101
|
Chen BD, Jia XM, Xu JY, Zhao LD, Ji JY, Wu BX, Ma Y, Li H, Zuo XX, Pan WY, Wang XH, Ye S, Tsokos GC, Wang J, Zhang X. An Autoimmunogenic and Proinflammatory Profile Defined by the Gut Microbiota of Patients With Untreated Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 73:232-243. [PMID: 33124780 DOI: 10.1002/art.41511] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Changes in gut microbiota have been linked to systemic lupus erythematosus (SLE), but knowledge is limited. Our study aimed to provide an in-depth understanding of the contribution of gut microbiota to the immunopathogenesis of SLE. METHODS Fecal metagenomes from 117 patients with untreated SLE and 52 SLE patients posttreatment were aligned with 115 matched healthy controls and analyzed by whole-genome profiling. For comparison, we assessed the fecal metagenome of MRL/lpr mice. The oral microbiota origin of the gut species that existed in SLE patients was documented by single-nucleotide polymorphism-based strain-level analyses. Functional validation assays were performed to demonstrate the molecular mimicry of newly found microbial peptides. RESULTS Gut microbiota from individuals with SLE displayed significant differences in microbial composition and function compared to healthy controls. Certain species, including the Clostridium species ATCC BAA-442 as well as Atopobium rimae, Shuttleworthia satelles, Actinomyces massiliensis, Bacteroides fragilis, and Clostridium leptum, were enriched in SLE gut microbiota and reduced after treatment. Enhanced lipopolysaccharide biosynthesis aligned with reduced branched chain amino acid biosynthesis was observed in the gut of SLE patients. The findings in mice were consistent with our findings in human subjects. Interestingly, some species with an oral microbiota origin were enriched in the gut of SLE patients. Functional validation assays demonstrated the proinflammatory capacities of some microbial peptides derived from SLE-enriched species. CONCLUSION This study provides detailed information on the microbiota of untreated patients with SLE, including their functional signatures, similarities with murine counterparts, oral origin, and the definition of autoantigen-mimicking peptides. Our data demonstrate that microbiome-altering approaches may offer valuable adjuvant therapies in SLE.
Collapse
Affiliation(s)
- Bei-di Chen
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Xin-Miao Jia
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Jia-Yue Xu
- Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Li-Dan Zhao
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | | | - Bing-Xuan Wu
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Yue Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Hao Li
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Xiao-Xia Zuo
- Xiangya Hospital and Central South University, Changsha, China
| | - Wen-You Pan
- Huaian First People's Hospital and Nanjing Medical University, Huaian, China
| | | | - Shuang Ye
- Renji Hospital and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - George C Tsokos
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jun Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| |
Collapse
|
102
|
Battaglia M, Garrett-Sinha LA. Bacterial infections in lupus: Roles in promoting immune activation and in pathogenesis of the disease. J Transl Autoimmun 2020; 4:100078. [PMID: 33490939 PMCID: PMC7804979 DOI: 10.1016/j.jtauto.2020.100078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bacterial infections of the lung, skin, bloodstream and other tissues are common in patients with systemic lupus erythematosus (lupus) and are often more severe and invasive than similar infections in control populations. A variety of studies have explored the changes in bacterial abundance in lupus patients, the rates of infection and the influence of particular bacterial species on disease progression, using both human patient samples and mouse models of lupus. OBJECTIVE The aim of this review is to summarize human and mouse studies that describe changes in the bacterial microbiome in lupus, the role of a leaky gut in stimulating inflammation, identification of specific bacterial species associated with lupus, and the potential roles of certain common bacterial infections in promoting lupus progression. METHODS Information was collected using searches of the Pubmed database for articles relevant to bacterial infections in lupus and to microbiome changes associated with lupus. RESULTS The reviewed studies demonstrate significant changes in the bacterial microbiome of lupus patients as compared to control subjects and in lupus-prone mice compared to control mice. Furthermore, there is evidence supporting the existence of a leaky gut in lupus patients and in lupus-prone mice. This leaky gut may allow live bacteria or bacterial components to enter the circulation and cause inflammation. Invasive bacterial infections are more common and often more severe in lupus patients. These include infections caused by Staphylococcus aureus, Salmonella enterica, Escherichia coli, Streptococcus pneumoniae and mycobacteria. These bacterial infections can trigger increased immune activation and inflammation, potentially stimulating activation of autoreactive lymphocytes and leading to worsening of lupus symptoms. CONCLUSIONS Together, the evidence suggests that lupus predisposes to infection, while infection may trigger worsening lupus, leading to a feedback loop that may reinforce autoimmune symptoms.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
103
|
Comparative Gut Microbiome Differences between Ferric Citrate and Calcium Carbonate Phosphate Binders in Patients with End-Stage Kidney Disease. Microorganisms 2020; 8:microorganisms8122040. [PMID: 33419265 PMCID: PMC7767080 DOI: 10.3390/microorganisms8122040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
Gut dysbiosis in patients with chronic kidney disease (CKD) may induce chronic inflammation and increase morbidity. Phosphate-binding agents, generally used in patients with CKD, may potentially change the composition of the gut microbiota. This study aimed to compare the microbiota composition in hemodialysis patients treated with ferric citrate or calcium carbonate. The stool microbiota was investigated in hemodialysis patients treated with ferric citrate (n = 8) and calcium carbonate (n = 46) using 16S rRNA gene amplicon sequencing profiling using linear discriminant analysis of effect size. Further predictive functional profiling of microbial communities was obtained with Tax4Fun in R. Hemodialysis patients treated with calcium carbonate had a significantly reduced microbial species diversity (Shannon index and Simpson index) and an increased microbial alteration ratio compared with patients treated with ferric citrate. A distinct microbial community structure was found in patients treated with ferric citrate, with an increased abundance of the Bacteroidetes phylum and a decreased abundance of the phylum Firmicutes. Members of the order Lactobacillales were enriched in patients treated with calcium carbonate, whereas taxa of the genera Ruminococcaceae UCG-004, Flavonifractor, and Cronobacter were enriched in patients treated with ferric citrate phosphate binder. In conclusion, Ferric citrate therapy results in a more diverse microbiome community compared to calcium carbonate therapy in hemodialysis patients with phosphate binder treatment. The gut microbiome reflects the phosphate binder choice in hemodialysis patients, further affecting the physiological environment in the gastrointestinal tract.
Collapse
|
104
|
Bailén M, Bressa C, Martínez-López S, González-Soltero R, Montalvo Lominchar MG, San Juan C, Larrosa M. Microbiota Features Associated With a High-Fat/Low-Fiber Diet in Healthy Adults. Front Nutr 2020; 7:583608. [PMID: 33392236 PMCID: PMC7775391 DOI: 10.3389/fnut.2020.583608] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
A high intake of dietary saturated fatty acids (SFAs) is related to an increased risk of obesity, inflammation and cancer-related diseases, and this risk is attenuated only when SFAs are replaced by unsaturated fats and unrefined carbohydrates. The gut microbiota has recently emerged as a new environmental factor in the pathophysiology of these disorders, and is also one of the factors most influenced by diet. We sought to determine whether the gut microbiota of healthy individuals whose intake of SFAs exceeds World Health Organization (WHO) recommendations exhibits features similar to those reported in people with obesity, inflammation, cancer or metabolic disease. Healthy non-obese subjects were divided into two groups based on their SFAs intake. Body composition and gut microbiota composition were analyzed, and associations between bacterial taxa, diet and body fat composition were determined globally and separately by sex. Metagenome functional pathways were predicted by PICRUSt analysis. Subjects whose SFAs intake exceeded WHO recommendations also had a dietary pattern of low fiber intake. This high saturated fat/low fiber diet was associated with a greater sequence abundance of the Anaerotruncus genus, a butyrate producer associated with obesity. Analysis of data of high SFAs intake by sex showed that females presented with a greater abundance of Campylobacter, Blautia, Flavonifractor and Erysipelatoclostridium, whereas males showed higher levels of Anaerotruncus, Eisenbergiella, a genus from the order Clostridiales (FamilyXIIIUCG_001) and two genera from the Lachnospiraceae family. PICRUSt analysis confirmed these data, showing a correlation with a decrease in the abundance of sequences encoding for transporters of some metals such as iron, which is needed to maintain a healthy metabolism. Thus, the microbiota of healthy people on a high SFAs diet contain bacterial taxa (Anaerotruncus, Lachnospiraceae Flavonifractor, Campylobacter, Erysipelotrichacea and Eisenbergiella) that could be related to the development of some diseases, especially obesity and other pro-inflammatory diseases in women. In summary, the present study identifies bacterial taxa that could be considered as early predictors for the onset of different diseases in healthy subjects. Also, sex differences in gut microbiota suggest that women and men differentially benefit from following a specific diet.
Collapse
Affiliation(s)
- María Bailén
- MAS Microbiota Group, School of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
105
|
Ling Z, Cheng Y, Yan X, Shao L, Liu X, Zhou D, Zhang L, Yu K, Zhao L. Alterations of the Fecal Microbiota in Chinese Patients With Multiple Sclerosis. Front Immunol 2020; 11:590783. [PMID: 33391265 PMCID: PMC7772405 DOI: 10.3389/fimmu.2020.590783] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence indicates that alterations in the intestinal microbiota may be associated with neurological disorders such as multiple sclerosis (MS). MS is a putative autoimmune disease of the central nervous system. However, it has not been determined whether the intestinal microbiota and host immune status are altered in Chinese patients with stable MS. In our study, 22 Chinese patients with stable MS and 33 healthy controls were enrolled for fecal microbiota analysis and host immunity evaluation. The microbial diversity and composition, bacterial co-occurrence correlations, predictive functional profiles, and microbiota-cytokine correlations between the two groups were compared. We observed that while the overall structure of the fecal microbiota did not change significantly, the abundances of several key functional bacteria, primarily Faecalibacterium, decreased remarkably. Faecalibacterium and Granulicatella could be used to distinguish between patients with MS and healthy controls with an area under the curve of 0.832. PiCRUSt analysis revealed that genes associated with fructose, mannose, and fatty acid metabolism were significantly enriched in the MS microbiota. In addition, we also observed that the levels of several pro- and anti-inflammatory cytokines and chemokines, such as IL-1ra, IL-8, IL-17, and TNF-α changed observably, and the abundances of key functional bacteria like butyrate producers correlated with the changes in the cytokine levels. Our present study indicated that altered composition of the fecal microbiota might play vital roles in the etiopathogenesis of MS by regulating host immunity, which suggests that microbiota-targeting patient-tailored early intervention techniques might serve as novel therapeutic approaches for MS.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Li Shao
- Hangzhou Normal University, Hangzhou, China.,Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dajin Zhou
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Lijuan Zhang
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Kunqiang Yu
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| |
Collapse
|
106
|
Moon J, Yoon CH, Choi SH, Kim MK. Can Gut Microbiota Affect Dry Eye Syndrome? Int J Mol Sci 2020; 21:E8443. [PMID: 33182758 PMCID: PMC7697210 DOI: 10.3390/ijms21228443] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren's syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the "gut dysbiosis-ocular surface-lacrimal gland axis" are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.
