101
|
Galán-Ganga M, Rodríguez-Cueto C, Merchán-Rubira J, Hernández F, Ávila J, Posada-Ayala M, Lanciego JL, Luengo E, Lopez MG, Rábano A, Fernández-Ruiz J, Lastres-Becker I. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun 2021; 9:90. [PMID: 34001284 PMCID: PMC8130522 DOI: 10.1186/s40478-021-01196-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the alteration/aggregation of TAU protein, for which there is still no effective treatment. Therefore, new pharmacological targets are being sought, such as elements of the endocannabinoid system (ECS). We analysed the occurrence of changes in the ECS in tauopathies and their implication in the pathogenesis. By integrating gene expression analysis, immunofluorescence, genetic and adeno-associated virus expressing TAU mouse models, we found a TAU-dependent increase in CB2 receptor expression in hippocampal neurons, that occurs as an early event in the pathology and was maintained until late stages. These changes were accompanied by alterations in the endocannabinoid metabolism. Remarkably, CB2 ablation in mice protects from neurodegeneration induced by hTAUP301L overexpression, corroborated at the level of cognitive behaviour, synaptic plasticity, and aggregates of insoluble TAU. At the level of neuroinflammation, the absence of CB2 did not produce significant changes in concordance with a possible neuronal location rather than its classic glial expression in these models. These findings were corroborated in post-mortem samples of patients with Alzheimer's disease, the most common tauopathy. Our results show that neurons with accumulated TAU induce the expression of the CB2 receptor, which enhances neurodegeneration. These results are important for our understanding of disease mechanisms, providing a novel therapeutic strategy to be investigated in tauopathies.
Collapse
|
102
|
Annadurai N, De Sanctis JB, Hajdúch M, Das V. Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer's disease and other tauopathies. Exp Neurol 2021; 343:113756. [PMID: 33989658 DOI: 10.1016/j.expneurol.2021.113756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is characterised by the accumulation of intracytoplasmic aggregates of tau protein, which are suggested to spread in a prion-like manner between interconnected brain regions. This spreading is mediated by the secretion and uptake of tau from the extracellular space or direct cell-to-cell transmission through cellular protrusions. The prion-like tau then converts the endogenous, normal tau into pathological forms, resulting in neurodegeneration. The endoplasmic reticulum/Golgi-independent tau secretion through unconventional secretory pathways involves delivering misfolded and aggregated tau to the plasma membrane and its release into the extracellular space by non-vesicular and vesicular mechanisms. Although cytoplasmic tau was thought to be released only from degenerating cells, studies now show that cells constitutively secrete tau at low levels under physiological conditions. The mechanisms of secretion of tau under physiological and pathological conditions remain unclear. Therefore, a better understanding of these pathways is essential for developing therapeutic approaches that can target prion-like tau forms to prevent neurodegeneration progression in AD. This review focuses on unconventional secretion pathways involved in the spread of tau pathology in AD and presents these pathways as prospective areas for future AD drug discovery and development.
Collapse
Affiliation(s)
- Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic.
| |
Collapse
|
103
|
Eide PK, Mariussen E, Uggerud H, Pripp AH, Lashkarivand A, Hassel B, Christensen H, Hovd MH, Ringstad G. Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood. JCI Insight 2021; 6:147063. [PMID: 33822769 PMCID: PMC8262318 DOI: 10.1172/jci.insight.147063] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDMethodology for estimation of cerebrospinal fluid (CSF) tracer clearance could have wide clinical application in predicting excretion of intrathecal drugs and metabolic solutes from brain metabolism and for diagnostic workup of CSF disturbances.METHODSThe MRI contrast agent gadobutrol (Gadovist) was used as a CSF tracer and injected into the lumbar CSF. Gadobutrol is contained outside blood vessels of the CNS and is eliminated along extravascular pathways, analogous to many CNS metabolites and intrathecal drugs. Tracer enrichment was verified and assessed in CSF by MRI at the level of the cisterna magna in parallel with obtaining blood samples through 48 hours.RESULTSIn a reference patient cohort (n = 29), both enrichment within CSF and blood coincided in time. Blood concentration profiles of gadobutrol through 48 hours varied between patients diagnosed with CSF leakage (n = 4), idiopathic normal pressure hydrocephalus dementia (n = 7), pineal cysts (n = 8), and idiopathic intracranial hypertension (n = 4).CONCLUSIONAssessment of CSF tracer clearance is clinically feasible and may provide a way to predict extravascular clearance of intrathecal drugs and endogenous metabolites from the CNS. The peak concentration in blood (at about 10 hours) was preceded by far peak tracer enhancement at MRI in extracranial lymphatic structures (at about 24 hours), as shown in previous studies, indicating a major role of the spinal canal in CSF clearance capacity.FUNDINGThe work was supported by the Department of Neurosurgery, Oslo University Hospital; the Norwegian Institute for Air Research; and the University of Oslo.
Collapse
Affiliation(s)
- Per K Eide
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Hilde Uggerud
- Norwegian Institute for Air Research, Kjeller, Norway
| | - Are H Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjørnar Hassel
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurohabilitation, and
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
104
|
FKBP52 overexpression accelerates hippocampal-dependent memory impairments in a tau transgenic mouse model. NPJ Aging Mech Dis 2021; 7:9. [PMID: 33941782 PMCID: PMC8093247 DOI: 10.1038/s41514-021-00062-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Abnormal accumulation of hyperphosphorylated tau induces pathogenesis in neurodegenerative diseases, like Alzheimer's disease. Molecular chaperones with peptidyl-prolyl cis/trans isomerase (PPIase) activity are known to regulate these processes. Previously, in vitro studies have shown that the 52 kDa FK506-binding protein (FKBP52) interacts with tau inducing its oligomerization and fibril formation to promote toxicity. Thus, we hypothesized that increased expression of FKBP52 in the brains of tau transgenic mice would alter tau phosphorylation and neurofibrillary tangle formation ultimately leading to memory impairments. To test this, tau transgenic (rTg4510) and wild-type mice received bilateral hippocampal injections of virus overexpressing FKBP52 or GFP control. We examined hippocampal-dependent memory, synaptic plasticity, tau phosphorylation status, and neuronal health. This work revealed that rTg4510 mice overexpressing FKBP52 had impaired spatial learning, accompanied by long-term potentiation deficits and hippocampal neuronal loss, which was associated with a modest increase in total caspase 12. Together with previous studies, our findings suggest that FKBP52 may sensitize neurons to tau-mediated dysfunction via activation of a caspase-dependent pathway, contributing to memory and learning impairments.
