101
|
Zhu M, Xu W, Jiang J, Wang Y, Guo Y, Yang R, Chang Y, Zhao B, Wang Z, Zhang J, Wang T, Shangguan L, Wang S. Peiminine Suppresses RANKL-Induced Osteoclastogenesis by Inhibiting the NFATc1, ERK, and NF-κB Signaling Pathways. Front Endocrinol (Lausanne) 2021; 12:736863. [PMID: 34630331 PMCID: PMC8498341 DOI: 10.3389/fendo.2021.736863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoclasts (OCs) play an important role in osteoporosis, a disease that is mainly characterized by bone loss. In our research, we aimed to identify novel approach for regulating osteoclastogenesis and thereby treating osteoporosis. Previous studies have set a precedent for screening traditional Chinese herbal extracts for effective inhibitors. Peiminine is an alkaloid extracted from the bulb of Fritillaria thunbergii Miq that reportedly has anticancer and anti-inflammatory effects. Thus, the potential inhibitory effect of peiminine on OC differentiation was investigated via a series of experiments. According to the results, peiminine downregulated the levels of specific genes and proteins in vitro and consequently suppressed OC differentiation and function. Based on these findings, we further investigated the underlying molecular mechanisms and identified the NF-κB and ERK1/2 signaling pathways as potential targets of peiminine. In vivo, peiminine alleviated bone loss in an ovariectomized mouse model.
Collapse
Affiliation(s)
- Mengbo Zhu
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Jiuzhou Jiang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Yining Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanjing Guo
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Ruijia Yang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Yaqiong Chang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenyu Wang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianfeng Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Te Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| | - Liqin Shangguan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| | - Shaowei Wang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| |
Collapse
|
102
|
Pan G, Zhang K, Li C, Hu X, Kausar S, Gu H, Yang L, Cui H. A hemocyte-specific cathepsin L-like cysteine protease is involved in response to 20-hydroxyecdysone and microbial pathogens stimulation in silkworm, Bombyx mori. Mol Immunol 2020; 131:78-88. [PMID: 33376000 DOI: 10.1016/j.molimm.2020.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 01/06/2023]
Abstract
Cathepsin L protease belongs to the papain-like cysteine proteases family, plays indispensable roles in animals' pathological and physiological processes. However, little is known about Cathepsin L in silkworm, Bombyx mori. Herein, a novel Cathepsin L-like (Cat L-like) was cloned and identified from silkworm by the rapid amplification of cDNA ends (RACE). Cat L-like contains an intact open reading frame (ORF) of 1 668 bp and encodes 556 amino acid residues, consisting of a signal peptide, typical cathepsins' inhibitor_I29, and pept_C1 domain. Cat L-like is specifically and highly expressed in hemocytes. The cathepsin (including Cathepsin L, B, and H) crude extract from hemocytes had typical substrate specific catalytic activities and were sensitive to pH and temperature. Cat L-like up-regulated considerably after 20-hydroxyecdysone (20-E) administration, indicating that Cat L-like may be regulated by insect hormone. The responses of Cat L-like against bacterial infection suggest it may play essential roles in silkworm immunity. Overall, our studies provide a theoretical basis and insights to further investigate the functions of Cat L-like and in insects' innate immunity mechanisms.
Collapse
Affiliation(s)
- Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China.
| |
Collapse
|
103
|
Delaisse JM, Andersen TL, Kristensen HB, Jensen PR, Andreasen CM, Søe K. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 2020; 141:115628. [PMID: 32919109 DOI: 10.1016/j.bone.2020.115628] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Proper bone remodeling necessarily requires that osteoblasts reconstruct the bone that osteoclasts have resorbed. However, the cellular events connecting resorption to reconstruction have remained poorly known. The consequence is a fragmentary understanding of the remodeling cycle where only the resorption and formation steps are taken into account. New tools have recently made possible to elucidate how resorption shifts to formation, thereby allowing to comprehend the remodeling cycle as a whole. This new knowledge is reviewed herein. It shows how teams of osteoclasts and osteoblast lineage cells are progressively established and how they are subjected therein to reciprocal interactions. Contrary to the common view, osteoclasts and osteoprogenitors are intermingled on the eroded surfaces. The analysis of the resorption and cell population dynamics shows that osteoprogenitor cell expansion and resorption proceed as an integrated mechanism; that a threshold cell density of osteoprogenitors on the eroded surface is mandatory for onset of bone formation; that the cell initiating osteoprogenitor cell expansion is the osteoclast; and that the osteoclast therefore triggers putative osteoprogenitor reservoirs positioned at proximity of the eroded bone surface (bone lining cells, canopy cells, pericytes). The interplay between magnitude of resorption and rate of cell expansion governs how soon bone reconstruction is initiated and may determine uncoupling and permanent bone loss if a threshold cell density is not reached. The clinical perspectives opened by these findings are discussed.
Collapse
Affiliation(s)
- Jean-Marie Delaisse
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| | - Helene Bjoerg Kristensen
- Clinical Cell Biology, Lillebælt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark.
| | - Pia Rosgaard Jensen
- Clinical Cell Biology, Lillebælt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark.
| | - Christina Møller Andreasen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
104
|
TGF-β in the Secretome of Irradiated Peripheral Blood Mononuclear Cells Supports In Vitro Osteoclastogenesis. Int J Mol Sci 2020; 21:ijms21228569. [PMID: 33202935 PMCID: PMC7696998 DOI: 10.3390/ijms21228569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoclastogenesis required for bone remodeling is also a key pathologic mechanism of inflammatory osteolysis being controlled by paracrine factors released from dying cells. The secretome of irradiated, dying peripheral blood mononuclear cells (PBMCs) has a major impact on the differentiation of myeloid cells into dendritic cells, and macrophage polarization. The impact on osteoclastogenesis, however, has not been reported. For this aim, we used murine bone marrow macrophages exposed to RANKL and M-CSF to initiate osteoclastogenesis, with and without the secretome obtained from γ-irradiated PBMCs. We reported that the secretome significantly enhanced in vitro osteoclastogenesis as determined by means of histochemical staining of the tartrate-resistant acid phosphatase (TRAP), as well as the expression of the respective target genes, including TRAP and cathepsin K. Considering that TGF-β enhanced osteoclastogenesis, we confirmed the TGF-β activity in the secretome with a bioassay that was based on the increased expression of IL11 in fibroblasts. Neutralizing TGF-β by an antibody decreased the ability of the secretome to support osteoclastogenesis. These findings suggested that TGF-β released by irradiated PBMCs could enhance the process of osteoclastogenesis in vitro.
