCC chemotherapies. In conclusion, phytochemicals have great potential as treatment options for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sheryl Rodriguez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Kristy Skeet
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Shri Karri
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Jackelyn Rocha
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Mark Shahinian
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Abdallah Yazadi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
- Correspondence: ; Tel.: +1-915-215-6851
| |
Collapse
|
123
|
Liu Z, Liu X, Liang J, Liu Y, Hou X, Zhang M, Li Y, Jiang X. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Prospects. Front Immunol 2021; 12:765101. [PMID: 34675942 PMCID: PMC8524467 DOI: 10.3389/fimmu.2021.765101] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer with poor prognosis. Surgery, chemotherapy, and radiofrequency ablation are three conventional therapeutic options that will help only a limited percentage of HCC patients. Cancer immunotherapy has achieved dramatic advances in recent years and provides new opportunities to treat HCC. However, HCC has various etiologies and can evade the immune system through multiple mechanisms. With the rapid development of genetic engineering and synthetic biology, a variety of novel immunotherapies have been employed to treat advanced HCC, including immune checkpoint inhibitors, adoptive cell therapy, engineered cytokines, and therapeutic cancer vaccines. In this review, we summarize the current landscape and research progress of different immunotherapy strategies in the treatment of HCC. The challenges and opportunities of this research field are also discussed.
Collapse
Affiliation(s)
- Zhuoyan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Liang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yixin Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meichuan Zhang
- R&D Department, Caleb BioMedical Technology Co. Ltd, Guangzhou, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
124
|
Wu JY, Yin ZY, Bai YN, Chen YF, Zhou SQ, Wang SJ, Zhou JY, Li YN, Qiu FN, Li B, Yan ML. Lenvatinib Combined with Anti-PD-1 Antibodies Plus Transcatheter Arterial Chemoembolization for Unresectable Hepatocellular Carcinoma: A Multicenter Retrospective Study. J Hepatocell Carcinoma 2021; 8:1233-1240. [PMID: 34676181 PMCID: PMC8502053 DOI: 10.2147/jhc.s332420] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Lenvatinib (LEN) combined with anti-PD-1 antibodies (PD-1) exerted promising effects on unresectable hepatocellular carcinoma (uHCC). We assessed the safety and clinical efficacy of triple therapy [LEN+PD-1+transcatheter arterial chemoembolization (TACE)] in uHCC. Methods uHCC patients with an ECOG PS score of 0–1 and Child–Pugh class A who underwent triple therapy were included. The primary endpoint was objective response rate (ORR) based on mRECIST. Secondary endpoints were conversion rate to liver resection and treatment-related adverse events. Results Between November 2018 and December 2020, 62 uHCC patients who underwent triple therapy at four major cancer centers in China were analyzed, including 35 in BCLC-C, 21 in BCLC-B, and 6 in BCLC-A. With a median follow-up of 12.2 months (range, 7.6–33.3 months), the investigator and blinded independent central review-assessed ORR were 80.6% and 77.4%, respectively. A total of 33 patients (53.2%) reached the standard of conversion to resectable HCC and 29 patients underwent resection. The median interval between start of triple therapy and resection was 123 days (range, 55–372 days). Pathological complete response and major pathological response were observed in 16 and 24 patients, respectively. Median overall survival and progression-free survival were not reached. Treatment-related adverse events occurred in 74.2% of the patients (grade ≥3, 14.5%; grade ≥4, 4.8%). Conclusion Combination of LEN, PD-1 and TACE showed a high rate of tumor response and convert resection in uHCC patients, with manageable toxicity.
