101
|
Liu Y, Dong W, Ma Y, Dou J, Jiang W, Wang L, Wang Q, Li S, Wang Y, Li M. Nanomedicines with high drug availability and drug sensitivity overcome hypoxia-associated drug resistance. Biomaterials 2023; 294:122023. [PMID: 36708621 DOI: 10.1016/j.biomaterials.2023.122023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
Tumor hypoxia heterogeneity, a hallmark of the tumor microenvironment, confers resistance to conventional chemotherapy due to insufficient drug availability and drug sensitivity in hypoxic regions. To overcome these challenges, we develope a nanomedicine, NPHPaPN, constructed with hyaluronic acid (HA) grafted with cisplatin prodrug and PEG-azobenzene for hypoxia-responsive PEG shell deshielding and loaded with a DNA damage repair inhibitor (NERi). After arriving at the tumor site, NPHPaPN deshields the PEG shell in response to hypoxia due to the enzymolysis of azobenzene and thus exposes HA. The exposed HA binds to the highly expressed CD44 on cisplatin-resistant tumor cells and mediates drug internalization, thus increasing drug availability to hypoxic tumor cells. After intracellular hyaluronidase-mediated cleavage, the HA NPs release the cisplatin prodrug and NERi, and cause enhanced DNA damage and consequent cell death, thus enhancing the drug sensitivity of hypoxic tumor cells. Eventually, NPHPaPN achieves distinct tumor growth suppression with an ∼84.4% inhibition rate.
Collapse
Affiliation(s)
- Yi Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Wang Dong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yinchu Ma
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiaxiang Dou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Wei Jiang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Li Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qin Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shuya Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, 230601, China.
| | - Min Li
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
102
|
Singh S, Bhardwaj M, Sen A, Nambiyar K, Ahuja A. Cancer Stem Cell Markers - CD133 and CD44 - in Paediatric Solid Tumours: A Study of Immunophenotypic Expression and Correlation with Clinicopathological Parameters. Indian J Surg Oncol 2023; 14:113-121. [PMID: 36891437 PMCID: PMC9986167 DOI: 10.1007/s13193-022-01626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Paediatric solid tumours account for about 30% of all the paediatric malignancies. They differ from adult tumours in various aspects like incidence, etiopathogenesis, biology, response rate and outcome. Immunohistochemical markers such as CD133, CD44, CD24, CD90, CD34, CD117, CD20 and ALDH 1 (aldehyde dehydrogenase-1) have been proposed to detect cancer stem cells in tumours. CD133 is a marker of tumour initiating cells in many human cancers and therefore, it may be possible to develop future therapies by targeting cancer stem cells via this marker. CD44 is a transmembrane glycoprotein also known as homing cell adhesion molecule. It is a multifunctional cell-adhesion molecule and plays an important role in cell-cell interaction, lymphocyte homing, tumour progression and metastasis. In the present study, we assessed the expression of CD133 and CD44 in paediatric solid tumours and correlated their expression with clinico-pathological parameters in paediatric solid tumours. This study was a cross-sectional observational study conducted in the department of pathology at a tertiary care centre. All the histologically diagnosed paediatric solid tumours for a period of one year and four months were retrieved from the archives. The cases were reviewed and included in the study after obtaining informed consent. Immunohistochemistry using the monoclonal antibodies for CD133 and CD44 was performed in the representative tissue sections of all the cases. Immuno-scores were assessed, and the results were compared using Pearson's chi-square test. The present study included 50 cases of paediatric solid tumours. The majority (34%) of the patients were in the age group of less than 5 years, with male preponderance (M:F = 2.3:1). The tumours included were Wilms tumour, yolk sac tumour, rhabdomyosarcoma, lymphoma, neuroblastoma, hepatoblastoma, gastrointestinal stromal tumour (GIST), medulloblastomas, pilocytic astrocytomas, ependymomas and glioblastoma. On immunohistochemical analysis, high expression of CD133 and CD44 was found. A significant association between the expression of CD133 and various tumour groups was observed (p = 0.004). However, CD44 showed variable expression in different tumour groups. Both CD133 and CD44 identified cancer stem cell in paediatric solid tumours. A further validation is warranted to investigate their potential role in therapy and prognosis.
Collapse
Affiliation(s)
- Shashikant Singh
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Minakshi Bhardwaj
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Amita Sen
- Department of Paediatric Surgery, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kaniyappan Nambiyar
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Arvind Ahuja
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
103
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
104
|
Nanomechanical Signatures in Glioma Cells Depend on CD44 Distribution in IDH1 Wild-Type but Not in IDH1R132H Mutant Early-Passage Cultures. Int J Mol Sci 2023; 24:ijms24044056. [PMID: 36835465 PMCID: PMC9959176 DOI: 10.3390/ijms24044056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Atomic force microscopy (AFM) recently burst into biomedicine, providing morphological and functional characteristics of cancer cells and their microenvironment responsible for tumor invasion and progression, although the novelty of this assay needs to coordinate the malignant profiles of patients' specimens to diagnostically valuable criteria. Applying high-resolution semi-contact AFM mapping on an extended number of cells, we analyzed the nanomechanical properties of glioma early-passage cell cultures with a different IDH1 R132H mutation status. Each cell culture was additionally clustered on CD44+/- cells to find possible nanomechanical signatures that differentiate cell phenotypes varying in proliferative activity and the characteristic surface marker. IDH1 R132H mutant cells compared to IDH1 wild-type ones (IDH1wt) characterized by two-fold increased stiffness and 1.5-fold elasticity modulus. CD44+/IDH1wt cells were two-fold more rigid and much stiffer than CD44-/IDH1wt ones. In contrast to IDH1 wild-type cells, CD44+/IDH1 R132H and CD44-/IDH1 R132H did not exhibit nanomechanical signatures providing statistically valuable differentiation of these subpopulations. The median stiffness depends on glioma cell types and decreases according to the following manner: IDH1 R132H mt (4.7 mN/m), CD44+/IDH1wt (3.7 mN/m), CD44-/IDH1wt (2.5 mN/m). This indicates that the quantitative nanomechanical mapping would be a promising assay for the quick cell population analysis suitable for detailed diagnostics and personalized treatment of glioma forms.
Collapse
|
105
|
Molczyk C, Singh RK. CXCR1: A Cancer Stem Cell Marker and Therapeutic Target in Solid Tumors. Biomedicines 2023; 11:biomedicines11020576. [PMID: 36831112 PMCID: PMC9953306 DOI: 10.3390/biomedicines11020576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Therapy resistance is a significant concern while treating malignant disease. Accumulating evidence suggests that a subset of cancer cells potentiates tumor survival, therapy resistance, and relapse. Several different pathways regulate these purported cancer stem cells (CSCs). Evidence shows that the inflammatory tumor microenvironment plays a crucial role in maintaining the cancer stem cell pool. Typically, in the case of the tumor microenvironment, inflammatory pathways can be utilized by the tumor to aid in tumor progression; one such pathway is the CXCR1/2 pathway. The CXCR1 and CXCR2 receptors are intricately related, with CXCR1 binding two ligands that also bind CXCR2. They have the same downstream pathways but potentially separate roles in the tumor microenvironment. CXCR1 is becoming more well known for its role as a cancer stem cell identifier and therapeutic target. This review elucidates the role of the CXCR1 axis as a CSC marker in several solid tumors and discusses the utility of CXCR1 as a therapeutic target.
Collapse
|
106
|
New Horizons in Metastatic Colorectal Cancer: Prognostic Role of CD44 Expression. Cancers (Basel) 2023; 15:cancers15041212. [PMID: 36831554 PMCID: PMC9953769 DOI: 10.3390/cancers15041212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The transmembrane glycoprotein CD44, the major hyaluronan (HA) receptor, has been proven to regulate cell growth, survival, differentiation, and migration. It is therefore widely considered to be involved in carcinogenesis. Its role as a new therapeutic target in solid tumors is under evaluation in clinical trials. The prognostic value remains controversial. Here, we aimed to investigate the correlation between CD44 expression and the clinicopathological features and survival in metastatic colorectal cancer (mCRC) patients. METHODS Data from 65 mCRC patients of the Medical Oncology Unit, University Hospital and University of Cagliari were retrospectively collected from 2008 to 2021. Immunohistochemical analysis was performed at the Pathology Division, University Hospital of Cagliari on 3 μm thick sections obtained from paraffin blocks. The intensity of immunohistochemical staining was subclassified into four groups: score 0 if negative or weak membrane staining in less than 10% of tumor cells; score 1+ if weak membrane staining in at least 10% of tumor cells or moderate membrane staining in less than 10% of tumor cells; score 2+ if moderate membrane staining in at least 10% of tumor cells or intensive membrane staining in less than 10% of tumor cells; score 3+ if intense membrane staining in at least 10% of tumor cells. Based on this score, we distinguished patients into low CD44 expression (score 0, 1+, 2+) and high CD44 expression (score 3+). Statistical analysis was performed with MedCalc (survival distribution: Kaplan-Meier; survival comparison: log-rank test; association between categorical variables: Fisher's exact test). RESULTS Patients' median age was 66 years (range 49-85). Regarding CD44 expression, score was 0 in 18 patients, 1+ in 15 patients, 2+ in 18 patients, and 3+ in 14 patients. Median overall survival (mOS) was 28.1 months (95%CI: 21.3-101). CD44 overexpression (3+) was correlated with poor prognosis (p = 0.0011; HR = 0.2), with a mOS of 14.5 months (95%CI 11.7 to 35.9) versus 30.7 months (95%CI 27.8 to 101) in lower CD44 expression. Higher CD44 expression was associated with clinically poor prognostic features: age ≥ 70 years (p = 0.0166); inoperable disease (p = 0.0008); stage IV at diagnosis (p = 0.0241); BRAF mutated (p = 0.0111), high-grade tumor (p = 0.0084). CONCLUSIONS CD44 markedly correlated with aggressive tumor behavior and contributed to the earlier progression of disease, thus suggesting its role as a novel prognostic marker and potential therapeutic target for mCRC patients.
