101
|
Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target. Sci Rep 2016; 6:37360. [PMID: 27853274 PMCID: PMC5112591 DOI: 10.1038/srep37360] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.
Collapse
|
102
|
Pohl PHI, Lozito TP, Cuperman T, Yurube T, Moon HJ, Ngo K, Tuan RS, Croix CS, Sowa GA, Rodrigues LMR, Kang JD, Vo NV. Catabolic effects of endothelial cell-derived microparticles on disc cells: Implications in intervertebral disc neovascularization and degeneration. J Orthop Res 2016; 34:1466-74. [PMID: 27246627 PMCID: PMC5444459 DOI: 10.1002/jor.23298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
Neovascularization of intervertebral discs, a phenomenon considered pathological since normal discs are primarily avascular structures, occurs most frequently in annulus fibrosus (AF) of degenerated discs. Endothelial cells (ECs) are involved in this process, but the mechanism of the interaction between AF and endothelial cells is unclear. In this study, we evaluated the effects on matrix catabolic activity of AF cells by the extracellular endothelial microparticles (EMPs) and soluble protein factors (SUP fraction) produced from ECs. Passage 1 human AF cells grown in monolayer cultures were treated for 72 h with 250 µg of EMPs or SUP fraction isolated from culture of the microvascular endothelial cell line, HEMC-I. Live-cell imaging revealed uptake of EMPs by AF cells. RT-PCR analysis demonstrated increased mRNA expression of MMP-1 (50.3-fold), MMP-3 (4.5-fold) and MMP-13 (5.5-fold) in AF cell cultures treated with EMPs compared to untreated control. Western analysis also demonstrated increased MMP protein expression in EMP-treated AF cells. AF cells treated with the SUP fraction also exhibited a dramatic increase in MMP mRNA and protein expression. Increased MMP expression is primarily due to EMP or SUP stimulation of AF cells since EMPs or SUP fraction alone contained negligible amount of MMPs. Interestingly, MMP activity was elevated in AF cell cultures treated with EMPs but not with SUP. This study revealed enhanced matrix catabolism as a molecular consequence of action of ECs on AF cells via EMPs, which might be expected during neo-angiogenesis of degenerating disc. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1466-1474, 2016.
Collapse
Affiliation(s)
- Pedro H. I. Pohl
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh – USA,Spine Surgery Group, Discipline of Orthopaedic Surgery and Traumatology, ABC Medical School (FMABC), Sao Paulo – Brazil
| | - Thomas P. Lozito
- Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh – USA
| | - Thais Cuperman
- Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh – USA
| | - Takashi Yurube
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh – USA,Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe – Japan
| | - Hong J. Moon
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh – USA,Department of Neurosurgery, College of Medicine, Korea University, Seoul – Republic of Korea
| | - Kevin Ngo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh – USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh – USA
| | - Claudette St. Croix
- Center for Biologic Imaging, Environmental and Occupational Health, University of Pittsburgh, Pittsburgh - USA
| | - Gwendolyn A. Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh – USA,Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh – USA
| | - Luciano M. R. Rodrigues
- Spine Surgery Group, Discipline of Orthopaedic Surgery and Traumatology, ABC Medical School (FMABC), Sao Paulo – Brazil
| | - James D. Kang
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh – USA
| | - Nam V. Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh – USA
| |
Collapse
|
103
|
Gruber HE, Hoelscher GL, Bullock L, Ingram JA, Norton HJ, Hanley EN. Human annulus signaling cues for nerve outgrowth: In vitro studies. J Orthop Res 2016; 34:1456-65. [PMID: 27155444 DOI: 10.1002/jor.23286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
The relationship between neurotrophins produced by human annulus cells, such as neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF) which function in neurite survival and outgrowth, and nerve ingrowth into the disc remains poorly understood. In this work, we tested F11 neurite growth during exposure to control media, media with added nerve growth factor (NGF), conditioned media (CM) harvested from previous human annulus culture, or co-culture with annulus cells. Co-culture of F11 cells with annulus cells significantly increased media levels of amphiregulin, BDNF, glial-derived neurotrophic factor, and vascular endothelial growth factor compared to levels from in culture of F11 cells alone (p ≤ 0.04). Cell-based assays of neurite growth revealed that BDNF levels present in CM bore a significant (p = 0.01) positive relationship to neurite length and accounted for 38.5% of the change in neurite length. NT4 levels produced during co-culture with annulus cells bore a significant (p = 0.04) positive relationship to neurite length and accounted for 40.9% of the change in length. Statement of clinical significance: In vitro findings point to a potential role of annulus cells related to nerve ingrowth in vivo, and may have relevance in the outer annulus (where cell numbers are high) or in regions where nerves penetrate into annular tears or fissures. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1456-1465, 2016.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Gretchen L Hoelscher
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Letitia Bullock
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Jane A Ingram
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - H James Norton
- Dickson Advanced Analytics, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| |
Collapse
|
104
|
Abstract
STUDY DESIGN In vitro study using isolated human intervertebral disc (IVD) cells. OBJECTIVE To investigate the effects of prostaglandin (PG)E1 and its orally available derivative limaprost on the regulation of nerve growth factor (NGF) expression and to compare their actions with other prostanoids using interleukin (IL)-1-stimulated human IVD cells. SUMMARY OF BACKGROUND DATA We previously reported that a selective COX-2 inhibitor enhanced, whereas PGE2 suppressed the induction of NGF by IL-1 in human IVD cells, and proposed that PGE2 can suppress NGF expression by a negative feedback mechanism. METHODS Isolated human IVD cells were stimulated with IL-1 in the presence or absence of increasing concentrations of PGE2, PGE1, limaprost, PGI2, PGD2, or PGF2α (10-10,000 nM). For some experiments, an E-series prostanoid receptor (EP)4 antagonist (L-161,982) was added prior to the stimulation. NGF expression was determined by real-time polymerase chain reaction and its protein level was quantified by enzyme-linked immunosorbent assay. RESULTS PGE2, PGE1, and limaprost inhibited the IL-1-mediated induction of NGF in a concentration-dependent manner, with IC50 values of 9.9, 10.6, and 70.9 nM, respectively. PGI2 also suppressed NGF expression but to a much less extent. PGD2, on the other hand, significantly enhanced NGF expression, whereas PGF2α had no effect. Protein expression levels of NGF mirrored its mRNA levels. The suppression of NGF expression by PGE2 and PGE1 was partly reversed by L-161,982. CONCLUSION PGE1 and limaprost exhibited a novel pharmacological action that suppresses NGF expression in human IVD cells, and other prostanoids differentially regulated NGF expression. Limaprost has been used to treat patients with lumbar spinal stenosis in Japan and was proved to be effective in relieving symptoms. Our in vitro results may explain, in part, the mechanism of action of limaprost for low back pain. LEVEL OF EVIDENCE N/A.
Collapse
|
105
|
Binch ALA, Cole AA, Breakwell LM, Michael ALR, Chiverton N, Creemers LB, Cross AK, Le Maitre CL. Class 3 semaphorins expression and association with innervation and angiogenesis within the degenerate human intervertebral disc. Oncotarget 2016; 6:18338-54. [PMID: 26286962 PMCID: PMC4621894 DOI: 10.18632/oncotarget.4274] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022] Open
Abstract
Nerve and blood vessel ingrowth during intervertebral disc degeneration, is thought to be a major cause of low back pain, however the regulation of this process is poorly understood. Here, we investigated the expression and regulation of a subclass of axonal guidance molecules known as the class 3 semaphorins, and their receptors; plexins and neuropilins within human NP tissue and their regulation by pro-inflammatory cytokines. Importantly this determined whether semaphorin expression was associated with the presence of nerves and blood vessels in tissues from human intervertebral discs. The study demonstrated that semaphorin3A, 3C, 3D, 3E and 3F and their receptors were expressed by native NP cells and further demonstrated their expression was regulated by IL-1β but to a lesser extent by IL-6 and TNFα. This is the first study to identify sema3C, sema3D and their receptors within the nucleus pulposus of intervertebral discs. Immunopositivity shows significant increases in semaphorin3C, 3D and their receptor neuropilin-2 in degenerate samples which were shown to contain nerves and blood vessels, compared to non-degenerate samples without nerves and blood vessels. Therefore data presented here suggests that semaphorin3C may have a role in promoting innervation and vascularisation during degeneration, which may go on to cause low back pain.
