101
|
Bastie JN, Aucagne R, Droin N, Solary E, Delva L. Heterogeneity of molecular markers in chronic myelomonocytic leukemia: a disease associated with several gene alterations. Cell Mol Life Sci 2012; 69:2853-61. [PMID: 22415325 PMCID: PMC11114957 DOI: 10.1007/s00018-012-0956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/21/2022]
Abstract
The relatively homogenous clinical features and poor prognosis of chronic myelomonocytic leukemia (CMML) are associated with a molecular heterogeneity, with various mutations impacting several convergent pathways. Due to the restricted understanding of the mechanism involved in leukemogenesis, CMML still appears as a diagnostic and therapeutic undertaking, and poor prognosis of leukemia. Contrary to chronic myelogenous leukemia, BCR-ABL1-positive, cytogenetic, and molecular abnormalities of CMML are not specific and not pathognomonic, confirming the different levels of heterogeneity of this disease. Various mutations can be associated with a common phenotype not distinct at the clinical level, further demonstrating that molecular probings are needed for choosing individual targeted therapies.
Collapse
Affiliation(s)
- Jean-Noël Bastie
- Faculté de Médecine, Inserm UMR 866, Université de Bourgogne, 7 bd Jeanne d’Arc, 21000 Dijon, France
- Service d’Hématologie Clinique, Centre Hospitalo-Universitaire, 21000 Dijon, France
| | - Romain Aucagne
- Faculté de Médecine, Inserm UMR 866, Université de Bourgogne, 7 bd Jeanne d’Arc, 21000 Dijon, France
- Laboratoire de Génétique Moléculaire des Cellules Souches, Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Nathalie Droin
- Inserm UMR 1009, IRCIV, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Eric Solary
- Inserm UMR 1009, IRCIV, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Laurent Delva
- Faculté de Médecine, Inserm UMR 866, Université de Bourgogne, 7 bd Jeanne d’Arc, 21000 Dijon, France
| |
Collapse
|
102
|
Abstract
The chronic myeloproliferative neoplasms (MPNs) are clonal disorders characterized by overproduction of mature myeloid cells. They share associations with molecular abnormalities such as the JAK2V617F mutation but are distinguished by important phenotypic differences. This review first considers the factors that may influence phenotype in JAK2-mutated MPNs, especially polycythemia vera (PV) and essential thrombocythemia (ET), and then discusses the mutations implicated in JAK2-negative MPNs such as in MPL and epigenetic regulators. Current evidence supports a model where ET and PV are disorders of relatively low genetic complexity, whereas evolution to myelofibrosis or blast-phase disease reflects accumulation of a higher mutation burden.
Collapse
|
103
|
Ibáñez M, Such E, Cervera J, Luna I, Gómez-Seguí I, López-Pavía M, Dolz S, Barragán E, Fuster O, Llop M, Rodríguez-Veiga R, Avaria A, Oltra S, Senent ML, Moscardó F, Montesinos P, Martínez-Cuadrón D, Martín G, Sanz MA. Rapid screening of ASXL1, IDH1, IDH2, and c-CBL mutations in de novo acute myeloid leukemia by high-resolution melting. J Mol Diagn 2012; 14:594-601. [PMID: 22929312 DOI: 10.1016/j.jmoldx.2012.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/08/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Recently, many novel molecular abnormalities were found to be distinctly associated with acute myeloid leukemia (AML). However, their clinical relevance and prognostic implications are not well established. We developed a new combination of high-resolution melting assays on a LightCycler 480 and direct sequencing to detect somatic mutations of ASXL1 (exon 12), IDH1 (exon 4), IDH2 (exon 4), and c-CBL (exons 8 and 9) genes to know their incidence and prognostic effect in a cohort of 175 patients with de novo AML: 16 patients (9%) carried ASXL1 mutations, 16 patients had IDH variations (3% with IDH1(R132) and 6% with IDH2(R140)), and none had c-CBL mutations. Patients with ASXL1 mutations did not harbor IDH1, [corrected] or CEBPA mutations, and a combination of ASXL1 and IDH2 mutations was found only in one patient. In addition, we did not find IDH1 and FLT3 or CEBPA mutations concurrently or IDH2 with CEBPA. IDH1 and IDH2 mutations were mutually exclusive. Alternatively, NPM1 mutations were concurrently found with ASXL1, IDH1, or IDH2 with a variable incidence. Mutations were not significantly correlated with any of the clinical and biological features studied. High-resolution melting is a reliable, rapid, and efficient screening technique for mutation detection in AML. The incidence for the studied genes was in the range of those previously reported. We were unable to find an effect on the outcome.
Collapse
Affiliation(s)
- Mariam Ibáñez
- Department of Hematology, University Hospital La Fe, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Fiskus W, Ganguly S, Kambhampati S, Bhalla KN. Role of additional novel therapies in myeloproliferative neoplasms. Hematol Oncol Clin North Am 2012; 26:959-80. [PMID: 23009932 DOI: 10.1016/j.hoc.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The recent approval of ruxolitinib (INCB018424) for myelofibrosis and the preclinical/clinical development of several additional janus kinase (JAK)-targeted agents have ushered in an era of novel therapies for advanced myeloproliferative neoplasms (MPN), which are associated with constitutive activation of the JAK-signal transducer and activation of transcription (STAT) signaling pathway. Collectively, these novel therapeutic approaches could rapidly broaden the spectrum of available therapies, with potential for improved clinical outcome for patients with advanced MPN. This review covers the recent developments in the testing of novel therapeutic agents other than JAK inhibitors that target signaling pathways in addition to JAK/STAT, or target the deregulated epigenetic mechanisms in MPN.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Kansas Medical Center, 3901 Rainbow Boulevard, Robinson Hall 4030, Mail Stop 1027, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
105
|
Traina F, Visconte V, Jankowska AM, Makishima H, O’Keefe CL, Elson P, Han Y, Hsieh FH, Sekeres MA, Mali RS, Kalaycio M, Lichtin AE, Advani AS, Duong HK, Copelan E, Kapur R, Olalla Saad ST, Maciejewski JP, Tiu RV. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis. PLoS One 2012; 7:e43090. [PMID: 22905207 PMCID: PMC3419680 DOI: 10.1371/journal.pone.0043090] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/17/2012] [Indexed: 01/08/2023] Open
Abstract
We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A) and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM). SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS) was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04) and sole TET2 mutations (P<0.001). In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.
Collapse
Affiliation(s)
- Fabiola Traina
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Hematology and Hemotherapy Center, INCT do Sangue, University of Campinas, Campinas, São Paulo, Brazil
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Anna M. Jankowska
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Christine L. O’Keefe
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Paul Elson
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yingchun Han
- Department of Pathobiology, Lerner Research Institute and Allergy and Immunology, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Fred H. Hsieh
- Department of Pathobiology, Lerner Research Institute and Allergy and Immunology, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Mikkael A. Sekeres
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Raghuveer Singh Mali
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University of School of Medicine, Indianapolis, Indiana, United States of America
| | - Matt Kalaycio
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Alan E. Lichtin
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Anjali S. Advani
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Hien K. Duong
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Edward Copelan
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University of School of Medicine, Indianapolis, Indiana, United States of America
| | - Sara T. Olalla Saad
- Hematology and Hemotherapy Center, INCT do Sangue, University of Campinas, Campinas, São Paulo, Brazil
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ramon V. Tiu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
106
|
Jacoby MA, Walter MJ. Detection of copy number alterations in acute myeloid leukemia and myelodysplastic syndromes. Expert Rev Mol Diagn 2012; 12:253-64. [PMID: 22468816 DOI: 10.1586/erm.12.18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromosomal deletions and amplifications that occur in affected cells from patients with myelodysplastic syndromes and acute myeloid leukemia often contain genes that contribute to disease pathogenesis. Identification of copy number alterations (deletions and amplifications) and regions of copy neutral loss of heterozygosity using array-based platforms has led to the identification of genes that are commonly mutated in myeloid malignancies. In this article, we review the literature and highlight the array-based studies that directly compare matched normal and tumor samples from the same individual to identify somatic alterations. We also discuss the use of next-generation sequencing to identify all types of structural variants, including copy number alterations and copy neutral loss of heterozygosity, and provide an outlook for how this technology may be used to interrogate cancer genomes.