Collapse
|
107
|
Jeon H, Byun J, Kang H, Kim K, Lee E, Kim JH, Hong CK, Song SW, Kim YH, Chong S, Kim JH, Nam SJ, Park JE, Lee S. Proteomic analysis predicts anti-angiogenic resistance in recurred glioblastoma. J Transl Med 2023; 21:69. [PMID: 36732815 PMCID: PMC9893563 DOI: 10.1186/s12967-023-03936-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recurrence is common in glioblastoma multiforme (GBM) because of the infiltrative, residual cells in the tumor margin. Standard therapy for GBM consists of surgical resection followed by chemotherapy and radiotherapy, but the median survival of GBM patients remains poor (~ 1.5 years). For recurrent GBM, anti-angiogenic treatment is one of the common treatment approaches. However, current anti-angiogenic treatment modalities are not satisfactory because of the resistance to anti-angiogenic agents in some patients. Therefore, we sought to identify novel prognostic biomarkers that can predict the therapeutic response to anti-angiogenic agents in patients with recurrent glioblastoma. METHODS We selected patients with recurrent GBM who were treated with anti-angiogenic agents and classified them into responders and non-responders to anti-angiogenic therapy. Then, we performed proteomic analysis using liquid-chromatography mass spectrometry (LC-MS) with formalin-fixed paraffin-embedded (FFPE) tissues obtained from surgical specimens. We conducted a gene-ontology (GO) analysis based on protein abundance in the responder and non-responder groups. Based on the LC-MS and GO analysis results, we identified potential predictive biomarkers for anti-angiogenic therapy and validated them in recurrent glioblastoma patients. RESULTS In the mass spectrometry-based approach, 4957 unique proteins were quantified with high confidence across clinical parameters. Unsupervised clustering analysis highlighted distinct proteomic patterns (n = 269 proteins) between responders and non-responders. The GO term enrichment analysis revealed a cluster of genes related to immune cell-related pathways (e.g., TMEM173, FADD, CD99) in the responder group, whereas the non-responder group had a high expression of genes related to nuclear replisome (POLD) and damaged DNA binding (ERCC2). Immunohistochemistry of these biomarkers showed that the expression levels of TMEM173 and FADD were significantly associated with the overall survival and progression-free survival of patients with recurrent GBM. CONCLUSIONS The candidate biomarkers identified in our protein analysis may be useful for predicting the clinical response to anti-angiogenic agents in patients with recurred GBM.
Collapse
Affiliation(s)
- Hanwool Jeon
- grid.413967.e0000 0001 0842 2126Translational Biomedical Research Group, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joonho Byun
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Hayeong Kang
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Kyunggon Kim
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Eunyeup Lee
- grid.413967.e0000 0001 0842 2126Translational Biomedical Research Group, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Hoon Kim
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Chang Ki Hong
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Sang Woo Song
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Young-Hoon Kim
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Sangjoon Chong
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Jae Hyun Kim
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Soo Jeong Nam
- grid.267370.70000 0004 0533 4667Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Park
- grid.267370.70000 0004 0533 4667Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seungjoo Lee
- Translational Biomedical Research Group, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea. .,Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea. .,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
108
|
Tumor vasculature VS tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
109
|
Ma Q, Wu S, Yang L, Wei Y, He C, Wang W, Zhao Y, Wang Z, Yang S, Shi D, Liu Y, Zhou Z, Sun J, Zhou Y. Hyaluronic Acid-Guided Cerasome Nano-Agents for Simultaneous Imaging and Treatment of Advanced Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202416. [PMID: 36529695 PMCID: PMC9929131 DOI: 10.1002/advs.202202416] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/23/2022] [Indexed: 05/25/2023]
Abstract
Early noninvasive screening and regression therapy for vulnerable atherosclerotic plaques remain challenging. In this study, it is aimed to develop a new approach for the active targeting of atherosclerotic plaques with nano-agents to aid imaging and treatment. Biocompatible hyaluronic acid (HA)-guided cerasomes are generated to selectively target CD44-positive cells within the plaque in in vitro studies and in vivo testing in Apoe-/- mice. Rosuvastatin (RST) is encapsulated in the HA-guided cerasome nano-formulation to produce HA-CC-RST, which results in significant plaque regression as compared to treatment with the free drug. Moreover, gadodiamide-loaded HA-CC enhances magnetic resonance images of vulnerable plaques, thereby attaining the goal of improved simultaneous treatment and imaging. Transcriptomic analysis confirms plaque regression with HA-CC-RST treatment, which potentially benefits from the anti-inflammatory effect of RST. In summary, a safe and efficient nano-formulation for the targeted delivery of active agents to atherosclerotic plaques is developed and may be applicable to other diagnostic and therapeutic agents for atherosclerosis treatment.
Collapse
Affiliation(s)
- Qian Ma
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Sijing Wu
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
| | - Ling Yang
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Yaohua Wei
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Chaoyong He
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Wenshan Wang
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Yingxin Zhao
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Zhijian Wang
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Shiwei Yang
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Dongmei Shi
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Yuyang Liu
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Zhiming Zhou
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| | - Jiefang Sun
- Beijing Inno Medicine Co. Ltd.Beijing100195P. R. China
| | - Yujie Zhou
- Department of CardiologyBeijing Anzhen HospitalCapital Medical University100029BeijingP. R. China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic DiseaseClinical Center for Coronary Heart DiseaseCapital Medical UniversityBeijing100029P. R. China
- Beijing Anzhen HospitalBeijing Institute of Heart Lung and Blood Vessel DiseaseBeijing100029P. R. China
| |
Collapse
|
110
|
Suppression of galectin-4 attenuates peritoneal metastasis of poorly differentiated gastric cancer cells. Gastric Cancer 2023; 26:352-363. [PMID: 36695981 DOI: 10.1007/s10120-023-01366-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Peritoneal dissemination, most often seen in metastatic and/or recurrent gastric cancer, is an inoperable condition that lacks effective treatment. The use of molecular targeted drugs is also limited; therefore, identifying novel therapeutic targets and improving our understanding of this metastatic cancer are an urgent requirement. In this study, we focused on galectin-4, which is specifically expressed in poorly differentiated cells with high potential for peritoneal dissemination. METHODS We knocked out the galectin-4 gene in NUGC4 cells using CRISPR/Cas9-mediated genome editing. Proliferation and peritoneal cancer formation in knockout cells were compared with those in wild-type and galectin-4 re-expressing cells. Western blotting and proximity ligation assays were performed to identify associated molecules affected by the expression of galectin-4. The effect of galectin-4 knockdown on cell proliferation and peritoneal metastasis was studied using a specific siRNA. Expression of galectin-4 in peritoneal metastatic tumors from 10 patients with gastric cancer was examined by immunohistochemistry. RESULTS Suppression of galectin-4 expression reduced proliferation and peritoneal metastasis of malignant gastric cancer cells. Galectin-4 knockout and knockdown reduced the expression of activated c-MET and CD44. Galectin-4 was found to interact with several proteins on the cell surface, including CD44 and c-MET, via its carbohydrate-binding ability. Immunohistochemistry showed galectin-4 expression in peritoneal metastatic tumor cells in all patients examined. CONCLUSIONS We clarified the role of galectin-4 in the development of peritoneal dissemination of poorly differentiated gastric cancer cells. Our data highlight the diagnostic and therapeutic potential of galectin-4 in the peritoneal dissemination of gastric cancer.