Collapse
Affiliation(s)
- Jia-Yi Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, 350001, People's Republic of China.,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350001, People's Republic of China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Xiamen Traditional Chinese Medical Hospital, Xiamen, Fujian Province, 361000, People's Republic of China
| | - Yan-Nan Bai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, 350001, People's Republic of China.,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350001, People's Republic of China
| | - Yu-Feng Chen
- Department of Hepatobiliary Surgery, The Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, 363000, People's Republic of China
| | - Song-Qiang Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, 350001, People's Republic of China.,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350001, People's Republic of China
| | - Shuang-Jia Wang
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361000, People's Republic of China
| | - Jian-Yin Zhou
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, 361000, People's Republic of China
| | - Yi-Nan Li
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350001, People's Republic of China
| | - Fu-Nan Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, 350001, People's Republic of China.,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350001, People's Republic of China
| | - Bin Li
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361000, People's Republic of China
| | - Mao-Lin Yan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, 350001, People's Republic of China.,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350001, People's Republic of China
| |
Collapse
|
125
|
Liu HT, Jiang MJ, Deng ZJ, Li L, Huang JL, Liu ZX, Li LQ, Zhong JH. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Current Progresses and Challenges. Front Oncol 2021; 11:737497. [PMID: 34745958 PMCID: PMC8570111 DOI: 10.3389/fonc.2021.737497] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/08/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumor in the world and its incidence is increasing in many countries. In recent years, with the deepening understanding of the immune and pathological mechanisms of HCC, immunotherapy based on the regulation of tumor immune microenvironment has become a new treatment choice for patients with HCC. Immune checkpoint inhibitors (ICIs) targeting programmed death protein-1, programmed death protein-ligand-1, or cytotoxic T-lymphocyte-associated antigen 4 are the most widely used. Instead of general immune-enhancing therapies, ICIs can reactivate anti-tumor immune responses by disrupting co-inhibitory T cell signaling. In this review, the research progress and existing problems of ICIs in the treatment of HCC in recent years are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
126
|
Dhasmana A, Dhasmana S, Kotnala S, A A, Kashyap VK, Shaji PD, Laskar P, Khan S, Pellicano R, Fagoonee S, Haque S, Yallapu MM, Chauhan SC, Jaggi M. A topography of immunotherapies against gastrointestinal malignancies. Panminerva Med 2021; 64:56-71. [PMID: 34664484 DOI: 10.23736/s0031-0808.21.04541-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gastrointestinal (GI) cancers are one of the leading causes of death worldwide. Although various approaches are implemented to improve the health condition of GI patients, none of the treatment protocols promise for eradicating cancer. However, a treatment mechanism against any kind of disease condition is already existing executing inside the human body. The 'immune system' is highly efficient to detect and destroy the unfavourable events of the body including tumor cells. The immune system can restrict the growth and proliferation of cancer. Cancer cells behave much smarter and adopt new mechanisms for hiding from the immune cells. Thus, cancer immunotherapy might play a decisive role to train the immune system against cancer. In this review, we have discussed the immunotherapy permitted for the treatment of GI cancers. We have discussed various methods and mechanisms, periodic development of cancer immunotherapies, approved biologicals, completed and ongoing clinical trials, role of various biopharmaceuticals, and epigenetic factors involved in GI cancer immunotherapies (graphical abstract Figure 1).
Collapse
Affiliation(s)
- Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sudhir Kotnala
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Anukriti A
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University, Lakshamgarh, Rajasthan, India
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Poornima D Shaji
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA - meena.jaggi @utrgv.edu.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
127
|
Lemaire V, Shemesh CS, Rotte A. Pharmacology-based ranking of anti-cancer drugs to guide clinical development of cancer immunotherapy combinations. J Exp Clin Cancer Res 2021; 40:311. [PMID: 34598713 PMCID: PMC8485537 DOI: 10.1186/s13046-021-02111-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
The success of antibodies targeting Programmed cell death protein 1 (PD-1) and its ligand L1 (PD-L1) in cancer treatment and the need for improving response rates has led to an increased demand for the development of combination therapies with anti-PD-1/PD-L1 blockers as a backbone. As more and more drugs with translational potential are identified, the number of clinical trials evaluating combinations has increased considerably and the demand to prioritize combinations having potential for success over the ones that are unlikely to be successful is rising. This review aims to address the unmet need to prioritize cancer immunotherapy combinations through comprehensive search of potential drugs and ranking them based on their mechanism of action, clinical efficacy and safety. As lung cancer is one of the most frequently studied cancer types, combinations that showed potential for the treatment of lung cancer were prioritized. A literature search was performed to identify drugs with potential in combination with PD-1/PD-L1 blockers and the drugs were ranked based on their mechanism of action and known clinical efficacy. Nineteen drugs or drug classes were identified from an internal list of lead molecules and were scored for their clinical potential. Efficacy and safety data from pivotal studies was summarized for the selected drugs. Further, overlap of mechanisms of action and adverse events was visualized using a heat map illustration to help screen drugs for combinations. The quantitative scoring methodology provided in this review could serve as a template for preliminary ranking of novel combinations.