Collapse
Affiliation(s)
- Meagan A Jacoby
- Department of Internal Medicine, Washington University School of Medicine, Division of Oncology, Stem Cell Biology Section, Campus Box 8007, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
107
|
Aranaz P, Miguéliz I, Hurtado C, Erquiaga I, Larráyoz MJ, Calasanz MJ, García-Delgado M, Novo FJ, Vizmanos JL. CBL RING finger deletions are common in core-binding factor acute myeloid leukemias. Leuk Lymphoma 2012; 54:428-31. [PMID: 22799433 DOI: 10.3109/10428194.2012.709629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
108
|
Activating CBL mutations are associated with a distinct MDS/MPN phenotype. Ann Hematol 2012; 91:1713-20. [PMID: 23010802 DOI: 10.1007/s00277-012-1521-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/01/2012] [Indexed: 10/28/2022]
Abstract
Activating point mutations in CBL have recently been identified in diverse subtypes of myeloid neoplasms. Because detailed clinical and hematological characteristics of CBL-mutated cases is lacking, we screened 156 BCR-ABL and JAK2 V617F negative patients with myeloproliferative neoplasms (MPN) and overlap syndromes between myelodysplastic syndrome (MDS) and MPN (MPS/MPN) for mutations in exons 8 and 9 of CBL by denaturing high-performance liquid chromatography and direct sequencing. CBL mutations were identified in 16/156 patients (10%), of which five also carried mutations in EZH2 (n = 3) and TET2 (n = 2). Comprehensive clinical and hematological characteristics were available from 13/16 patients (81%). In addition to splenomegaly (77%), striking common hematological features were CML-like left-shifted leukocytosis (85%) with monocytosis (85%), anemia (100%), and thrombocytopenia (62%). Thrombocytosis was not observed in any patient. Relevant bone marrow features (n = 12) included hypercellularity (92%) with marked granulopoiesis (92%), nonclustered microlobulated megakaryocytes (83%), and marrow fibrosis (83%). Nine deaths (progression to secondary acute myeloid leukemia/blast phase, n = 7; cytopenia complications, n = 2) were recorded. Three-year survival rate was 27%, possibly indicating poor prognosis of CBL mutated MDS/MPN patients.
Collapse
|
109
|
Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer 2012; 12:304. [PMID: 22823977 PMCID: PMC3418560 DOI: 10.1186/1471-2407-12-304] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 06/30/2012] [Indexed: 12/05/2022] Open
Abstract
Myeloid malignant diseases comprise chronic (including myelodysplastic syndromes, myeloproliferative neoplasms and chronic myelomonocytic leukemia) and acute (acute myeloid leukemia) stages. They are clonal diseases arising in hematopoietic stem or progenitor cells. Mutations responsible for these diseases occur in several genes whose encoded proteins belong principally to five classes: signaling pathways proteins (e.g. CBL, FLT3, JAK2, RAS), transcription factors (e.g. CEBPA, ETV6, RUNX1), epigenetic regulators (e.g. ASXL1, DNMT3A, EZH2, IDH1, IDH2, SUZ12, TET2, UTX), tumor suppressors (e.g. TP53), and components of the spliceosome (e.g. SF3B1, SRSF2). Large-scale sequencing efforts will soon lead to the establishment of a comprehensive repertoire of these mutations, allowing for a better definition and classification of myeloid malignancies, the identification of new prognostic markers and therapeutic targets, and the development of novel therapies. Given the importance of epigenetic deregulation in myeloid diseases, the use of drugs targeting epigenetic regulators appears as a most promising therapeutic approach.
Collapse
Affiliation(s)
- Anne Murati
- Centre de Recherche en Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm, Institut Paoli-Calmettes, 27 Bd, Leï Roure, BP 30059, Marseille, 13273, France
| | | | | | | | | | | |
Collapse
|
110
|
Kar SA, Jankowska A, Makishima H, Visconte V, Jerez A, Sugimoto Y, Muramatsu H, Traina F, Afable M, Guinta K, Tiu RV, Przychodzen B, Sakaguchi H, Kojima S, Sekeres MA, List AF, McDevitt MA, Maciejewski JP. Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia. Haematologica 2012; 98:107-13. [PMID: 22773603 DOI: 10.3324/haematol.2012.064048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chronic myelomonocytic leukemia is a heterogeneous disease with multifactorial molecular pathogenesis. Various recurrent somatic mutations have been detected alone or in combination in chronic myelomonocytic leukemia. Recently, recurrent mutations in spliceosomal genes have been discovered. We investigated the contribution of U2AF1, SRSF2 and SF3B1 mutations in the pathogenesis of chronic myelomonocytic leukemia and closely related diseases. We genotyped a cohort of patients with chronic myelomonocytic leukemia, secondary acute myeloid leukemia derived from chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia for somatic mutations in U2AF1, SRSF2, SF3B1 and in the other 12 most frequently affected genes in these conditions. Chromosomal abnormalities were assessed by nucleotide polymorphism array-based karyotyping. The presence of molecular lesions was correlated with clinical endpoints. Mutations in SRSF2, U2AF1 and SF3B1 were found in 32%, 13% and 6% of cases of chronic myelomonocytic leukemia, secondary acute myeloid leukemia derived from chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia, respectively. Spliceosomal genes were affected in various combinations with other mutations, including TET2, ASXL1, CBL, EZH2, RAS, IDH1/2, DNMT3A, TP53, UTX and RUNX1. Worse overall survival was associated with mutations in U2AF1 (P=0.047) and DNMT3A (P=0.015). RAS mutations had an impact on overall survival in secondary acute myeloid leukemia (P=0.0456). By comparison, our screening of juvenile myelomonocytic leukemia cases showed mutations in ASXL1 (4%), CBL (10%), and RAS (6%) but not in IDH1/2, TET2, EZH2, DNMT3A or the three spliceosomal genes. SRSF2 and U2AF1 along with TET2 (48%) and ASXL1 (38%) are frequently affected by somatic mutations in chronic myelomonocytic leukemia, quite distinctly from the profile seen in juvenile myelomonocytic leukemia. Our data also suggest that spliceosomal mutations are of ancestral origin.
Collapse
Affiliation(s)
- Sarah Abu Kar
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Schnittger S, Bacher U, Alpermann T, Reiter A, Ulke M, Dicker F, Eder C, Kohlmann A, Grossmann V, Kowarsch A, Kern W, Haferlach C, Haferlach T. Use of CBL exon 8 and 9 mutations in diagnosis of myeloproliferative neoplasms and myelodysplastic/myeloproliferative disorders: an analysis of 636 cases. Haematologica 2012; 97:1890-4. [PMID: 22733026 DOI: 10.3324/haematol.2012.065375] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We analyzed 636 patients with diverse myeloproliferative neoplasms or myelodysplastic/myeloproliferative neoplasms for mutations of the Casitas B-cell lymphoma gene (CBL(mut)) in exons 8 and 9 and performed correlations to other genetic alterations. CBL(mut) were detected in 63 of 636 (9.9%) of these selected patients. CBL(mut) were more frequent in myelodysplastic/myeloproliferative neoplasms than myeloproliferative neoplasms (51 of 328, 15.5% vs. 12 of 291, 4.1%; P<0.001). Frequency was 48 of 278 (17.3%) in chronic myelomonocytic leukemia and 3 of 33 (9.1%) in unclassifiable myelodysplastic/myeloproliferative neoplasms. CBL(mut) was not detected in polycythemia vera, primary myelofibrosis, essential thrombocythemia, or refractory anemia with ring sideroblasts and marked thrombocytosis. CBL(mut) were underrepresented in JAK2(V617F) mutated as compared to JAK2V617(wt) cases (P<0.001), and mutually exclusive of JAK2exon12(mut) and MPLW515(mut). CBL(mut) were associated with monosomy 7 (P=0.008) and TET2(mut) (P=0.003). In chronic myelomonocytic leukemia, CBL(mut) had no significant impact on survival outcomes. Therefore, CBL(mut) are frequent in chronic myelomonocytic leukemia, absent in classical myeloproliferative neoplasms, and are only exceptionally found in coincidence with JAK-STAT pathway activating mutations.