Collapse
|
105
|
Mounier L, Morel A, Ferrandez Y, Morko J, Vääräniemi J, Gilardone M, Roche D, Cherfils J, Blangy A. Novel 2,7-Diazaspiro[4,4]nonane Derivatives to Inhibit Mouse and Human Osteoclast Activities and Prevent Bone Loss in Ovariectomized Mice without Affecting Bone Formation. J Med Chem 2020; 63:13680-13694. [PMID: 33175535 DOI: 10.1021/acs.jmedchem.0c01201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporosis is currently treated with drugs targeting the differentiation or viability osteoclasts, the cells responsible for physiological and pathological bone resorption. Nevertheless, osteoporosis drugs that target only osteoclast activity are expected to preserve bone formation by osteoblasts in contrast to current treatments. We report here the design, synthesis, and biological characterization of a series of novel N-arylsufonamides featuring a diazaspiro[4,4]nonane nucleus to target the guanine nucleotide exchange activity of DOCK5, which is essential for bone resorption by osteoclasts. These compounds can inhibit both mouse and human osteoclast activity. In particular, 4-chlorobenzyl-4-hydroxy-2-phenyl-1-thia-2,7-diazaspiro[4,4]nonane 1,1-dioxide (compound E197) prevented pathological bone loss in mice. Most interestingly, treatment with E197 did not affect osteoclast and osteoblast numbers and hence did not impair bone formation. E197 could represent a lead molecule to develop new antiosteoporotic drugs targeting the mechanism of osteoclast adhesion onto the bone.
Collapse
Affiliation(s)
- Lucile Mounier
- Centre de Recherche en Biologie Cellulaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France, Université de Montpellier, CNRS, 34000 Montpellier, France
| | - Anne Morel
- Centre de Recherche en Biologie Cellulaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France, Université de Montpellier, CNRS, 34000 Montpellier, France
| | - Yann Ferrandez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Jukka Morko
- Pharmatest Services Ltd., Itäinen Pitkäkatu 4, 20520 Turku, Finland
| | - Jukka Vääräniemi
- Pharmatest Services Ltd., Itäinen Pitkäkatu 4, 20520 Turku, Finland
| | | | - Didier Roche
- Edelris, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Anne Blangy
- Centre de Recherche en Biologie Cellulaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France, Université de Montpellier, CNRS, 34000 Montpellier, France
| |
Collapse
|
106
|
Duque G, Vidal C, Li W, Al Saedi A, Khalil M, Lim CK, Myers DE, Guillemin GJ. Picolinic Acid, a Catabolite of Tryptophan, Has an Anabolic Effect on Bone In Vivo. J Bone Miner Res 2020; 35:2275-2288. [PMID: 32629550 DOI: 10.1002/jbmr.4125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022]
Abstract
Fractures attributable to osteoporosis have a severe impact on our older population. Reports of side effects with commonly prescribed osteoporosis drugs have led to the investigation of new and safer treatments with novel mechanisms of action. Picolinic acid (PIC), a catabolite of tryptophan, induces in vitro osteogenic differentiation of mesenchymal stem cells. Here we demonstrate that PIC has an anabolic effect on bone in vivo by increasing bone formation, bone mass, and bone strength in normal and ovariectomized C57BL/6 mice. Activation of the osteogenic pathways triggered this osteoanabolic response without any cross-related effects on mineral absorption or calciotropic hormones. Because PIC was also well tolerated and absorbed with no side effects, it is an ideal potential candidate for the treatment of osteoporosis. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Christopher Vidal
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Wei Li
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Mamdouh Khalil
- ANZAC Research Institute, Sydney Medical School Concord, The University of Sydney, Concord, Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Damian E Myers
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
107
|
Li X, Wang L, Huang B, Gu Y, Luo Y, Zhi X, Hu Y, Zhang H, Gu Z, Cui J, Cao L, Guo J, Wang Y, Zhou Q, Jiang H, Fang C, Weng W, Chen X, Chen X, Su J. Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. SCIENCE ADVANCES 2020; 6:6/47/eabb7135. [PMID: 33208358 PMCID: PMC7673802 DOI: 10.1126/sciadv.abb7135] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/01/2020] [Indexed: 05/15/2023]
Abstract
The actin-bundling protein L-plastin (LPL) mediates the resorption activity of osteoclasts, but its therapeutic potential in pathological bone loss remains unexplored. Here, we report that LPL knockout mice show increased bone mass and cortical thickness with more mononuclear tartrate-resistant acid phosphatase-positive cells, osteoblasts, CD31hiEmcnhi endothelial vessels, and fewer multinuclear osteoclasts in the bone marrow and periosteum. LPL deletion impeded preosteoclasts fusion by inhibiting filopodia formation and increased the number of preosteoclasts, which release platelet-derived growth factor-BB to promote CD31hiEmcnhi vessel growth and bone formation. LPL expression is regulated by the phosphatidylinositol 3-kinase/AKT/specific protein 1 axis in response to receptor activator of nuclear factor-κB ligand. Furthermore, we identified an LPL inhibitor, oroxylin A, that could maintain bone mass in ovariectomy-induced osteoporosis and accelerate bone fracture healing in mice. In conclusion, we showed that LPL regulates osteoclasts fusion, and targeting LPL serves as a novel anabolic therapy for pathological bone loss.