Collapse
|
105
|
Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G, Snellman A, Schöll M, Troakes C, Hye A, Gauthier S, Vanmechelen E, Zetterberg H, Rosa-Neto P, Blennow K. Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology. Acta Neuropathol 2021; 141:709-724. [PMID: 33585983 PMCID: PMC8043944 DOI: 10.1007/s00401-021-02275-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
The quantification of phosphorylated tau in biofluids, either cerebrospinal fluid (CSF) or plasma, has shown great promise in detecting Alzheimer's disease (AD) pathophysiology. Tau phosphorylated at threonine 231 (p-tau231) is one such biomarker in CSF but its usefulness as a blood biomarker is currently unknown. Here, we developed an ultrasensitive Single molecule array (Simoa) for the quantification of plasma p-tau231 which was validated in four independent cohorts (n = 588) in different settings, including the full AD continuum and non-AD neurodegenerative disorders. Plasma p-tau231 was able to identify patients with AD and differentiate them from amyloid-β negative cognitively unimpaired (CU) older adults with high accuracy (AUC = 0.92-0.94). Plasma p-tau231 also distinguished AD patients from patients with non-AD neurodegenerative disorders (AUC = 0.93), as well as from amyloid-β negative MCI patients (AUC = 0.89). In a neuropathology cohort, plasma p-tau231 in samples taken on avergae 4.2 years prior to post-mortem very accurately identified AD neuropathology in comparison to non-AD neurodegenerative disorders (AUC = 0.99), this is despite all patients being given an AD dementia diagnosis during life. Plasma p-tau231 was highly correlated with CSF p-tau231, tau pathology as assessed by [18F]MK-6240 positron emission tomography (PET), and brain amyloidosis by [18F]AZD469 PET. Remarkably, the inflection point of plasma p-tau231, increasing as a function of continuous [18F]AZD469 amyloid-β PET standardized uptake value ratio, was shown to be earlier than standard thresholds of amyloid-β PET positivity and the increase of plasma p-tau181. Furthermore, plasma p-tau231 was significantly increased in amyloid-β PET quartiles 2-4, whereas CSF p-tau217 and plasma p-tau181 increased only at quartiles 3-4 and 4, respectively. Finally, plasma p-tau231 differentiated individuals across the entire Braak stage spectrum, including Braak staging from Braak 0 through Braak I-II, which was not observed for plasma p-tau181. To conclude, this novel plasma p-tau231 assay identifies the clinical stages of AD and neuropathology equally well as plasma p-tau181, but increases earlier, already with subtle amyloid-β deposition, prior to the threshold for amyloid-β PET positivity has been attained, and also in response to early brain tau deposition. Thus, plasma p-tau231 is a promising novel biomarker of emerging AD pathology with the potential to facilitate clinical trials to identify vulnerable populations below PET threshold of amyloid-β positivity or apparent entorhinal tau deposition.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK.
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, The McGill University Research Centre for Studies in Aging, Montreal, McGill University, Montreal, QC, Canada
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Pedro Rosa-Neto
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
106
|
Oberrauch S, Metha JA, Brian ML, Barnes SA, Featherby TJ, Lawrence AJ, Hoyer D, Murawski C, Jacobson LH. Reward motivation and cognitive flexibility in tau null-mutation mice. Neurobiol Aging 2021; 100:106-117. [PMID: 33524848 DOI: 10.1016/j.neurobiolaging.2020.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023]
Abstract
The reduction of tau or hyperphosphorylated tau (p-tau) has been proposed as a therapeutic strategy for Alzheimer's disease (AD) and frontotemporal dementia (FTD). Cognitive decline and sleep-wake dysregulation seen in AD and FTD patients are mimicked in transgenic and null-mutation mouse models of tauopathy. Alterations in the reward system are additional symptoms of AD and FTD. However, the role of tau in reward processes is not well understood. The present study aimed to examine reward and reward-motivated cognitive processes in male and female tau knockout (tau-/-) and wild-type mice using progressive ratio and reversal learning tasks. Tau-/- mice were heavier, ate more in the home cage, and reached criterion in operant lever training faster than wild-type mice. Tau-/- mice had a higher breakpoint in progressive ratio but were unimpaired in reversal learning or reward sensitivity. These data indicate that tau loss of function alters reward processing. This may help to explain aberrant reward-related behaviors in tauopathy patients and highlights a potentially important area for consideration in the development of anti-tau therapies.
Collapse
Affiliation(s)
- Sara Oberrauch
- The Florey Institute of Neuroscience and Mental Health, Parkville Campus, University of Melbourne, Parkville, Australia; Department of Pharmacology & Therapeutics, School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy A Metha
- The Florey Institute of Neuroscience and Mental Health, Parkville Campus, University of Melbourne, Parkville, Australia; Department of Pharmacology & Therapeutics, School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; Department of Finance, Brain, Mind & Markets Laboratory, The University of Melbourne, Melbourne, Victoria, Australia
| | - Maddison L Brian
- The Florey Institute of Neuroscience and Mental Health, Parkville Campus, University of Melbourne, Parkville, Australia; Department of Pharmacology & Therapeutics, School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Samuel A Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Travis J Featherby
- The Florey Institute of Neuroscience and Mental Health, Parkville Campus, University of Melbourne, Parkville, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville Campus, University of Melbourne, Parkville, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, Parkville Campus, University of Melbourne, Parkville, Australia; Department of Pharmacology & Therapeutics, School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Carsten Murawski
- Department of Finance, Brain, Mind & Markets Laboratory, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, Parkville Campus, University of Melbourne, Parkville, Australia; Department of Pharmacology & Therapeutics, School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Victoria, Australia.
| |
Collapse
|
107
|
Pilliod J, Desjardins A, Pernègre C, Jamann H, Larochelle C, Fon EA, Leclerc N. Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. J Biol Chem 2021; 295:17827-17841. [PMID: 33454017 DOI: 10.1074/jbc.ra120.013553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/03/2020] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation.
Collapse
Affiliation(s)
- Julie Pilliod
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada
| | - Alexandre Desjardins
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Hélène Jamann
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Catherine Larochelle
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Edward A Fon
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
108
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
109
|
Giunta M, Solje E, Gardoni F, Borroni B, Benussi A. Experimental Disease-Modifying Agents for Frontotemporal Lobar Degeneration. J Exp Pharmacol 2021; 13:359-376. [PMID: 33790662 PMCID: PMC8005747 DOI: 10.2147/jep.s262352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia is a clinically, genetically and pathologically heterogeneous neurodegenerative disorder, enclosing a wide range of different pathological entities, associated with the accumulation of proteins such as tau and TPD-43. Characterized by a high hereditability, mutations in three main genes, MAPT, GRN and C9orf72, can drive the neurodegenerative process. The connection between different genes and proteinopathies through specific mechanisms has shed light on the pathophysiology of the disease, leading to the identification of potential pharmacological targets. New experimental strategies are emerging, in both preclinical and clinical settings, which focus on small molecules rather than gene therapy. In this review, we provide an insight into the aberrant mechanisms leading to FTLD-related proteinopathies and discuss recent therapies with the potential to ameliorate neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
110
|
Chang CW, Shao E, Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 2021; 371:371/6532/eabb8255. [PMID: 33632820 DOI: 10.1126/science.abb8255] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
Collapse
Affiliation(s)
- Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA. .,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
111
|
Tamil Selvan S, Ravichandar R, Kanta Ghosh K, Mohan A, Mahalakshmi P, Gulyás B, Padmanabhan P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
112
|
Research advances in neuroimaging and genetic characteristics of the non-fluent/agrammatic variant of primary progressive aphasia. Chin Med J (Engl) 2021; 134:665-667. [PMID: 33725705 PMCID: PMC7989977 DOI: 10.1097/cm9.0000000000001424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
113
|
FTLD Treatment: Current Practice and Future Possibilities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:297-310. [PMID: 33433882 DOI: 10.1007/978-3-030-51140-1_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
While behavioral variant frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA) remain unrelenting and universally fatal conditions, there is a framework for supportive treatment in patients diagnosed with these frontotemporal dementia (FTD) syndromes and the larger spectrum of clinical syndromes associated with frontotemporal lobar degeneration (FTLD) pathology on autopsy. A managing physician has an important role in weighing therapeutic options, organizing caregiver support, and framing long-term expectations for patients and caregivers. Additionally, a dedicated neurologist may assist patients and caregivers in navigating a growing range of FTD research, including exciting opportunities in clinical therapeutic trials. This chapter will review current therapeutic options for patients with bvFTD and PPA and detail the landscape of potential new disease-modifying therapies targeting the pathophysiology or FTLD.