Collapse
Affiliation(s)
- Susanne Schnittger
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Parikh SA, Tefferi A. Chronic myelomonocytic leukemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 2012; 87:610-9. [PMID: 22615103 DOI: 10.1002/ajh.23203] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder that is classified as a myelodysplastic/myeloproliferative neoplasm by the 2008 World Health Organization classification of hematopoietic tumors. It is characterized by absolute monocytosis (>1 × 10(9) L(-1) ) in the peripheral blood that persists for at least 3 months. Patients may present with symptoms related to cytopenias and/or an underlying hypercatabolic state with drenching night sweats, splenomegaly, and weight loss. DIAGNOSIS The diagnosis of CMML rests on a combination of morphologic, histopathologic, and chromosomal abnormalities in the bone marrow, after careful exclusion of other conditions (both malignant and nonmalignant) that can cause monocytosis. Numerous molecular abnormalities have been recently recognized in patients with CMML-unfortunately, no single pathognomonic finding specific to CMML has been identified thus far. RISK STRATIFICATION The International Prognostic Scoring System for myelodysplastic syndrome (MDS) cannot be used to risk stratify patients with CMML because this model excluded patients with a leukocyte count >12 × 10(9) L(-1) . Other risk stratification models such as the MD Anderson prognostic score and Dusseldorf score have been published. In the only model that took karyotype into account, bone marrow blasts ≥ 10%, leukocyte count ≥ 13 × 10(9) L(-1) , hemoglobin < 10 g/dL, platelet count < 100 × 10(9) L(-1) , and presence of trisomy 8, abnormalities of chromosome 7, or complex karyotype were found to be independent predictors of adverse survival. RISK-ADAPTED THERAPY The Food and Drug Administration has approved azacitidine and decitabine for the treatment of patients with CMML based on two pivotal trials in MDS. Novel classes of agents including immunomodulatory drugs, nucleoside analogs, and small-molecule tyrosine kinase inhibitors are being investigated in the treatment of CMML. With the advent of reduced intensity conditioning, an allogeneic stem cell transplant has also become a viable option for a subset of patients.
Collapse
MESH Headings
- Aged
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Azacitidine/analogs & derivatives
- Azacitidine/therapeutic use
- Bone Marrow Examination
- Chromosome Aberrations
- Clinical Trials as Topic
- Combined Modality Therapy
- Decitabine
- Diagnosis, Differential
- Disease Management
- Female
- Genes, Neoplasm
- Humans
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/epidemiology
- Leukemia, Myelomonocytic, Chronic/therapy
- Leukocyte Count
- Male
- Risk Assessment
- Stem Cell Transplantation
- Transplantation, Homologous
Collapse
Affiliation(s)
- Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
113
|
Brecqueville M, Rey J, Bertucci F, Coppin E, Finetti P, Carbuccia N, Cervera N, Gelsi-Boyer V, Arnoulet C, Gisserot O, Verrot D, Slama B, Vey N, Mozziconacci MJ, Birnbaum D, Murati A. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer 2012; 51:743-55. [PMID: 22489043 DOI: 10.1002/gcc.21960] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/12/2012] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the JAK2V617F tyrosine kinase-activating mutation several genes have been found mutated in nonchronic myeloid leukemia (CML) myeloproliferative neoplasms (MPNs), which mainly comprise three subtypes of "classic" MPNs; polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). We searched for mutations in ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 genes in 149 non-CML MPNs, including 127 "classic" MPNs cases. JAK2 was mutated in 100% PV, 66% ET and 68% MF. We found a high incidence of ASXL1 mutation in MF patients (20%) and a low incidence in PV (7%) and ET (4%) patients. Mutations in the other genes were rare (CBL, DNMT3A, IDH2, MPL, SF3B1, SUZ12, NF1) or absent (IDH1).
Collapse
Affiliation(s)
- Mandy Brecqueville
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR1068 Inserm, Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
A high occurrence of acquisition and/or expansion of C-CBL mutant clones in the progression of high-risk myelodysplastic syndrome to acute myeloid leukemia. Neoplasia 2012; 13:1035-42. [PMID: 22131879 DOI: 10.1593/neo.111192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022]
Abstract
The molecular pathogenesis of myelodysplastic syndrome (MDS) and its progression to secondary acute myeloid leukemia (sAML) remain to be explored. Somatic C-CBL mutations were recently described in MDS. Our study aimed to determine the role of C-CBL mutations in the progression of MDS to sAML and sought to correlate with clinicohematological features and outcome. Bone marrow samples from 51 patients with high-risk MDS (13 with refractory cytopenia with multilineage dysplasia, 19 with refractory anemia with excess blast 1, and 19 with refractory anemia with excess blast 2) were analyzed for C-CBL mutations at both diagnosis and sAML in the same individuals. Mutational analysis was performed for exons 7 to 9 of C-CBL gene. Of the 51 paired samples, C-CBL mutations were identified in 6 patients at the sAML phase. One patient retained the identical C-CBL mutation (G415S) at sAML evolution and exhibited clonal expansion. The other five patients acquired C-CBL mutations (Y371S, F418S, L370_Y371 ins L, L399V, and C416W) during sAML evolution. Three of the six patients harboring C-CBL mutations at sAML had additional gene mutations including JAK2(V617F), PTPN11, or N-RAS. There was no significant difference in clinicohematological features and overall survival with respect to C-CBL mutation status. Our results show that C-CBL mutation is very rare (0.6%) in MDS, but acquisition and/or expansion of C-CBL mutant clones occur in 11.8% of patients during sAML transformation. The findings suggest that C-CBL mutations play a role at least in part in a subset of MDS patients during sAML transformation.
Collapse
|
115
|
Muramatsu H, Makishima H, Maciejewski JP. Chronic myelomonocytic leukemia and atypical chronic myeloid leukemia: novel pathogenetic lesions. Semin Oncol 2012; 39:67-73. [PMID: 22289493 DOI: 10.1053/j.seminoncol.2011.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) and atypical chronic myeloid leukemia (aCML) are distinct, yet related, entities of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) characterized by morphologic dysplasia with accumulation of monocytes or neutrophils, respectively. Our understanding of the molecular pathogenesis of CMML and aCML has advanced, mainly due to the application of novel technologies such as array-based karyotyping and next-generation sequencing. In addition to previously known recurrent aberrations, somatic uniparental disomy affecting chromosomes 3, 4, 7, and 11 frequently occurs in CMML. Novel somatic mutations of genes, including those associated with proliferation signaling (CBL, RAS, RUNX1, JAK2 (V617F)) and with modification of epigenetic status (TET2, ASXL1, UTX, EZH2) have been found. Various combinations of mutations suggest a multistep pathogenesis and may account for clinical heterogeneity. Most recently, several spliceosome-associated-gene mutations were reported and SRSF2 mutations are frequently detected in CMML. The prognostic and diagnostic significance of these molecular lesions, in particular their value as biomarkers of response or resistance to specific therapies, while uncertain now is likely to be clarified as large systematic studies come to completion.
Collapse
Affiliation(s)
- Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|
116
|
Sugimoto Y, Sekeres MA, Makishima H, Traina F, Visconte V, Jankowska A, Jerez A, Szpurka H, O'Keefe CL, Guinta K, Afable M, Tiu R, McGraw KL, List AF, Maciejewski J. Cytogenetic and molecular predictors of response in patients with myeloid malignancies without del[5q] treated with lenalidomide. J Hematol Oncol 2012; 5:4. [PMID: 22390313 PMCID: PMC3323440 DOI: 10.1186/1756-8722-5-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 01/09/2023] Open
Abstract
Background While lenalidomide (LEN) shows high efficacy in myelodysplastic syndromes (MDS) with del[5q], responses can be also seen in patients presenting without del[5q]. We hypothesized that improved detection of chromosomal abnormalities with new karyotyping tools may better predict response to LEN. Design and methods We have studied clinical, molecular and cytogenetic features of 42 patients with MDS, myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes and secondary acute myeloid leukemia (sAML) without del[5q] by metaphase cytogenetics (MC) who underwent therapy with LEN. Results Fluorescence in situ hybridization (FISH) or single nucleotide polymorphism array (SNP-A)-based karyotyping marginally increased the diagnostic yield over MC, detecting 2/42 (4.8%) additional cases with del[5q], one of whom were responded to LEN. Responses were more often observed in patients with a normal karyotype by MC (60% vs abnormal MC; 17%, p = .08) and those with gain of chromosome 8 material by either of all 3 karyotyping methods (83% vs all other chromosomal abnormalities; 44% p = .11). However, 5 out of those 6 patients received combined LEN/AZA therapy and it may also suggest those with gain of chromosome 8 material respond well to AZA. The addition of FISH or SNP-A did not improve the predictive value of normal cytogenetics by MC. Mutational analysis of TET2, UTX, CBL, EZH2, ASXL1, TP53, RAS, IDH1/2, and DNMT-3A was performed on 21 of 41 patients, and revealed 13 mutations in 11 patients, but did not show any molecular markers of responsiveness to LEN. Conclusions Normal karyotype and gain of chromosome 8 material was predictive of response to LEN in non-del[5q] patients with myeloid malignancies.