Collapse
Affiliation(s)
- Jayoon Moon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Chang Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Se Hyun Choi
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang-si 14068, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| |
Collapse
|
107
|
Guo M, Wang H, Xu S, Zhuang Y, An J, Su C, Xia Y, Chen J, Xu ZZ, Liu Q, Wang J, Dan Z, Chen K, Luan X, Liu Z, Liu K, Zhang F, Xia Y, Liu X. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes 2020; 11:1758-1773. [PMID: 32507008 PMCID: PMC7524333 DOI: 10.1080/19490976.2020.1768644] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A growing corpus of evidence implicates the involvement of the commensal microbiota and immune cytokines in the initiation and progression of systemic lupus erythematosus (SLE). Glucocorticoids have been widely used in the treatment of SLE patients, however, glucocorticoid treatment carries a higher risk of other diseases. Using the 16S rRNA technique, we investigated the differences between the gut microbiota associated with the immune cytokines of SLE and relevant glucocorticoid treatment in a female cohort of 20 healthy control subjects (HC), 17 subjects with SLE (SLE-G), and 20 SLE patients having undergone glucocorticoid treatment (SLE+G). We observed that the diversity and structure of the microbial community in SLE+G patients were significantly changed compared to that of SLE-G patients, whereas the gut microbial community of the SLE+G group showed a similarity with the HC group, which implicate that the shift in the gut microbiome could represent a return to homeostasis. Furthermore, the up-regulations of immune cytokines in SLE-G were identified as closely related to gut dysbiosis, which indicates that the overrepresented genera in SLE patients may play roles in regulating expression level of these immune cytokines. This associated analysis of gut microbiota, glucocorticoid therapy, and immune factors might provide novel and insightful clues revealing the pathogenesis of SLE patients.
Collapse
Affiliation(s)
- Mengchen Guo
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Medical Center for Digestive Diseases, the second affiliated Hospital of Nanjing Medical University, Key Laboratory of Holistic integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Huixia Wang
- Department of Dermatology, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Sixie Xu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yaoyao Zhuang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jingang An
- Department of Dermatology, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chuan Su
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing, China
| | - Jingyun Chen
- Department of Dermatology, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Zhenjiang Zech Xu
- School of Food and Technology State, Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qisha Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Medical Center for Digestive Diseases, the second affiliated Hospital of Nanjing Medical University, Key Laboratory of Holistic integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Jianwei Wang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Medical Center for Digestive Diseases, the second affiliated Hospital of Nanjing Medical University, Key Laboratory of Holistic integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Zhou Dan
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Medical Center for Digestive Diseases, the second affiliated Hospital of Nanjing Medical University, Key Laboratory of Holistic integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Kun Chen
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xiaoting Luan
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Kangjian Liu
- Medical Center for Digestive Diseases, the second affiliated Hospital of Nanjing Medical University, Key Laboratory of Holistic integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, the second affiliated Hospital of Nanjing Medical University, Key Laboratory of Holistic integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Yumin Xia
- Department of Dermatology, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China,Yumin Xia Department of Dermatology, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an710004, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Medical Center for Digestive Diseases, the second affiliated Hospital of Nanjing Medical University, Key Laboratory of Holistic integrative Enterology, Nanjing Medical University, Nanjing, China,CONTACT Xingyin Liu Department of Pathogen Biology-Microbiology Division, State key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen Biology of Jiangsu Province, Center for Global Health, Nanjing Medical University, Nanjing211166, China
| |
Collapse
|
108
|
Gut Microbiota and Immune System Interactions. Microorganisms 2020; 8:microorganisms8101587. [PMID: 33076307 PMCID: PMC7602490 DOI: 10.3390/microorganisms8101587] [Citation(s) in RCA: 411] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dynamic interactions between gut microbiota and a host’s innate and adaptive immune systems play key roles in maintaining intestinal homeostasis and inhibiting inflammation. The gut microbiota metabolizes proteins and complex carbohydrates, synthesize vitamins, and produce an enormous number of metabolic products that can mediate cross-talk between gut epithelial and immune cells. As a defense mechanism, gut epithelial cells produce a mucosal barrier to segregate microbiota from host immune cells and reduce intestinal permeability. An impaired interaction between gut microbiota and the mucosal immune system can lead to an increased abundance of potentially pathogenic gram-negative bacteria and their associated metabolic changes, disrupting the epithelial barrier and increasing susceptibility to infections. Gut dysbiosis, or negative alterations in gut microbial composition, can also dysregulate immune responses, causing inflammation, oxidative stress, and insulin resistance. Over time, chronic dysbiosis and the translocation of bacteria and their metabolic products across the mucosal barrier may increase prevalence of type 2 diabetes, cardiovascular disease, inflammatory bowel disease, autoimmune disease, and a variety of cancers. In this paper, we highlight the pivotal role gut microbiota and their metabolites (short-chain fatty acids (SCFAs)) play in mucosal immunity.
Collapse
|
109
|
Wang X, Wang J, Guo W, Zhou Y, Sun C, Li Z, Chen L, Pan X. [Characteristics of intestinal flora in patients with primary Sjögren syndrome]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:949-957. [PMID: 32895147 DOI: 10.12122/j.issn.1673-4254.2020.07.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate changes in intestinal flora in patients with primary Sj?gren syndrome (pSS) and explore the relationship between pSS disease activity and intestinal flora structure. METHODS Fecal samples were collected from 18 female pSS patients, including 9 patients with active disease (group A) and 9 with disease inactivity or low activity (group B), with 10 healthy subjects as the control group. The total bacterial DNA was extracted from the fecal samples for PCR amplification, and Illumina Hiseq 2500 high-throughput sequencing was performed for the v3-v4 region of 16Sr DNA gene to obtain the biological information of the intestinal flora. The intergroup OTU analysis, structural diversity analysis, significant difference analysis and LEFSE analysis were performed with information mining of the literature think tanks. RESULTS The dilution curves generated based on the OTUshannon index for analysis of sample complexity showed that the measured data were relatively complete and could reflect the diversity of the microorganisms in the subjects. Analysis of the Alpha diversity index showed that the Shannon index differed significantly between group A and group B, and the Simpson index differed significantly between group A and group B and between group A and the control group (P < 0.05). Sequence analysis the 3 groups all consisted mainly of 4 phylum (Firmicutes, Bacteroidetes, Actinobacteria, showed that the intestinal flora in and proteobacteria) and 4 genera (finegoldia, Prevotella, Streptococcus, and Corynebacterium_1), all showing no significant differences among the 3 groups (P > 0.05) with the exception of Streptococcus genus, which differed significantly among the 3 groups (P < 0.05). The 16S v3-v4 region in the genus Alloscardovia, Bacteroides, Barnesiella, Butyricicoccus, Facklamia, Faecalibacterium, Lachnospiraceae_FCS020_group, Lachnospiraceae_ND3007_group, Lachnospiraceae_UCG-001, Lachnospirace, Lachnospirace, Ruminococcaceae_UCG-002, Streptococcus and Coprococcus_1 differed significantly among the 3 groups (P < 0.05). The high-dimensional biometrics and genomic characteristics of the intestinal microorganisms differed significantly among the 3 groups (P < 0.05). According to the size of LDA SCORE (effect size), the core flora in group A included the genera Barnesiellaccae, Aerococcaceae, Family-XIII, Bacteroidaceae, Lachnospiraceae_UCG-001, Barnesiella, Facklamia, Alloscardovia, Faecalibacterium and Bacteroides, as compared with the genera Streptococcaceae, Streptococcus, Coprococcus_1, Ruminococcaceae_ucg-002, Lachnospiraceae_FCS020_group, Lachnospiraceae_ucg-004, Lachnospiraceae_ND3007_group, Lachnospiraceae_ucg-008 and Butyricicoccus in the control group. CONCLUSIONS Patients with pSS have significant changes in the diversity of intestinal flora, especially in some specific bacteria in Streptococcu genus and in 16S v3-v4 region of the bacteria. The differences in the core bacteria in the intestinal flora of pSS patients suggest the role of flora structure changes in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Xin Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233004, China
| | - Jian Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233004, China
| | - Wenjing Guo
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233004, China
| | - Ying Zhou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233004, China
| | - Chao Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233004, China
| | - Zhijun Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233004, China
| | - Linjie Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233004, China
| | - Xinlan Pan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233004, China
| |
Collapse
|
110
|
Ilchmann-Diounou H, Menard S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front Immunol 2020; 11:1823. [PMID: 32983091 PMCID: PMC7477358 DOI: 10.3389/fimmu.2020.01823] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/microbiology
- Autoimmunity
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/microbiology
- Dysbiosis
- Gastrointestinal Microbiome
- Host-Pathogen Interactions
- Humans
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/microbiology
- Multiple Sclerosis/epidemiology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/microbiology
- Permeability
- Risk Factors
- Stress, Psychological/epidemiology
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/microbiology
Collapse
Affiliation(s)
| | - Sandrine Menard
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
111
|
Brown J, Robusto B, Morel L. Intestinal Dysbiosis and Tryptophan Metabolism in Autoimmunity. Front Immunol 2020; 11:1741. [PMID: 32849620 PMCID: PMC7417361 DOI: 10.3389/fimmu.2020.01741] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
The development of autoimmunity involves complex interactions between genetics and environmental triggers. The gut microbiota is an important environmental constituent that can heavily influence both local and systemic immune reactivity through distinct mechanisms. It is therefore a relevant environmental trigger or amplifier to consider in autoimmunity. This review will examine recent evidence for an association between intestinal dysbiosis and autoimmune diseases, and the mechanisms by which the gut microbiota may contribute to autoimmune activation. We will specifically focus on recent studies connecting tryptophan metabolism to autoimmune disease pathogenesis and discuss evidence for a microbial origin. This will be discussed in the context of our current understanding of how tryptophan metabolites regulate immune responses, and how it may, or may not, be applicable to autoimmunity.