Collapse
Affiliation(s)
- Xiaoqun Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopedics, No. 929 Hospital, Naval Medical University, Shanghai 200433, China
| | - Lipeng Wang
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Biaotong Huang
- Institute of translational medicine, Shanghai University, Shanghai 201900, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine of Shanghai Jiao Tong University, Shanghai 201999, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ying Luo
- Central Laboratory, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xin Zhi
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Hu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai 201900, China
| | - Jin Cui
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai 201900, China
| | - Jiawei Guo
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yajun Wang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qirong Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Jiang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chao Fang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Weizong Weng
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xiao Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiacan Su
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
- Institute of translational medicine, Shanghai University, Shanghai 201900, China
| |
Collapse
|
108
|
Lin X, Wang Q, Gu C, Li M, Chen K, Chen P, Tang Z, Liu X, Pan H, Liu Z, Tang R, Fan S. Smart Nanosacrificial Layer on the Bone Surface Prevents Osteoporosis through Acid-Base Neutralization Regulated Biocascade Effects. J Am Chem Soc 2020; 142:17543-17556. [PMID: 32960592 DOI: 10.1021/jacs.0c07309] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a global chronic disease characterized by severe bone loss and high susceptibility to fragile fracture. It is widely accepted that the origin acidified microenvironment created by excessive osteoclasts causes irreversible bone mineral dissolution and organic degradation during osteoclastic resorption. However, current clinically available approaches are mainly developed from the perspective of osteoclast biology rather than the critical acidified niche. Here, we developed a smart "nanosacrificial layer" consisting of sodium bicarbonate (NaHCO3)-containing and tetracycline-functionalized nanoliposomes (NaHCO3-TNLs) that can target bone surfaces and respond to external secreted acidification from osteoclasts, preventing osteoporosis. In vitro and in vivo results prove that this nanosacrificial layer precisely inhibits the initial acidification of osteoclasts and initiates a chemically regulated biocascade to remodel the bone microenvironment and realize bone protection: extracellular acid-base neutralization first inhibits osteoclast function and also promotes its apoptosis, in which the apoptosis-derived extracellular vesicles containing RANK (receptor activator of nuclear factor-κ B) further consume RANKL (RANK ligand) in serum, achieving comprehensive osteoclast inhibition. Our therapeutic strategy for osteoporosis is based on original and precise acid-base neutralization, aiming to reestablish bone homeostasis by using a smart nanosacrificial layer that is able to induce chemically regulated biocascade effects. This study also provides a novel understanding of osteoporosis therapy in biomedicine and clinical treatments.
Collapse
Affiliation(s)
- Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Mobai Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhibin Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Haihua Pan
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhaoming Liu
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
109
|
Montague-Cardoso K, Malcangio M. Cathepsin S as a potential therapeutic target for chronic pain. MEDICINE IN DRUG DISCOVERY 2020; 7:100047. [PMID: 32904424 PMCID: PMC7453913 DOI: 10.1016/j.medidd.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023] Open
Abstract
Chronic pain is a distressing yet poorly-treated condition that can arise as a result of diseases and injuries to the nervous system. The development of more efficacious therapies for chronic pain is essential and requires advances in our understanding of its underlying mechanisms. Clinical and preclinical evidence has demonstrated that immune responses play a crucial role in chronic pain. The lysosomal cysteine protease cathepsin S (CatS) plays a key role in such immune response. Here we discuss the preclinical evidence for the mechanistic importance of extracellular CatS in chronic pain focussing on studies utilising drugs and other pharmacological tools that target CatS activity. We also consider the use of CatS inhibitors as potential novel antihyperalgesics, highlighting that the route and timing of delivery would need to be tailored to the initial cause of pain in order to ensure the most effective use of such drugs. Cathepsin S plays a key extracellular role in the underlying mechanisms of chronic pain Pharmacological tools provide crucial evidence for this role and the therapeutic potential of targeting Cathepsin S The route of delivery and timing of cathepsin S inhibitor administration should be tailored to specific causes of chronic pain
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL
| |
Collapse
|
110
|
Yan M, Su J, Li Y. Rheumatoid arthritis-associated bone erosions: evolving insights and promising therapeutic strategies. Biosci Trends 2020; 14:342-348. [PMID: 32908076 DOI: 10.5582/bst.2020.03253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The human immune system has evolved to recognize and eradicate pathogens, a process that is known as "host defense". If, however, the immune system does not work properly, it can mistakenly attack the body's own tissues and induce autoimmune diseases. Rheumatoid arthritis (RA) is such an autoimmune disease in which the synovial joints are predominately attacked by the immune system. Moreover, RA is associated with bone destruction and joint deformity. Although biologic agents have propelled RA treatment forward dramatically over the past 30 years, a considerable number of patients with RA still experience progressive bone damage and joint disability. That is to be expected since current RA therapies are all intended to halt inflammation but not to alleviate bone destruction. A better understanding of bone erosions is crucial to developing a novel strategy to treat RA-associated erosions. This review provides insights into RA-associated bone destruction and perspectives for future clinical interventions.