Collapse
Affiliation(s)
- Yuka Sugimoto
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Nicholson L, Knight T, Matheson E, Minto L, Case M, Sanichar M, Bomken S, Vormoor J, Hall A, Irving J. Casitas B lymphoma mutations in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2012; 51:250-6. [PMID: 22072526 DOI: 10.1002/gcc.20949] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/06/2011] [Indexed: 01/10/2023] Open
Abstract
Casitas B-lineage lymphoma (CBL) proteins are RING finger ubiquitin E3 ligases that attenuate the signaling of receptor tyrosine kinases and are mutated in a number of myeloid disorders. In this study, mutational screening of the linker-RING domains of CBL and CBLB was performed by denaturing high performance liquid chromatography in a cohort of diagnostic (n = 180) or relapse (n = 46) samples from children with acute lymphoblastic leukemia. Somatic mutations were identified in three children, giving an overall incidence of 1.7% and involved small deletions affecting the intron/exon boundaries of exon 8, leading to skipping of exon 8 and abolishing E3 ligase function. Mutated primary samples were associated with constitutive activation of the RAS pathway and sensitivity to MEK inhibitors was shown. Thus, mutation of CBL is an alternative route to activate the RAS pathway and may identify children who are candidates for MEK inhibitor clinical trials.
Collapse
Affiliation(s)
- Lindsay Nicholson
- Paediatric Oncology and Haematology Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Myelodysplastic syndromes (MDSs) are chronic and often progressive myeloid neoplasms associated with remarkable heterogeneity in the histomorphology and clinical course. Various somatic mutations are involved in the pathogenesis of MDS. Recently, mutations in a gene encoding a spliceosomal protein, SF3B1, were discovered in a distinct form of MDS with ring sideroblasts. Whole exome sequencing of 15 patients with myeloid neoplasms was performed, and somatic mutations in spliceosomal genes were identified. Sanger sequencing of 310 patients was performed to assess phenotype/genotype associations. To determine the functional effect of spliceosomal mutations, we evaluated pre-mRNA splicing profiles by RNA deep sequencing. We identified additional somatic mutations in spliceosomal genes, including SF3B1, U2AF1, and SRSF2. These mutations alter pre-mRNA splicing patterns. SF3B1 mutations are prevalent in low-risk MDS with ring sideroblasts, whereas U2AF1 and SRSF2 mutations are frequent in chronic myelomonocytic leukemia and advanced forms of MDS. SF3B1 mutations are associated with a favorable prognosis, whereas U2AF1 and SRSF2 mutations are predictive for shorter survival. Mutations affecting spliceosomal genes that result in defective splicing are a new leukemogenic pathway. Spliceosomal genes are probably tumor suppressors, and their mutations may constitute diagnostic biomarkers that could potentially serve as therapeutic targets.
Collapse
|
119
|
Aranaz P, Hurtado C, Erquiaga I, Miguéliz I, Ormazábal C, Cristobal I, García-Delgado M, Novo FJ, Vizmanos JL. CBL mutations in myeloproliferative neoplasms are also found in the gene's proline-rich domain and in patients with the V617FJAK2. Haematologica 2012; 97:1234-41. [PMID: 22315494 DOI: 10.3324/haematol.2011.052605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Despite the discovery of the p.V617F in JAK2, the molecular pathogenesis of some chronic myeloproliferative neoplasms remains unclear. Although very rare, different studies have identified CBL (Cas-Br-Murine ecotropic retroviral transforming sequence) mutations in V617FJAK2-negative patients, mainly located in the RING finger domain. In order to determine the frequency of CBL mutations in these diseases, we studied different regions of all CBL family genes (CBL, CBLB and CBLC) in a selected group of patients with myeloproliferative neoplasms. We also included V617FJAK2-positive patients to check whether mutations in CBL and JAK2 are mutually exclusive events. DESIGN AND METHODS Using denaturing high performance liquid chromatography, we screened for mutations in CBL, CBLB and CBLC in a group of 172 V617FJAK2-negative and 232 V617FJAK2-positive patients with myeloproliferative neoplasms not selected for loss of heterozygosity. The effect on cell proliferation of the mutations detected was analyzed on a 32D(FLT3) cell model. RESULTS An initial screening of all coding exons of CBL, CBLB and CBLC in 44 V617FJAK2-negative samples revealed two new CBL mutations (p.C416W in the RING finger domain and p.A678V in the proline-rich domain). Analyses performed on 128 additional V617FJAK2-negative and 232 V617FJAK2-positive samples detected three CBL changes (p.T402HfsX29, p.P417R and p.S675C in two cases) in four V617FJAK2-positive patients. None of these mutations was found in 200 control samples. Cell proliferation assays showed that all of the mutations promoted hypersensitivity to interleukin-3 in 32D(FLT3) cells. CONCLUSIONS Although mutations described to date have been found in the RING finger domain and in the linker region of CBL, we found a similar frequency of mutations in the proline-rich domain. In addition, we found CBL mutations in both V617FJAK2-positive (4/232; 1.7%) and negative (2/172; 1.2%) patients and all of them promoted hypersensitivity to interleukin-3.
Collapse
Affiliation(s)
- Paula Aranaz
- Department of Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Affiliation(s)
- Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
121
|
Lai AZ, Durrant M, Zuo D, Ratcliffe CDH, Park M. Met kinase-dependent loss of the E3 ligase Cbl in gastric cancer. J Biol Chem 2012; 287:8048-59. [PMID: 22262855 DOI: 10.1074/jbc.m112.339820] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Strict regulation of signaling by receptor tyrosine kinases (RTKs) is essential for normal biological processes, and disruption of this regulation can lead to tumor initiation and progression. Signal duration by the Met RTK is mediated in part by the E3 ligase Cbl. Cbl is recruited to Met upon kinase activation and promotes ubiquitination, trafficking, and degradation of the receptor. The Met RTK has been demonstrated to play a role in various types of cancer. Here, we show that Met-dependent loss of Cbl protein in MET-amplified gastric cancer cell lines represents another mechanism contributing to signal dysregulation. Loss of Cbl protein is dependent on Met kinase activity and is partially rescued with a proteasome inhibitor, lactacystin. Moreover, Cbl loss not only uncouples Met from Cbl-mediated negative regulation but also releases other Cbl targets, such as the EGF receptor, from Cbl-mediated signal attenuation. Thus, Met-dependent Cbl loss may also promote cross-talk through indirect enhancement of EGF receptor signaling.
Collapse
Affiliation(s)
- Andrea Z Lai
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | | | | | | | |
Collapse
|
122
|
Makishima H, Sugimoto Y, Szpurka H, Clemente MJ, Ng KP, Muramatsu H, O'Keefe C, Saunthararajah Y, Maciejewski JP. CBL mutation-related patterns of phosphorylation and sensitivity to tyrosine kinase inhibitors. Leukemia 2012; 26:1547-54. [PMID: 22246246 DOI: 10.1038/leu.2012.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recurrent homozygous CBL-inactivating mutations in myeloid malignancies decrease ubiquitin ligase activity that inactivates SRC family kinases (SFK) and receptor tyrosine kinases (RTK). However, the most important SFK and RTK affected by these mutations, and hence, the most important therapeutic targets, have not been clearly characterized. We compared SFK and RTK pathway activity and inhibitors in acute myeloid leukemia cell lines containing homozygous R420Q mutation (GDM-1), heterozygous deletion (MOLM13) and wild-type (WT) CBL (THP1, U937). As expected with CBL loss, GDM-1 displayed high KIT expression and granulocyte-macrophage colony-stimulating factor (GM-CSF) hypersensitivity. Ectopic expression of WT CBL decreased GDM-1 proliferation but not cell lines with WT CBL. GDM-1, but not the other cell lines, was highly sensitive to growth inhibition by dasatinib (dual SFK and RTK inhibitor, LD50 50 nM); there was less or no selective inhibition of GDM-1 growth by sunitinib (RTK inhibitor), imatinib (ABL, KIT inhibitor), or PP2 (SFK inhibitor). Phosphoprotein analysis identified phosphorylation targets uniquely inhibited by dasatinib treatment of GDM-1, including a number of proteins in the KIT and GM-CSF receptor pathways (for example, KIT Tyr721, STAT3 Tyr705). In conclusion, the promiscuous effects of CBL loss on SFK and RTK signaling appear to be best targeted by dual SFK and RTK inhibition.