Collapse
Affiliation(s)
- Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Brian Robusto
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
112
|
Liu RT, Rowan-Nash AD, Sheehan AE, Walsh RFL, Sanzari CM, Korry BJ, Belenky P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav Immun 2020; 88:308-324. [PMID: 32229219 PMCID: PMC7415740 DOI: 10.1016/j.bbi.2020.03.026] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
We assessed the gut microbiota of 90 American young adults, comparing 43 participants with major depressive disorder (MDD) and 47 healthy controls, and found that the MDD subjects had significantly different gut microbiota compared to the healthy controls at multiple taxonomic levels. At the phylum level, participants with MDD had lower levels of Firmicutes and higher levels of Bacteroidetes, with similar trends in the at the class (Clostridia and Bacteroidia) and order (Clostridiales and Bacteroidales) levels. At the genus level, the MDD group had lower levels of Faecalibacterium and other related members of the family Ruminococcaceae, which was also reduced relative to healthy controls. Additionally, the class Gammaproteobacteria and genus Flavonifractor were enriched in participants with MDD. Accordingly, predicted functional differences between the two groups include a reduced abundance of short-chain fatty acid production pathways in the MDD group. We also demonstrated that the magnitude of taxonomic changes was associated with the severity of depressive symptoms in many cases, and that most changes were present regardless of whether depressed participants were taking psychotropic medications. Overall, our results support a link between MDD and lower levels of anti-inflammatory, butyrate-producing bacteria, and may support a connection between the gut microbiota and the chronic, low-grade inflammation often observed in MDD patients.
Collapse
Affiliation(s)
- Richard T Liu
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ana E Sheehan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Rachel F L Walsh
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Christina M Sanzari
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| |
Collapse
|
113
|
He J, Chan T, Hong X, Zheng F, Zhu C, Yin L, Dai W, Tang D, Liu D, Dai Y. Microbiome and Metabolome Analyses Reveal the Disruption of Lipid Metabolism in Systemic Lupus Erythematosus. Front Immunol 2020; 11:1703. [PMID: 32849599 PMCID: PMC7411142 DOI: 10.3389/fimmu.2020.01703] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects thousands of people worldwide. Recently, alterations in metabolism and gut microbiome have emerged as key regulators of SLE pathogenesis. However, it is not clear about the coordination of gut commensal bacteria and SLE metabolism. Here, by integrating 16S sequencing and metabolomics data, we characterized the gut microbiome and fecal and serum metabolome alterations in patients with SLE. Microbial diversity sequencing revealed gut microflora dysbiosis in SLE patients with significantly increased beta diversity. The metabolomics profiling identified 43 and 55 significantly changed metabolites in serum and feces samples in SLE patients. Notably, lipids accounted for about 65% altered metabolites in serum, highlighted the disruption of lipid metabolism. Integrated correlation analysis provided a link between the gut microbiome and lipid metabolism in patients with SLE, particularly according to regulate the conversion of primary bile acids to secondary bile acids. Overall, our results illustrate the perturbation of the gut microbiome and metabolome in SLE patients which may facilitate the development of new SLE interventions.
Collapse
Affiliation(s)
- Jingquan He
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Tianlong Chan
- Biotree Institute of Health, Biotree, Shanghai, China
| | - Xiaoping Hong
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Fengping Zheng
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Chengxin Zhu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, United States
| | - Donge Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Dongzhou Liu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
114
|
Islam MA, Khandker SS, Kotyla PJ, Hassan R. Immunomodulatory Effects of Diet and Nutrients in Systemic Lupus Erythematosus (SLE): A Systematic Review. Front Immunol 2020; 11:1477. [PMID: 32793202 PMCID: PMC7387408 DOI: 10.3389/fimmu.2020.01477] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ involvement, including the skin, joints, kidneys, lungs, central nervous system and the haematopoietic system, with a large number of complications. Despite years of study, the etiology of SLE remains unclear; thus, safe and specifically targeted therapies are lacking. In the last 20 years, researchers have explored the potential of nutritional factors on SLE and have suggested complementary treatment options through diet. This study systematically reviews and evaluates the clinical and preclinical scientific evidence of diet and dietary supplementation that either alleviate or exacerbate the symptoms of SLE. For this review, a systematic literature search was conducted using PubMed, Scopus and Google Scholar databases only for articles written in the English language. Based on the currently published literature, it was observed that a low-calorie and low-protein diet with high contents of fiber, polyunsaturated fatty acids, vitamins, minerals and polyphenols contain sufficient potential macronutrients and micronutrients to regulate the activity of the overall disease by modulating the inflammation and immune functions of SLE.
Collapse
Affiliation(s)
- Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Przemysław J Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
115
|
Manirarora JN, Kosiewicz MM, Alard P. Feeding lactobacilli impacts lupus progression in (NZBxNZW)F1 lupus-prone mice by enhancing immunoregulation. Autoimmunity 2020; 53:323-332. [PMID: 32552071 DOI: 10.1080/08916934.2020.1777282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the relationship between autoimmunity and microorganisms is complex, there is evidence that microorganisms can prevent the development of various autoimmune diseases. Lactobacilli are beneficial gut bacteria that play an important role in immune system development. The goals of this study were to assess the ability of three different strains of lactobacilli (L. casei B255, L. reuteri DSM 17509 and L. plantarum LP299v) to control lupus development/progression in (NZBxNZW)F1 (BWF1) lupus-prone mice before and after disease onset, and identify the mechanisms mediating protection. BWF1 mice fed with individual L. casei or L. reuteri before disease onset exhibited delayed lupus onset and increased survival, while feeding L. plantarum had little impact. In vitro treatment of BWF1 dendritic cells with individual lactobacilli strains upregulated IL-10 production to various extents, with L. casei being the most effective. The protection mediated by L. casei was associated with upregulation of B7-1 and B7-2 by antigen presenting cells, two costimulatory molecules important for regulatory T cell (Treg) induction. Moreover, feeding L. casei lead to increased percentages of CD4+Foxp3+ Tregs and IL10-producing T cells in the lymphoid organs of treated mice. More importantly, mice fed L. casei after disease onset remained stable for several months, i.e. exhibited delayed anti-nucleic acid production and kidney disease progression, and increased survival. Therefore, feeding lactobacilli appears to delay lupus progression possibly via mechanisms involving Treg induction and IL-10 production. Altogether, these data support the notion that ingestion of lactobacilli, with immunoregulatory properties, may be a viable strategy for controlling disease development and progression in patients with lupus, i.e. extending remission length and reducing flare frequency.
Collapse
Affiliation(s)
- Jean N Manirarora
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Michele M Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
116
|
Dysregulation of gut microbiome is linked to disease activity of rheumatic diseases. Clin Rheumatol 2020; 39:2523-2528. [PMID: 32519049 DOI: 10.1007/s10067-020-05170-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Objective rheumatism refers to a large group of diseases with different etiology, mainly characterized by autoimmune disorder. Intestinal flora combines with the digestive organs of the human body to synthesize and secrete the key substances of growth. Several studies have reported abnormal intestinal flora in rheumatic diseases. The purposes of this research were to review the primary studies and figure out the relationship between intestinal flora and rheumatic disease activity. The article search was based on the database of PubMed (MEDLINE), EMBASE, Cochrane to collect English language studies that were published from 1985 to 2019. The articles concerning the intestinal flora and disease activities of rheumatic diseases were classified by disease types, and the relationship between disease activities and intestinal flora was summarized. Eight rheumatic diseases were included in the study. It was found that the changes of intestinal flora were significantly correlated with the activities of rheumatic diseases. There were significant differences in the classification of disease activity and the composition of intestinal flora. Interfering with the composition of intestinal flora can apparently modulate the development of disease. But how to apply such findings is rarely reported. The study finds out that intestinal flora disorder is linked to the activity of rheumatic diseases. But which specific gut flora is connected to the disease activity needs further researches. More discussion is needed on how to apply the results to clinical treatment.
Collapse
|
117
|
Guo J, Xiong Y, Shi C, Liu C, Li H, Qian H, Sun Z, Qin C. Characteristics of airborne bacterial communities in indoor and outdoor environments during continuous haze events in Beijing: Implications for health care. ENVIRONMENT INTERNATIONAL 2020; 139:105721. [PMID: 32305743 DOI: 10.1016/j.envint.2020.105721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
There is solid evidence that haze pollution threatens human health owing to the abiotic pollutants it contains. However, the characteristics of airborne bacterial communities in indoor and outdoor environments exhibiting haze occurrence are still unknown. Thus, we examined variations in both indoor and outdoor airborne bacterial communities in Beijing from December 9-27, 2016, a period which included three haze events. The outdoor airborne bacterial communities were clustered into two main groups (Groups I and II), and they shifted between two typical bacterial communities regardless of the haze event. The Chao1, Shannon, and phylogenetic diversity indexes and abundance of dominant classes changed significantly, as did airborne bacterial community type. The indoor airborne bacterial community closely tracked the outdoor bacterial community type, forming two obvious groups supported by Adonis analysis, changes in dominant classes, and bacterial diversity compared to the outdoor group. Furthermore, we found that the airborne bacterial community type could affect the morbidity of respiratory diseases. Daily pneumonia cases were significantly higher in Group I (p = 0.035), whereas daily amygdalitis cases were significantly higher in Group II (p = 0.025). Interestingly, the enriched classes in the indoor environment were quite different from those in the typical airborne bacterial community environment, except for Clostridia, which had significantly higher abundance in both indoor environments. In conclusion, we found that the two indoor and outdoor airborne bacterial community types changed independently of haze events, and the special airborne bacterial community type was closely related to the incidence of pneumonia in the heavy haze season.