Collapse
Affiliation(s)
- Abbie L A Binch
- Sheffield Hallam University, Sheffield, South Yorkshire, United Kingdom
| | - Ashley A Cole
- Sheffield Teaching Hospitals, Sheffield, South Yorkshire, United Kingdom
| | - Lee M Breakwell
- Sheffield Teaching Hospitals, Sheffield, South Yorkshire, United Kingdom
| | | | - Neil Chiverton
- Sheffield Teaching Hospitals, Sheffield, South Yorkshire, United Kingdom
| | - Laura B Creemers
- Universitair Medisch Centrum, Orthopaedics Department, Utrecht, Netherlands
| | - Alison K Cross
- Sheffield Hallam University, Sheffield, South Yorkshire, United Kingdom
| | | |
Collapse
|
106
|
Binch ALA, Cole AA, Breakwell LM, Michael ALR, Chiverton N, Creemers LB, Cross AK, Le Maitre CL. Nerves are more abundant than blood vessels in the degenerate human intervertebral disc. Arthritis Res Ther 2015; 17:370. [PMID: 26695177 PMCID: PMC4704545 DOI: 10.1186/s13075-015-0889-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic low back pain (LBP) is the most common cause of disability worldwide. New ideas surrounding LBP are emerging that are based on interactions between mechanical, biological and chemical influences on the human IVD. The degenerate IVD is proposed to be innervated by sensory nerve fibres and vascularised by blood vessels, and it is speculated to contribute to pain sensation. However, the incidence of nerve and blood vessel ingrowth, as well as whether these features are always associated, is unknown. We investigated the presence of nerves and blood vessels in the nucleus pulposus (NP) of the IVD in a large population of human discs. METHODS Immunohistochemistry was performed with 61 human IVD samples, to identify and localise nerves (neurofilament 200 [NF200]/protein gene product 9.5) and blood vessels (CD31) within different regions of the IVD. RESULTS Immunopositivity for NF200 was identified within all regions of the IVD within post-mortem tissues. Nerves were seen to protrude across lamellar ridges and through matrix towards NP cells. Nerves were identified deep within the NP and were in many cases, but not always, seen in close proximity to fissures or in areas where decreased matrix was seen. Fifteen percent of samples were degenerate and negative for nerves and blood vessels, whilst 16 % of all samples were degenerate with nerves and blood vessels. We identified 52% of samples that were degenerate with nerves but no blood vessels. Interestingly, only 4% of all samples were degenerate with no nerves but positive for blood vessels. Of the 85 samples investigated, only 6 % of samples were non-degenerate without nerves and blood vessels and 7% had nerves but no blood vessels. CONCLUSIONS This study addresses the controversial topic of nerve and blood vessel ingrowth into the IVD in a large number of human samples. Our findings demonstrate that nerves are present within a large proportion of NP samples from degenerate IVDs. This study shows a possible link between nerve ingrowth and degeneration of the IVD and suggests that nerves can migrate in the absence of blood vessels.