Collapse
|
111
|
Li K, Huo Q, Li BY, Yokota H. The Double-Edged Proteins in Cancer Proteomes and the Generation of Induced Tumor-Suppressing Cells (iTSCs). Proteomes 2023; 11:5. [PMID: 36810561 PMCID: PMC9944087 DOI: 10.3390/proteomes11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Unlike a prevalent expectation that tumor cells secrete tumor-promoting proteins and stimulate the progression of neighboring tumor cells, accumulating evidence indicates that the role of tumor-secreted proteins is double-edged and context-dependent. Some of the oncogenic proteins in the cytoplasm and cell membranes, which are considered to promote the proliferation and migration of tumor cells, may inversely act as tumor-suppressing proteins in the extracellular domain. Furthermore, the action of tumor-secreted proteins by aggressive "super-fit" tumor cells can be different from those derived from "less-fit" tumor cells. Tumor cells that are exposed to chemotherapeutic agents could alter their secretory proteomes. Super-fit tumor cells tend to secrete tumor-suppressing proteins, while less-fit or chemotherapeutic agent-treated tumor cells may secrete tumor-promotive proteomes. Interestingly, proteomes derived from nontumor cells such as mesenchymal stem cells and peripheral blood mononuclear cells mostly share common features with tumor cell-derived proteomes in response to certain signals. This review introduces the double-sided functions of tumor-secreted proteins and describes the proposed underlying mechanism, which would possibly be based on cell competition.
Collapse
Affiliation(s)
- Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
112
|
Mohammadpour-Haratbar A, Boraei SBA, Zare Y, Rhee KY, Park SJ. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. BIOSENSORS 2023; 13:bios13010080. [PMID: 36671915 PMCID: PMC9855997 DOI: 10.3390/bios13010080] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/04/2023]
Abstract
Breast cancer (BC) is the most common cancer in women, which is also the second most public cancer worldwide. When detected early, BC can be treated more easily and prevented from spreading beyond the breast. In recent years, various BC biosensor strategies have been studied, including optical, electrical, electrochemical, and mechanical biosensors. In particular, the high sensitivity and short detection time of electrochemical biosensors make them suitable for the recognition of BC biomarkers. Moreover, the sensitivity of the electrochemical biosensor can be increased by incorporating nanomaterials. In this respect, the outstanding mechanical and electrical performances of graphene have led to an increasingly intense study of graphene-based materials for BC electrochemical biosensors. Hence, the present review examines the latest advances in graphene-based electrochemical biosensors for BC biosensing. For each biosensor, the detection limit (LOD), linear range (LR), and diagnosis technique are analyzed. This is followed by a discussion of the prospects and current challenges, along with potential strategies for enhancing the performance of electrochemical biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Seyyed Behnam Abdollahi Boraei
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
113
|
Comparative Transcriptional Signature Analysis of Peripheral Blood Mononuclear Cells in Early Stage of Hepatitis B-related Hepatocellular Carcinoma. HEPATITIS MONTHLY 2023. [DOI: 10.5812/hepatmon-130862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Hepatocellular carcinoma (HCC) is a prevalent and life-threatening tumor with high morbidity and mortality. Proper prediction and prognosis are incredibly stressed to diagnose HCC and increase patient survival. Objectives: This research aims to evaluate gene expression levels of pre-differentiated transcripts for those suffering from chronic hepatitis B (CHB) and HCC. Methods: To examine the previously analyzed peripheral blood mononuclear cells (PBMCs) transcriptomic array data, we selected seven differentially expressed genes (DEGs) in normal versus CHB and CHB versus HCC (CD44, SP3, USP8, E2F2, UFM1, IFN regulative factor binding protein 2 (IRF2BP2), and T-cell intracellular antigen 1 (TIA1)). The study included individuals with treatment-naïve CHB (n = 30) and primary HCC (n = 25) and healthy controls (n = 15). Subsequently, the expression of genes was assayed using qRT-PCR. A phylogenetic evaluation was performed using direct sequencing of HBsAg. Results: In HCC patients, 60% (n = 15) were HBeAg-positive. HBeAg was negative in all CHB patients, but all were anti-HBe-positive. The hepatitis B virus (HBV) load of HCC patients was more than that of CHB subjects. All patients were of the Iranian race and HBV D genotype. The expression of five transcriptional markers (CD44, SP3, USP8, E2F2, and UFM1) was higher in HCC patients than in CHB and healthy subjects, which was similar to the initial microarray data analysis. Conclusions: Transcriptional signatures may be related to the pathogenesis of HCC and used as diagnostic biological markers for the initial monitoring and prediction of HCC.
Collapse
|
114
|
Sotnikova TN, Polushkina TV, Danilova NV. [Relationship between PD-L1 expression and tumor stem cell marker CD44 as a promising basis for the development of new approaches to cancer targeted therapy]. Arkh Patol 2023; 85:70-75. [PMID: 38010641 DOI: 10.17116/patol20238506170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Immunotherapy of malignant tumors is a rapidly developing area of oncology. PD-1 is a receptor expressed by activated T-lymphocytes. As a result of its interaction with the ligand (PD-L1 or PD-L2), the activity of T-lymphocytes is inhibited and their apoptosis occurs. Drugs that inhibit the interaction of PD-1 with ligands have an immunostimulatory effect and are effective in the treatment of many types of neoplasms: melanoma, lung cancer, bladder cancer, stomach cancer, various lymphomas, etc. However, response to this treatment is observed only in a narrow cohort of patients. To increase the effectiveness of immunotherapy, combined preparations and nanoparticles are being developed and created to enhance the effect of PD-L1 inhibitors, and containing hyaluronic acid as a ligand for the CD44 protein, which is expressed in many human tumors. However, the issue of co-expression of CD44 and PD-L1 remains poorly understood. This review is devoted to describing the features of co-expression and the mechanisms of interaction between CD44 and PD-L1. Promising directions for the development of new approaches to the immunotherapy of malignant tumors are presented.
Collapse
Affiliation(s)
- T N Sotnikova
- I.V. Davydovsky City Clinical Hospital, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - T V Polushkina
- I.V. Davydovsky City Clinical Hospital, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
115
|
Abd El-Fattah EE. Tumor lysis syndrome promotes cancer chemoresistance and relapse through AMPK inhibition. Int Immunopharmacol 2023; 114:109568. [PMID: 36527883 DOI: 10.1016/j.intimp.2022.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Cancer is a disease caused when cells divide uncontrollably and spread into surrounding tissues. There are different therapeutic modalities that control cancer growth, of which surgery, chemotherapy, and radiotherapy. Chemotherapy is a cancer treatment approach in which medications are used to inhibit cell proliferation and tumor multiplication, thus avoiding invasion and metastasis and thus eradicate cancer. One of the common complications associated with cancer chemotherapy is rapid lysis of expanding tumor cells, known as tumor lysis syndrome (TLS). TLS is associated with number of metabolic changes such as hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcemia. Among the consequences of hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcemia is the inhibition of 5' AMP-activated protein kinase (AMPK). Inhibition of AMPK induced different cancer chemo-resistance mechanisms such as cancer stem cells (CSCs), p-glycoproteins, Octamer-binding transcription factor 4 (OCT-4), homeobox protein NANOG, Krüppel-like factor 4 (KLF4) and immune microenvironment and thus leads to poor response to chemotherapy and even relapses after treatment. Our review aims to uncover new mechanisms underlying the metabolic consequences of tumor lysis on AMPK in tumor microenvironment. In this review, we also investigated the effect of AMPK on different cancer chemo-resistance mechanisms such as cancer stem cells, p-glycoproteins, OCT-4, NANOG, KLF4 and immune microenvironment.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
116
|
Sultana R, Yadav D, Puranik N, Chavda V, Kim J, Song M. A Review on the Use of Gold Nanoparticles in Cancer Treatment. Anticancer Agents Med Chem 2023; 23:2171-2182. [PMID: 37842886 DOI: 10.2174/0118715206268664231004040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Zoology, SKM Govt College, Nawapara, Raipur, 493881, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| | - Nidhi Puranik
- Department of Biochemistry & Genetics, Barkatullah University, Bhopal, 462026, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| |
Collapse
|
117
|
Afshari K, Sohal KS. Potential Alternative Therapeutic Modalities for Management Head and Neck Squamous Cell Carcinoma: A Review. Cancer Control 2023; 30:10732748231185003. [PMID: 37328298 DOI: 10.1177/10732748231185003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes malignancies of the lip and oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. It is among the most common malignancy worldwide, affecting nearly 1 million people annually. The traditional treatment options for HNSCC include surgery, radiotherapy, and conventional chemotherapy. However, these treatment options have their specific sequelae, which produce high rates of recurrence and severe treatment-related disabilities. Recent technological advancements have led to tremendous progress in understanding tumor biology, and hence the emergence of several alternative therapeutic modalities for managing cancers (including HNSCC). These treatment options are stem cell targeted therapy, gene therapy, and immunotherapy. Therefore, this review article aims to provide an overview of these alternative treatments of HNSCC.