Collapse
Affiliation(s)
- Jianguo Guo
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yi Xiong
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changhua Shi
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Ce Liu
- Department of Infectious Disease, Beijing Chuiyangliu Hospital, Affiliated with Tsinghua University, Beijing 100022, China
| | - Hongwei Li
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Zongke Sun
- National Institute of Environmental Health, China CDC, Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| |
Collapse
|
118
|
The link “Cancer and autoimmune diseases” in the light of microbiota: Evidence of a potential culprit. Immunol Lett 2020; 222:12-28. [DOI: 10.1016/j.imlet.2020.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
|
119
|
Lau WL, Chang Y, Vaziri ND. The consequences of altered microbiota in immune-related chronic kidney disease. Nephrol Dial Transplant 2020; 36:1791-1798. [PMID: 32437554 DOI: 10.1093/ndt/gfaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
The normal gut microbiome modulates host enterocyte metabolism and shapes local and systemic immunity. Accumulation of urea and other waste products in chronic kidney disease induces gut dysbiosis and intestinal wall inflammation (leaky gut). There are decreased numbers of bacteria that generate short-chain fatty acids, which are an important nutrient source for host enterocytes and also contribute to regulation of the host immune system. Anaerobic proteolytic bacteria that express urease, uricase and indole and p-cresol enzymes, such as Enterobacteria and Enterococci, are increased. Microbial-derived uremic toxins such as indoxyl sulfate and trimethylamine N-oxide contribute to the pathophysiology of immune-related kidney diseases such as diabetic nephropathy, lupus nephritis and immunoglobulin A (IgA) nephropathy. Animal and clinical studies suggest potential benefits of dietary and probiotic interventions in slowing the progression of immune-related kidney diseases.
Collapse
Affiliation(s)
- Wei Ling Lau
- Division of Nephrology and Hypertension, University of California Irvine, Orange, CA, USA
| | - Yongen Chang
- Division of Nephrology and Hypertension, University of California Irvine, Orange, CA, USA
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California Irvine, Orange, CA, USA
| |
Collapse
|
120
|
Hu X, Ouyang S, Xie Y, Gong Z, Du J. Characterizing the gut microbiota in patients with chronic kidney disease. Postgrad Med 2020; 132:495-505. [PMID: 32241215 DOI: 10.1080/00325481.2020.1744335] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Emerging evidence suggests that gut microbiota dysbiosis plays a critical role in chronic kidney disease (CKD). However, the relationship between altered gut microbiome profiles and disease severity remains unclear. In this study, we sought to characterize the gut microbiota in CKD patients compared to healthy controls, and to explore potential relationships between gut microbiota composition and disease severity. Methods: Fecal samples were collected from 95 patients at different stages of CKD (non-dialysis patients from stage 1 to 5) and 20 healthy controls. Bacterial DNA was extracted for 16S ribosomal DNA sequencing targeting the V3-V4 region. The diversity and relative abundance of gut microbiota were analyzed as outcome indicators. Results: Differences were observed in the microbial composition and diversity of fecal samples from CKD patients and healthy controls. Specifically, disease severity was found to alter gut microbiota composition. Compared to that in healthy controls, CKD patients showed an increased abundance of Proteobacteria and decreased Synergistetes, most notably in disease stage 5. Lower levels of butyrate-producing bacteria and higher levels of potential pathogens were also detected in CKD patients. Further, Pyramidobacter and Prevotellaceae_UCG-001 were significantly decreased in the CKD1 group compared with healthy controls. Notably, nine microbial genera, including Escherichia-Shigella, Parabacteroides, Roseburia, rectale_group, Ruminococcaceae_NK4A214_group, Prevotellaceae_UCG.001, Hungatella, Intestinimonas, and Pyramidobacter, identified using a random forest model, distinguished between patients with CKD and healthy controls with high accuracy. Functional analysis also revealed that fatty acid and inositol phosphate metabolism were enriched in the CKD group, while aminoacyl-tRNA biosynthesis, oxidative phosphorylation, phenylalanine, tyrosine, and tryptophan biosynthesis, thiamine metabolism, pantothenate, and CoA biosynthesis, as well as valine, leucine, and isoleucine biosynthesis were enriched in healthy controls. Conclusion: Gut microbiota composition and function are associated with CKD severity. And, specific gut microbes are potentially helpful for CKD early diagnosis and prognosis monitoring.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Shaxi Ouyang
- Department of Nephrology, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University , Changsha, Hunan, China
| | - Yuhong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| |
Collapse
|
121
|
Wang Y, Ouyang M, Gao X, Wang S, Fu C, Zeng J, He X. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:835-850. [PMID: 32256098 PMCID: PMC7090210 DOI: 10.2147/dmso.s240728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/29/2020] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The purpose of this study was to explore the difference and association between intestinal microbiota and plasma metabolomics between type 2 diabetes mellitus (T2DM) and normal group and to identify potential microbiota biomarkers that contribute the most to the difference in metabolites. METHODS Six male ZDF model (fa/fa) rats were fed by a Purina #5008 Lab Diet (crude protein 23.5%, crude fat 6.5%) for 3 weeks and their age-matched 6 ZDF control (fa/+) rats were fed by normal rodent diet. Their stool and blood samples were collected at 12 weeks. To analyze the microbial populations in these samples, we used a 16S rRNA gene sequencing approach. Liquid chromatography-mass spectrometry (LC-MS) followed by multivariate statistical analysis was applied to the plasma metabolites profiling. Correlation analysis of them was calculated by Pearson statistical method. RESULTS Twelve potential biomarkers of intestinal microbial flora and 357 differential metabolites were found in ZDF fa/fa rats, among which there are three flora that contributed the most to the perturbation of metabolites, including genus Phocea, Pseudoflavonifractor and species Lactobacillus intestinalis. CONCLUSION Our study demonstrates the alterations of the abundance and diversity of the intestinal microbiota and the perturbation of metabolites in ZDF rats (fa/fa). We found three potential biomarkers of intestinal microbiota that may lead to perturbation in plasma metabolites. This may prompt new pathogenesis of obesity-related T2DM, but we also need to study further about the causal relationship between intestinal microbe and T2DM, so as to find the target of T2DM treatment or preventive measures.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Meishuo Ouyang
- Department of Public Health, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Shuai Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Chunyang Fu
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Jiayi Zeng
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
- Shandong Provincial Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, People’s Republic of China
| |
Collapse
|
122
|
Teng X, Brown J, Choi SC, Li W, Morel L. Metabolic determinants of lupus pathogenesis. Immunol Rev 2020; 295:167-186. [PMID: 32162304 DOI: 10.1111/imr.12847] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The metabolism of healthy murine and more recently human immune cells has been investigated with an increasing amount of details. These studies have revealed the challenges presented by immune cells to respond rapidly to a wide variety of triggers by adjusting the amount, type, and utilization of the nutrients they import. A concept has emerged that cellular metabolic programs regulate the size of the immune response and the plasticity of its effector functions. This has generated a lot of enthusiasm with the prediction that cellular metabolism could be manipulated to either enhance or limit an immune response. In support of this hypothesis, studies in animal models as well as human subjects have shown that the dysregulation of the immune system in autoimmune diseases is associated with a skewing of the immunometabolic programs. These studies have been mostly conducted on autoimmune CD4+ T cells, with the metabolism of other immune cells in autoimmune settings still being understudied. Here we discuss systemic metabolism as well as cellular immunometabolism as novel tools to decipher fundamental mechanisms of autoimmunity. We review the contribution of each major metabolic pathway to autoimmune diseases, with a focus on systemic lupus erythematosus (SLE), with the relevant translational opportunities, existing or predicted from results obtained with healthy immune cells. Finally, we review how targeting metabolic programs may present novel therapeutic venues.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
123
|
Shi Z, Qiu Y, Wang J, Fang Y, Zhang Y, Chen H, Du Q, Zhao Z, Yan C, Yang M, Zhou H. Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: A cross sectional study. J Neuroimmunol 2020; 339:577126. [DOI: 10.1016/j.jneuroim.2019.577126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
|
124
|
Abstract
Lupus nephritis (LN) is a form of glomerulonephritis that constitutes one of the most severe organ manifestations of the autoimmune disease systemic lupus erythematosus (SLE). Most patients with SLE who develop LN do so within 5 years of an SLE diagnosis and, in many cases, LN is the presenting manifestation resulting in the diagnosis of SLE. Understanding of the genetic and pathogenetic basis of LN has improved substantially over the past few decades. Treatment of LN usually involves immunosuppressive therapy, typically with mycophenolate mofetil or cyclophosphamide and with glucocorticoids, although these treatments are not uniformly effective. Despite increased knowledge of disease pathogenesis and improved treatment options, LN remains a substantial cause of morbidity and death among patients with SLE. Within 10 years of an initial SLE diagnosis, 5-20% of patients with LN develop end-stage kidney disease, and the multiple comorbidities associated with immunosuppressive treatment, including infections, osteoporosis and cardiovascular and reproductive effects, remain a concern. Clearly, early and accurate diagnosis of LN and prompt initiation of therapy are of vital importance to improve outcomes in patients with SLE.
Collapse
|
125
|
Yamamoto EA, Jørgensen TN. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front Immunol 2020; 10:3141. [PMID: 32038645 PMCID: PMC6985452 DOI: 10.3389/fimmu.2019.03141] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
There is increasing recognition of the role the microbiome plays in states of health and disease. Microbiome studies in systemic autoimmune diseases demonstrate unique microbial patterns in Inflammatory Bowel Disease, Rheumatoid Arthritis, and Systemic Lupus Erythematosus to a lesser extent, whereas there is no single bug or pattern that characterizes Multiple Sclerosis. Autoimmune diseases tend to share a predisposition for vitamin D deficiency, which alters the microbiome and integrity of the gut epithelial barrier. In this review, we summarize the influence of intestinal bacteria on the immune system, explore the microbial patterns that have emerged from studies on autoimmune diseases, and discuss how vitamin D deficiency may contribute to autoimmunity via its effects on the intestinal barrier function, microbiome composition, and/or direct effects on immune responses.