Collapse
Affiliation(s)
- Minglu Yan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jianling Su
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
111
|
Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020; 9:E2073. [PMID: 32927921 PMCID: PMC7564526 DOI: 10.3390/cells9092073] [Citation(s) in RCA: 580] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. A direct interaction between osteoblasts and osteoclasts allows bidirectional transduction of activation signals through EFNB2-EPHB4, FASL-FAS or SEMA3A-NRP1, regulating differentiation and survival of osteoblasts or osteoclasts. Alternatively, osteoblasts produce a range of different secretory molecules, including M-CSF, RANKL/OPG, WNT5A, and WNT16, that promote or suppress osteoclast differentiation and development. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here we review the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Jung-Min Kim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Chujiao Lin
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Zheni Stavre
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
112
|
Chen D, Ye Z, Wang C, Wang Q, Wang H, Kuek V, Wang Z, Qiu H, Yuan J, Kenny J, Yang F, He J, Liu Y, Wang G, Zhang M, Zhang G, Wang J, Chen P, Xu J. Arctiin abrogates osteoclastogenesis and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Pharmacol Res 2020; 159:104944. [PMID: 32454224 DOI: 10.1016/j.phrs.2020.104944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
Osteoporosis, characterized by disrupted bone resorption and formation, is viewed as a global health challenge. Arctiin (ARC) is a main component of Arctium lappa L, which exerts chemopreventive effects against various tumor cells. However, the role of ARC in bone remodeling is still unclear. Here, we first demonstrated that ARC inhibits osteoclast formation and bone resorption function induced by the receptor activator of nuclear factor-κB ligand (RANKL) in a dose- and time-dependent manner without exerting cytotoxic effects. Mechanistic analysis revealed that ARC not only suppresses RANKL-induced mitogen-activated protein kinase (MAPK) and calcium signaling pathways, but also enhances the expression of cytoprotective enzymes that are involved in scavenging reactive oxygen species (ROS). Further, ARC inhibits the activation of the major transcription factor nuclear factor of activated T cells 1 (NFATc1) during RANKL-induced osteoclast formation. Preclinical studies showed that ARC protects bone loss in an ovariectomy (OVX) mouse model. Conclusively, our data confirmed that ARC could potentially inhibit osteoclastogenesis by abrogating RANKL-induced MAPK, calcium, and NFATc1 signaling pathway, as well as by promoting the expression of ROS scavenging enzymes in Nrf2/Keap1/ARE signaling pathway, thereby2 preventing OVX-induced bone loss. Thus, ARC may serve as a novel therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Delong Chen
- Department of Orthopaedic Surgery, Clifford Hospital, Jinan University, Guangzhou 510006, China; School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Zhen Ye
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Qingqing Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Haibin Wang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jacob Kenny
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Fan Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianbo He
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia; Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yun Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia; Department of Spine Osteopathy Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Gang Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia; Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Meng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gangyu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Chen
- Department of Orthopaedic Surgery, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia.
| |
Collapse
|
113
|
Jürgensen HJ, van Putten S, Nørregaard KS, Bugge TH, Engelholm LH, Behrendt N, Madsen DH. Cellular uptake of collagens and implications for immune cell regulation in disease. Cell Mol Life Sci 2020; 77:3161-3176. [PMID: 32100084 PMCID: PMC11105017 DOI: 10.1007/s00018-020-03481-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.
Collapse
Affiliation(s)
- Henrik J Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark.
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Kirstine S Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730, Herlev, Denmark.
| |
Collapse
|
114
|
Silva TL, dos Santos DA, de Jesus HC, Brömme D, Fernandes JB, Paixão MW, Corrêa AG, Vieira PC. Green asymmetric synthesis of epoxypeptidomimetics and evaluation as human cathepsin K inhibitors. Bioorg Med Chem 2020; 28:115597. [DOI: 10.1016/j.bmc.2020.115597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
|
115
|
Bush SJ, McCulloch MEB, Lisowski ZM, Muriuki C, Clark EL, Young R, Pridans C, Prendergast JGD, Summers KM, Hume DA. Species-Specificity of Transcriptional Regulation and the Response to Lipopolysaccharide in Mammalian Macrophages. Front Cell Dev Biol 2020; 8:661. [PMID: 32793601 PMCID: PMC7386301 DOI: 10.3389/fcell.2020.00661] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 02/02/2023] Open
Abstract
Mammalian macrophages differ in their basal gene expression profiles and response to the toll-like receptor 4 (TLR4) agonist, lipopolysaccharide (LPS). In human macrophages, LPS elicits a temporal cascade of transient gene expression including feed forward activators and feedback regulators that limit the response. Here we present a transcriptional network analysis of the response of sheep bone marrow-derived macrophages (BMDM) to LPS based upon RNA-seq at 0, 2, 4, 7, and 24 h post-stimulation. The analysis reveals a conserved transcription factor network with humans, and rapid induction of feedback regulators that constrain the response at every level. The gene expression profiles of sheep BMDM at 0 and 7 h post LPS addition were compared to similar data obtained from goat, cow, water buffalo, horse, pig, mouse and rat BMDM. This comparison was based upon identification of 8,200 genes annotated in all species and detected at >10TPM in at least one sample. Analysis of expression of transcription factors revealed a conserved transcriptional millieu associated with macrophage differentiation and LPS response. The largest co-expression clusters, including genes encoding cell surface receptors, endosome-lysosome components and secretory activity, were also expressed in all species and the combined dataset defines a macrophage functional transcriptome. All of the large animals differed from rodents in lacking inducible expression of genes involved in arginine metabolism and nitric oxide production. Instead, they expressed inducible transporters and enzymes of tryptophan and kynurenine metabolism. BMDM from all species expressed high levels of transcripts encoding transporters and enzymes involved in glutamine metabolism suggesting that glutamine is a major metabolic fuel. We identify and discuss transcripts that were uniquely expressed or regulated in rodents compared to large animals including ACOD1, CXC and CC chemokines, CD163, CLEC4E, CPM, CSF1, CSF2, CTSK, MARCO, MMP9, SLC2A3, SLC7A7, and SUCNR1. Conversely, the data confirm the conserved regulation of multiple transcripts for which there is limited functional data from mouse models and knockouts. The data provide a resource for functional annotation and interpretation of loci involved in susceptibility to infectious and inflammatory disease in humans and large animal species.