Collapse
Affiliation(s)
- H Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Zhang XZ, Yin AH, Zhu XY, Ding Q, Wang CH, Chen YX. Using an exon microarray to identify a global profile of gene expression and alternative splicing in K562 cells exposed to sodium valproate. Oncol Rep 2011; 27:1258-65. [PMID: 22200904 PMCID: PMC3583465 DOI: 10.3892/or.2011.1601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
To investigate the effect of valproate treatment on the K562 cell line, a model for chronic myelogenous leukaemia, the growth and survival of the K562 cell line were investigated using the Annexin-V/PI dual staining method, and global profiles of gene expression and alternative splicing in K562 cells were assessed using exon microarrays. A significant increase in cell apoptosis was observed in valproate-exposed K562 cells using flow cytometry. A total of 628 transcripts were identified as being significantly differentially expressed. The number of genes demonstrating increased expression levels was greater than the number of genes demonstrating decreased expression levels (445 genes vs. 183 genes, respectively). The significant enrichment analysis of GO terms for the differentially expressed genes revealed that these genes are involved in many important biological processes such as apoptosis. Six of the genes observed to be differentially expressed that might be involved in apoptosis were selected to undergo qRT-PCR validation. In total, 198 candidates of alternative splicing variants were identified. Among them, three alternative splicing events were selected for validation, and CBLC and TBX1 were confirmed to be alternatively spliced by semi-nested PCR. In conclusion, valproate exposure facilitated cell apoptosis, altered mRNA expression and alternative splicing events in the K562 cell line.
Collapse
Affiliation(s)
- Xiang-Zhong Zhang
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
Abstract
Current immunosuppressive treatment (IST) induces remissions in 50%-70% of patients with aplastic anemia (AA) and result in excellent long-term survival. In recent years, the survival of refractory patients has also improved. Apart from relapse and refractoriness to IST, evolution of clonal diseases, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndrome (MDS), are the most serious long-term complications and constitute a strong argument for definitive therapy with BM transplantation if possible. Consequently, the detection of diagnostic chromosomal abnormalities (mostly monosomy 7) is of great clinical importance. Newer whole-genome scanning technologies such as single nucleotide polymorphism (SNP) array–based karyotyping may be a helpful diagnostic test for the detection of chromosomal defects in AA due to its precision/resolution and lack of reliance on cell division.
Collapse
|
125
|
Liu J, Chen HC, Rao ZZ, Khan MA, Wan XX, Xu AH, Zhang N, Zhang DZ. Identification of heptapeptides interacting with IFN-α-sensitive CML cells. Expert Opin Investig Drugs 2011; 20:1583-1589. [PMID: 22092230 DOI: 10.1517/13543784.2011.632407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Interferon-alpha (IFN-α) is the traditional therapeutic agent for chronic myeloid leukemia (CML). The molecular mechanism of IFN-α efficacy in the treatment of CML is not fully clear. OBJECTIVES To identify the peptides and/or proteins that bind to the proteins specifically expressed on the surface of IFN-α-sensitive CML cells by using a phage display library. DESIGN/METHODS IFN-α-sensitive KT-1/A3 cells were used as the target, and IFN-α-resistant subline KT-1/A3R was used as absorber for phage display biopanning. The positive phage clones were identified by enzyme-linked immunosorbent assay and flow cytometry. The peptides were deduced from their DNA sequences. RESULTS Multiple clones showed high binding efficiency to KT-1/A3 cells compared with that of the other leukemia cells. One of the peptides, KLWVIPQ, has a partial amino acid sequence homology with the C-terminal domain of E3 ubiquitin-protein ligase. CONCLUSIONS This study presents the identification of specific heptapeptides that bind to IFN-α-sensitive KT-1/A3 cells. The cancer-selective ligands provide novel strategies for early and differential diagnoses, as well as potential targeted drug delivery.
Collapse
Affiliation(s)
- Jia Liu
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, 410013, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Hama A, Muramatsu H, Makishima H, Sugimoto Y, Szpurka H, Jasek M, O’Keefe C, Takahashi Y, Sakaguchi H, Doisaki S, Shimada A, Watanabe N, Kato K, Kiyoi H, Naoe T, Kojima S, Maciejewski JP. Molecular lesions in childhood and adult acute megakaryoblastic leukaemia. Br J Haematol 2011; 156:316-25. [DOI: 10.1111/j.1365-2141.2011.08948.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
127
|
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematopoetic disorders marked by ineffective hematopoiesis, peripheral cytopenias, and an increased risk of transformation to acute myeloid leukemia. Multiple processes govern hematopoietic progenitor proliferation and natural differentiation into mature myeloid elements. Molecular events that disrupt any of these processes have the potential to lead to ineffective hematopoiesis and an MDS phenotype. Recent advances in genomic analysis have identified a number of new genes that may be involved. The molecular description of MDS will lead to better understanding, classification, and treatment of this disease.
Collapse
Affiliation(s)
- Alan H Shih
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | | |
Collapse
|
128
|
Passamonti F, Maffioli M, Caramazza D, Cazzola M. Myeloproliferative neoplasms: from JAK2 mutations discovery to JAK2 inhibitor therapies. Oncotarget 2011; 2:485-90. [PMID: 21646683 PMCID: PMC3248205 DOI: 10.18632/oncotarget.281] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Most BCR-ABL1-negative myeloproliferative neoplasms (MPN) carry an activating JAK2 mutation. Approximately 96% of patients with polycythemia vera (PV) harbors the V617F mutation in JAK2 exon 14, whereas the minority of JAK2 (V617F)-negative subjects shows several mutations in exon 12. Other mutation events as MPL, TET2, LNK, EZH2 have been described in chronic phase, while NF1, IDH1, IDH2, ASX1, CBL and Ikaros in blast phase of MPN. The specific pathogenic implication of these mutations is under investigation, but they may have a role in refinement of diagnostic criteria and in development of new prognostic models. Several trials with targeted therapy (JAK inhibitors) are ongoing mostly involving patients with PMF, post-PV MF and post-essential thrombocythemia (ET) MF. Treatment with ruxolitinib and TG101348 has shown clinically significant benefits, particularly in improvement of splenomegaly and constitutional symptoms in MF patients. On the other hand, JAK inhibitors have not thus far shown disease-modifying activity therefore any other deduction on these new drugs seems premature.
Collapse
Affiliation(s)
- Francesco Passamonti
- Division of Hematology, Department of Internal Medicine, Ospedale di Circolo e Fondazione Macchi, Varese, Italy.
| | | | | | | |
Collapse
|
129
|
|
130
|
Loh ML. Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol 2011; 152:677-87. [PMID: 21623760 DOI: 10.1111/j.1365-2141.2010.08525.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myeloid neoplasms derive from the pathological clonal expansion of an abnormal stem cell and span a diverse spectrum of phenotypes including acute myeloid leukaemia (AML), myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS). Expansion of myeloid blasts with suppression of normal haematopoiesis is the hallmark of AML, whereas MPN is associated with over-proliferation of one or more lineages that retain the capacity to differentiate, and MDS is characterized by cytopenias and aberrant differentiation. MPD and MDS can progress to AML, which is likely due to the acquisition of cooperative mutations. Juvenile myelomonocytic leukaemia (JMML) is an aggressive myeloid neoplasm of childhood that is clinically characterized by overproduction of monocytic cells that can infiltrate organs, including the spleen, liver, gastrointestinal tract, and lung. JMML is categorized as an overlap MPN/MDS by the World Health Organization and also shares some clinical and molecular features with chronic myelomonocytic leukaemia, a similar disease in adults. While the current standard of care for patients with JMML relies on allogeneic haematopoietic stem cell transplant (HSCT), relapse is the most frequent cause of treatment failure. This review outlines our understanding of the genetic underpinnings of JMML with a recent update on the discovery of novel CBL mutations, as well as a brief review on current therapeutic approaches.