Collapse
Affiliation(s)
- Erin A Yamamoto
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Trine N Jørgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
126
|
Ning Y, Yang G, Chen Y, Zhao X, Qian H, Liu Y, Chen S, Shi G. Characteristics of the Urinary Microbiome From Patients With Gout: A Prospective Study. Front Endocrinol (Lausanne) 2020; 11:272. [PMID: 32508748 PMCID: PMC7251145 DOI: 10.3389/fendo.2020.00272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
The role of host microbes in the pathogenesis of several diseases has been established, and altered microbiomes have been related to diseases. However, the variability of the urinary microbiome in individuals with gout has not been evaluated to date. Therefore, we conducted the present prospective study to characterize the urinary microbiome and its potential relation to gout. Urine samples from 30 patients with gout and 30 healthy controls were analyzed by Illumina MiSeq sequencing of the 16S rRNA hypervariable regions, and the microbiomes were compared according to alpha-diversity indices, complexity (beta diversity) with principal component analysis, and composition with linear discriminant analysis effect size. The most significantly different taxa at the phylum and genus levels were identified, and their potential as biomarkers for discriminating gout patients was assessed based on receiver operating characteristic (ROC) curve analysis. Compared with the healthy controls, there was a dramatic decrease in microbial richness and diversity in the urine of gout patients. The phylum Firmicutes and its derivatives (Lactobacillus_iners, Family_XI, and Finegoldia), the phylum Actinobacteria and its derivatives (unidentified_Actinobacteria, Corynebacteriales, Corynebacteriale, Corynebacterium_1, and Corynebacterium_tuberculostearicum), and the genera Prevotella and Corynebacterium_1 were significantly enriched in the urine of gout patients. ROC analysis indicated that the top five altered microbial genera could be reliable markers for distinguishing gout patients from healthy individuals. These findings demonstrate that there are specific alterations in the microbial diversity of gout patients. Thus, further studies on the causal relationship between gout and the urinary microbiome will offer new prospects for diagnosing, preventing, and treating gout.
Collapse
Affiliation(s)
- Yaogui Ning
- School of Medicine, Xiamen University, Xiamen, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Guomei Yang
- School of Medicine, Xiamen University, Xiamen, China
| | - Yangchun Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xue Zhao
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongyan Qian
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- *Correspondence: Shiju Chen
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Guixiu Shi
| |
Collapse
|
127
|
Dong L, Xie J, Wang Y, Zuo D. Gut Microbiota and Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:165-193. [PMID: 32323185 DOI: 10.1007/978-981-15-2385-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiota consists of a dynamic multispecies community living within a particular niche in a mutual synergy with the host organism. Recent findings have revealed roles for the gut microbiota in the modulation of host immunity and the development and progression of immune-mediated diseases. Besides, growing evidence supports the concept that some metabolites mainly originated from gut microbiota are linked to the immune regulation implicated in systemic inflammatory and autoimmune disorders. In this chapter, we describe the recent advances in our understanding of how host-microbiota interactions shape the immune system, how they affect the pathogenesis of immune-associated diseases and the impact of these mechanisms in the efficacy of disease therapy.
Collapse
Affiliation(s)
- Lijun Dong
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Youyi Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China.
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
128
|
He Y, Wang H, Zheng J, Beiting DP, Masci AM, Yu H, Liu K, Wu J, Curtis JL, Smith B, Alekseyenko AV, Obeid JS. OHMI: the ontology of host-microbiome interactions. J Biomed Semantics 2019; 10:25. [PMID: 31888755 PMCID: PMC6937947 DOI: 10.1186/s13326-019-0217-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases. Extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery. METHODS Through a multi-institutional collaboration, a community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the Open Biological/Biomedical Ontologies (OBO) Foundry principles. As an OBO library ontology, OHMI leverages established ontologies to create logically structured representations of (1) microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and (2) associated study protocols and types of data analysis and experimental results. RESULTS Aligned with the Basic Formal Ontology, OHMI comprises over 1000 terms, including terms imported from more than 10 existing ontologies together with some 500 OHMI-specific terms. A specific OHMI design pattern was generated to represent typical host-microbiome interaction studies. As one major OHMI use case, drawing on data from over 50 peer-reviewed publications, we identified over 100 bacteria and fungi from the gut, oral cavity, skin, and airway that are associated with six rheumatic diseases including rheumatoid arthritis. Our ontological study identified new high-level microbiota taxonomical structures. Two microbiome-related competency questions were also designed and addressed. We were also able to use OHMI to represent statistically significant results identified from a large existing microbiome database data analysis. CONCLUSION OHMI represents entities and relations in the domain of HMIs. It supports shared knowledge representation, data and metadata standardization and integration, and can be used in formulation of advanced queries for purposes of data analysis.
Collapse
Affiliation(s)
- Yongqun He
- University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Haihe Wang
- University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Daqing Branch of Harbin Medical University, Daqing, 163319 Heilongjiang China
| | - Jie Zheng
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Daniel P. Beiting
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104 USA
| | - Anna Maria Masci
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710 USA
| | - Hong Yu
- University of Michigan Medical School, Ann Arbor, MI 48109 USA
- People’s Hospital of Guizhou Province, Guiyang, 550025 Guizhou China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032 Anhui China
| | - Jianmin Wu
- Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Jeffrey L. Curtis
- University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Pulmonary & Critical Care Medicine Section, Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105 USA
| | - Barry Smith
- University at Buffalo, Buffalo, NY 14260 USA
| | - Alexander V. Alekseyenko
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jihad S. Obeid
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
129
|
Disordered cutaneous microbiota in systemic lupus erythematosus. J Autoimmun 2019; 108:102391. [PMID: 31883828 DOI: 10.1016/j.jaut.2019.102391] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022]
Abstract
The correlation between systemic lupus erythematosus (SLE) and microbiota colonization has been receiving much attention during recent years. Here, we screened the cutaneous bacterial spectrums of 69 SLE patients, 49 healthy controls and 20 dermatomyositis (DM) patients and identified the specific changes of cutaneous microbial composition and abundance in SLE patients. We observed the decreasing diversity in community richness and evenness and the greater heterogeneity in SLE patients compared to healthy controls, which were also different from the cutaneous microbiome of DM patients. The skin microbial community disorders in SLE patients were correlated with several clinical features such as serum low complement level, gender, renal involvement and myositis. According to the Kruskal-Wallis (KW) test, receiver operating characteristic (ROC) curve and LDA Effect Size (LEfSe) analysis, several bacterial taxa such as Staphylococcus, especially Staphylococcus aureus and Staphylococcus epidermidis, were identified to be potential markers for SLE skin lesions. Furthermore, Picrust analysis showed that Staphylococcus aureus infection pathway was significantly enriched and exhibited a strong correlation with genus Staphylococcus in SLE patients. The changes in the composition and abundance of cutaneous microbiota in SLE patients suggest that the microbial dysbiosis is associated with the pathogenesis of SLE, which may be potentially reliable biomarker or therapeutic target for SLE.
Collapse
|
130
|
Ducray HAG, Globa L, Pustovyy O, Roberts MD, Rudisill M, Vodyanoy V, Sorokulova I. Prevention of excessive exercise-induced adverse effects in rats with Bacillus subtilis BSB3. J Appl Microbiol 2019; 128:1163-1178. [PMID: 31814258 PMCID: PMC7079029 DOI: 10.1111/jam.14544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Aims To characterize efficacy of the Bacillus subtilis BSB3 (BSB3) strain in the prevention of excessive exercise‐induced side effects and in maintaining stability of the gut microbiota. Methods and Results Rats were pretreated by oral gavage with B. subtilis BSB3 (BSB3) or with phosphate‐buffered saline (PBS) twice a day for 2 days, and were either exposed forced treadmill running or remained sedentary. Histological analysis of intestine, immunofluorescence staining of tight junction (TJ) proteins, serum lipopolysaccharide and intestinal fatty acid‐binding protein assay, culture‐based analysis and pyrosequencing for the gut microbiota were performed for each rat. Forced running resulted in a substantial decrease in intestinal villi height and total mucosa thickness, the depletion of Paneth cells, an inhibition of TJ proteins expression. Short‐term treatment of rats with BSB3 before running prevented these adverse effects. Culture‐based analysis of the gut microbiota revealed significant elevation of pathogenic microorganisms only in treadmill‐exercised rats pretreated with PBS. High‐throughput 16S rRNA gene sequencing also revealed an increase in pathobionts in this group. Preventive treatment of animals with BSB3 resulted in predominance of beneficial bacteria. Conclusions BSB3 prevents excessive exercise‐associated complications by beneficial modulation of the gut microbiota. Significance and Impact of the Study Our study shows a new application of beneficial bacteria for prevention the adverse effects of excessive exercise.
Collapse
Affiliation(s)
- H A G Ducray
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - L Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - O Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - M D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - M Rudisill
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - V Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - I Sorokulova
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| |
Collapse
|
131
|
Qiu CC, Caricchio R, Gallucci S. Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. Front Immunol 2019; 10:2608. [PMID: 31781110 PMCID: PMC6857005 DOI: 10.3389/fimmu.2019.02608] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Infections are considered important environmental triggers of autoimmunity and can contribute to autoimmune disease onset and severity. Nucleic acids and the complexes that they form with proteins—including chromatin and ribonucleoproteins—are the main autoantigens in the autoimmune disease systemic lupus erythematosus (SLE). How these nuclear molecules become available to the immune system for recognition, presentation, and targeting is an area of research where complexities remain to be disentangled. In this review, we discuss how bacterial infections participate in the exposure of nuclear autoantigens to the immune system in SLE. Infections can instigate pro-inflammatory cell death programs including pyroptosis and NETosis, induce extracellular release of host nuclear autoantigens, and promote their recognition in an immunogenic context by activating the innate and adaptive immune systems. Moreover, bacterial infections can release bacterial DNA associated with other bacterial molecules, complexes that can elicit autoimmunity by acting as innate stimuli of pattern recognition receptors and activating autoreactive B cells through molecular mimicry. Recent studies have highlighted SLE disease activity-associated alterations of the gut commensals and the expansion of pathobionts that can contribute to chronic exposure to extracellular nuclear autoantigens. A novel field in the study of autoimmunity is the contribution of bacterial biofilms to the pathogenesis of autoimmunity. Biofilms are multicellular communities of bacteria that promote colonization during chronic infections. We review the very recent literature highlighting a role for bacterial biofilms, and their major components, amyloid/DNA complexes, in the generation of anti-nuclear autoantibodies and their ability to stimulate the autoreactive immune response. The best studied bacterial amyloid is curli, produced by enteric bacteria that commonly cause infections in SLE patients, including Escherichia coli and Salmonella spps. Evidence suggests that curli/DNA complexes can trigger autoimmunity by acting as danger signals, molecular mimickers, and microbial chaperones of nucleic acids.