Collapse
Affiliation(s)
- Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Zofia M. Lisowski
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Charity Muriuki
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emily L. Clark
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Young
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
116
|
Bolignano D, Greco M, Arcidiacono V, Tripolino O, Vita C, Provenzano M, Donato C, Chiarella S, Fuiano G, De Sarro G, Russo E, Andreucci M, Foti DP, Coppolino G. Increased circulating Cathepsin-K levels reflect PTH control in chronic hemodialysis patients. J Nephrol 2020; 34:451-458. [PMID: 32656749 DOI: 10.1007/s40620-020-00801-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mineral bone disease (MBD) is remarkably frequent among chronic hemodialysis (HD) patients. In this setting, deranged PTH levels portend an adjunctive risk of worsen outcomes. Various evidence exists demonstrating that PTH strongly induces Cathepsin-K, a cysteine protease mainly found in lysosomes of osteoclasts and macrophages which promotes bone and extracellular matrix remodelling. Cathepsin-K levels are altered in various bone disorders, systemic inflammation and even in non-advanced CKD. In this study, we tested the hypothesis of an association between Cathepsin-K, uremic-MBD and circulating PTH levels in a cohort of chronic HD patients. METHODS We measured Cathepsin-K in 85 stable chronic HD patients and dialysis vintage > 6 months by a commercially available ELISA kit and we collected routine clinical parameters, including intact PTH. Patients were further stratified according to their "on- target" or "off-target" PTH status. RESULTS Cathepsin-K levels were significantly higher in HD patients than in healthy controls (p < 0.0001) and were independently associated with alkaline phosphatase (β = 0.37; p < 0.001), PTH (β = 0.30; p = 0.02) and C-reactive protein (β = 0.24; p = 0.008) levels. Cathepsin-K was also higher in patients with off-target PTH as compared to those with controlled PTH levels (230 [40-420] vs. 3250 [820-4205] pg/mL; p < 0.0001). At ROC analyses, Cathepsin-K levels were able to identify off-target PTH and parathyroidectomized patients (AUCs 0.85 [95% CI 0.71-0.98] and 0.97 [95% CI 0.92-0.99], respectively). CONCLUSION In chronic HD patients, Cathepsin-K associates with PTH levels, raising the intriguing hypothesis that this protein represents a causal link between mineral and inflammatory complications and could be tested as a candidate biomarker of MBD severity and PTH balance.
Collapse
Affiliation(s)
- Davide Bolignano
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Marta Greco
- Division of Clinical Pathology, "Magna Graecia" University, Catanzaro, Italy
| | - Valentina Arcidiacono
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Omar Tripolino
- Division of Clinical Pathology, "Magna Graecia" University, Catanzaro, Italy
| | - Caterina Vita
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Michele Provenzano
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Cinzia Donato
- Renal Unit, "Pugliese-Ciaccio" Hospital of Catanzaro, Catanzaro, Italy
| | | | - Giorgio Fuiano
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | | | - Emilio Russo
- Pharmacology Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | | | - Giuseppe Coppolino
- Department of Medical and Surgical Sciences-Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
117
|
Lin WW, Lu YC, Chuang CH, Cheng TL. Ab locks for improving the selectivity and safety of antibody drugs. J Biomed Sci 2020; 27:76. [PMID: 32586313 PMCID: PMC7318374 DOI: 10.1186/s12929-020-00652-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a major targeted therapy for malignancies, infectious diseases, autoimmune diseases, transplant rejection and chronic inflammatory diseases due to their antigen specificity and longer half-life than conventional drugs. However, long-term systemic antigen neutralization by mAbs may cause severe adverse events. Improving the selectivity of mAbs to distinguish target antigens at the disease site from normal healthy tissue and reducing severe adverse events caused by the mechanisms-of-action of mAbs is still a pressing need. Development of pro-antibodies (pro-Abs) by installing a protease-cleavable Ab lock is a novel and advanced recombinant Ab-based strategy that efficiently masks the antigen binding ability of mAbs in the normal state and selectively "turns on" the mAb activity when the pro-Ab reaches the proteolytic protease-overexpressed diseased tissue. In this review, we discuss the design and advantages/disadvantages of different Ab lock strategies, focusing particularly on spatial-hindrance-based and affinity peptide-based approaches. We expect that the development of different masking strategies for mAbs will benefit the local reactivity of mAbs at the disease site, increase the therapeutic efficacy and safety of long-term treatment with mAbs in chronic diseases and even permit scientists to develop Ab drugs for formerly undruggable targets and satisfy the unmet medical needs of mAb therapy.
Collapse
Affiliation(s)
- Wen-Wei Lin
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chih-Hung Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
118
|
Bovijn J, Krebs K, Chen CY, Boxall R, Censin JC, Ferreira T, Pulit SL, Glastonbury CA, Laber S, Millwood IY, Lin K, Li L, Chen Z, Milani L, Smith GD, Walters RG, Mägi R, Neale BM, Lindgren CM, Holmes MV. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci Transl Med 2020; 12:eaay6570. [PMID: 32581134 PMCID: PMC7116615 DOI: 10.1126/scitranslmed.aay6570] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Inhibition of sclerostin is a therapeutic approach to lowering fracture risk in patients with osteoporosis. However, data from phase 3 randomized controlled trials (RCTs) of romosozumab, a first-in-class monoclonal antibody that inhibits sclerostin, suggest an imbalance of serious cardiovascular events, and regulatory agencies have issued marketing authorizations with warnings of cardiovascular disease. Here, we meta-analyze published and unpublished cardiovascular outcome trial data of romosozumab and investigate whether genetic variants that mimic therapeutic inhibition of sclerostin are associated with higher risk of cardiovascular disease. Meta-analysis of up to three RCTs indicated a probable higher risk of cardiovascular events with romosozumab. Scaled to the equivalent dose of romosozumab (210 milligrams per month; 0.09 grams per square centimeter of higher bone mineral density), the SOST genetic variants were associated with lower risk of fracture and osteoporosis (commensurate with the therapeutic effect of romosozumab) and with a higher risk of myocardial infarction and/or coronary revascularization and major adverse cardiovascular events. The same variants were also associated with increased risk of type 2 diabetes mellitus and higher systolic blood pressure and central adiposity. Together, our findings indicate that inhibition of sclerostin may elevate cardiovascular risk, warranting a rigorous evaluation of the cardiovascular safety of romosozumab and other sclerostin inhibitors.