Collapse
|
114
|
Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction in Tauopathy. Int J Mol Sci 2021; 22:ijms22031186. [PMID: 33530349 PMCID: PMC7865413 DOI: 10.3390/ijms22031186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging technique called manganese-enhanced magnetic resonance imaging (MEMRI) with quantitative R1 mapping. Surprisingly, these benefits occurred despite unchanged hyperphosphorylated tau levels. To elucidate the mechanism behind these improved cognitive outcomes, we performed quantitative proteomics to determine the altered protein network during this early stage in tauopathy and compare this model with the human Alzheimer’s disease (AD) proteome. We identified a cluster of preserved pathways shared with human tauopathy with striking potential for broad multi-target kinase intervention. We further report high confidence candidate proteins as novel therapeutically relevant targets for the treatment of tauopathy. Proteomics data are available via ProteomeXchange with identifier PXD023562.
Collapse
|
115
|
Kabir MT, Uddin MS, Mathew B, Das PK, Perveen A, Ashraf GM. Emerging Promise of Immunotherapy for Alzheimer's Disease: A New Hope for the Development of Alzheimer's Vaccine. Curr Top Med Chem 2021; 20:1214-1234. [PMID: 32321405 DOI: 10.2174/1568026620666200422105156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. OBJECTIVE In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. SUMMARY Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine's immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. CONCLUSION Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
116
|
Fearon C, Lynch T. Commentary: LRP1 Is a Master Regulator of Tau Uptake and Spread. Front Neurol 2021; 11:557509. [PMID: 33424736 PMCID: PMC7786302 DOI: 10.3389/fneur.2020.557509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Conor Fearon
- Centre for Brain Health, Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland.,Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Tim Lynch
- Centre for Brain Health, Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland.,Health Affairs, University College Dublin, Dublin, Ireland
| |
Collapse
|
117
|
Gu JL, Liu F. Tau in Alzheimer's Disease: Pathological Alterations and an Attractive Therapeutic Target. Curr Med Sci 2021; 40:1009-1021. [PMID: 33428128 DOI: 10.1007/s11596-020-2282-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with two major hallmarks: extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau. The number of NFTs correlates positively with the severity of dementia in AD patients. However, there is still no efficient therapy available for AD treatment and prevention so far. A deeper understanding of AD pathogenesis has identified novel strategies for the generation of specific therapies over the past few decades. Several studies have suggested that the prion-like seeding and spreading of tau pathology in the brain may be a key driver of AD. Tau protein is considered as a promising candidate target for the development of therapeutic interventions due to its considerable pathological role in a variety of neurodegenerative disorders. Abnormal tau hyperphosphorylation plays a detrimental pathological role, eventually leading to neurodegeneration. In the present review, we describe the recent research progresses in the pathological mechanisms of tau protein in AD and briefly discuss tau-based therapeutic strategies.
Collapse
Affiliation(s)
- Jian-Lan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, 226001, China. .,Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Nantong, 226001, China.
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| |
Collapse
|
118
|
Ghai R, Nagarajan K, Arora M, Grover P, Ali N, Kapoor G. Current Strategies and Novel Drug Approaches for Alzheimer Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:676-690. [PMID: 32679025 DOI: 10.2174/1871527319666200717091513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a chronic, devastating dysfunction of neurons in the brain leading to dementia. It mainly arises due to neuronal injury in the cerebral cortex and hippocampus area of the brain and is clinically manifested as a progressive mental failure, disordered cognitive functions, personality changes, reduced verbal fluency and impairment of speech. The pathology behind AD is the formation of intraneuronal fibrillary tangles, deposition of amyloid plaque and decline in choline acetyltransferase and loss of cholinergic neurons. Tragically, the disease cannot be cured, but its progression can be halted. Various cholinesterase inhibitors available in the market like Tacrine, Donepezil, Galantamine, Rivastigmine, etc. are being used to manage the symptoms of Alzheimer's disease. The paper's objective is to throw light not only on the cellular/genetic basis of the disease, but also on the current trends and various strategies of treatment including the use of phytopharmaceuticals and nutraceuticals. Enormous literature survey was conducted and published articles of PubMed, Scifinder, Google Scholar, Clinical Trials.org and Alzheimer Association reports were studied intensively to consolidate the information on the strategies available to combat Alzheimer's disease. Currently, several strategies are being investigated for the treatment of Alzheimer's disease. Immunotherapies targeting amyloid-beta plaques, tau protein and neural pathways are undergoing clinical trials. Moreover, antisense oligonucleotide methodologies are being approached as therapies for its management. Phytopharmaceuticals and nutraceuticals are also gaining attention in overcoming the symptoms related to AD. The present review article concludes that novel and traditional therapies simultaneously promise future hope for AD treatment.
Collapse
Affiliation(s)
- Roma Ghai
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Meenakshi Arora
- University of Pittsburgh, 3459, Fifth Ave, Pennsylvania 15213, United States
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Nazakat Ali
- Dabur Research Foundation, Plot-22, Site-4, Industrial area, Sahibabad, Ghaziabad, UP-201010, India
| | - Garima Kapoor
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| |
Collapse
|
119
|
Mishra SK, Yamaguchi Y, Higuchi M, Sahara N. Pick's Tau Fibril Shows Multiple Distinct PET Probe Binding Sites: Insights from Computational Modelling. Int J Mol Sci 2020; 22:E349. [PMID: 33396273 PMCID: PMC7796283 DOI: 10.3390/ijms22010349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/27/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023] Open
Abstract
In recent years, it has been realized that the tau protein is a key player in multiple neurodegenerative diseases. Positron emission tomography (PET) radiotracers that bind to tau filaments in Alzheimer's disease (AD) are in common use, but PET tracers binding to tau filaments of rarer, age-related dementias, such as Pick's disease, have not been widely explored. To design disease-specific and tau-selective PET tracers, it is important to determine where and how PET tracers bind to tau filaments. In this paper, we present the first molecular modelling study on PET probe binding to the structured core of tau filaments from a patient with Pick's disease (TauPiD). We have used docking, molecular dynamics simulations, binding-affinity and tunnel calculations to explore TauPiD binding sites, binding modes, and binding energies of PET probes (AV-1451, MK-6240, PBB3, PM-PBB3, THK-5351 and PiB) with TauPiD. The probes bind to TauPiD at multiple surface binding sites as well as in a cavity binding site. The probes show unique surface binding patterns, and, out of them all, PM-PBB3 proves to bind the strongest. The findings suggest that our computational workflow of structural and dynamic details of the tau filaments has potential for the rational design of TauPiD specific PET tracers.
Collapse
Affiliation(s)
- Sushil K. Mishra
- Advance Glycoscience Research Cluster, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Naruhiko Sahara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| |
Collapse
|
120
|
Barbosa M, Valentão P, Andrade PB. Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration. Mar Drugs 2020; 18:E654. [PMID: 33353007 PMCID: PMC7766193 DOI: 10.3390/md18120654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Globally, the burden of neurodegenerative disorders continues to rise, and their multifactorial etiology has been regarded as among the most challenging medical issues. Bioprospecting for seaweed-derived multimodal acting products has earned increasing attention in the fight against neurodegenerative conditions. Phlorotannins (phloroglucinol-based polyphenols exclusively produced by brown seaweeds) are amongst the most promising nature-sourced compounds in terms of functionality, and though research on their neuroprotective properties is still in its infancy, phlorotannins have been found to modulate intricate events within the neuronal network. This review comprehensively covers the available literature on the neuroprotective potential of both isolated phlorotannins and phlorotannin-rich extracts/fractions, highlighting the main key findings and pointing to some potential directions for neuro research ramp-up processes on these marine-derived products.