Collapse
Affiliation(s)
- Connie C Qiu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
132
|
Protective Effects of Probiotic Consumption in Cardiovascular Disease in Systemic Lupus Erythematosus. Nutrients 2019; 11:nu11112676. [PMID: 31694260 PMCID: PMC6893408 DOI: 10.3390/nu11112676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
The prevalence of renal and cardiovascular disease (CVD) in patients with systemic lupus erythematosus (SLE) is higher than in general populations. Recently, a causal role of gut microbiota on the development of immune responses in SLE has been described. Probiotic consumption changes the composition of gut microbiota, preventing SLE progression. The aim of this review is to explore the role of the gut microbiota in the development of renal and cardiovascular disease in SLE and how probiotics could be a therapeutic option. Despite strong evidence on the beneficial effects of probiotics in the development of autoimmunity and nephritis in SLE, only a few studies described the protective effects of Lactobacillus in important risk factors for CVD, such as endothelial dysfunction and hypertension in mice. The preventive effects of probiotics in renal and CVD in humans have not been established yet.
Collapse
|
133
|
Ogunrinde E, Zhou Z, Luo Z, Alekseyenko A, Li QZ, Macedo D, Kamen DL, Oates JC, Gilkeson GS, Jiang W. A Link Between Plasma Microbial Translocation, Microbiome, and Autoantibody Development in First-Degree Relatives of Systemic Lupus Erythematosus Patients. Arthritis Rheumatol 2019; 71:1858-1868. [PMID: 31106972 PMCID: PMC6817371 DOI: 10.1002/art.40935] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is characterized by the production of antibodies against self antigens. However, the events underlying autoantibody formation in SLE remain unclear. This study was undertaken to investigate the role of plasma autoantibody levels, microbial translocation, and the microbiome in SLE. METHODS Plasma samples from 2 cohorts, one with 18 unrelated healthy controls and 18 first-degree relatives and the other with 19 healthy controls and 21 SLE patients, were assessed for autoantibody levels by autoantigen microarray analysis, measurement of lipopolysaccharide (LPS) levels by Limulus amebocyte assay, and determination of microbiome composition by microbial 16S ribosomal DNA sequencing. RESULTS First-degree relatives and SLE patients exhibited increased plasma autoantibody levels compared to their control groups. Parents and children of lupus patients exhibited elevated plasma LPS levels compared to controls (P = 0.02). Plasma LPS levels positively correlated with plasma anti-double-stranded DNA IgG levels in first-degree relatives (r = 0.51, P = 0.03), but not in SLE patients. Circulating microbiome analysis revealed that first-degree relatives had significantly reduced microbiome diversity compared to their controls (observed species, P = 0.004; Chao1 index, P = 0.005), but this reduction was not observed in SLE patients. The majority of bacteria that were differentially abundant between unrelated healthy controls and first-degree relatives were in the Firmicutes phylum, while differences in bacteria from several phyla were identified between healthy controls and SLE patients. Bacteria in the Paenibacillus genus were the only overlapping differentially abundant bacteria in both cohorts, and were reduced in first-degree relatives (adjusted P [Padj ] = 2.13 × 10-12 ) and SLE patients (Padj = 0.008) but elevated in controls. CONCLUSIONS These results indicate a possible role of plasma microbial translocation and microbiome composition in influencing autoantibody development in SLE.
Collapse
Affiliation(s)
- Elizabeth Ogunrinde
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater
Fish, College of Life Sciences, Hunan Normal University, Changsha, China,
410081
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Alexander Alekseyenko
- Program for Human Microbiome Research, Biomedical
Informatics Center, Department of Public Health Sciences, Department of Oral Health
Sciences, Medical University of South Carolina, Charleston, SC, USA, 29425
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University
of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
75390
| | - Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development
Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade
Federal do Ceará, Fortaleza, CE, Brazil
| | - Diane L. Kamen
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Jim C. Oates
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Ralph H. Johnson VA Medical Center, Medical Service,
Charleston, SC, USA 29401
| | - Gary S. Gilkeson
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Ralph H. Johnson VA Medical Center, Medical Service,
Charleston, SC, USA 29401
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Division of Infectious Diseases, Department of Medicine,
Medical University of South Carolina, Charleston, SC, USA, 29425
| |
Collapse
|
134
|
De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol 2019; 195:74-85. [PMID: 29920643 DOI: 10.1111/cei.13158] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
The microbiome is represented by microorganisms which live in a symbiotic way with the mammalian. Microorganisms have the ability to influence different physiological aspects such as the immune system, metabolism and behaviour. In recent years, several studies have highlighted the role of the microbiome in the pathogenesis of autoimmune diseases. Notably, in systemic lupus erythematosus an alteration of the intestinal flora (lower Firmicutes/Bacteroidetes ratio) has been described. Conversely, changes to the gut commensal and periodontal disease have been proposed as important factors in the pathogenesis of rheumatoid arthritis. At the same time, other autoimmune diseases (i.e. systemic sclerosis, Sjögren's syndrome and anti-phospholipid syndrome) also share modifications of the microbiome in the intestinal tract and oral flora. Herein, we describe the role of the microbiome in the maintenance homeostasis of the immune system and then the alterations of the microorganisms that occur in systemic autoimmune diseases. Finally, we will consider the use of probiotics and faecal transplantation as novel therapeutic targets.
Collapse
Affiliation(s)
- F De Luca
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Y Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Department of Allergology and Immunology, Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| |
Collapse
|
135
|
The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J Immunol Res 2019; 2019:7546047. [PMID: 31772949 PMCID: PMC6854958 DOI: 10.1155/2019/7546047] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
The human gut-resident commensal microbiota is a unique ecosystem associated with various bodily functions, especially immunity. Gut microbiota dysbiosis plays a crucial role in autoimmune disease pathogenesis as well as in bowel-related diseases. However, the role of the gut microbiota, which causes or influences systemic immunity in autoimmune diseases, remains elusive. Aryl hydrocarbon receptor, a ligand-activated transcription factor, is a master moderator of host-microbiota interactions because it shapes the immune system and impacts host metabolism. In addition, treatment optimization while minimizing potential adverse effects in autoimmune diseases remains essential, and modulation of the gut microbiota constitutes a potential clinical therapy. Here, we present evidence linking gut microbiota dysbiosis with autoimmune mechanisms involved in disease development to identify future effective approaches based on the gut microbiota for preventing autoimmune diseases.
Collapse
|
136
|
Abstract
The human gut-resident commensal microbiota is a unique ecosystem associated with various bodily functions, especially immunity. Gut microbiota dysbiosis plays a crucial role in autoimmune disease pathogenesis as well as in bowel-related diseases. However, the role of the gut microbiota, which causes or influences systemic immunity in autoimmune diseases, remains elusive. Aryl hydrocarbon receptor, a ligand-activated transcription factor, is a master moderator of host-microbiota interactions because it shapes the immune system and impacts host metabolism. In addition, treatment optimization while minimizing potential adverse effects in autoimmune diseases remains essential, and modulation of the gut microbiota constitutes a potential clinical therapy. Here, we present evidence linking gut microbiota dysbiosis with autoimmune mechanisms involved in disease development to identify future effective approaches based on the gut microbiota for preventing autoimmune diseases.
Collapse
|
137
|
Silverman GJ, Azzouz DF, Alekseyenko AV. Systemic Lupus Erythematosus and dysbiosis in the microbiome: cause or effect or both? Curr Opin Immunol 2019; 61:80-85. [PMID: 31590039 DOI: 10.1016/j.coi.2019.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/02/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Throughout our lives we are immersed in, and colonized by, immense and complex microbial communities. These microbiota serve as activators and early sparring partners for the progressive construction of the layers within our immune defenses and are essential to immune homeostasis. Yet, at times imbalances within the microbiota may contribute to metabolic and immune regulatory abnormalities that underlie the development of inflammatory and autoimmune diseases. Here, we review recent progress in investigations of the microbiome, with emphasis on the gut microbiota associated with systemic autoimmunity. In particular, these studies are beginning to illuminate aspects of the pathogenesis of Systemic Lupus Erythematosus, and may suggest that interconnections with specific disease-associated patterns of dysbiosis within gut communities are bidirectional and mutually reinforcing.
Collapse
Affiliation(s)
- Gregg J Silverman
- Laboratory of B cell Immunobiology, Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA.
| | - Doua F Azzouz
- Laboratory of B cell Immunobiology, Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
138
|
Recent Advances in Our Understanding of the Link between the Intestinal Microbiota and Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20194871. [PMID: 31575045 PMCID: PMC6801612 DOI: 10.3390/ijms20194871] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease featuring enhanced expression of type I interferon (IFN) and autoantibody production triggering inflammation of, and damage to, multiple organs. Continuing research efforts focus on how gut microbes trigger systemic autoimmunity and SLE. The gut microbial communities of mice and humans with lupus have been investigated via high-throughput sequencing. The Firmicutes-to-Bacteroidetes ratio is consistently reduced in SLE patients, regardless of ethnicity. The relative abundance of Lactobacillus differs from the animal model used (MRL/lpr mice or NZB/W F1 mice). This may indicate that interactions between gut microbes and the host, rather than the enrichment of certain gut microbes, are especially significant in terms of SLE development. Enterococcus gallinarum and Lactobacillus reuteri, both of which are possible gut pathobionts, become translocated into systemic tissue if the gut epithelial barrier is impaired. The microbes then interact with the host immune systems, activating the type I IFN pathway and inducing autoantibody production. In addition, molecular mimicry may critically link the gut microbiome to SLE. Gut commensals of SLE patients share protein epitopes with the Ro60 autoantigen. Ruminococcus gnavus strain cross-reacted with native DNA, triggering an anti-double-stranded DNA antibody response. Expansion of R. gnavus in SLE patients paralleled an increase in disease activity and lupus nephritis. Such insights into the link between the gut microbiota and SLE enhance our understanding of SLE pathogenesis and will identify biomarkers predicting active disease.