Collapse
Affiliation(s)
- Jonas Bovijn
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Chia-Yen Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruth Boxall
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Jenny C Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Ferreira
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Sara L Pulit
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Craig A Glastonbury
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Samantha Laber
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing 100191, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cecilia M Lindgren
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Michael V Holmes
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
119
|
Colucci S, Colaianni G, Brunetti G, Ferranti F, Mascetti G, Mori G, Grano M. Irisin prevents microgravity-induced impairment of osteoblast differentiation in vitro during the space flight CRS-14 mission. FASEB J 2020; 34:10096-10106. [PMID: 32539174 DOI: 10.1096/fj.202000216r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 01/25/2023]
Abstract
Understanding molecular mechanisms responsible for bone cells unbalance in microgravity would allow the development of better countermeasures for astronauts, and eventually advancing terrestrial osteoporosis treatments. We conduct a unique investigation by using a controlled 3D in vitro cell model to mimic the bone microenvironment in microgravity aboard the SpaceX Dragon cargo ferry to the ISS. Osteoblasts (OBs), osteoclasts (OCs), and endothelial cells (ECs), seeded on Skelite discs, were cultured w/ or w/o rec-Irisin and exposed to 14 days of microgravity in the eOSTEO hardware. Gene expression analysis was assessed, and results were compared to ground controls treated within identical payloads. Our results show that the microgravity-induced downregulation of mRNA levels of genes encoding for OB key transcription factors (Atf4 -75%, P < .01; RunX2 -87%, P < .001, Osterix -95%, P < .05 vs ground) and proteins (Collagen I -84%, P < .05; Osteoprotegerin -94%, P < .05) were prevented by irisin. Despite it was not effective in preventing Trap and Cathepsin K mRNA increase, irisin induced a 2.8-fold increase of Osteoprotegerin (P < .05) that might act for reducing osteoclastogenesis in microgravity. Our results provide evidence that irisin supports OB differentiation and activity in microgravity and it might represent a countermeasure to prevent bone loss in astronauts.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | | | | | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
120
|
El-Makawy AI, Ibrahim FM, Mabrouk DM, Abdel-Aziem SH, Sharaf HA, Ramadan MF. Efficiency of turnip bioactive lipids in treating osteoporosis through activation of Osterix and suppression of Cathepsin K and TNF-α signaling in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20950-20961. [PMID: 32253695 DOI: 10.1007/s11356-020-08540-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Vegetable oils are characterized by their bioactive phytochemicals including fatty acids, tocols, and phenolic compounds. In the current study, turnip (Brassica rapa) oil was evaluated for its fatty acid profiles, tocol composition, and total phenolic content. The radical scavenging properties of oil against DPPH· and galvinoxyl radicals were also evaluated. Turnip oil efficiency in treating osteoporosis was tested in rats. Fifty adult female Sprague-Dawley albino rats were divided to five groups (n = 10/group). An osteoporotic rat model was prepared by two separate 5-day (5 days on/9 days off) courses of methotrexate subcutaneous injection. Osteoporotic rats were orally gavaged with turnip oil (200 and 400 mg/kg/day) for 28 days. Turnip oil efficiency in treating osteoporosis was studied by evaluation of Osterix, Cath K, and TNF-α transcript expression levels that involved in bone remodeling in femoral bones. Minerals and vitamin D were estimated in blood serum. Femoral bone histological and morphometric analyses were investigated in osteoporotic and turnip oil-treated rats. In vitro assays revealed strong antiradical potential of turnip oil. Treatment with turnip oil regulated the levels of Osterix, Cath K, and TNF-α mRNA that was accompanied with elevating the levels of calcium, phosphorous, bone alkaline phosphatase (BALP), and vitamin D in osteoporotic rats. The histological and morphometric inspection revealed that turnip oil displayed progress in the osteoporotic rat bone formation that was clear in the enhancement of thickness of femur shaft cortical bone and femur head trabecular bone. Above-mentioned findings indicated that turnip oil has the potential to share in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Aida I El-Makawy
- Cell Biology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O.12622, Egypt
| | - Faten M Ibrahim
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Dalia M Mabrouk
- Cell Biology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O.12622, Egypt
| | - Sekena H Abdel-Aziem
- Cell Biology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O.12622, Egypt
| | - Hafiza A Sharaf
- Pathology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
121
|
Guérit D, Marie P, Morel A, Maurin J, Verollet C, Raynaud-Messina B, Urbach S, Blangy A. Primary myeloid cell proteomics and transcriptomics: importance of β-tubulin isotypes for osteoclast function. J Cell Sci 2020; 133:jcs239772. [PMID: 32265273 DOI: 10.1242/jcs.239772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 08/31/2023] Open
Abstract
Among hematopoietic cells, osteoclasts (OCs) and immature dendritic cells (DCs) are closely related myeloid cells with distinct functions: OCs participate skeleton maintenance while DCs sample the environment for foreign antigens. Such specificities rely on profound modifications of gene and protein expression during OC and DC differentiation. We provide global proteomic and transcriptomic analyses of primary mouse OCs and DCs, based on original stable isotope labeling with amino acids in cell culture (SILAC) and RNAseq data. We established specific signatures for OCs and DCs, including genes and proteins of unknown functions. In particular, we showed that OCs and DCs have the same α- and β-tubulin isotype repertoire but that OCs express much more of the β tubulin isotype Tubb6 (also known as TBB6). In both mouse and human OCs, we demonstrate that elevated expression of Tubb6 in OCs is necessary for correct podosomes organization and thus for the structure of the sealing zone, which sustains the bone resorption apparatus. Hence, lowering Tubb6 expression hinders OC resorption activity. Overall, we highlight here potential new regulators of OC and DC biology, and illustrate the functional importance of the tubulin isotype repertoire in the biology of differentiated cells.