Collapse
Affiliation(s)
- Keihan Afshari
- Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Karpal Singh Sohal
- Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
118
|
Kyriakopoulou K, Piperigkou Z, Tzaferi K, Karamanos NK. Trends in extracellular matrix biology. Mol Biol Rep 2023; 50:853-863. [PMID: 36342580 PMCID: PMC9884264 DOI: 10.1007/s11033-022-07931-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Extracellular matrixes (ECMs) are intricate 3-dimensional macromolecular networks of unique architectures with regulatory roles in cell morphology and functionality. As a dynamic native biomaterial, ECM undergoes constant but tightly controlled remodeling that is crucial for the maintenance of normal cellular behavior. Under pathological conditions like cancer, ECM remodeling ceases to be subjected to control resulting in disease initiation and progression. ECM is comprised of a staggering number of molecules that interact not only with one another, but also with neighboring cells via cell surface receptors. Such interactions, too many to tally, are of paramount importance for the identification of novel disease biomarkers and more personalized therapeutic intervention. Recent advances in big data analytics have allowed the development of online databases where researchers can take advantage of a stochastic evaluation of all the possible interactions and narrow them down to only those of interest for their study, respectively. This novel approach addresses the limitations that currently exist in studies, expands our understanding on ECM interactions, and has the potential to advance the development of targeted therapies. In this article we present the current trends in ECM biology research and highlight its importance in tissue integrity, the main interaction networks, ECM-mediated cell functional properties and issues related to pharmacological targeting.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
| | - Zoi Piperigkou
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 261 10, Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
| | - Nikos K Karamanos
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 261 10, Patras, Greece.
| |
Collapse
|
119
|
Pan Z, Zhang M, Zhang F, Pan H, Li Y, Shao Y, Yuan X, Wang J, Chen J. Single-Cell Transcriptomics Unveils the Dedifferentiation Mechanism of Lung Adenocarcinoma Stem Cells. Int J Mol Sci 2022; 24:ijms24010482. [PMID: 36613925 PMCID: PMC9820263 DOI: 10.3390/ijms24010482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, and its prognosis is still poor due to therapy resistance, metastasis, and recurrence. In recent years, increasing evidence has shown that the existence of lung cancer stem cells is responsible for the propagation, metastasis, therapy resistance, and recurrence of the tumor. During their transition to cancer stem cells, tumor cells need to inhibit cell differentiation and acquire invasive characteristics. However, our understanding of the property and role of such lung cancer stem cells is still limited. In this study, lung adenocarcinoma cancer stem cells (LCSCs) were enriched from the PC-9 cell line in a serum-free condition. PC-9 cells grew into spheres and showed higher survival rates when exposed to gefitinib: the drug used for the treatment of LUAD. Additionally, we found that the canonical stemness marker protein CD44 was significantly increased in the enriched LCSCs. Then, LCSCs were inoculated into the groin of nude mice for 1.5 months, and tumors were detected in the animals, indicating the strong stemness of the cells. After that, we performed single-cell RNA sequencing (scRNA-seq) on 7320 LCSCs and explored the changes in their transcriptomic signatures. We identified cell populations with a heterogeneous expression of cancer stem marker genes in LCSCs and subsets with different degrees of differentiation. Further analyses revealed that the activation of the FOXM1 (oncoprotein) transcription factor is a key factor in cell dedifferentiation, which enables tumor cells to acquire an epithelial-mesenchymal transition phenotype and increases the LCSC surface marker CD44. Moreover, we found that the combination of CD44, ABCG2, and ALCAM was a specific marker for LCSCs. In summary, this study identified the potential factors and molecular mechanisms underlying the stemness properties of LUAD cancer cells; it could also provide insight into developing novel and effective therapeutic approaches.
Collapse
Affiliation(s)
- Zhenhua Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meidi Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Fengyu Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Shao
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (J.W.); (J.C.)
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: (J.W.); (J.C.)
| |
Collapse
|
120
|
Siminzar P, Tohidkia MR, Eppard E, Vahidfar N, Tarighatnia A, Aghanejad A. Recent Trends in Diagnostic Biomarkers of Tumor Microenvironment. Mol Imaging Biol 2022; 25:464-482. [PMID: 36517729 DOI: 10.1007/s11307-022-01795-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment (TME) play critical roles in tumor survival, progression, and metastasis and can be considered potential targets for molecular imaging of cancer. The targeting agents for imaging of TME components (e.g., fibroblasts, mesenchymal stromal cells, immune cells, extracellular matrix, blood vessels) provide a promising strategy to target these biomarkers for the early diagnosis of cancers. Moreover, various cancer types have similar tumor immune microenvironment (TIME) features that targeting those biomarkers and offer clinically translatable molecular imaging of cancers. In this review, we categorize and summarize the components in TME which have been targeted for molecular imaging. Moreover, this review updated the recent progress in targeted imaging of TIME biological molecules by various modalities for the early detection of cancer.
Collapse
|
121
|
Khales SA, Mozaffari-Jovin S, Geerts D, Abbaszadegan MR. TWIST1 activates cancer stem cell marker genes to promote epithelial-mesenchymal transition and tumorigenesis in esophageal squamous cell carcinoma. BMC Cancer 2022; 22:1272. [PMID: 36474162 PMCID: PMC9724315 DOI: 10.1186/s12885-022-10252-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers worldwide. Overexpression of EMT master transcription factors can promote differentiated cells to undergo cancer reprogramming processes and acquire a stem cell-like status. METHODS The KYSE-30 and YM-1 ESCC cell lines were transduced with retroviruses expressing TWIST1 or GFP and analyzed by quantitative reverse transcription PCR (qRT-PCR), chromatin immunoprecipitation (ChIP), and immunostaining to investigate the correlation between TWIST1 and stemness markers expression. Cells expressing TWIST1 were characterized for mRNA candidates by qRT-PCR and for protein candidates by Flow cytometry and Immunocytochemistry. TWIST1-ESCC cells were also evaluated for apoptosis and drug resistance. RESULTS Here we identify a role for TWIST1 in the establishment of ESCC cancer stem cell (CSC)-like phenotype, facilitating the transformation of non-CSCs to CSCs. We provide evidence that TWIST1 expression correlates with the expression of CSC markers in ESCC cell lines. ChIP assay results demonstrated that TWIST1 regulates CSC markers, including CD44, SALL4, NANOG, MEIS1, GDF3, and SOX2, through binding to the E-box sequences in their promoters. TWIST1 promoted EMT through E-cadherin downregulation and vimentin upregulation. Moreover, TWIST1 expression repressed apoptosis in ESCC cells through upregulation of Bcl-2 and downregulation of the Bax protein, and increased ABCG2 and ABCC4 transporters expression, which may lead to drug resistance. CONCLUSIONS These findings support a critical role for TWIST1 in CSC-like generation, EMT progression, and inhibition of apoptosis in ESCC. Thus, TWIST1 represents a therapeutic target for the suppression of esophageal cell transformation to CSCs and ESCC malignancy.
Collapse
Affiliation(s)
- Sima Ardalan Khales
- grid.411583.a0000 0001 2198 6209Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dirk Geerts
- grid.5650.60000000404654431Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Mohammad Reza Abbaszadegan
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
122
|
Raigorodskaya MP, Novosad VO, Tonevitskaya SA, Maltseva DV. Expression of CD44 Isoforms in Human Colorectal Cancer Cell Lines. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822090071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
123
|
Guo Q, Yang C, Gao F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J 2022; 289:7970-7986. [PMID: 34478583 DOI: 10.1111/febs.16179] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
CD44, a non-kinase transmembrane glycoprotein, is ubiquitously expressed on various types of cells, especially cancer stem cells (CSCs), and has been implicated in cancer onset and aggressiveness. The major ligand for the CD44, hyaluronan (HA), binds to and interacts with CD44, which in turn triggers downstream signaling cascades, thereby promoting cellular behaviors such as proliferation, motility, invasiveness and chemoresistance. The CD44-HA interaction is cell-specific and strongly affected by the state of CD44 activation. Therefore, the binding of HA to CD44 is essential for the activation of CD44 during which the detailed regulatory mechanism needs to be clarified. Different CD44 activation states distribute in human carcinoma and normal tissue; however, whether CD44 activation is a critical requirement for tumor initiation, progression and notorious CSC properties remains to be clarified. A deeper understanding of the regulation of CD44 activation may facilitate the development of novel targeted drugs in the future. Here, we review the current findings concerning the states of CD44 activation on the cell surface, the underlying regulatory mechanisms of CD44 activation, the known role for CD44 activation in tumor progression and CSC hallmarks, as well as the potential of HA-coated nanoparticle for targeting activated CD44 for cancer therapy.