Collapse
|
139
|
Dong YQ, Wang W, Li J, Ma MS, Zhong LQ, Wei QJ, Song HM. Characterization of microbiota in systemic-onset juvenile idiopathic arthritis with different disease severities. World J Clin Cases 2019; 7:2734-2745. [PMID: 31616689 PMCID: PMC6789395 DOI: 10.12998/wjcc.v7.i18.2734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Systemic-onset juvenile idiopathic arthritis (SoJIA) is one of most serious subtypes of juvenile idiopathic arthritis. Although the pathogenesis of SoJIA remains unclear, several studies have suggested a correlation between gut dysbiosis and JIA. Further understanding of the intestinal microbiome may help to establish alternative ways to treat, or even prevent, the disease.
AIM To explore alterations in fecal microbiota profiles in SoJIA patients and to evaluate the correlations between microbiota and clinical parameters.
METHODS We conducted an observational single-center study at the Pediatric Department of Peking Union Medical College Hospital. Children who were diagnosed with SoJIA at our institution and followed for a minimum period of six months after diagnosis were recruited for the study. Healthy children were recruited as a control group (HS group) during the same period. Clinical data and stool samples were collected from SoJIA patients when they visited the hospital.
RESULTS The SoJIA group included 17 active and 15 inactive consecutively recruited children; the control group consisted of 32 children. Firmicutes and Bacteroidetes were the two most abundant phyla among the total sample of SoJIA children and controls. There was a significant difference among the three groups in observed species, which was the highest in the Active-SoJIA group, followed by the Inactive-SoJIA group and then HS group (Active-SoJIA vs HS: P = 0.000; and Inactive-SoJIA vs HS: P = 0.005). We observed a lower Firmicutes/Bacteroidetes ratio in SoJIA patients (3.28 ± 4.47 in Active-SoJIA, 5.36 ± 8.39 in Inactive-SoJIA, and 5.67 ± 3.92 in HS). We also observed decreased abundances of Ruminococcaceae (14.9% in Active-SoJIA, 17.3% in Inactive-SoJIA, and 22.8% in HS; Active-SoJIA vs HS: P = 0.005) and Faecalibacterium (5.1% in Active-SoJIA, 9.9% in Inactive-SoJIA, and 13.0% in HS; Active-SoJIA vs HS: P = 0.000) in SoJIA compared with HS. By contrast, the abundance of Bacteroidaceae was the highest in the Active-SoJIA group, followed by the Inactive-SoJIA and HS groups (16.5% in Active-SoJIA, 12.8% in Inactive-SoJIA, and 9.7% in HS; Active-SoJIA vs HS: P = 0.03). The Spearman correlation analysis revealed a negative correlation between Proteobacteria or Enterobacteriaceae and juvenile arthritis disease activity score on 27 joints (JADAS-27).
CONCLUSION The composition of the intestinal microbiota is different in SoJIA patients compared with healthy children. The dysbiosis presents partial restoration in inactive status patients.
Collapse
Affiliation(s)
- Yan-Qing Dong
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ji Li
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ming-Sheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin-Qing Zhong
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qi-Jiao Wei
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
140
|
Catinean A, Neag MA, Mitre AO, Bocsan CI, Buzoianu AD. Microbiota and Immune-Mediated Skin Diseases-An Overview. Microorganisms 2019; 7:microorganisms7090279. [PMID: 31438634 PMCID: PMC6781142 DOI: 10.3390/microorganisms7090279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
In recent years, increased attention has been paid to the relationship between microbiota and various diseases, especially immune-mediated diseases. Because conventional therapy for many autoimmune diseases is limited both in efficacy and safety, there is an increased interest in identifying nutraceuticals, particularly probiotics, able to modulate the microbiota and ameliorate these diseases. In this review, we analyzed the research focused on the role of gut microbiota and skin in immunity, their role in immune-mediated skin diseases (IMSDs), and the beneficial effect of probiotics in patients with this pathology. We selected articles published between 2009 and 2019 in PubMed and ScienceDirect that provided information regarding microbiota, IMSDs and the role of probiotics in these diseases. We included results from different types of studies including observational and interventional clinical trials or in vivo and in vitro experimental studies. Our results showed that probiotics have a beneficial effect in changing the microbiota of patients with IMSDs; they also influence disease progression. Further studies are needed to better understand the impact of new therapies on intestinal microbiota. It is also important to determine whether the microbiota of patients with autoimmune diseases can be manipulated in order to restore homeostasis of the microbiota.
Collapse
Affiliation(s)
- Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria Adriana Neag
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Andrei Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Corina Ioana Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
141
|
Cai R, Wang Q, Zhu G, Zhu L, Tao Z. Increased expression of caspase 1 during active phase of connective tissue disease. PeerJ 2019; 7:e7321. [PMID: 31367484 PMCID: PMC6657674 DOI: 10.7717/peerj.7321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
Key factors of pyroptosis play an important role in the inflammatory response to connective tissue disease (CTD). However, information on active and stable stages of CTD is scarce. To distinguish the differences of concentrations of C-reactive protein (CRP), caspase 1, caspase 4, caspase 5 and sCD14 in plasma between the patients with active and stable stages of CTD. A cohort study was conducted to recruit patients diagnosed with CTD of active phase and stable phase as well as health control. These data included the analysis of the concentration of sCD14, caspase 1, caspase 4 and caspase 5 in peripheral plasma by ELISA. The Wilcoxon rank-sum test was used to compare the two groups. The sex ratio and ages of the three groups were not different statistically. The concentrations of sCD14, caspase4 and caspase5 of plasma in the CTD of active phase and the stable phase as well as the health control. The concentration of caspase 1 in active phase of CTD (470.19 [422.33–513.14] pmol/L) was significantly higher than that in stable group (203.95 [160.94–236.12] pmol/L) and healthy control (201.65 [191.11–240.35] pmol/L] pmol/L) (p < 0.001, both), but there was no significant difference between stable group and healthy control (p = 0.2312). Similarly, the concentration of CRP in the active phase of CTD (8.96 [3.06–20.28] mg/L) was significantly higher than that in the stable group (3.00 [1.30–11.40] mg/L) and the healthy control (3.70 [2.30–4.73] mg/L) (p = 0.0013, p = 0.0006, respectively), but there was no significant difference between the stable group and the healthy control (p = 0.3205). However, there were no significant differences in the concentration of sCD14, caspase 4 and caspase 5 in the active phase of CTD and the stable group as well as the health group. Consequently, the patients of the active phase of CTD showed increased expression of caspase 1.
Collapse
Affiliation(s)
- Rentian Cai
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiongqiong Wang
- Nuclear Medicine Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gongmin Zhu
- Nuclear Medicine Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liying Zhu
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Tao
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
142
|
Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med 2019; 17:225. [PMID: 31307469 PMCID: PMC6632217 DOI: 10.1186/s12967-019-1971-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
The human microbiome harbors a diverse array of microbes which establishes a mutually beneficial relation with the host in healthy conditions, however, the dynamic homeostasis is influenced by both host and environmental factors. Smoking contributes to modifications of the oral, lung and gut microbiome, leading to various diseases, such as periodontitis, asthma, chronic obstructive pulmonary disease, Crohn’s disease, ulcerative colitis and cancers. However, the exact causal relationship between smoking and microbiome alteration remains to be further explored.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China. .,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
143
|
Huang S, Mao J, Zhou L, Xiong X, Deng Y. The imbalance of gut microbiota and its correlation with plasma inflammatory cytokines in pemphigus vulgaris patients. Scand J Immunol 2019; 90:e12799. [PMID: 31211854 PMCID: PMC9286422 DOI: 10.1111/sji.12799] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune disease characterized by the production of IgG autoantibodies owing to an imbalance in the Th1/Th2 and Th17/Tregs cell pathways. The role of gut microbiota in the development of immune system and autoimmune diseases has been unraveled in the last two decades. However, data pertaining to gut microbiota of PV patients is largely lacking. We aimed to compare the gut microbiota of PV patients and healthy controls and assessed potential correlation with circulating cytokines of Th1/Th2/Th17 cell. Faecal bacterial diversity was analysed in 18 PV patients and 14 age‐ and gender‐matched healthy individuals using hypervariable tag sequencing of the V3‐V4 region of the 16S rRNA gene. Plasma levels of 20 inflammatory cytokines were assessed using the Luminex screening system. As a result, we identified 10 differentially abundant taxa between patients and controls. At the genera level, Lachnospiracea_incertae_sedis and Coprococcus decreased, while Granulicatella, Flavonifractor enriched in PV. Plasma levels of C5a, interleukin (IL)‐2R, IL‐6, IL‐8, IL‐7, IL‐1β, IL17A, IL‐5 and IL‐21 were significantly increased in PV Flavonifractor exhibited a positive correlation with C5a, IL‐6, IL‐8, IL‐7, IL‐1β, IL17A and IL‐21. Lachnospiracea_incertae_sedis and Coprococcus showed a negative correlation with IL‐17A. Our results are consistent with the hypothesis that PV patients have gut microbial dysbiosis which might contribute to the immune disorder and the development of PV.