Collapse
Affiliation(s)
- Mignon L Loh
- Department of Pediatrics and the Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
131
|
Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 2011; 118:3932-41. [PMID: 21828135 DOI: 10.1182/blood-2010-10-311019] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML), a myelodysplastic/myeloproliferative neoplasm, is characterized by monocytic proliferation, dysplasia, and progression to acute myeloid leukemia. CMML has been associated with somatic mutations in diverse recently identified genes. We analyzed 72 well-characterized patients with CMML (N = 52) and CMML-derived acute myeloid leukemia (N = 20) for recurrent chromosomal abnormalities with the use of routine cytogenetics and single nucleotide polymorphism arrays along with comprehensive mutational screening. Cytogenetic aberrations were present in 46% of cases, whereas single nucleotide polymorphism array increased the diagnostic yield to 60%. At least 1 mutation was found in 86% of all cases; novel UTX, DNMT3A, and EZH2 mutations were found in 8%, 10%, and 5.5% of patients, respectively. TET2 mutations were present in 49%, ASXL1 in 43%, CBL in 14%, IDH1/2 in 4%, KRAS in 7%, NRAS in 4%, and JAK2 V617F in 1% of patients. Various mutant genotype combinations were observed, indicating molecular heterogeneity in CMML. Our results suggest that molecular defects affecting distinct pathways can lead to similar clinical phenotypes.
Collapse
|
132
|
Jiao X, Jin B, Qu X, Yan S, Hou K, Liu Y, Hu X. [Expressions of c-Cbl, Cbl-b and EGFR and its role of prognosis in NSCLC]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:512-7. [PMID: 21645455 PMCID: PMC5999894 DOI: 10.3779/j.issn.1009-3419.2011.06.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVE Epidermal growth factor receptor (EGFR) is closely correlated with the progression of lung cancer. Its activity is modulated by Casitas B-lineage lymphoma (Cbl) family. The aim of this study is to investigate the expression and clinical relevance of c-Cbl, Cbl-b and EGFR in non-small cell lung cancer (NSCLC). METHODS Expressions of c-Cbl, Cbl-b and EGFR protein were detected with tissue microarrays and immunohistochemistry technique in 94 cases of NSCLC. The correlations between the expression of the three proteins and clinicopathological parameters were analyzed. RESULTS The positive expression rates of EGFR, c-Cbl and Cbl-b were 60.6% (57/94), 30.9% (29/94) and 84.0% (79/94), respectively. The expression of EGFR, c-Cbl and Cbl-b was not associated with age, pathological type, TNM stage, lymph node metastasis, and smoking history. c-Cbl and Cbl-b status was not significantly correlated with overall survival. Subgroup analyses showed that c-Cbl-positive patients had longer survival than c-Cbl-negative patients in EGFR-positive group (P=0.014). CONCLUSION Detection of c-Cbl protein levels might contribute to the prognosis evaluation of EGFR-positive NSCLC.
Collapse
Affiliation(s)
- Xin Jiao
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, 110001, China
| | | | | | | | | | | | | |
Collapse
|
133
|
Yan SC, Liu YP, Zhang LY, Qu JL, Xu L, Liu J, Zhang Y, Hou KZ, Teng YE, Qu XJ. Ubiquitin ligase c-Cbl is involved in tamoxifen-induced apoptosis of MCF-7 cells by downregulating the survival signals. Acta Oncol 2011; 50:693-9. [PMID: 21175263 DOI: 10.3109/0284186x.2010.543144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been widely used in the treatment of breast cancer through its anti-estrogen activity. Recent studies show that TAM is cytotoxic to both estrogen receptor (ER)-positive and ER-negative cells via the induction of apoptosis. However, the molecular mechanisms of this effect are not well understood. In the present study, we investigated the roles of c-Src, ERK, AKT and c-Cbl ubiquitin ligases during TAM-induced apoptosis of MCF-7 cells. MATERIAL AND METHODS MCF-7 cell proliferation and apoptosis were measured by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and flow cytometry, respectively. c-Cbl expression, and the activity of c-Src, ERK, AKT were assayed by Western blotting. Overexpression of the wild and the dominant-negative type of c-Cbl (70Z/Cbl) were achieved by transient transfection of plasmids encoding c-Cbl and 70Z/Cbl, respectively, and were confirmed by Western blotting. Statistical analysis was performed using the t-test, and a p-value <0.05 was considered to be statistically significant. RESULTS A high concentration of TAM (25 μM) induced a time-dependent apoptosis of MCF-7 cells. ERK1/2 and AKT were activated during TAM-induced apoptosis. The ERK1/2 inhibitor PD98059, the PI3K/Akt inhibitor LY294002, and the c-Src inhibitor PP2 all enhanced TAM action. Moreover, the ubiquitin ligase c-Cbl was up-regulated during this process. Over-expression of c-Cbl significantly enhanced the apoptosis-inducing effects of TAM, while 70Z/Cbl suppressed the apoptosis-inducing effects of TAM. Further investigation revealed that, overexpression of c-Cbl significantly downregulated the c-Src protein levels and TAM-induced AKT activity. But 70Z/Cbl significantly upregulated TAM-induced ERK and AKT activity. CONCLUSIONS This study demonstrates that c-Src, ERK, and AKT played a protective role during TAM-induced apoptosis, and that c-Cbl sensitized MCF-7 cells to TAM by modulating the expression of c-Src, and TAM-induced ERK and AKT activity.
Collapse
Affiliation(s)
- Shun-Chao Yan
- Department of Medical Oncology, The First Hospital, China Medical University, Heping District, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Reuther GW. Recurring mutations in myeloproliferative neoplasms alter epigenetic regulation of gene expression. Am J Cancer Res 2011; 1:752-762. [PMID: 22016825 PMCID: PMC3195930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/25/2011] [Indexed: 05/31/2023] Open
Abstract
The prevalence of activating JAK2 mutations in myeloproliferative neoplasms (MPNs) suggests that aberrant gene expression due to deregulated signaling of the JAK2/STAT pathway plays an important role in the etiology of these diseases. While likely true, recent work has uncovered some fascinating new insights into both the function of mutationally-activated JAK2 as well as other mutated gene products in MPNs, and how these mutations may affect gene expression. In addition to being a cytoplasmic tyrosine kinase that relays signals from cytokine receptors, activated JAK2 can also function in the nucleus where it phosphorylates histones and deregulates binding of the transcriptional repressor HP1α. In addition, MPN-associated JAK2 mutants phosphorylate PRMT5 and inhibit its histone methyltransferase activity. Thus, in addition to the classical JAK/STAT pathway, JAK2 activating mutations in MPNs may deregulate gene expression by altering epigenetic mechanisms. Studies aimed at identifying the biochemical ramifications of other recurring MPN mutations also suggest deregulated epigenetic modifications may be important in MPN formation. Mutant TET2, as well as IDH1/2, impairs the hydroxylation of methylcytosine, thus affecting DNA methylation. Likewise, mutations in EZH2, a histone methyl transferase, ASXL1, which functions in chromatin modifier complexes, and the DNA methyltransferase DNMT3A, appear to inactivate the functions of these proteins toward regulating the epigenetic state of genes. Thus, it is likely that the control of gene expression by epigenetic mechanisms plays an important role in MPNs, since multiple recurring mutations in MPNs alter normal epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute USA
| |
Collapse
|
135
|
Tibes R, Mesa RA. Myeloproliferative neoplasms 5 years after discovery of JAK2V617F: what is the impact of JAK2 inhibitor therapy? Leuk Lymphoma 2011; 52:1178-87. [DOI: 10.3109/10428194.2011.566952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
136
|
Tiu RV, Traina F, Sekeres MA. Clofarabine for myelodysplastic syndromes. Expert Opin Investig Drugs 2011; 20:1005-14. [PMID: 21591997 DOI: 10.1517/13543784.2011.585967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Treatment options in myelodysplastic syndromes (MDS) remain limited. The introduction of novel therapies that can improve response rates and survival outcomes in MDS remains a challenge. Clofarabine is a purine nucleoside analog that works primarily via inhibition of DNA biosynthesis and the ribonucleotide reductase enzyme with recent evidence suggesting that at low doses it may affect DNA methylation. It has been successfully used in the treatment of acute myeloid leukemia (AML) and is under investigation in MDS. AREAS COVERED A PubMed search for articles pertaining to clofarabine was conducted and streamlined to only include data on MDS or AML that evolved from MDS. Also included were clofarabine-related response and safety data from presentations at the 52(nd) Annual American Society of Hematology Meeting in Orlando, Florida, USA. EXPERT OPINION Clinical trials using clofarabine in MDS and MDS/myeloproliferative neoplasms have produced overall response rates of 31 - 43% including complete responders. Although myelosuppression is an important side effect, clofarabine is generally well tolerated in MDS. Clofarabine is currently available in an intravenous form with an oral formulation presently under investigation, either as a single agent or in combination therapy in MDS. Larger studies may help clarify the viability of clofarabine in the treatment of MDS patients.