Collapse
Affiliation(s)
| | | | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal; (M.B.); (P.V.)
| |
Collapse
|
121
|
Kang YJ, Diep YN, Tran M, Cho H. Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer's Disease. Int J Mol Sci 2020; 21:E9591. [PMID: 33339351 PMCID: PMC7766709 DOI: 10.3390/ijms21249591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, typically showing progressive neurodegeneration in aging brains. The key signatures of the AD progression are the deposition of amyloid-beta (Aβ) peptides, the formation of tau tangles, and the induction of detrimental neuroinflammation leading to neuronal loss. However, conventional pharmacotherapeutic options are merely relying on the alleviation of symptoms that are limited to mild to moderate AD patients. Moreover, some of these medicines discontinued to use due to either the insignificant effectiveness in improving the cognitive impairment or the adverse side effects worsening essential bodily functions. One of the reasons for the failure is the lack of knowledge on the underlying mechanisms that can accurately explain the major causes of the AD progression correlating to the severity of AD. Therefore, there is an urgent need for the better understanding of AD pathogenesis and the development of the disease-modifying treatments, particularly for severe and late-onset AD, which have not been covered thoroughly. Here, we review the underlying mechanisms of AD progression, which have been employed for the currently established therapeutic strategies. We believe this will further spur the discovery of a novel disease-modifying treatment for mild to severe, as well as early- to late-onset, AD.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA;
- Department of Biological Sciences, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Yen N. Diep
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| |
Collapse
|
122
|
Characterization of tau binding by gosuranemab. Neurobiol Dis 2020; 146:105120. [DOI: 10.1016/j.nbd.2020.105120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
|
123
|
Silva MC, Haggarty SJ. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int J Mol Sci 2020; 21:ijms21238948. [PMID: 33255694 PMCID: PMC7728099 DOI: 10.3390/ijms21238948] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.
Collapse
|
124
|
Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells 2020; 9:cells9112513. [PMID: 33233678 PMCID: PMC7699688 DOI: 10.3390/cells9112513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of people worldwide. Unfortunately, none of the current treatments are effective at improving cognitive function in AD patients and, therefore, there is an urgent need for the development of new therapies that target the early cause(s) of AD. Intracellular calcium (Ca2+) regulation is critical for proper cellular and neuronal function. It has been suggested that Ca2+ dyshomeostasis is an upstream factor of many neurodegenerative diseases, including AD. For this reason, chemical agents or small molecules aimed at targeting or correcting this Ca2+ dysregulation might serve as therapeutic strategies to prevent the development of AD. Moreover, neurons are not alone in exhibiting Ca2+ dyshomeostasis, since Ca2+ disruption is observed in other cell types in the brain in AD. In this review, we examine the distinct Ca2+ channels and compartments involved in the disease mechanisms that could be potential targets in AD.
Collapse
|
125
|
Masnata M, Salem S, de Rus Jacquet A, Anwer M, Cicchetti F. Targeting Tau to Treat Clinical Features of Huntington's Disease. Front Neurol 2020; 11:580732. [PMID: 33329322 PMCID: PMC7710872 DOI: 10.3389/fneur.2020.580732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by severe motor, cognitive and psychiatric impairments. While motor deficits often confirm diagnosis, cognitive dysfunctions usually manifest early in the disease process and are consistently ranked among the leading factors that impact the patients' quality of life. The genetic component of HD, a mutation in the huntingtin (HTT) gene, is traditionally presented as the main contributor to disease pathology. However, accumulating evidence suggests the implication of the microtubule-associated tau protein to the pathogenesis and therefore, proposes an alternative conceptual framework where tau and mutant huntingtin (mHTT) act conjointly to drive neurodegeneration and cognitive dysfunction. This perspective on disease etiology offers new avenues to design therapeutic interventions and could leverage decades of research on Alzheimer's disease (AD) and other tauopathies to rapidly advance drug discovery. In this mini review, we examine the breadth of tau-targeting treatments currently tested in the preclinical and clinical settings for AD and other tauopathies, and discuss the potential application of these strategies to HD.
Collapse
Affiliation(s)
- Maria Masnata
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Mehwish Anwer
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
126
|
Affiliation(s)
- Jie Li
- School of Medicine Huaqiao University Quanzhou 362021 P. R. China
| | - Jieqing Liu
- School of Medicine Huaqiao University Quanzhou 362021 P. R. China
| |
Collapse
|
127
|
Forloni G. Alzheimer's disease: from basic science to precision medicine approach. BMJ Neurol Open 2020; 2:e000079. [PMID: 33681801 PMCID: PMC7903168 DOI: 10.1136/bmjno-2020-000079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly. Together with cerebral amyloid accumulation, several factors contribute to AD pathology including vascular alterations, systemic inflammation, genetic/epigenetic status and mitochondrial dysfunction. Much is now being devoted to neuroinflammation. However, anti-inflammatory drugs as numerous other therapies, mainly targeted on β-amyloid, have failed to show efficacious effects in AD. Timing, proper selection of patients, and the need for a multitarget approach appear to be the main weak points of current therapeutic efforts. The efficacy of a treatment could be better evaluate if efficient biomarkers are available. We propose here the application of precision medicine principles in AD to simultaneously verify the efficacy of a treatment and the reliability of specific biomarkers according to individually tailored biomarker-guided targeted therapies. People at risk of developing AD or in the very early phase of the disease should be stratified according to: (1) neuropsychological tests; (2) apolipoprotein E (ApoE) genotyping; (3) biochemical analysis of plasma and cerebrospinal fluid (CSF); (4) MRI and positron emission tomography and (5) assessment of their inflammatory profile by an integration of various genetic and biochemical parameters in plasma, CSF and an analysis of microbiota composition. The selected population should be treated with antiamyloidogenic and anti-inflammatory drugs in randomised, longitudinal, placebo-controlled studies using ad hoc profiles (eg, vascular profile, mitochondrial profile, etc…) If these criteria are adopted widely and the results shared, it may be possible to rapidly develop innovative and personalised drug treatment protocols with more realistic chances of being efficacious.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Lombardia, Italy
| |
Collapse
|
128
|
Oakley SS, Maina MB, Marshall KE, Al-Hilaly YK, Harrington CR, Wischik CM, Serpell LC. Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Front Neurol 2020; 11:590754. [PMID: 33281730 PMCID: PMC7688747 DOI: 10.3389/fneur.2020.590754] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.