Collapse
Affiliation(s)
- Qian Guo
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
124
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022; 312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda - 151401, Punjab, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
125
|
Tumor Cell Capture Using Platelet-Based and Platelet-Mimicking Modified Human Serum Albumin Submicron Particles. Int J Mol Sci 2022; 23:ijms232214277. [PMID: 36430755 PMCID: PMC9694380 DOI: 10.3390/ijms232214277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The co-localization of platelets and tumor cells in hematogenous metastases has long been recognized. Interactions between platelets and circulating tumor cells (CTCs) contribute to tumor cell survival and migration via the vasculature into other tissues. Taking advantage of the interactions between platelets and tumor cells, two schemes, direct and indirect, were proposed to target the modified human serum albumin submicron particles (HSA-MPs) towards tumor cells. HSA-MPs were constructed by the Co-precipitation-Crosslinking-Dissolution (CCD) method. The anti-CD41 antibody or CD62P protein was linked to the HSA-MPs separately via 1-ethyl-3-(-3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) EDC/NHS chemistry. The size of modified HSA-MPs was measured at approximately 1 µm, and the zeta potential was around -24 mV. Anti-CD41-HSA-MPs adhered to platelets as shown by flowcytometry and confocal laser scanning microscopy. In vitro, we confirmed the adhesion of platelets to tumor lung carcinoma cells A549 under shearing conditions. Higher cellular uptake of anti-CD41-HSA-MPs in A549 cells was found in the presence of activated platelets, suggesting that activated platelets can mediate the uptake of these particles. RNA-seq data in the Cancer Cell Lineage Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) database showed the expression of CD62P ligands in different types of cancers. Compared to the non-targeted system, CD62P-HSA-MPs were found to have higher cellular uptake in A549 cells. Our results suggest that the platelet-based and platelet-mimicking modified HSA-MPs could be promising options for tracking metastatic cancer.
Collapse
|
126
|
Shaimerdenova M, Ayupova T, Bekmurzayeva A, Sypabekova M, Ashikbayeva Z, Tosi D. Spatial-Division Multiplexing Approach for Simultaneous Detection of Fiber-Optic Ball Resonator Sensors: Applications for Refractometers and Biosensors. BIOSENSORS 2022; 12:1007. [PMID: 36421126 PMCID: PMC9688048 DOI: 10.3390/bios12111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Fiber-optic ball resonators are an attractive technology for refractive index (RI) sensing and optical biosensing, as they have good sensitivity and allow for a rapid and repeatable manufacturing process. An important feature for modern biosensing devices is the multiplexing capacity, which allows for interrogating multiple sensors (potentially, with different functionalization methods) simultaneously, by a single analyzer. In this work, we report a multiplexing method for ball resonators, which is based on a spatial-division multiplexing approach. The method is validated on four ball resonator devices, experimentally evaluating both the cross-talk and the spectral shape influence of one sensor on another. We show that the multiplexing approach is highly efficient and that a sensing network with an arbitrary number of ball resonators can be designed with reasonable penalties for the sensing capabilities. Furthermore, we validate this concept in a four-sensor multiplexing configuration, for the simultaneous detection of two different cancer biomarkers across a widespread range of concentrations.
Collapse
Affiliation(s)
- Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- Department of Bioengineering and Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Marzhan Sypabekova
- School of Engineering and Computer Science, Baylor University, Waco, TX 76798, USA
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| |
Collapse
|
127
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
128
|
Zhu H, Zhou W, Wan Y, Lu J, Ge K, Jia C. CD44V3, an Alternatively Spliced Form of CD44, Promotes Pancreatic Cancer Progression. Int J Mol Sci 2022; 23:ijms232012061. [PMID: 36292918 PMCID: PMC9603666 DOI: 10.3390/ijms232012061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most lethal malignant tumors. However, the molecular mechanisms responsible for its progression are little known. This study aimed to understand the regulatory role of CD44V3 in pancreatic cancer. A Kaplan–Meier analysis was performed to reveal the correlation between CD44/CD44V3 expression and the prognosis of pancreatic cancer patients. CD44V3 and U2AF1 were knocked down using shRNAs. The proliferation, migration, invasion, and stemness of two pancreatic cell lines, BxPC-3 and AsPC-1, were examined. The expression of CD44V3, cancer-associated markers, and the activation of AKT signaling were detected by qRT-PCR and Western blot. Both CD44 and CD44V3 expression levels were associated with a poor prognosis in pancreatic cancer patients. Interestingly, the expression of CD44V3, instead of CD44, was greatly increased in tumor tissues. CD44V3 knockdown inhibited the proliferation, migration, invasion, and stemness of cancer cells. CD44V3 splicing was regulated by U2AF1 and downregulation of U2AF1 enhanced CD44V3 expression, which promoted pancreatic cancer progression. CD44V3 is an important cancer-promoting factor, which may serve as a potential candidate for pancreatic cancer intervention.
Collapse
|
129
|
Zhang N, Zhu HP, Huang W, Wen X, Xie X, Jiang X, Peng C, Han B, He G. Unraveling the structures, functions and mechanisms of epithelial membrane protein family in human cancers. Exp Hematol Oncol 2022; 11:69. [PMID: 36217151 PMCID: PMC9552464 DOI: 10.1186/s40164-022-00321-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) and epithelial membrane proteins (EMP-1, -2, and -3) belong to a small hydrophobic membrane protein subfamily, with four transmembrane structures. PMP22 and EMPs are widely expressed in various tissues and play important roles in cell growth, differentiation, programmed cell death, and metastasis. PMP22 presents its highest expression in the peripheral nerve and participates in normal physiological and pathological processes of the peripheral nervous system. The progress of molecular genetics has shown that the genetic changes of the PMP22 gene, including duplication, deletion, and point mutation, are behind various hereditary peripheral neuropathies. EMPs have different expression patterns in diverse tissues and are closely related to the risk of malignant tumor progression. In this review, we focus on the four members in this protein family which are related to disease pathogenesis and discuss gene mutations and post-translational modification of them. Further research into the interactions between structural alterations and function of PMP22 and EMPs will help understand their normal physiological function and role in diseases and might contribute to developing novel therapeutic tools.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re‑Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
130
|
Vadhan A, Hou MF, Vijayaraghavan P, Wu YC, Hu SCS, Wang YM, Cheng TL, Wang YY, Yuan SSF. CD44 Promotes Breast Cancer Metastasis through AKT-Mediated Downregulation of Nuclear FOXA2. Biomedicines 2022; 10:2488. [PMID: 36289750 PMCID: PMC9599046 DOI: 10.3390/biomedicines10102488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
The primary cause of breast cancer mortality is the metastatic invasion of cancerous stem cells (CSC). Cluster of differentiation 44 (CD44) is a well-known CSC marker in various cancers, as well as a key role player in metastasis and relapse of breast cancer. CD44 is a cell-membrane embedded protein, and it interacts with different proteins to regulate cancer cell behavior. Transcription factor forkhead box protein A2 (FOXA2) acts as an important regulator in multiple cancers, including breast cancer. However, the biological significance of CD44-FOXA2 association in breast cancer metastasis remains unclear. Herein, we observed that CD44 expression was higher in metastatic lymph nodes compared to primary tumors using a flow cytometric analysis. CD44 overexpression in breast cancer cell lines significantly promoted cell migration and invasion abilities, whereas the opposite effects occurred upon the knockdown of CD44. The stem cell array analysis revealed that FOXA2 expression was upregulated in CD44 knockdown cells. However, the knockdown of FOXA2 in CD44 knockdown cells reversed the effects on cell migration and invasion. Furthermore, we found that CD44 mediated FOXA2 localization in breast cancer cells through the AKT pathway. Moreover, the immunofluorescence assay demonstrated that AKT inhibitor wortmannin and AKT activator SC79 treatment in breast cancer cells impacted FOXA2 localization. Collectively, this study highlights that CD44 promotes breast cancer metastasis by downregulating nuclear FOXA2.