Collapse
Affiliation(s)
- Ramon V Tiu
- Taussig Cancer Institute, Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
137
|
Kratz CP, Rapisuwon S, Reed H, Hasle H, Rosenberg PS. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2011. [PMID: 21500339 DOI: 10.1002/ajmg.c.30300.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Noonan syndrome (NS), Costello syndrome (CS), cardiofaciocutaneous syndrome (CFCS), and LEOPARD syndrome (now also referred to as Noonan syndrome with multiple lentigines or NSML) are clinically overlapping dominant disorders that are caused by mutations in RAS signaling pathway genes. The spectrum of cancer susceptibility in this group of disorders has not been studied in detail. We identified more than 1900 cases of NS, CS, CFCS, or NSML reported in the literature between 1937 and 2010; 88 cancers were reported. The most common cancers reported in 1051 NS subjects were neuroblastoma (n = 8), acute lymphoblastic leukemia (n = 8), low grade glioma (n = 6), and rhabdomyosarcoma (n = 6). These associations are biologically plausible, given that somatic RAS pathway mutations are known to occur in these specific cancers. In addition, 40 childhood cases of myeloproliferative disease were described in individuals with NS, several of whom experienced a benign course of this hematologic condition. We confirmed the previously described association between CS and cancer in 268 reported individuals: 19 had rhabdomyosarcoma, 4 had bladder cancer, and 5 had neuroblastoma. By age 20, the cumulative incidence of cancer was approximately 4% for NS and 15% for CS; both syndromes had a cancer incidence peak in childhood. The cancers described in CFCS and NSML overlapped with those reported in NS and CS. Future epidemiologic studies will be required to confirm the described cancer spectrum and to estimate precise cancer risks.
Collapse
Affiliation(s)
- Christian P Kratz
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, 6120 Executive Boulevard, EPS/7018, Rockville, MD 20892, USA.
| | | | | | | | | |
Collapse
|
138
|
Kratz CP, Rapisuwon S, Reed H, Hasle H, Rosenberg PS. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2011; 157C:83-9. [PMID: 21500339 PMCID: PMC3086183 DOI: 10.1002/ajmg.c.30300] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Noonan syndrome (NS), Costello syndrome (CS), cardiofaciocutaneous syndrome (CFCS), and LEOPARD syndrome (now also referred to as Noonan syndrome with multiple lentigines or NSML) are clinically overlapping dominant disorders that are caused by mutations in RAS signaling pathway genes. The spectrum of cancer susceptibility in this group of disorders has not been studied in detail. We identified more than 1900 cases of NS, CS, CFCS, or NSML reported in the literature between 1937 and 2010; 88 cancers were reported. The most common cancers reported in 1051 NS subjects were neuroblastoma (n = 8), acute lymphoblastic leukemia (n = 8), low grade glioma (n = 6), and rhabdomyosarcoma (n = 6). These associations are biologically plausible, given that somatic RAS pathway mutations are known to occur in these specific cancers. In addition, 40 childhood cases of myeloproliferative disease were described in individuals with NS, several of whom experienced a benign course of this hematologic condition. We confirmed the previously described association between CS and cancer in 268 reported individuals: 19 had rhabdomyosarcoma, 4 had bladder cancer, and 5 had neuroblastoma. By age 20, the cumulative incidence of cancer was approximately 4% for NS and 15% for CS; both syndromes had a cancer incidence peak in childhood. The cancers described in CFCS and NSML overlapped with those reported in NS and CS. Future epidemiologic studies will be required to confirm the described cancer spectrum and to estimate precise cancer risks.
Collapse
Affiliation(s)
- Christian P Kratz
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, 6120 Executive Boulevard, EPS/7018, Rockville, MD 20892, USA.
| | | | | | | | | |
Collapse
|
139
|
Tiu RV, Gondek LP, O'Keefe CL, Elson P, Huh J, Mohamedali A, Kulasekararaj A, Advani AS, Paquette R, List AF, Sekeres MA, McDevitt MA, Mufti GJ, Maciejewski JP. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011; 117:4552-60. [PMID: 21285439 PMCID: PMC3099573 DOI: 10.1182/blood-2010-07-295857] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/24/2010] [Indexed: 01/08/2023] Open
Abstract
Single nucleotide polymorphism arrays (SNP-As) have emerged as an important tool in the identification of chromosomal defects undetected by metaphase cytogenetics (MC) in hematologic cancers, offering superior resolution of unbalanced chromosomal defects and acquired copy-neutral loss of heterozygosity. Myelodysplastic syndromes (MDSs) and related cancers share recurrent chromosomal defects and molecular lesions that predict outcomes. We hypothesized that combining SNP-A and MC could improve diagnosis/prognosis and further the molecular characterization of myeloid malignancies. We analyzed MC/SNP-A results from 430 patients (MDS = 250, MDS/myeloproliferative overlap neoplasm = 95, acute myeloid leukemia from MDS = 85). The frequency and clinical significance of genomic aberrations was compared between MC and MC plus SNP-A. Combined MC/SNP-A karyotyping lead to higher diagnostic yield of chromosomal defects (74% vs 44%, P < .0001), compared with MC alone, often through detection of novel lesions in patients with normal/noninformative (54%) and abnormal (62%) MC results. Newly detected SNP-A defects contributed to poorer prognosis for patients stratified by current morphologic and clinical risk schemes. The presence and number of new SNP-A detected lesions are independent predictors of overall and event-free survival. The significant diagnostic and prognostic contributions of SNP-A-detected defects in MDS and related diseases underscore the utility of SNP-A when combined with MC in hematologic malignancies.
Collapse
Affiliation(s)
- Ramon V Tiu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute Center, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
The systematic application of new genome-wide single nucleotide polymorphism arrays has demonstrated that somatically acquired regions of loss of heterozygosity without changes in copy number frequently occur in many types of cancer. Until recently, the ubiquity of this type of chromosomal defect had gone unrecognized because it cannot be detected by routine cytogenetic technologies. Random and recurrent patterns of copy-neutral loss of heterozygosity, also referred to as uniparental disomy, can be found in specific cancer types and probably contribute to clonal outgrowth owing to various mechanisms. In this review we explore the types, topography, genesis, pathophysiological consequences, and clinical implications of uniparental disomy.
Collapse
Affiliation(s)
- Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
141
|
Incidence of c-Cbl mutations in human acute myeloid leukaemias in an Australian patient cohort. Pathology 2011; 43:261-5. [DOI: 10.1097/pat.0b013e328343ca4b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
142
|
Oh ST, Gotlib J. JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol 2011; 3:323-37. [PMID: 21082983 DOI: 10.1586/ehm.10.28] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulated signaling is a hallmark of chronic myeloproliferative neoplasms (MPNs), as evidenced by the identification of the activating JAK2 V617F somatic mutation in almost all patients with polycythemia vera (PV) and 50-60% of essential thrombocythemia and primary myelofibrosis patients. These disorders are clinically distinct, raising the question of how a single mutation can result in such phenotypic diversity. Mouse models have demonstrated that the level of JAK2 V617F expression can modulate the phenotype, and clinical studies of JAK2 V617F allele burden have reported similar findings. It has also been hypothesized that one or more pre-JAK2 V617F events may modify the MPN phenotype. However, the molecular basis of JAK2 V617F-negative essential thrombocythemia and primary myelofibrosis remains largely unexplained. Mutations in the TET2 gene have been identified in both JAK2 V617F-positive and -negative MPNs and other myeloid neoplasms, but their functional and clinical significance have yet to be clarified. In addition, recent reports have identified a specific germline haplotype that increases the predisposition to MPNs. The role of inhibitory pathways (e.g., SOCS and LNK) in regulating JAK-STAT signaling in MPNs is being increasingly recognized. The implications of these findings and their clinical relevance are the focus of this article.