Collapse
Affiliation(s)
- Sebastian S. Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Karen E. Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Charlie R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
129
|
de Pablo-Fernández E, González-Herrero B, Cerdán Santacruz D, Rossor MN, Schott JM, Lashley T, Holton JL, Fox NC, Revesz T, Warren JD, Jaunmuktane Z, Rohrer JD, Warner TT. A Clinicopathologic Study of Movement Disorders in Frontotemporal Lobar Degeneration. Mov Disord 2020; 36:632-641. [PMID: 33155746 DOI: 10.1002/mds.28356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Despite the considerable overlap with atypical parkinsonism, a systematic characterization of the movement disorders associated with frontotemporal lobar degeneration (FTLD) is lacking. OBJECTIVE The aim of this study is to provide a detailed description of the phenomenology and neuropathologic correlations of movement disorders in FTLD. METHODS In this cohort study, movement disorder clinical data were retrospectively collected from medical records of consecutive patients with a postmortem diagnosis of FTLD from the Queen Square Brain Bank between January 2010 and December 2018. At postmortem, neurodegenerative pathologies were systematically evaluated following consensus criteria. Degeneration of the substantia nigra was assessed as a marker of presynaptic dopaminergic parkinsonism using semiquantitative methods. RESULTS A total of 55 patients (35 men [64%]) were included with median (interquartile range) age at diagnosis of 58.8 (52.6-63.9) years and a disease duration of 9.6 (6.2-12.9) years. Movement disorders were present in 19 (35%) patients without differences among disease subtypes. The most common syndromes were parkinsonism (9 patients [16%]), usually as an additional late feature, and corticobasal syndrome (CBS, 7 patients [13%]), commonly as a presenting feature. Substantia nigra degeneration was present in 37 (67%) patients although it did not show a good clinical correlation with movement disorders. Those with Pick's disease showed milder substantia nigra degeneration and better response to levodopa. CONCLUSIONS Movement disorders can present in all FTLD subtypes, more commonly as a late additional feature (parkinsonism) or as a presenting symptom (CBS). The underlying pathophysiology is complex and likely to involve structures outside the presynaptic striatonigral system. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Eduardo de Pablo-Fernández
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Clinical and Movement Neurosciences, Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Belén González-Herrero
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Bellvitge University Hospital and Bellvitge Biomedical Research Institute-IDIBELL, University of Barcelona, Barcelona, Spain
| | - Debora Cerdán Santacruz
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Neurology Department, Complejo Asistencial de Segovia, Segovia, Spain
| | - Martin N Rossor
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jonathan M Schott
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Tammaryn Lashley
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Janice L Holton
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nick C Fox
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Tamas Revesz
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jason D Warren
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jonathan D Rohrer
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Clinical and Movement Neurosciences, Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
130
|
Franzmeier N, Dewenter A, Frontzkowski L, Dichgans M, Rubinski A, Neitzel J, Smith R, Strandberg O, Ossenkoppele R, Buerger K, Duering M, Hansson O, Ewers M. Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eabd1327. [PMID: 33246962 PMCID: PMC7695466 DOI: 10.1126/sciadv.abd1327] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/02/2020] [Indexed: 05/25/2023]
Abstract
In Alzheimer's disease (AD), the Braak staging scheme suggests a stereotypical tau spreading pattern that does, however, not capture interindividual variability in tau deposition. This complicates the prediction of tau spreading, which may become critical for defining individualized tau-PET readouts in clinical trials. Since tau is assumed to spread throughout connected regions, we used functional connectivity to improve tau spreading predictions over Braak staging methods. We included two samples with longitudinal tau-PET from controls and AD patients. Cross-sectionally, we found connectivity of tau epicenters (i.e., regions with earliest tau) to predict estimated tau spreading sequences. Longitudinally, we found tau accumulation rates to correlate with connectivity strength to patient-specific tau epicenters. A connectivity-based, patient-centered tau spreading model improved the assessment of tau accumulation rates compared to Braak stage-specific readouts and reduced sample sizes by ~40% in simulated tau-targeting interventions. Thus, connectivity-based tau spreading models may show utility in clinical trials.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Lukas Frontzkowski
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ruben Smith
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Katharina Buerger
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
131
|
Sharma VK, Singh TG, Singh S. Cyclic Nucleotides Signaling and Phosphodiesterase Inhibition: Defying Alzheimer's Disease. Curr Drug Targets 2020; 21:1371-1384. [PMID: 32718286 DOI: 10.2174/1389450121666200727104728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Defects in brain functions associated with aging and neurodegenerative diseases benefit insignificantly from existing options, suggesting that there is a lack of understanding of pathological mechanisms. Alzheimer's disease (AD) is such a nearly untreatable, allied to age neurological deterioration for which only the symptomatic cure is available and the agents able to mould progression of the disease, is still far away. The altered expression of phosphodiesterases (PDE) and deregulated cyclic nucleotide signaling in AD has provoked a new thought of targeting cyclic nucleotide signaling in AD. Targeting cyclic nucleotides as an intracellular messenger seems to be a viable approach for certain biological processes in the brain and controlling substantial. Whereas, the synthesis, execution, and/or degradation of cyclic nucleotides has been closely linked to cognitive deficits. In relation to cognition, the cyclic nucleotides (cAMP and cGMP) have an imperative execution in different phases of memory, including gene transcription, neurogenesis, neuronal circuitry, synaptic plasticity and neuronal survival, etc. AD is witnessed by impairments of these basic processes underlying cognition, suggesting a crucial role of cAMP/cGMP signaling in AD populations. Phosphodiesterase inhibitors are the exclusive set of enzymes to facilitate hydrolysis and degradation of cAMP and cGMP thereby, maintains their optimum levels initiating it as an interesting target to explore. The present work reviews a neuroprotective and substantial influence of PDE inhibition on physiological status, pathological progression and neurobiological markers of AD in consonance with the intensities of cAMP and cGMP.
Collapse
Affiliation(s)
- Vivek K Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India,Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | - Thakur G Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
132
|
Neves JF, Petrvalská O, Bosica F, Cantrelle FX, Merzougui H, O'Mahony G, Hanoulle X, Obšil T, Landrieu I. Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer. FEBS J 2020; 288:1918-1934. [PMID: 32979285 DOI: 10.1111/febs.15574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.
Collapse
Affiliation(s)
- João Filipe Neves
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Olivia Petrvalská
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francesco Bosica
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Hamida Merzougui
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Gavin O'Mahony
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xavier Hanoulle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Tomáš Obšil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| |
Collapse
|
133
|
The Functional Role of microRNAs in the Pathogenesis of Tauopathy. Cells 2020; 9:cells9102262. [PMID: 33050194 PMCID: PMC7600742 DOI: 10.3390/cells9102262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are neurodegenerative disorders which include Alzheimer's disease, Pick's disease, corticobasal degeneration, and progressive supranuclear palsy among others. Pathologically, they are characterized by the accumulation of highly phosphorylated and aggregated tau protein in different brain regions. Currently, the mechanisms responsible for their pathogenesis are not known, and for this reason, there is no cure. MicroRNAs (miRNAs) are abundantly present in the central nervous system where they act as master regulators of pathways considered important for tau post-translational modifications, metabolism, and clearance. Although in recent years, several miRNAs have been reported to be altered in tauopathy, we still do not know whether these changes contribute to the onset and progression of the disorder, or are secondary events following the development of tau neuropathology. Additionally, since miRNAs are relatively stable in biological fluids and their measurement is easy and non-invasive, these small molecules hold the potential to function as biomarkers for tauopathy. Herein, we showcase recent findings on the biological link between miRNAs and the pathogenesis of tauopathy, and present emerging evidence supporting their role as biomarkers and targets for novel therapies against them.
Collapse
|
134
|
Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer's disease. Drug Discov Today 2020; 25:2110-2129. [PMID: 33011341 DOI: 10.1016/j.drudis.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease leading to progressive loss of memory that mainly affects people above 60 years of age. It is one of the leading causes of deaths in the USA. Given its inherent heterogeneity and a still-incomplete understanding of its pathology, biomarkers, and targets available for therapy, it is a challenge to design an effective therapeutic strategy. Several hypotheses have been proposed to understand the disease and to identify reliable markers and targets for treatments. However, none have resulted in strong support from clinical trials. In this review, we objectively discuss the various therapeutic strategies and mechanistic approaches to improve the current clinical outcome of AD therapy.