Collapse
Affiliation(s)
- Abbie L A Binch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.
| | - Ashley A Cole
- Department of Spinal Surgery, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Lee M Breakwell
- Department of Spinal Surgery, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Antony L R Michael
- Department of Spinal Surgery, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Neil Chiverton
- Department of Spinal Surgery, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Laura B Creemers
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Alison K Cross
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.
| |
Collapse
|
107
|
Wang F, Shi R, Cai F, Wang YT, Wu XT. Stem Cell Approaches to Intervertebral Disc Regeneration: Obstacles from the Disc Microenvironment. Stem Cells Dev 2015; 24:2479-95. [PMID: 26228642 DOI: 10.1089/scd.2015.0158] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration results in segmental instability and irritates neural compressive symptoms, such as low back pain and motor deficiency. The transplanting of stem cell into degenerative discs has attracted increasing clinical attention, as a new and proven approach to alleviating disc degeneration and to relieving discogenic pains. Aside from supplementation with stem cells, the IVD itself already contains a pool of stem and progenitor cells. Since the resident disc stem cells are incapable of reversing the pathologic changes that occur during aging and disc degeneration, it has been debated as to whether transplanted stem cells are capable of providing an efficient and durable therapeutic effect, even though there have been positive outcomes in both animal models and in clinical trials. This review aims to decipher the interactions between the stem cell and the disc microenvironment. Within their new niches in the IVD, the exogenous stem cell shows metabolic adaptation to the low-glucose supply, hypoxia, and compressive loadings, but demonstrates little tolerance to the disc-like acidity and hypertonicity. Similarly, the survival of endogenous stem cells is threatened as well by the harsh disc microenvironment, which may exhaust the stem cell resources and restrict the self-repair capacity of a degenerating IVD. To eliminate the intrinsic obstacles within the stressful disc niches, stem cells should be delivered with an injectable scaffold that provides both survival and mechanical support. Quick healing or concretion of the injection injuries, which minimizes stem cell leakage and disturbance to disc homeostasis, is of equal importance toward achieving efficient stem cell-based disc regeneration.
Collapse
Affiliation(s)
- Feng Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Rui Shi
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Feng Cai
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Yun-Tao Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Xiao-Tao Wu
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| |
Collapse
|
108
|
Interleukin-1β in intervertebral disk degeneration. Clin Chim Acta 2015; 450:262-72. [PMID: 26341894 DOI: 10.1016/j.cca.2015.08.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 01/06/2023]
Abstract
Intervertebral disk degeneration (IDD) is the most common diagnosis in patients with low back pain, a main cause of musculoskeletal disability in the world. Interleukin-1 (IL-1) β is the most important member of the IL-1 family, and has a strong pro-inflammatory activity by stimulating the secretion of multiple pro-inflammatory mediators. IL-1β is highly expressed in degenerative intervertebral disk (IVD) tissues and cells, and it has been shown to be involved in multiple pathological processes during disk degeneration, including inflammatory responses, matrix destruction, angiogenesis and innervation, cellular apoptosis, oxidative stress and cellular senescence. However, inhibition of IL-1β is found to promote extracellular matrix (ECM) repair and protect against disk regeneration. In this review, after a brief description of IL-1β signaling, we mainly focus on the expression profiles, roles and therapeutic potential of IL-1β in IDD. A better understanding will help develop novel IL-1β-based therapeutic interventions for degenerative disk disease.
Collapse
|
109
|
Cuesta A, Viña E, Cabo R, Vázquez G, Cobo R, García-Suárez O, García-Cosamalón J, Vega JA. Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10305-10314. [PMID: 26617738 PMCID: PMC4637553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity.