Collapse
Affiliation(s)
- Anupama Vadhan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Priya Vijayaraghavan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Department of Biomedical Science and Environmental Biology, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shyng-Shiou F. Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
131
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
132
|
Wang J, Zhang Z, Zhang R, Du H, Zhou T, Wang F. "Willow Branch" DNA Self-Assembly for Cancer Dual-Target and Proliferation Inhibition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11778-11786. [PMID: 36102591 DOI: 10.1021/acs.langmuir.2c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA nanotechnology is beginning to yield unique advantages in the area of drug delivery. For the dual-targeting and proliferation suppression of cancer cells, a "willow branch" DNA assembly based on rolling circle amplification (RCA) was built. Three single-stranded DNAs, including antibody modified cDNAs, aptamer cDNAs, and simple cDNAs, were employed in the DNA self-assembly, along with the RCA scaffolds (every 63 bases is a repeat unit). "Willow branch" DNA (WB DNA) assembly successfully linked multiple antibodies and aptamers together to achieve dual targeting of cancer cells. Binding of CD44 antibodies and S2.2 aptamers to receptors on the cell membrane inhibits both pathways, β-catenin signaling and nuclear factor-kappa B-specific transcription activity, through feedback regulation. Results demonstrated that WB DNA assembly could effectively exert multivalency clustering cell-surface receptors, modulating signal pathways and inhibiting proliferation. This study proposes a new approach for cancer dual-target and proliferation inhibition by clustering multivalent receptors.
Collapse
Affiliation(s)
- Jiawei Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
133
|
Le HV, Dulong V, Picton L, Le Cerf D. Thermoresponsive nanogels based on polyelectrolyte complexes between polycations and functionalized hyaluronic acid. Carbohydr Polym 2022; 292:119711. [PMID: 35725187 DOI: 10.1016/j.carbpol.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
A novel kind of thermoresponsive polyelectrolyte complex-based nanogels (PEC-NGs) was elaborated by mixing hyaluronic acid (HA) functionalized with Jeffamine® M-2005 (M2005, a thermoresponsive amine-terminated polyether) and diethylaminoethyl dextran (DEAE-D) or poly-l-lysine (PLL) in water. The presence of M2005 grafts led to PEC-NGs with larger particle size, lower net surface charge and thermoresponsiveness, namely shrinkage with increasing hydrophobicity at higher temperature. Both M2005 grafts and replacing DEAE-D with PLL as polycation allowed PEC-NGs to have higher stability against salinity and better encapsulation of curcumin, most probably through intraparticle hydrophobic interactions, whereas interparticle hydrophobic interactions may facilitate particle aggregation over time. Curcumin encapsulation can be optimized by applying higher temperature during the complexation. Enzymatic degradability of PEC-NGs was also verified through particle size evolution in the presence of hyaluronidase. These results provide new insights into the physicochemical aspect of such systems as promising nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Virginie Dulong
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Luc Picton
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France.
| |
Collapse
|
134
|
Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022; 8:ncrna8040060. [PMID: 36005828 PMCID: PMC9414906 DOI: 10.3390/ncrna8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common malignancies worldwide, accounting for 2% of all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited screening programs and inefficient physical examination strategies. To address these limitations, liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins, and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine. However, the application of liquid biopsy in oral cancer is still limited and further studies are needed to better clarify its clinical impact. The present manuscript aims to provide an updated overview of the potential use of liquid biopsy as an additional tool for the management of oral lesions by describing the available methodologies and the most promising biomarkers.
Collapse
|
135
|
Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching. Cell Death Dis 2022; 13:682. [PMID: 35931675 PMCID: PMC9355957 DOI: 10.1038/s41419-022-05103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan-Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer.
Collapse
|
136
|
Ansari MI, Bano N, Kainat KM, Singh VK, Sharma PK. Bisphenol A exposure induces metastatic aggression in low metastatic MCF-7 cells via PGC-1α mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity. Life Sci 2022; 302:120649. [PMID: 35597549 DOI: 10.1016/j.lfs.2022.120649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
AIMS The frequency of estrogen receptor alpha (ERα)-positive breast cancers and their metastatic progression is prevalent in females globally. Aberrant interaction of estrogen-like endocrine-disrupting chemicals (EDCs) is highly implicated in breast carcinogenesis. Studies have shown that single or acute exposures of weak EDCs such as bisphenol A (BPA) may not have a substantial pro-carcinogenic/metastatic effect. However, repeated exposure to EDCs is expected to strongly induce carcinogenic/metastatic progression, which remains to be studied. MAIN METHODS Low metastatic ERα-positive human breast cancer cells (MCF-7) were exposed to nanomolar doses of BPA every 24 h (up to 200 days) to study the effect of repeated exposure on metastatic potential. Following the designated treatment of BPA, markers of epithelial-mesenchymal transition (EMT), migration and invasion, mitochondrial biogenesis, ATP levels, and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) knockdown assays were performed. KEY FINDINGS A repeated exposure of low dose BPA induced stable epithelial-mesenchymal plasticity in MCF-7 cells to augment migration and invasion in the ERα-dependent pathway. Repeated exposures of BPA increased the levels of several mesenchymal markers such as N-cadherin, vimentin, cluster of differentiation 44 (CD44), slug, and alpha-smooth muscle actin (α-SMA), whereas reduced the level of E-cadherin drastically. BPA-induced mitochondrial biogenesis favored metastatic aggression by fulfilling bioenergetics demand via PGC-1α/NRF1/ERRα signaling. Knockdown of PGC-1α resulted in suppressing both mitochondrial biogenesis and EMT in BPA exposed MCF-7 cells. SIGNIFICANCE Repeated exposures of low dose BPA may induce metastatic aggression in ERα-positive breast cancer cells via PGC-1α-mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nuzhat Bano
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K M Kainat
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vipendra Kumar Singh
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Kumar Sharma
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
137
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
138
|
Zhu L, Yang Y, Li X, Zheng Y, Li Z, Chen H, Gao Y. Facile preparation of indocyanine green and tiny gold nanoclusters co-loaded nanocapsules for targeted synergistic sono-/photo-therapy. J Colloid Interface Sci 2022; 627:596-609. [PMID: 35872417 DOI: 10.1016/j.jcis.2022.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Photothermal therapy (PTT) and sono-photodynamic therapy (SPDT) are fast growing local treatment modalities with minimal invasiveness and high safety. Gold nanoparticles and indocyanine green (ICG) have been used as sensitizers for PTT and SPDT. However, long resident time of gold nanoparticles in tissues and fast elimination of ICG hampered their further clinical applications. Herein, we developed nanocapsules formed by hyaluronic acid and chitosan loading with ICG and tiny gold nanoclusters (TAuNCs) to overcome the shortcomings of gold nanoparticles and ICG for combined PTT and SPDT. The nanocapsules exhibited good biological stability, favorable photothermal effects, and ultrasound/near-infrared light (NIR)-responsive release behaviors. The hyaluronic acid could mediate the specific delivery of cargos to CD44 protein over-expressing cancer cells. The in vitro and in vivo results showed that TAuNCs and ICG could act synergistically to obtain satisfactory anticancer effects under NIR laser and/or ultrasound exposure induced by thermal ablation and reactive oxygen species (ROS) generation. Biodistribution and excretion studies showed that the nanocapsules had longer ICG retention time in tumor and most of the TAuNCs could be effectively excreted from the body within one month. This study thus provides a facile strategy for the development of a safe and high-performance nanoplatform for synergistic PTT/SPDT.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
139
|
Wolf I, Gratzke C, Wolf P. Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Front Oncol 2022; 12:935715. [PMID: 35875084 PMCID: PMC9304860 DOI: 10.3389/fonc.2022.935715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research and successful improvements in diagnosis and therapy, prostate cancer (PC) remains a major challenge. In recent years, it has become clear that PC stem cells (PCSCs) are the driving force in tumorigenesis, relapse, metastasis, and therapeutic resistance of PC. In this minireview, we discuss the impact of PCSCs in the clinical practice. Moreover, new therapeutic approaches to combat PCSCs are presented with the aim to achieve an improved outcome for patients with PC.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Philipp Wolf,
| |
Collapse
|
140
|
Riecks J, Parnigoni A, Győrffy B, Kiesel L, Passi A, Vigetti D, Götte M. The hyaluronan-related genes HAS2, HYAL1-4, PH20 and HYALP1 are associated with prognosis, cell viability and spheroid formation capacity in ovarian cancer. J Cancer Res Clin Oncol 2022; 148:3399-3419. [PMID: 35767191 PMCID: PMC9587083 DOI: 10.1007/s00432-022-04127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Purpose Hyaluronan modulates tumour progression, including cell adhesion, cohesion, proliferation and invasion, and the cancer stem cell phenotype. In ovarian cancer, high levels of stromal hyaluronan are associated with poor prognosis. In this work, hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-4, PH-20, HYALP1) were examined with regard to different levels of gene expression and its influence on ovarian cancer patients’ survival. The impact of a siRNA depletion of HAS2 was investigated in vitro. Methods Using the Kaplan–Meier Plotter tool, we investigated the influence of hyaluronic synthases and hyaluronidases on the survival of a collective of 1435 ovarian cancer patients. Differences in gene expression between normal (n = 46) and cancerous (n = 744) ovarian tissue were examined using the TNMplot database. Following an evaluation of hyaluronan-related gene expression in the ATCC ovarian cancer panel, we studied SKOV3 and SW 626 ovarian cancer cells subjected to HAS2 siRNA or control siRNA treatment in terms of HAS1-3, HYAL2 and HYAL3 mRNA expression. We investigated the ability to form spheroids using the Hanging Drop method and the response to chemotherapy at different concentrations using the MTT Assay. By STRING analysis, interactions within the enzymes of the hyaluronic acid system and with binding partners were visualized. Results HAS1, HYAL1 and HYAL4 mRNA expression is significantly upregulated, whereas HAS2, HYAL2 and HYAL3 mRNA expression is significantly downregulated in ovarian cancer tissue compared to controls. HAS2 improves cell viability, the capability to form tumour spheroids and has a negative prognostic value regarding overall survival. Lower HAS2 expression and high expression of HYAL2 and HYAL3 favours the survival of ovarian cancer patients. HAS2 knockdown cells and control cells showed a moderate response to combinatorial in vitro chemotherapy with taxol and cisplatin. Conclusion In conclusion, our study shows that the hyaluronic acid system has a relevant influence on the survival of ovarian cancer patients and could therefore be considered as a possible prognostic factor.