Collapse
|
135
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
136
|
Jack CR, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, Botha H, Graff-Radford J, Jones DT, Ferman TJ, Boeve BF, Kantarci K, Vemuri P, Mielke MM, Whitwell J, Josephs K, Schwarz CG, Senjem ML, Gunter JL, Petersen RC. Predicting future rates of tau accumulation on PET. Brain 2020; 143:3136-3150. [PMID: 33094327 PMCID: PMC7586089 DOI: 10.1093/brain/awaa248] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical trials with anti-tau drugs will need to target individuals at risk of accumulating tau. Our objective was to identify variables available in a research setting that predict future rates of tau PET accumulation separately among individuals who were either cognitively unimpaired or cognitively impaired. All 337 participants had: a baseline study visit with MRI, amyloid PET, and tau PET exams, at least one follow-up tau PET exam; and met clinical criteria for membership in one of two clinical diagnostic groups: cognitively unimpaired (n = 203); or cognitively impaired (n = 134, a combined group of participants with either mild cognitive impairment or dementia with Alzheimer's clinical syndrome). Our primary analyses were in these two clinical groups; however, we also evaluated subgroups dividing the unimpaired group by normal/abnormal amyloid PET and the impaired group by clinical phenotype (mild cognitive impairment, amnestic dementia, and non-amnestic dementia). Linear mixed effects models were used to estimate associations between age, sex, education, APOE genotype, amyloid and tau PET standardized uptake value ratio (SUVR), cognitive performance, cortical thickness, and white matter hyperintensity volume at baseline, and the rate of subsequent tau PET accumulation. Log-transformed tau PET SUVR was used as the response and rates were summarized as annual per cent change. A temporal lobe tau PET meta-region of interest was used. In the cognitively unimpaired group, only higher baseline amyloid PET was a significant independent predictor of higher tau accumulation rates (P < 0.001). Higher rates of tau accumulation were associated with faster rates of cognitive decline in the cognitively unimpaired subgroup with abnormal amyloid PET (P = 0.03), but among the subgroup with normal amyloid PET. In the cognitively impaired group, younger age (P = 0.02), higher baseline amyloid PET (P = 0.05), APOE ε4 (P = 0.05), and better cognitive performance (P = 0.05) were significant independent predictors of higher tau accumulation rates. Among impaired individuals, faster cognitive decline was associated with faster rates of tau accumulation (P = 0.01). While we examined many possible predictor variables, our results indicate that screening of unimpaired individuals for potential inclusion in anti-tau trials may be straightforward because the only independent predictor of high tau rates was amyloidosis. In cognitively impaired individuals, imaging and clinical variables consistent with early onset Alzheimer's disease phenotype were associated with higher rates of tau PET accumulation suggesting this may be a highly advantageous group in which to conduct proof-of-concept clinical trials that target tau-related mechanisms. The nature of the dementia phenotype (amnestic versus non-amnestic) did not affect this conclusion.
Collapse
Affiliation(s)
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Terry M Therneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- Department of Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Keith Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
137
|
Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: Lessons learned, current status and future considerations. Neuropharmacology 2020; 175:108104. [PMID: 32360477 PMCID: PMC7492435 DOI: 10.1016/j.neuropharm.2020.108104] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
The majority of clinical trials targeting the tau protein in Alzheimer's disease and other tauopathies are tau immunotherapies. Because tau pathology correlates better with the degree of dementia than amyloid-β lesions, targeting tau is likely to be more effective in improving cognition than clearing amyloid-β in Alzheimer's disease. However, the development of tau therapies is in many ways more complex than for amyloid-β therapies as briefly outlined in this review. Most of the trials are on humanized antibodies, which may have very different properties than the original mouse antibodies. The impact of these differences are to a large extent unknown, can be difficult to decipher, and may not always be properly considered. Furthermore, the ideal antibody properties for efficacy are not well established and can depend on several factors. However, considering the varied approaches in clinical trials, there is a general optimism that at least some of these trials may provide functional benefits to patients suffering of various tauopathies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- L A Sandusky-Beltran
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Department of Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - E M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA; Department of Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
138
|
Zubčić K, Hof PR, Šimić G, Jazvinšćak Jembrek M. The Role of Copper in Tau-Related Pathology in Alzheimer's Disease. Front Mol Neurosci 2020; 13:572308. [PMID: 33071757 PMCID: PMC7533614 DOI: 10.3389/fnmol.2020.572308] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
All tauopathies, including Alzheimer's disease (AD), are characterized by the intracellular accumulation of abnormal forms of tau protein in neurons and glial cells, which negatively affect microtubule stability. Under physiological conditions, tubulin-associated unit (Tau) protein is intrinsically disordered, almost without secondary structure, and is not prone to aggregation. In AD, it assembles, and forms paired helical filaments (PHFs) that further build-up neurofibrillary tangles (NFTs). Aggregates are composed of hyperphosphorylated tau protein that is more prone to aggregation. The pathology of AD is also linked to disturbed copper homeostasis, which promotes oxidative stress (OS). Copper imbalance is widely observed in AD patients. Deregulated copper ions may initiate and exacerbate tau hyperphosphorylation and formation of β-sheet-rich tau fibrils that ultimately contribute to synaptic failure, neuronal death, and cognitive decline observed in AD patients. The present review summarizes factors affecting the process of tau aggregation, conformational changes of small peptide sequences in the microtubule-binding domain required for these motifs to act as seeding sites in aggregation, and the role of copper in OS induction, tau hyperphosphorylation and tau assembly. A better understanding of the various factors that affect tau aggregation under OS conditions may reveal new targets and novel pharmacological approaches for the therapy of AD.
Collapse
Affiliation(s)
- Klara Zubčić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,Department of Psychology, Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
139
|
Yang T, Liu H, Tran KC, Leng A, Massa SM, Longo FM. Small-molecule modulation of the p75 neurotrophin receptor inhibits a wide range of tau molecular pathologies and their sequelae in P301S tauopathy mice. Acta Neuropathol Commun 2020; 8:156. [PMID: 32891185 PMCID: PMC7487850 DOI: 10.1186/s40478-020-01034-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
In tauopathies, phosphorylation, acetylation, cleavage and other modifications of tau drive intracellular generation of diverse forms of toxic tau aggregates and associated seeding activity, which have been implicated in subsequent synaptic failure and neurodegeneration. Suppression of this wide range of pathogenic species, seeding and toxicity mechanisms, while preserving the physiological roles of tau, presents a key therapeutic goal. Identification and targeting of signaling networks that influence a broad spectrum of tau pathogenic mechanisms might prevent or reverse synaptic degeneration and modify disease outcomes. The p75 neurotrophin receptor (p75NTR) modulates such networks, including activation of multiple tau kinases, calpain and rhoA-cofilin activity. The orally bioavailable small-molecule p75NTR modulator, LM11A-31, was administered to tauP301S mice for 3 months starting at 6 months of age, when tau pathology was well established. LM11A-31 was found to reduce: excess activation of hippocampal cdk5 and JNK kinases and calpain; excess cofilin phosphorylation, tau phosphorylation, acetylation and cleavage; accumulation of multiple forms of insoluble tau aggregates and filaments; and, microglial activation. Hippocampal extracts from treated mice had substantially reduced tau seeding activity. LM11A-31 treatment also led to a reversal of pyramidal neuron dendritic spine loss, decreased loss of dendritic complexity and improvement in performance of hippocampal behaviors. These studies identify a therapeutically tractable upstream signaling module regulating a wide spectrum of basic mechanisms underlying tauopathies.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Harry Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Kevin C Tran
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Albert Leng
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Stephen M Massa
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, 4150 Clement St., San Francisco, CA, 94121, USA.