Collapse
Affiliation(s)
- Antonio Cuesta
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de OviedoNorth Korea
| | - Eliseo Viña
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de OviedoNorth Korea
- Unidad de Cuidados Intensivos, Hospital de CabueñesGijón, Spain
| | - Roberto Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de OviedoNorth Korea
| | - Gorka Vázquez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de OviedoNorth Korea
| | - Ramón Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de OviedoNorth Korea
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de OviedoNorth Korea
| | - José García-Cosamalón
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de OviedoNorth Korea
- Servicio de Neurocirugía, Complejo Universitario Hospital de LeónLeón, Spain
- Fundación Leonesa ProneuroencienasLeón, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de OviedoNorth Korea
- Fundación Leonesa ProneuroencienasLeón, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de ChileChile
| |
Collapse
|
110
|
Han I, Ropper AE, Konya D, Kabatas S, Toktas Z, Aljuboori Z, Zeng X, Chi JH, Zafonte R, Teng YD. Biological approaches to treating intervertebral disk degeneration: devising stem cell therapies. Cell Transplant 2015. [PMID: 26223943 DOI: 10.3727/096368915x688650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disk (IVD) degeneration is a common, chronic, and complex degeneration process that frequently leads to back pain and disability, resulting in a major public health issue. In this review we describe biological therapies under preclinical or clinical development with an emphasis on stem cell-based multimodal approaches that target prevention and treatment of IVD degeneration. Systematical review of the basic science and clinical literature was performed to summarize the current status of devising biological approaches to treating IVD degeneration. Since the exact mechanisms underlying IVD degeneration have not yet been fully elucidated and conservative managements appear to be mostly ineffective, current surgical treatment focuses on removal of the pathological disk tissues combined with spinal fusion. The treatment options, however, often produce insufficient efficacy and even serious complications. Therefore, there have been growing demands and endeavors for developing novel regenerative biology-guided strategies for repairing the IVD via delivery of exogenous growth factors, introduction of therapeutic genes, and transplantation of stem cells, or combinatorial therapies. Overall, the data suggest that when applied under a recovery neurobiology principle, multimodal regimens comprising ex vivo engineered stem cell-based disks hold a high potential promise for efficacious clinical translations.
Collapse
Affiliation(s)
- Inbo Han
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Rebelo MA, Alves TFR, de Lima R, Oliveira JM, Vila MMDC, Balcão VM, Severino P, Chaud MV. Scaffolds and tissue regeneration: An overview of the functional properties of selected organic tissues. J Biomed Mater Res B Appl Biomater 2015; 104:1483-94. [PMID: 26148945 DOI: 10.1002/jbm.b.33482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/19/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Abstract
Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1483-1494, 2016.
Collapse
Affiliation(s)
- Márcia A Rebelo
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Thais F R Alves
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Renata de Lima
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - José M Oliveira
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Marta M D C Vila
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Victor M Balcão
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil.,i(bs)2-Intelligent Biosensing and Biomolecule Stabilization Research Group, University of Sorocaba, Sorocaba, SP, Brazil.,CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Patrícia Severino
- Institute of Technology and Research, University of Tiradentes, Aracaju, SE, Brazil
| | - Marco V Chaud
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil.
| |
Collapse
|
112
|
Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis Cartilage 2015; 23:1057-70. [PMID: 25827971 DOI: 10.1016/j.joca.2015.03.028] [Citation(s) in RCA: 569] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/02/2023]
Abstract
Intervertebral disc degeneration is a major cause of low back pain. Despite its long history and large socio-economical impact in western societies, the initiation and progress of disc degeneration is not well understood and a generic disease model is lacking. In literature, mechanics and biology have both been implicated as the predominant inductive cause; here we argue that they are interconnected and amplify each other. This view is supported by the growing awareness that cellular physiology is strongly affected by mechanical loading. We propose a vicious circle of mechanical overloading, catabolic cell response, and degeneration of the water-binding extracellular matrix. Rather than simplifying the disease, the model illustrates the complexity of disc degeneration, because all factors are interrelated. It may however solve some of the controversy in the field, because the vicious circle can be entered at any point, eventually leading to the same pathology. The proposed disease model explains the comparable efficacy of very different animal models of disc degeneration, but also helps to consider the consequences of therapeutic interventions, either at the cellular, material or mechanical level.
Collapse
|