Collapse
Affiliation(s)
- David Guérit
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Pauline Marie
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Justine Maurin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
- International associated laboratory (LIA) CNRS 'IM-TB/HIV' (1167), 31077 Toulouse Cedex 04, France
- International associated laboratory (LIA) CNRS 'IM-TB/HIV' (1167), Buenos Aires C1425AUM, Argentina
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
- International associated laboratory (LIA) CNRS 'IM-TB/HIV' (1167), 31077 Toulouse Cedex 04, France
- International associated laboratory (LIA) CNRS 'IM-TB/HIV' (1167), Buenos Aires C1425AUM, Argentina
| | - Serge Urbach
- Functional Proteomics Facility, Institute of Functional Genomics, Montpellier Univ., CNRS, 141 rue de la Cardonille, 34000 Montpellier, France
| | - Anne Blangy
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| |
Collapse
|
122
|
Breidenbach J, Bartz U, Gütschow M. Coumarin as a structural component of substrates and probes for serine and cysteine proteases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140445. [PMID: 32405284 PMCID: PMC7219385 DOI: 10.1016/j.bbapap.2020.140445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Coumarins represent well-established structures to introduce fluorescence into tool compounds for biochemical investigations. They are valued for their small size, chemical stability and accessibility as well as their tunable photochemical properties. As components of fluorophore/quencher pairs or FRET donor/acceptor pairs, coumarins have frequently been applied in substrate mapping approaches for serine and cysteine proteases. This review also focuses on the incorporation of coumarins into the side chain of amino acids and the exploitation of the resulting fluorescent amino acids for the positional profiling of protease substrates. The protease-inhibiting properties of certain coumarin derivatives and the utilization of coumarin moieties to assemble activity-based probes for serine and cysteine proteases are discussed as well. Coumarins represent well-established structures to introduce fluorescence into tool compounds for biochemical investigations. They are valued for their small size, chemical stability and accessibility as well as their tunable photochemical properties. Coumarins are components of fluorophore/quencher pairs or FRET donor/acceptor pairs in substrate mapping of proteases. Coumarins have been incorporated into amino acids side chains to be used for the positional profiling of protease substrates. Coumarins have protease-inhibiting properties and are used for activity-based probes for serine and cysteine proteases.
Collapse
Affiliation(s)
- Julian Breidenbach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
123
|
De Pasquale V, Moles A, Pavone LM. Cathepsins in the Pathophysiology of Mucopolysaccharidoses: New Perspectives for Therapy. Cells 2020; 9:cells9040979. [PMID: 32326609 PMCID: PMC7227001 DOI: 10.3390/cells9040979] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cathepsins (CTSs) are ubiquitously expressed proteases normally found in the endolysosomal compartment where they mediate protein degradation and turnover. However, CTSs are also found in the cytoplasm, nucleus, and extracellular matrix where they actively participate in cell signaling, protein processing, and trafficking through the plasma and nuclear membranes and between intracellular organelles. Dysregulation in CTS expression and/or activity disrupts cellular homeostasis, thus contributing to many human diseases, including inflammatory and cardiovascular diseases, neurodegenerative disorders, diabetes, obesity, cancer, kidney dysfunction, and others. This review aimed to highlight the involvement of CTSs in inherited lysosomal storage disorders, with a primary focus to the emerging evidence on the role of CTSs in the pathophysiology of Mucopolysaccharidoses (MPSs). These latter diseases are characterized by severe neurological, skeletal and cardiovascular phenotypes, and no effective cure exists to date. The advance in the knowledge of the molecular mechanisms underlying the activity of CTSs in MPSs may open a new challenge for the development of novel therapeutic approaches for the cure of such intractable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish Research Council, 08036 Barcelona, Spain;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-7463043
| |
Collapse
|
124
|
Hu B, Zhu X, Lu J. Cathepsin A knockdown decreases the proliferation and invasion of A549 lung adenocarcinoma cells. Mol Med Rep 2020; 21:2553-2559. [PMID: 32323791 PMCID: PMC7185279 DOI: 10.3892/mmr.2020.11068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Cathepsin A (CTSA) is a lysosomal protease that is abnormally expressed in various types of cancer; however, the function of CTSA in lung adenocarcinoma (LUAD) is unknown. The aim of the present study was to investigate the role of CTSA during LUAD development in vitro. The Cancer Genome Atlas (TCGA) database was used to analyze the expression of CTSA mRNA in LUAD tissues. CTSA was significantly upregulated in LUAD tissues compared with normal lung tissues. To explore the effect of CTSA on LUAD in vitro, LUAD A549 cells were transfected with CTSA small interfering RNA and the hallmarks of tumorigenesis were investigated using cell proliferation, cell cycle, wound healing, invasion and western blot assays. Following CTSA knockdown, proliferation of LUAD cells was decreased and an increased proportion of LUAD cells were arrested at the G0/G1 phase, with altered expression of critical cell cycle and proliferative marker proteins, including p53, p21 and proliferating cell nuclear antigen. Moreover, CTSA knockdown decreased the migration and invasion of A549 cells, as determined by wound healing, invasion, and western blotting assays. The expression levels of key proteins involved in epithelial-mesenchymal transition were analyzed by western blotting. CTSA knockdown enhanced the expression of E-cadherin, but decreased the expression of N-cadherin and β-catenin in A549 cells. To the best of our knowledge, the present study suggested for the first time it has been identified that CTSA may serve as a tumor promoter in LUAD, enhancing the malignant progression of LUAD cells by promoting cell proliferation, migration and invasion. The results suggested that CTSA may serve as a novel therapeutic target for LUAD.
Collapse
Affiliation(s)
- Bo Hu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xike Zhu
- Department of Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jibin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
125
|
Chenna BC, Li L, Mellott DM, Zhai X, Siqueira-Neto JL, Calvet Alvarez C, Bernatchez JA, Desormeaux E, Alvarez Hernandez E, Gomez J, McKerrow JH, Cruz-Reyes J, Meek TD. Peptidomimetic Vinyl Heterocyclic Inhibitors of Cruzain Effect Antitrypanosomal Activity. J Med Chem 2020; 63:3298-3316. [PMID: 32125159 DOI: 10.1021/acs.jmedchem.9b02078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cruzain, an essential cysteine protease of the parasitic protozoan, Trypanosoma cruzi, is an important drug target for Chagas disease. We describe here a new series of reversible but time-dependent inhibitors of cruzain, composed of a dipeptide scaffold appended to vinyl heterocycles meant to provide replacements for the irreversible reactive "warheads" of vinyl sulfone inactivators of cruzain. Peptidomimetic vinyl heterocyclic inhibitors (PVHIs) containing Cbz-Phe-Phe/homoPhe scaffolds with vinyl-2-pyrimidine, vinyl-2-pyridine, and vinyl-2-(N-methyl)-pyridine groups conferred reversible, time-dependent inhibition of cruzain (Ki* = 0.1-0.4 μM). These cruzain inhibitors exhibited moderate to excellent selectivity versus human cathepsins B, L, and S and showed no apparent toxicity to human cells but were effective in cell cultures of Trypanosoma brucei brucei (EC50 = 1-15 μM) and eliminated T. cruzi in infected murine cardiomyoblasts (EC50 = 5-8 μM). PVHIs represent a new class of cruzain inhibitors that could progress to viable candidate compounds to treat Chagas disease and human sleeping sickness.