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA.
| |
Collapse
|
140
|
Dalton RM, Krishnan HS, Parker VS, Catanese MC, Hooker JM. Coevolution of Atomic Resolution and Whole-Brain Imaging for Tau Neurofibrillary Tangles. ACS Chem Neurosci 2020; 11:2513-2522. [PMID: 32786315 DOI: 10.1021/acschemneuro.0c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurofibrillary tangle (NFT) imaging methods at the distinct scales of atomic and whole-brain resolutions have coevolved rapidly. Linking these two areas of research provides insight into how and why certain tau radiotracers, using positron emission tomography (PET), bind selectively to certain morphological forms of the NFT fibril. In this Review, a brief history and background for each research area is presented leading to a summary of the current state of knowledge, with a synopsis of PET NFT radiotracers and an outlook for near-term research efforts. The continued integration of information provided at the level of each of these scales of resolution will catalyze the next generation of clinical imaging technique development and enhance our interpretations of them.
Collapse
Affiliation(s)
- Raeann M. Dalton
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Hema S. Krishnan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Victoria S. Parker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Mary C. Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
141
|
De La-Rocque S, Moretto E, Butnaru I, Schiavo G. Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake. J Neurochem 2020; 156:563-588. [PMID: 32770783 PMCID: PMC8432157 DOI: 10.1111/jnc.15144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Since aggregates of the microtubule‐binding protein tau were found to be the main component of neurofibrillary tangles more than 30 years ago, their contribution to neurodegeneration in Alzheimer's disease (AD) and tauopathies has become well established. Recent work shows that both tau load and its distribution in the brain of AD patients correlate with cognitive decline more closely compared to amyloid plaque deposition. In addition, the amyloid cascade hypothesis has been recently challenged because of disappointing results of clinical trials designed to treat AD by reducing beta‐amyloid levels, thus fuelling a renewed interest in tau. There is now robust evidence to indicate that tau pathology can spread within the central nervous system via a prion‐like mechanism following a stereotypical pattern, which can be explained by the trans‐synaptic inter‐neuronal transfer of pathological tau. In the receiving neuron, tau has been shown to take multiple routes of internalisation, which are partially dependent on its conformation and aggregation status. Here, we review the emerging mechanisms proposed for the uptake of extracellular tau in neurons and the requirements for the propagation of its pathological conformers, addressing how they gain access to physiological tau monomers in the cytosol. Furthermore, we highlight some of the key mechanistic gaps of the field, which urgently need to be addressed to expand our understanding of tau propagation and lead to the identification of new therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Samantha De La-Rocque
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edoardo Moretto
- UK Dementia Research Institute, University College London, London, UK
| | - Ioana Butnaru
- UK Dementia Research Institute, University College London, London, UK
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
142
|
Insights into Disease-Associated Tau Impact on Mitochondria. Int J Mol Sci 2020; 21:ijms21176344. [PMID: 32882957 PMCID: PMC7503371 DOI: 10.3390/ijms21176344] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal tau protein aggregation in the brain is a hallmark of tauopathies, such as frontotemporal lobar degeneration and Alzheimer’s disease. Substantial evidence has been linking tau to neurodegeneration, but the underlying mechanisms have yet to be clearly identified. Mitochondria are paramount organelles in neurons, as they provide the main source of energy (adenosine triphosphate) to these highly energetic cells. Mitochondrial dysfunction was identified as an early event of neurodegenerative diseases occurring even before the cognitive deficits. Tau protein was shown to interact with mitochondrial proteins and to impair mitochondrial bioenergetics and dynamics, leading to neurotoxicity. In this review, we discuss in detail the different impacts of disease-associated tau protein on mitochondrial functions, including mitochondrial transport, network dynamics, mitophagy and bioenergetics. We also give new insights about the effects of abnormal tau protein on mitochondrial neurosteroidogenesis, as well as on the endoplasmic reticulum-mitochondria coupling. A better understanding of the pathomechanisms of abnormal tau-induced mitochondrial failure may help to identify new targets for therapeutic interventions.
Collapse
|
143
|
Koller EJ, Chakrabarty P. Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Front Mol Neurosci 2020; 13:151. [PMID: 32973446 PMCID: PMC7472665 DOI: 10.3389/fnmol.2020.00151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 01/14/2023] Open
Abstract
The inability of individual neurons to compensate for aging-related damage leads to a gradual loss of functional plasticity in the brain accompanied by progressive impairment in learning and memory. Whereas this loss in neuroplasticity is gradual during normal aging, in neurodegenerative diseases such as Alzheimer’s disease (AD), this loss is accelerated dramatically, leading to the incapacitation of patients within a decade of onset of cognitive symptoms. The mechanisms that underlie this accelerated loss of neuroplasticity in AD are still not completely understood. While the progressively increasing proteinopathy burden, such as amyloid β (Aβ) plaques and tau tangles, definitely contribute directly to a neuron’s functional demise, the role of non-neuronal cells in controlling neuroplasticity is slowly being recognized as another major factor. These non-neuronal cells include astrocytes, microglia, and oligodendrocytes, which through regulating brain homeostasis, structural stability, and trophic support, play a key role in maintaining normal functioning and resilience of the neuronal network. It is believed that chronic signaling from these cells affects the homeostatic network of neuronal and non-neuronal cells to an extent to destabilize this harmonious milieu in neurodegenerative diseases like AD. Here, we will examine the experimental evidence regarding the direct and indirect pathways through which astrocytes and microglia can alter brain plasticity in AD, specifically as they relate to the development and progression of tauopathy. In this review article, we describe the concepts of neuroplasticity and glial plasticity in healthy aging, delineate possible mechanisms underlying tau-induced plasticity dysfunction, and discuss current clinical trials as well as future disease-modifying approaches.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
144
|
Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer's disease: The prime pathological player. Int J Biol Macromol 2020; 163:1599-1617. [PMID: 32784025 DOI: 10.1016/j.ijbiomac.2020.07.327] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a prevalently found tauopathy characterized by memory loss and cognitive insufficiency. AD is an age-related neurodegenerative disease with two major hallmarks which includes extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. With population aging worldwide, there is an indispensable need for treatment strategies that can potentially manage this developing dementia. Despite broad researches on targeting Aβ in the past two decades, research findings on Aβ targeted therapeutics failed to prove efficacy in the treatment of AD. Tau protein with its extensive pathological role in several neurodegenerative diseases can be considered as a promising target candidate for developing therapeutic interventions. The abnormal hyperphosphorylation of tau plays detrimental pathological functions which ultimately lead to neurodegeneration. This review will divulge the importance of tau in AD pathogenesis, the interplay of Aβ and tau, the pathological functions of tau, and potential therapeutic strategies for an effective management of neuronal disorders.
Collapse
Affiliation(s)
- Shibi Muralidar
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Senthil Visaga Ambi
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| | - Saravanan Sekaran
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Balamurugan Palaniappan
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
145
|
Abstract
PURPOSE OF REVIEW Progressive supranuclear palsy (PSP) is a progressive adult-onset neurodegenerative disease. Abnormally, phosphorylated forms of the microtubule-associated protein tau containing four repeat domains (4R-tau) aggregate in neurons. Additionally, increasing evidence suggests that secretion and uptake of fragments of abnormal 4R-tau may play a role in disease progression. This extracellular tau is a natural target for immunotherapy. RECENT FINDINGS Three monoclonal antibodies targeting extracellular tau are in clinical stages of development. ABBV-8E12 and BIIB092 were safe in Phase 1, but both Phase two studies recently failed futility analyses. UCB0107 recently reported (in abstract form) Phase 1 safety results, and a Phase 2 study is under consideration. Stem cell therapy and the infusion of plasma are also being explored clinically. SUMMARY The likely role of extracellular tau in the progression of PSP makes tau a natural target for targeted immunotherapy. Clinical trials are still in early stages, and although tau immunotherapy has largely been shown to be safe, efficacy has yet to be demonstrated.