Collapse
Affiliation(s)
- Shuli Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Mao
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Zhou
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongqiong Deng
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
144
|
The Gut Microbiome in Inflammatory Bowel Disease: Lessons Learned From Other Immune-Mediated Inflammatory Diseases. Am J Gastroenterol 2019; 114:1051-1070. [PMID: 31232832 DOI: 10.14309/ajg.0000000000000305] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing appreciation for the role of the gut microbiome in human health and disease. Aided by advances in sequencing technologies and analytical methods, recent research has shown the healthy gut microbiome to possess considerable diversity and functional capacity. Dysbiosis of the gut microbiota is believed to be involved in the pathogenesis of not only diseases that primarily affect the gastrointestinal tract but also other less obvious diseases, including neurologic, rheumatologic, metabolic, hepatic, and other illnesses. Chronic immune-mediated inflammatory diseases (IMIDs) represent a group of diseases that share many underlying etiological factors including genetics, aberrant immunological responses, and environmental factors. Gut dysbiosis has been reported to be common to IMIDs as a whole, and much effort is currently being directed toward elucidating microbiome-mediated disease mechanisms and their implications for causality. In this review, we discuss gut microbiome studies in several IMIDs and show how these studies can inform our understanding of the role of the gut microbiome in inflammatory bowel disease.
Collapse
|
145
|
Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N, Rovin BH, Caricchio R, Buyon JP, Alekseyenko AV, Silverman GJ. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis 2019; 78:947-956. [PMID: 30782585 PMCID: PMC6585303 DOI: 10.1136/annrheumdis-2018-214856] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND/PURPOSE To search for a transmissible agent involved in lupus pathogenesis, we investigated the faecal microbiota of patients with systemic lupus erythematosus (SLE) for candidate pathobiont(s) and evaluated them for special relationships with host immunity. METHODS In a cross-sectional discovery cohort, matched blood and faecal samples from 61 female patients with SLE were obtained. Faecal 16 S rRNA analyses were performed, and sera profiled for antibacterial and autoantibody responses, with findings validated in two independent lupus cohorts. RESULTS Compared with controls, the microbiome in patients with SLE showed decreased species richness diversity, with reductions in taxonomic complexity most pronounced in those with high SLE disease activity index (SLEDAI). Notably, patients with SLE had an overall 5-fold greater representation of Ruminococcus gnavus (RG) of the Lachnospiraceae family, and individual communities also displayed reciprocal contractions of a species with putative protective properties. Gut RG abundance correlated with serum antibodies to only 1/8 RG strains tested. Anti-RG antibodies correlated directly with SLEDAI score and antinative DNA levels, but inversely with C3 and C4. These antibodies were primarily against antigen(s) in an RG strain-restricted pool of cell wall lipoglycans. Novel structural features of these purified lipoglycans were characterised by mass spectrometry and NMR. Highest levels of serum anti-RG strain-restricted antibodies were detected in those with active nephritis (including Class III and IV) in the discovery cohort, with findings validated in two independent cohorts. CONCLUSION These findings suggest a novel paradigm in which specific strains of a gut commensal may contribute to the immune pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Doua Azzouz
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Aidana Omarbekova
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Dominik Schwudke
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | - Nicolas Gisch
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | | | | | - Jill P Buyon
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gregg J Silverman
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
146
|
Zhang Q, Yin X, Wang H, Wu X, Li X, Li Y, Zhang X, Fu C, Li H, Qiu Y. Fecal Metabolomics and Potential Biomarkers for Systemic Lupus Erythematosus. Front Immunol 2019; 10:976. [PMID: 31130958 PMCID: PMC6509220 DOI: 10.3389/fimmu.2019.00976] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/16/2019] [Indexed: 01/03/2023] Open
Abstract
The role of metabolomics in autoimmune diseases has been a rapidly expanding area in researches over the last decade, while its pathophysiologic impact on systemic lupus erythematosus (SLE) remains poorly elucidated. In this study, we analyzed the metabolic profiling of fecal samples from SLE patients and healthy controls based on ultra-high-performance liquid chromatography equipped with mass spectrometry for exploring the potential biomarkers of SLE. The results showed that 23 differential metabolites and 5 perturbed pathways were identified between the two groups, including aminoacyl-tRNA biosynthesis, thiamine metabolism, nitrogen metabolism, tryptophan metabolism, and cyanoamino acid metabolism. In addition, logistic regression and ROC analysis were used to establish a diagnostic model for distinguishing SLE patients from healthy controls. The combined model of fecal PG 27:2 and proline achieved an area under the ROC curve of 0.846, and had a good diagnostic efficacy. In the present study, we analyzed the correlations between fecal metabolic perturbations and SLE pathogenesis. In summary, we firstly illustrate the comprehensive metabolic profiles of feces in SLE patients, suggesting that the fecal metabolites could be used as the potential non-invasive biomarkers for SLE.
Collapse
Affiliation(s)
- Qiong Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofeng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haifang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing Wu
- Longsee Biomedical Corporation, Guangzhou, China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohe Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Fu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yurong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Huayin Medical Laboratory Center Co., Ltd., Guangzhou, China
| |
Collapse
|
147
|
He Z, Kong X, Shao T, Zhang Y, Wen C. Alterations of the Gut Microbiota Associated With Promoting Efficacy of Prednisone by Bromofuranone in MRL/lpr Mice. Front Microbiol 2019; 10:978. [PMID: 31118928 PMCID: PMC6504707 DOI: 10.3389/fmicb.2019.00978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota played an important role in systemic lupus erythematosus (SLE) and glucocorticoids were prone to cause alterations in gut microbiota. This study addressed the effect of bromofuranone on the treatment of SLE with prednisone, since bromofuranone could regulate gut microbiota by inhibiting the AI-2/LuxS quorum-sensing. Remarkably, bromofuranone did not alleviate lupus but promoted the efficacy of prednisone in the treatment of lupus. The alterations in the gut microbiota, including decreased Mucispirillum, Oscillospira, Bilophila and Rikenella, and increased Anaerostipes, were associated with prednisone treatment for SLE. In addition, the increase of Lactobacillus, Allobaculum, Sutterella, and Adlercreutzia was positively associated with the bromofuranone-mediated promotion for the treatment of lupus. This was the first study demonstrating that the efficacy of glucocorticoids could be affected by the interventions in gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Yun Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
148
|
Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus. Clin Sci (Lond) 2019; 133:821-838. [PMID: 30872359 DOI: 10.1042/cs20180841] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Intestinal dysbiosis is implicated in Systemic Lupus Erythematosus (SLE). However, the evidence of gut microbiome changes in SLE is limited, and the association of changed gut microbiome with the activity of SLE, as well as its functional relevance with SLE still remains unknown. Here, we sequenced 16S rRNA amplicon on fecal samples from 40 SLE patients (19 active patients, 21 remissive patients), 20 disease controls (Rheumatoid Arthritis (RA) patients), and 22 healthy controls (HCs), and investigated the association of functional categories with taxonomic composition by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). We demonstrated SLE patients, particularly the active patients, had significant dysbiosis in gut microbiota with reduced bacterial diversity and biased community constitutions. Amongst the disordered microbiota, the genera Streptococcus, Campylobacter, Veillonella, the species anginosus and dispar, were positively correlated with lupus activity, while the genus Bifidobacterium was negatively associated with the disease activity. PICRUSt analysis showed metabolic pathways were different between SLE and HCs, and also between active and remissive SLE patients. Moreover, we revealed that a random forest model could distinguish SLE from RA and HCs (area under the curve (AUC) = 0.792), and another random forest model could well predict the activity of SLE patients (AUC = 0.811). In summary, SLE patients, especially the active patients, show an apparent dysbiosis in gut microbiota and its related metabolic pathways. Amongst the disordered microflora, four genera and two species are associated with lupus activity. Furthermore, the random forest models are able to diagnose SLE and predict disease activity.
Collapse
|
149
|
Wei F, Xu H, Yan C, Rong C, Liu B, Zhou H. Changes of intestinal flora in patients with systemic lupus erythematosus in northeast China. PLoS One 2019; 14:e0213063. [PMID: 30870437 PMCID: PMC6417672 DOI: 10.1371/journal.pone.0213063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The human gut harbors diverse microbes that play a fundamental role in the well-being of their hosts. Microbes can cause autoimmunity, trigger autoimmunity in genetically susceptible individuals or prevent autoimmunity. There were reports about intestinal flora changes in Systemic Lupus Erythematosus (SLE) patients, but no data were available in northeast China. In this study, we investigated the intestinal flora changes of SLE patients in Heilongjiang province located in northeast China. METHODS Feces from 16 SLE patients and 14 healthy volunteers were employed to extract bacterial DNA, amplify 16s RNA of bacteria, and analyze the biological information by sequencing. The statistical analysis used the SPSS version of 17. RESULT We found that there were 1 phylums, 4 families and 9 genera in the intestinal flora of SLE patients. And the nine differences genera can be used to distinguish SLE patients from normal people. CONCLUSION We found an increase of Proteobacteria and a decrease of Ruminococcaceae in SLE patients in different regions. In addition, we found that some proteins, enzymes, and diseases were significantly associated with SLE.
Collapse
Affiliation(s)
- Feng Wei
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Huafeng Xu
- Department of Radio-immunity, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Changxin Yan
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Chunli Rong
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Bingyu Liu
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, the First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| |
Collapse
|
150
|
Uchiyama K, Naito Y, Takagi T. Intestinal microbiome as a novel therapeutic target for local and systemic inflammation. Pharmacol Ther 2019; 199:164-172. [PMID: 30877020 DOI: 10.1016/j.pharmthera.2019.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Recently, the pathogenesis of systemic inflammatory disease such as inflammatory bowel disease (IBD), multiple sclerosis (MS), systemic inflammatory arthritis, asthma, and non-alcoholic fatty liver disease has been reported to be related to the dysbiosis of gut microbiota. The contribution of special bacteria for the development of those diseases has been elucidated by disease animal models such as germ-free mice. Besides, the contribution by several bacteria for the pathogenesis of those diseases has been suggested by detailed analysis of the 16 small ribosomal subunit RNA (16S rRNA) from stool samples of the patients. Gut microbiota-targeted treatment for systemic inflammatory diseases such as fecal microbiota transplant (FMT), and probiotics has been now reported. Though there are several issues to be understood, these treatments have been highlighted as an innovative approach to intractable systemic inflammatory disease. In the present review, recent reports regarding the relation between gut microbiota and systemic inflammatory diseases are discussed with treatments to target gut microbiota.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|