Collapse
Affiliation(s)
- Stephen T Oh
- Division of Hematology, Stanford Cancer Center, 875 Blake Wilbur Drive, Room 2324, Stanford, CA 94305-5821, USA
| | | |
Collapse
|
143
|
Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M, Serve H, Cross NCP, Hochhaus A, Hofmann WK, Berdel WE, Müller-Tidow C, Reiter A, Koschmieder S. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood 2011; 117:2935-43. [PMID: 21224473 DOI: 10.1182/blood-2010-05-286757] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The FIP1L1-PDGFRA fusion is seen in a fraction of cases with a presumptive diagnosis of hypereosinophilic syndrome (HES). However, because most HES patients lack FIP1L1-PDGFRA, we studied whether they harbor activating mutations of the PDGFRA gene. Sequencing of 87 FIP1L1-PDGFRA-negative HES patients revealed several novel PDGFRA point mutations (R481G, L507P, I562M, H570R, H650Q, N659S, L705P, R748G, and Y849S). When cloned into 32D cells, N659S and Y849S and-on selection for high expressors-also H650Q and R748G mutants induced growth factor-independent proliferation, clonogenic growth, and constitutive phosphorylation of PDGFRA and Stat5. Imatinib antagonized Stat5 phosphorylation. Mutations involving positions 659 and 849 had been shown previously to possess transforming potential in gastrointestinal stromal tumors. Because H650Q and R748G mutants possessed only weak transforming activity, we injected 32D cells harboring these mutants or FIP1L1-PDGFRA into mice and found that they induced a leukemia-like disease. Oral imatinib treatment significantly decreased leukemic growth in vivo and prolonged survival. In conclusion, our data provide evidence that imatinib-sensitive PDGFRA point mutations play an important role in the pathogenesis of HES and we propose that more research should be performed to further define the frequency and treatment response of PDGFRA mutations in FIP1L1-PDGFRA-negative HES patients.
Collapse
Affiliation(s)
- Christian Elling
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Bacher U, Haferlach T, Schnittger S, Kreipe H, Kröger N. Recent advances in diagnosis, molecular pathology and therapy of chronic myelomonocytic leukaemia. Br J Haematol 2011; 153:149-67. [DOI: 10.1111/j.1365-2141.2011.08631.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
145
|
Naramura M, Nadeau S, Mohapatra B, Ahmad G, Mukhopadhyay C, Sattler M, Raja SM, Natarajan A, Band V, Band H. Mutant Cbl proteins as oncogenic drivers in myeloproliferative disorders. Oncotarget 2011; 2:245-50. [PMID: 21422499 PMCID: PMC3134300 DOI: 10.18632/oncotarget.233] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/20/2011] [Indexed: 12/02/2022] Open
Abstract
Casitas B-lineage lymphoma (Cbl) family proteins are evolutionarily-conserved attenuators of protein tyrosine kinase (PTK) signaling. Biochemical analyses over the past two decades have firmly established that the negative regulatory functions of Cbl proteins are mediated through their ability to facilitate ubiquitination and thus promote degradation of PTKs. As aberrant activation of PTKs is frequently associated with oncogenesis, it has long been postulated that loss of normal Cbl functions may lead to unregulated activation of PTKs and cellular transformation. In the last few years, mutations in the CBL gene have been identified in a subset of human patients with myeloid malignancies. Here we discuss insights gained from the analyses of Cbl mutants both in human patients and in animal models and propose potential mechanisms of oncogenesis through this pathway.
Collapse
Affiliation(s)
- Mayumi Naramura
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Scott Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Chandrani Mukhopadhyay
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Martin Sattler
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
146
|
CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood 2011; 117:e198-206. [PMID: 21346257 DOI: 10.1182/blood-2010-06-292433] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Progression of chronic myelogenous leukemia (CML) to accelerated (AP) and blast phase (BP) is because of secondary molecular events, as well as additional cytogenetic abnormalities. On the basis of the detection of JAK2, CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations in myelodysplastic/myeloproliferative neoplasms, we hypothesized that they may also contribute to progression in CML. We screened these genes for mutations in 54 cases with CML (14 with chronic phase, 14 with AP, 20 with myeloid, and 6 with nonmyeloid BP). We identified 1 CBLB and 2 TET2 mutations in AP, and 1 CBL, 1 CBLB, 4 TET2, 2 ASXL1, and 2 IDH family mutations in myeloid BP. However, none of these mutations were found in chronic phase. No cases with JAK2V617F mutations were found. In 2 cases, TET2 mutations were found concomitant with CBLB mutations. By single nucleotide polymorphism arrays, uniparental disomy on chromosome 5q, 8q, 11p, and 17p was found in AP and BP but not involving 4q24 (TET2) or 11q23 (CBL). Microdeletions on chromosomes 17q11.2 and 21q22.12 involved tumor associated genes NF1 and RUNX1, respectively. Our results indicate that CBL family, TET2, ASXL1, and IDH family mutations and additional cryptic karyotypic abnormalities can occur in advanced phase CML.
Collapse
|
147
|
|
148
|
Rudolph T, Sjölander A, Palmér MS, Minthon L, Wallin A, Andreasen N, Tasa G, Juronen E, Blennow K, Zetterberg H, Zetterberg M. Ubiquitin carboxyl-terminal esterase L1 (UCHL1) S18Y polymorphism in patients with cataracts. Ophthalmic Genet 2011; 32:75-9. [PMID: 21268678 PMCID: PMC3116718 DOI: 10.3109/13816810.2010.544360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background: Cataract is characterized by light-scattering protein aggregates. The ubiquitin-proteasome system has been proposed a role in proteolytic removal of these protein aggregates. Ubiquitin carboxyl-terminal esterase L1 (UCHL1) is a de-ubiquitinating enzyme with important functions in recycling of ubiquitin. A protective role of the p.S18Y polymorphism of the UCHL1 gene has been shown in Parkinson's disease. The current study aimed to examine possible effects on cataract formation. Methods: Patients with cataract (n = 493) and controls (n = 142) were analyzed for the UCHL1 p.S18Y polymorphism using dynamic allele-specific hybridization. Results: Significant differences were observed in allele and genotype frequencies of the p.S18Y polymorphism between controls and cataract patients, where a positive UCHL1 allele A carrier status was associated with the cataract diagnosis (adjusted OR 1.7 [95% CI = 1.1-2.6] p = 0.02). No significant differences were seen in genotype distribution when stratifying for type of cataract. Nor did the mean age at cataract surgery differ between genotypes. Conclusion: The current study does not support a protective role for the UCHL1 S18Y polymorphism in cataract development, but may instead suggest a disease-promoting effect.
Collapse
Affiliation(s)
- Thiemo Rudolph
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Section of Ophthalmology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Yingchun L, Xiujuan Q, Jinglei Q, Ye Z, Jing L, Yuee T, Xuejun H, Kezuo H, Yunpeng L. E3 ubiquitin ligase Cbl-b potentiates the apoptotic action of arsenic trioxide by inhibiting the PI3K/Akt pathway. Braz J Med Biol Res 2010; 44:105-11. [PMID: 21180886 DOI: 10.1590/s0100-879x2010007500142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/06/2010] [Indexed: 11/22/2022] Open
Abstract
Arsenic trioxide (ATO) is a strong inducer of apoptosis in malignant hematological cells. Inducible phosphatidyl inositol 3 kinase (PI3K)-Akt activation promotes resistance to ATO. In the present study, we evaluated whether E3 ubiquitin ligase Cbl-b, a negative regulator of PI3K activation, is involved in the action of ATO. The effect of ATO on cell viability was measured by the Trypan blue exclusion assay or by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was determined by flow cytometry and protein expression was assayed by Western blotting. ATO decreased the viability of HL60 cells and induced cellular apoptosis, which was accompanied by transient activation of Akt. The PI3K/Akt inhibitor, LY294002, significantly increased ATO-induced apoptosis (P < 0.05). In addition, ATO up-regulated the expression of Cbl-b proteins. Furthermore, ATO inhibited cell viability with an IC50 of 18.54 μM at 24 h in rat basophilic leukemia-2H3 cells. ATO induced cellular apoptosis with transient activation of Akt and Cbl-b was also up-regulated. Rat basophilic leukemia-2H3 cells transfected with a dominant negative (DN) Cbl-b mutation showed overexpression of Cbl-b (DN) and enhanced Akt activation. Compared with cells transfected with vector, ATO-induced apoptosis was decreased and G2/M phase cells were increased at the same concentration (P < 0.05). The PI3K/Akt inhibitor, LY294002, re-sensitized Cbl-b (DN) overexpressing cells to ATO and reversed G2/M arrest (P < 0.05). Taken together, these results suggest that Cbl-b potentiates the apoptotic action of ATO by inhibition of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li Yingchun
- Department of Medical Oncology, China Medical University
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Pérez B, Kosmider O, Cassinat B, Renneville A, Lachenaud J, Kaltenbach S, Bertrand Y, Baruchel A, Chomienne C, Fontenay M, Preudhomme C, Cavé H. Genetic typing of CBL, ASXL1, RUNX1, TET2 and JAK2 in juvenile myelomonocytic leukaemia reveals a genetic profile distinct from chronic myelomonocytic leukaemia. Br J Haematol 2010; 151:460-8. [DOI: 10.1111/j.1365-2141.2010.08393.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|