Collapse
Affiliation(s)
- Jette Riecks
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Arianna Parnigoni
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany.
| |
Collapse
|
141
|
Cisplatin-Resistant CD44+ Lung Cancer Cells Are Sensitive to Auger Electrons. Int J Mol Sci 2022; 23:ijms23137131. [PMID: 35806135 PMCID: PMC9266901 DOI: 10.3390/ijms23137131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer stem cells (CSCs) are resistant to conventional therapy and present a major clinical challenge since they are responsible for the relapse of many cancers, including non-small cell lung cancer (NSCLC). Hence, future successful therapy should also eradicate CSCs. Auger electrons have demonstrated promising therapeutic potential and can induce DNA damage while sparing surrounding cells. Here, we sort primary patient-derived NSCLC cells based on their expression of the CSC-marker CD44 and investigate the effects of cisplatin and a thymidine analog (deoxyuridine) labeled with an Auger electron emitter (125I). We show that the CD44+ populations are more resistant to cisplatin than the CD44− populations. Interestingly, incubation with the thymidine analog 5-[125I]iodo-2′-deoxyuridine ([125I]I-UdR) induces equal DNA damage, G2/M cell cycle arrest, and apoptosis in the CD44− and CD44+ populations. Our results suggest that Auger electron emitters can also eradicate resistant lung cancer CD44+ populations.
Collapse
|
142
|
Fernández-Tabanera E, Melero-Fernández de Mera RM, Alonso J. CD44 In Sarcomas: A Comprehensive Review and Future Perspectives. Front Oncol 2022; 12:909450. [PMID: 35785191 PMCID: PMC9247467 DOI: 10.3389/fonc.2022.909450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that the tumor microenvironment, particularly the extracellular matrix, plays an essential role in the development of tumors through the interaction with specific protein-membrane receptors. One of the most relevant proteins in this context is the transmembrane protein CD44. The role of CD44 in tumor progression, invasion, and metastasis has been well established in many cancers, although a comprehensive review concerning its role in sarcomas has not been published. CD44 is overexpressed in most sarcomas and several in vitro and in vivo experiments have shown a direct effect on tumor progression, dissemination, and drug resistance. Moreover, CD44 has been revealed as a useful marker for prognostic and diagnostic (CD44v6 isoform) in osteosarcoma. Besides, some innovative treatments such as HA-functionalized liposomes therapy have become an excellent CD44-mediated intracellular delivery system for osteosarcoma. Unfortunately, the reduced number of studies deciphering the prognostic/diagnostic value of CD44 in other sarcoma subgroups, neither than osteosarcoma, in addition to the low number of patients involved in those studies, have produced inconclusive results. In this review, we have gone through the information available on the role of CD44 in the development, maintenance, and progression of sarcomas, analyzing their implications at the prognostic, therapeutic, and mechanistic levels. Moreover, we illustrate how research involving the specific role of CD44 in the different sarcoma subgroups could suppose a chance to advance towards a more innovative perspective for novel therapies and future clinical trials.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- *Correspondence: Javier Alonso,
| |
Collapse
|
143
|
Dihydrotanshinone I Enhances Cell Adhesion and Inhibits Cell Migration in Osteosarcoma U-2 OS Cells through CD44 and Chemokine Signaling. Molecules 2022; 27:molecules27123714. [PMID: 35744840 PMCID: PMC9231138 DOI: 10.3390/molecules27123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
In the screening of novel natural products against cancer using an in vitro cancer cell model, we recently found that tanshinones from a traditional Chinese medicine, the rhizome of Salvia miltiorrhiza Bunge (Danshen), had potent effects on cell proliferation and migration. Especially for human osteosarcoma U−2 OS cells, tanshinones significantly enhanced the cell adherence, implying a possible role in cell adhesion and cell migration inhibition. In this work, therefore, we aimed to provide a new insight into the possible molecule mechanisms of dihydrotanshinone I, which had the strongest effects on cell adhesion among several candidate tanshinones. RNA−sequencing-based transcriptome analysis and several biochemical experiments indicated that there were comprehensive signals involved in dihydrotanshinone I-treated U−2 OS cells, such as cell cycle, DNA replication, thermogenesis, tight junction, oxidative phosphorylation, adherens junction, and focal adhesion. First, dihydrotanshinone I could potently inhibit cell proliferation and induce cell cycle arrest in the G0/G1 phase by downregulating the expression of CDK4, CDK2, cyclin D1, and cyclin E1 and upregulating the expression of p21. Second, it could significantly enhance cell adhesion on cell plates and inhibit cell migration, involving the hyaluronan CD44−mediated CXCL8–PI3K/AKT–FOXO1, IL6–STAT3–P53, and EMT signaling pathways. Thus, the increased expression of CD44 and lengthened protrusions around the cell yielded a significant increase in cell adhesion. In summary, these results suggest that dihydrotanshinone I might be an interesting molecular therapy for enhancing human osteosarcoma U−2 OS cell adhesion and inhibiting cell migration and proliferation.
Collapse
|
144
|
Guo B, Wei J, Wang J, Sun Y, Yuan J, Zhong Z, Meng F. CD44-targeting hydrophobic phosphorylated gemcitabine prodrug nanotherapeutics augment lung cancer therapy. Acta Biomater 2022; 145:200-209. [PMID: 35430336 DOI: 10.1016/j.actbio.2022.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
Abstract
Gemcitabine (GEM) is among the most used chemotherapies for advanced malignancies including non-small cell lung cancer. The clinical efficacy of GEM is, however, downplayed by its poor bioavailability, short half-life, drug resistance, and dose-limiting toxicities (e.g. myelosuppression). In spite of many approaches exploited to improve the efficacy and safety of GEM, limited success was achieved. The short A6 peptide (sequence: Ac-KPSSPPEE-NH2) is clinically validated for specific binding to CD44 on metastatic tumors. Here, we designed a robust and CD44-specific GEM nanotherapeutics by encapsulating hydrophobic phosphorylated gemcitabine prodrug (HPG) into the core of A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG), which exhibited reduction-triggered HPG release and specific targetability to CD44 overexpressing tumor cells. Interestingly, A6 greatly enhanced the internalization and inhibitory activity of micellar HPG (mHPG) in CD44 positive A549 cells, and increased its accumulation in A549 cancerous lung, leading to potent repression of orthotopic tumor growth, depleted toxicity, and marked survival benefits compared to free HPG and mHPG (median survival time: 59 days versus 30 and 45 days, respectively). The targeted delivery of gemcitabine prodrug with disulfide-crosslinked biodegradable micelles appears to be a highly appealing strategy to boost gemcitabine therapy for advance tumors. STATEMENT OF SIGNIFICANCE: Gemcitabine (GEM) though widely used in clinics for treating advanced tumors is associated with poor bioavailability, short half-life and dose-limiting toxicities. Development of clinically translatable GEM formulations to improve its anti-tumor efficacy and safety is of great interest. Here, we report on CD44-targeting GEM nanotherapeutics obtained by encapsulating hydrophobic phosphorylated GEM prodrug (HPG), a single isomer of NUC-1031, into A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG). A6-mHPG demonstrates stability against degradation, enhanced internalization and inhibition toward CD44+ cells, and increased accumulation in A549 lung tumor xenografts, leading to potent repression of orthotopic tumor growth, depleted toxicity and marked survival benefits. The targeted delivery of GEM prodrug using A6-mHPG is a highly appealing strategy to GEM cancer therapy.
Collapse
Affiliation(s)
- Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jingyi Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Co., Ltd., Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
145
|
Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol 2022; 323:C145-C158. [PMID: 35649255 DOI: 10.1152/ajpcell.00139.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes of the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer, and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.