Collapse
Affiliation(s)
- Vincent Lemaire
- Department of Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Colby S Shemesh
- Department of Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Anand Rotte
- Independent Consultant, Santa Clara, USA
- Current address: Clinical and Regulatory Affairs, Arcellx, Gaithersburg, USA
| |
Collapse
|
128
|
Glucocorticoid and PD-1 Cross-Talk: Does the Immune System Become Confused? Cells 2021; 10:cells10092333. [PMID: 34571982 PMCID: PMC8468592 DOI: 10.3390/cells10092333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) and its ligands, PD-L1/2, control T cell activation and tolerance. While PD-1 expression is induced upon T cell receptor (TCR) activation or cytokine signaling, PD-L1 is expressed on B cells, antigen presenting cells, and on non-immune tissues, including cancer cells. Importantly, PD-L1 binding inhibits T cell activation. Therefore, the modulation of PD-1/PD-L1 expression on immune cells, both circulating or in a tumor microenvironment and/or on the tumor cell surface, is one mechanism of cancer immune evasion. Therapies that target PD-1/PD-L1, blocking the T cell-cancer cell interaction, have been successful in patients with various types of cancer. Glucocorticoids (GCs) are often administered to manage the side effects of chemo- or immuno-therapy, exerting a wide range of immunosuppressive and anti-inflammatory effects. However, GCs may also have tumor-promoting effects, interfering with therapy. In this review, we examine GC signaling and how it intersects with PD-1/PD-L1 pathways, including a discussion on the potential for GC- and PD-1/PD-L1-targeted therapies to "confuse" the immune system, leading to a cancer cell advantage that counteracts anti-cancer immunotherapy. Therefore, combination therapies should be utilized with an awareness of the potential for opposing effects on the immune system.
Collapse
|
129
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
130
|
Luo X, Cao M, Gao F, He X. YTHDF1 promotes hepatocellular carcinoma progression via activating PI3K/AKT/mTOR signaling pathway and inducing epithelial-mesenchymal transition. Exp Hematol Oncol 2021; 10:35. [PMID: 34088349 PMCID: PMC8176587 DOI: 10.1186/s40164-021-00227-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification, as the most abundant RNA modification, widely participates in the physiological process and is involved in multiple disease progression, especially cancer. YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) is a pivotal m6A "reader" protein, which has been reported in multiple cancers. However, the role and molecular mechanism of YTHDF1 in HCC are still not fully elucidated. METHODS Based on various bioinformatics databases, q-RT PCR, western blot, and a tissue microarray containing 90 HCC samples, we examined the expression of YTHDF1 in HCC. Then, we applied the loss-of-function experiments to explore the role of YTHDF1 in HCC by in vitro and in vivo assays. Finally, we performed the gene set enrichment analysis (GSEA) to predict the potential signaling pathway of YTHDF1 involved in HCC and further verified this prediction. RESULTS YTHDF1 was overexpressed in HCC and associated with HCC grade. Depletion of YTHDF1 markedly impaired the proliferation, migration, invasion, and cell cycle process of HCC cells. Mechanistically, YTHDF1 promoted the growth of HCC cells via activating the PI3K/AKT/mTOR signaling pathway. Moreover, we also demonstrated that the epithelial-mesenchymal transition (EMT) mediated the promoting effect of YTHDF1 on the migration and invasion of HCC cells. CONCLUSIONS YTHDF1 contributes to the progression of HCC by activating PI3K/AKT/mTOR signaling pathway and inducing EMT.
Collapse
Affiliation(s)
- Xiangyuan Luo
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengdie Cao
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Gao
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingxing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|