Collapse
Affiliation(s)
- Pavan A Vaswani
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
146
|
Nimmo J, Johnston DA, Dodart JC, MacGregor-Sharp MT, Weller RO, Nicoll JAR, Verma A, Carare RO. Peri-arterial pathways for clearance of α-Synuclein and tau from the brain: Implications for the pathogenesis of dementias and for immunotherapy. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2020; 12:e12070. [PMID: 32782922 PMCID: PMC7409108 DOI: 10.1002/dad2.12070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Introduction Accumulation of amyloid beta (Aβ), α-synuclein (αSyn), and tau in dementias indicates their age-related failure of elimination from the brain. Aβ is eliminated along basement membranes in walls of cerebral arterioles and leptomeningeal arteries (intramural peri-arterial drainage [IPAD]); IPAD is impaired with age. We test the hypothesis that αSyn and tau are also eliminated from the normal brain along IPAD pathways. Methods Soluble αSyn or tau was injected into mouse hippocampus. Animals were perfused 5 minutes to 7 days post-injection. Blood vessels were identified by ROX-SE for light-sheet and immunolabeling for confocal microscopy. IPAD was quantified by measuring the proportion of arterioles with αSyn/tau. Results αSyn and tau are eliminated from the brain by IPAD but with different dynamics. Discussion Age-related failure of IPAD may play a role in the pathogenesis of synucleinopathies and tauopathies. αSyn persists within IPAD at 24 hours, which may affect immunotherapy for αSyn.
Collapse
Affiliation(s)
- Jacqui Nimmo
- Faculty of Medicine University of Southampton Southampton UK
| | | | - J C Dodart
- United Neuroscience Dublin Republic of Ireland
| | | | - Roy O Weller
- Faculty of Medicine University of Southampton Southampton UK
| | | | - Ajay Verma
- United Neuroscience Dublin Republic of Ireland
| | - Roxana O Carare
- Faculty of Medicine University of Southampton Southampton UK
| |
Collapse
|
147
|
Breen PW, Krishnan V. Recent Preclinical Insights Into the Treatment of Chronic Traumatic Encephalopathy. Front Neurosci 2020; 14:616. [PMID: 32774238 PMCID: PMC7381336 DOI: 10.3389/fnins.2020.00616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition associated with significant mortality and morbidity. The central pathophysiological mechanisms by which repetitive cranial injury results in the neurodegeneration of CTE are poorly understood. Current well-established working models emphasize a central role for trauma-induced excessive phosphorylation and accumulation of insoluble tangles of Tau protein. In this review, we summarize recent data from preclinical animal models of CTE where a series of candidate treatments have been carefully evaluated, including kinase inhibitors, antibody therapy, and anti-inflammatory therapies. We discuss the overall translational potential of these approaches and provide recommendations for future bench-to-bedside treatment strategies.
Collapse
Affiliation(s)
- Patrick W Breen
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX United States
| |
Collapse
|
148
|
Hanif S, Muhammad P, Chesworth R, Rehman FU, Qian RJ, Zheng M, Shi BY. Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol Sin 2020; 41:936-953. [PMID: 32467570 PMCID: PMC7468531 DOI: 10.1038/s41401-020-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Central nervous system (CNS) disorders represent a broad spectrum of brain ailments with short- and long-term disabilities, and nanomedicine-based approaches provide a new therapeutic approach to treating CNS disorders. A variety of potential drugs have been discovered to treat several neuronal disorders; however, their therapeutic success can be limited by the presence of the blood-brain barrier (BBB). Furthermore, unique immune functions within the CNS provide novel target mechanisms for the amelioration of CNS diseases. Recently, various therapeutic approaches have been applied to fight brain-related disorders, with moderate outcomes. Among the various therapeutic strategies, nanomedicine-based immunotherapeutic systems represent a new era that can deliver useful cargo with promising pharmacokinetics. These approaches exploit the molecular and cellular targeting of CNS disorders for enhanced safety, efficacy, and specificity. In this review, we focus on the efficacy of nanomedicines that utilize immunotherapy to combat CNS disorders. Furthermore, we detailed summarize nanomedicine-based pathways for CNS ailments that aim to deliver drugs across the BBB by mimicking innate immune actions. Overview of how nanomedicines can utilize multiple immunotherapy pathways to combat CNS disorders. ![]()
Collapse
|
149
|
Monteiro KL, Alcântara MGDS, de Aquino TM, da Silva-Júnior EF. Tau Protein Aggregation in Alzheimer's Disease: Recent Advances in the Development of Novel Therapeutic Agents. Curr Pharm Des 2020; 26:1682-1692. [DOI: 10.2174/1381612826666200414164038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
:
Major research in Alzheimer’s disease (AD) related to disease-modifying agents is concentrated on
pharmacological approaches related to diagnostic markers, neurofibrillary tangles and amyloid plaques. Although
most studies focus on anti-amyloid strategies, investigations on tau protein have produced significant advances in
the modulation of the pathophysiology of several neurodegenerative diseases. Since the discovery of phenothiazines
as tau protein aggregation inhibitors (TAGIs), many additional small molecule inhibitors have been discovered
and characterized in biological model systems, which exert their interaction effects by covalent and noncovalent
means. In this paper, we summarize the latest advances in the discovery and development of tau aggregation
inhibitors using a specialized approach in their chemical classes. The design of new TAGIs and their encouraging
use in in vivo and clinical trials support their potential therapeutic use in AD.
Collapse
Affiliation(s)
- Kadja L.C. Monteiro
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Marcone G. dos S. Alcântara
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Thiago M. de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
| | | |
Collapse
|
150
|
Abstract
Astrocytes contribute to the pathogenesis of neurodegenerative proteinopathies as influencing neuronal degeneration or neuroprotection, and also act as potential mediators of the propagation or elimination of disease-associated proteins. Protein astrogliopathies can be observed in different forms of neurodegenerative conditions. Morphological characterization of astrogliopathy is used only for the classification of tauopathies. Currently, at least six types of astrocytic tau pathologies are distinguished. Astrocytic plaques (AP), tufted astrocytes (TAs), ramified astrocytes (RA), and globular astroglial inclusions are seen predominantly in primary tauopathies, while thorn-shaped astrocytes (TSA) and granular/fuzzy astrocytes (GFA) are evaluated in aging-related tau astrogliopathy (ARTAG). ARTAG can be seen in the white and gray matter and subpial, subependymal, and perivascular locations. Some of these overlap with the features of tau pathology seen in Chronic traumatic encephalopathy (CTE). Furthermore, gray matter ARTAG shares features with primary tauopathy-related astrocytic tau pathology. Sequential distribution patterns have been described for tau astrogliopathies. Importantly, astrocytic tau pathology in primary tauopathies can be observed in brain areas without neuronal tau deposition. The various morphologies of tau astrogliopathy might reflect a role in the propagation of pathological tau protein, an early response to a yet unidentified neurodegeneration-inducing event, or, particularly for ARTAG, a response to a repeated or prolonged pathogenic process such as blood-brain barrier dysfunction or local mechanical impact. The concept of tau astrogliopathies and ARTAG facilitated communication among research disciplines and triggered the investigation of the significance of astrocytic lesions in neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|