Collapse
Affiliation(s)
- Theodoros Karalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
146
|
Novosad VO, Polikanova IS, Tonevitsky EA, Maltseva DV. Expression of CD44 Isoforms in Tumor Samples and Cell Lines of Human Colorectal Cancer. Bull Exp Biol Med 2022; 173:155-159. [PMID: 35618971 DOI: 10.1007/s10517-022-05512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 10/18/2022]
Abstract
Detection of colorectal cancer biomarkers (CRC) remains an urgent task for the diagnosis and prediction of the disease course. A promising approach is the study of cancer stem cell markers. The cell surface glycoprotein CD44 is very important for CRC and its stem cells. Alternative splicing of 9 variable exons of CD44 mRNA leads to the formation of various isoforms of the protein with different roles in the progression of cancer. Studies of the functions of CD44 isoforms require adequate models considering the distribution of CD44 isoforms in real tumor samples. In the present study, the expression profile of CD44 isoforms in CRC was assessed based on the publicly available mRNA sequencing data of patient tumors from the TCGA-COAD database. It was shown that normal tissues predominantly expressed isoforms 3 and 4 at nearly equal levels, whereas tumors mainly expressed isoforms 2, 3, and 4; isoform 3 was expressed at the highest level. Further, the most relevant cell lines for studying the role of CD44 in CRC were identified based on the analysis of mRNA sequencing data of 55 CRC cell lines form CCLE database.
Collapse
Affiliation(s)
- V O Novosad
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics (HSE University), Moscow, Russia.
| | - I S Polikanova
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics (HSE University), Moscow, Russia
| | - E A Tonevitsky
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics (HSE University), Moscow, Russia
| | - D V Maltseva
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics (HSE University), Moscow, Russia
| |
Collapse
|
147
|
Yuan SSF, Hung AC, Hsu CW, Lan TH, Su CW, Chi TC, Chang YC, Chen YK, Wang YY. CD44 Mediates Oral Squamous Cell Carcinoma-Promoting Activity of MRE11 via AKT Signaling. J Pers Med 2022; 12:841. [PMID: 35629265 PMCID: PMC9144890 DOI: 10.3390/jpm12050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Oral cancer is one of the highest-incidence malignancies worldwide, with the occurrence of oral squamous cell carcinoma (OSCC) being the most frequently diagnosed form. A barrier for oral cancer management may arise from tumor cells that possess properties of cancer stemness, which has been recognized as a crucial factor in tumor recurrence and metastasis. As such, understanding the molecular mechanisms underlying these tumor cells may provide insights for improving cancer treatment. MRE11 is the core protein of the RAD50/MRE11/NBS1 complex with a primary role in DNA damage repair, and it has been diversely associated with tumor development including OSCC. In this study, we aimed to investigate the engagement of CD44, a cancer stemness marker functioning in the control of cell growth and motility, in OSCC malignancy under the influence of MRE11. We found that overexpression of MRE11 enhanced CD44 expression and tumorsphere formation in OSCC cells, whereas knockdown of MRE11 reduced these phenomena. In addition, the MRE11-promoted tumorsphere formation or cell migration ability was compromised in OSCC cells carrying siRNA that targets CD44, as was the MRE11-promoted AKT phosphorylation. These were further supported by analyzing clinical samples, where higher CD44 expression was associated with lymph node metastasis. Additionally, a positive correlation between the expression of MRE11 and CD44, or that of CD44 and phosphorylated AKT, was observed in OSCC tumor tissues. Finally, the expression of CD44 was found to be higher in the metastatic lung nodules from mice receiving tail vein-injection with MRE11-overexpressing OSCC cells compared with control mice, and a positive correlation between CD44 and phosphorylated AKT was also observed in these metastatic lung nodules. Altogether, our current study revealed a previously unidentified mechanism linking CD44 and AKT in MRE11-promoted OSCC malignancy, which may shed light to the development of novel therapeutic strategies in consideration of this new pathway in OSCC.
Collapse
Affiliation(s)
- Shyng-Shiou F. Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-S.F.Y.); (A.C.H.); (T.-C.C.)
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.H.); (C.-W.S.); (Y.-K.C.)
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Amos C. Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-S.F.Y.); (A.C.H.); (T.-C.C.)
| | - Ching-Wei Hsu
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.H.); (C.-W.S.); (Y.-K.C.)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ting-Hsun Lan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chang-Wei Su
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.H.); (C.-W.S.); (Y.-K.C.)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsung-Chen Chi
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-S.F.Y.); (A.C.H.); (T.-C.C.)
| | - Yu-Chiuan Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Yuk-Kwan Chen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.H.); (C.-W.S.); (Y.-K.C.)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Oral and Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.H.); (C.-W.S.); (Y.-K.C.)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| |
Collapse
|
148
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
149
|
Akbari V, Hejazi E, Minaiyan M, Emami J, Lavasanifar A, Rezazadeh M. An injectable thermosensitive hydrogel/nanomicelles composite for local chemo-immunotherapy in mouse model of melanoma. J Biomater Appl 2022; 37:551-562. [PMID: 35543695 DOI: 10.1177/08853282221098232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, cancer immunotherapy and its combination with chemotherapy has been considered to improve therapeutic efficacy with lower systemic toxicity. Here, we prepared a thermosensitive hydrogel based hyaluronic acid (HA) encapsulated with macrophage colony-stimulating factor (GM-CSF) and paclitaxel (PTX) for chemoimmunotherapy of cancer. For this purpose, the micelles were prepared with the mixture of pluronic F127 (PF127) and tocopheryl polyethylene glycol (TPGS) and loaded with PTX. In the following step, thermosensitive hydrogel using PF127 and HA was prepared and co-encapsulated with the micelles and GM-CSF. Rheological performance, friability, release patterns for PTX and GM-CSF, and stability of GM-CSF in the hydrogel were evaluated in details. In-vitro and in vivo immunologic activities of GM-CSF in the hydrogel were also evaluated via numbering macrophages and recruited DCs in transwells and after subcutaneous injection of the GM-CSF-loaded hydrogel. Finally, mouse model of subcutaneous melanoma was induced in female C57 mice using B16 F10 cell line and the effect of optimized formulation was evaluated based on tumor volume and histological analysis. The hydrogel could maintain the biological activity of the incorporated drugs and exhibited a more prolonged release for PTX compared to GM-CSF. GM-CSF-releasing HA/PF127 hydrogel successfully recruited macrophages in vitro. Moreover, the most potent anti-tumor effect was observed following the intra-tumoral injection of the optimized formulation in melanoma bearing mice, compared to immunization by the GM-CSF and PTX alone. The current formulation shows a great promise to conquer resistant malignancies and provides a new approach for co-encapsulating of hydrophobic anticancer drugs and growth factor.
Collapse
Affiliation(s)
- Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences,Isfahan University of Medical Sciences, 48455Isfahan, Iran
| | - Elham Hejazi
- National Institute for Medical Research Development and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Science, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Emami
- National Institute for Medical Research Development and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Lavasanifar
- Pharmacy and Pharmaceutical Sciences, 3158University of Alberta, Edmonton, AB, Canada
| | - Mahboubeh Rezazadeh
- National Institute for Medical Research Development and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
150
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R. An Electrochemical Immunosensor Based on Gold-Graphene Oxide Nanocomposites with Ionic Liquid for Detecting the Breast Cancer CD44 Biomarker. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20802-20812. [PMID: 35482593 DOI: 10.1021/acsami.2c03905] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We develop a highly sensitive electrochemical immunosensor for the detection of a cluster of differentiation-44 (CD44) antigen, a breast cancer biomarker. The hybrid nanocomposite consists of graphene oxide, ionic liquid, and gold nanoparticles (GO-IL-AuNPs) immobilized on a glassy carbon electrode. GO favors the immobilization of antibodies because of the availability of oxygen functionalities. However, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM.BF4) and AuNPs facilitate electron transfer and increase the effective surface area, which enhances the performance of the immunosensor. Furthermore, UV-visible, fourier transform infrared and Raman spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, voltammetry, and electrochemical impedance spectroscopy characterization techniques have been employed to investigate the structural and chemical properties of the nanomaterials. The quantitative detection of CD44 antigen has been accomplished via differential pulse voltammetry and EIS detection techniques. It has been quantified that the proposed immunosensor offers excellent detection ability in both phosphate-buffered saline (PBS) and serum samples. Under optimum conditions, the linear detection range of the immunosensor for CD44 antigen is 5.0 fg mL-1 to 50.0 μg mL-1 and the limit of detection is 2.0 and 1.90 fg mL-1 as observed via DPV and EIS, respectively, in PBS. Additionally, the immunosensor has high sensitivity and specificity and can be successfully applied for the detection of CD44 antigen in clinical samples.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|