Collapse
Affiliation(s)
- Bala C Chenna
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Linfeng Li
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Drake M Mellott
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Xiang Zhai
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Claudia Calvet Alvarez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Emily Desormeaux
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Elizabeth Alvarez Hernandez
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Jana Gomez
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - James H McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jorge Cruz-Reyes
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Thomas D Meek
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| |
Collapse
|
126
|
Friend or Foe? Essential Roles of Osteoclast in Maintaining Skeletal Health. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4791786. [PMID: 32190665 PMCID: PMC7073503 DOI: 10.1155/2020/4791786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Heightened activity of osteoclast is considered to be the culprit in breaking the balance during bone remodeling in pathological conditions, such as osteoporosis. As a “foe” of skeletal health, many antiosteoporosis therapies aim to inhibit osteoclastogenesis. However, bone remodeling is a dynamic process that requires the subtle coordination of osteoclasts and osteoblasts. Severe suppression of osteoclast differentiation will impair bone formation because of the coupling effect. Thus, understanding the complex roles of osteoclast in maintaining proper bone remodeling is highly warranted to develop better management of osteoporosis. This review aimed to determine the varied roles of osteoclasts in maintaining skeletal health and to highlight the positive roles of osteoclasts in maintaining normal bone remodeling. Generally, osteoclasts interact with osteocytes to initiate targeted bone remodeling and have crosstalk with mesenchymal stem cells and osteoblasts via secreted factors or cell-cell contact to promote bone formation. We believe that a better outcome of bone remodeling disorders will be achieved when proper strategies are made to coordinate osteoclasts and osteoblasts in managing such disorders.
Collapse
|
127
|
Gennari L, Merlotti D, Falchetti A, Eller Vainicher C, Cosso R, Chiodini I. Emerging therapeutic targets for osteoporosis. Expert Opin Ther Targets 2020; 24:115-130. [PMID: 32050822 DOI: 10.1080/14728222.2020.1726889] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Osteoporosis is a chronic, skeletal disorder characterized by compromised bone strength and increased fracture risk; it affects 50% of women and 20% of men. In the past two decades, there have been substantial improvements in the pharmacotherapy of osteoporosis which have yielded potent inhibitors of bone resorption or stimulators of bone formation.Areas covered: This review discusses newly identified targets and pathways and conceptual approaches to the prevention of multiple age-related disorders. Furthermore, it summarizes existing therapeutic strategies for osteoporosis.Expert opinion: Our enhanced understanding of bone biology and the reciprocal interactions between bone and other tissues have allowed the identification of new targets that may facilitate the development of novel drugs. These drugs will hopefully achieve the uncoupling of bone formation from resorption and possibly exert a dual anabolic and antiresorptive effect on bone. Alas, limitations regarding adherence, efficacy on nonvertebral fracture prevention and the long-term adverse events still exist for currently available therapeutics. Moreover, the efficacy of most agents is limited by the tight coupling of osteoblasts and osteoclasts; hence the reduction of bone resorption invariably reduces bone formation, and vice versa. This field is very much 'a work in progress.'
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alberto Falchetti
- Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Cristina Eller Vainicher
- Endocrinology and Diabetology Units, Department of Medical Sciences and Community, Fondazione Ca'Granda Ospedale Maggiore Policlinico IRCCS, Milan, Italy
| | - Roberta Cosso
- EndOsMet Villa Donatello Private Hospital, Florence, Italy
| | - Iacopo Chiodini
- Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
128
|
Conaghan PG, Bowes MA, Kingsbury SR, Brett A, Guillard G, Rizoska B, Sjögren N, Graham P, Jansson Å, Wadell C, Bethell R, Öhd J. Disease-Modifying Effects of a Novel Cathepsin K Inhibitor in Osteoarthritis: A Randomized Controlled Trial. Ann Intern Med 2020; 172:86-95. [PMID: 31887743 DOI: 10.7326/m19-0675] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND MIV-711 is a novel selective cathepsin K inhibitor with beneficial effects on bone and cartilage in preclinical osteoarthritis models. OBJECTIVE To evaluate the efficacy, safety, and tolerability of MIV-711 in participants with symptomatic, radiographic knee osteoarthritis. DESIGN 26-week randomized, double-blind, placebo-controlled phase 2a study with a 26-week open-label safety extension substudy. (EudraCT: 2015-003230-26 and 2016-001096-73). SETTING Six European sites. PARTICIPANTS 244 participants with primary knee osteoarthritis, Kellgren-Lawrence grade 2 or 3, and pain score of 4 to 10 on a numerical rating scale (NRS). INTERVENTION MIV-711, 100 (n = 82) or 200 (n = 81) mg daily, or matched placebo (n = 77). Participants (46 who initially received 200 mg/d and 4 who received placebo) received 200 mg of MIV-711 daily during the extension substudy. MEASUREMENTS The primary outcome was change in NRS pain score. The key secondary outcome was change in bone area on magnetic resonance imaging (MRI). Other secondary end points included cartilage thickness on quantitative MRI and type I and II collagen C-telopeptide biomarkers. Outcomes were assessed over 26 weeks. RESULTS Changes in NRS pain scores with MIV-711 were not statistically significant (placebo, -1.4; MIV-711, 100 mg/d, -1.7; MIV-711, 200 mg/d, -1.5). MIV-711 significantly reduced medial femoral bone area progression (P = 0.002 for 100 mg/d and 0.004 for 200 mg/d) and medial femoral cartilage thinning (P = 0.023 for 100 mg/d and 0.125 for 200 mg/d) versus placebo and substantially reduced bone and cartilage biomarker levels. Nine serious adverse events occurred in 6 participants (1 in the placebo group, 3 in the 100 mg group, and 2 in the 200 mg group); none were considered to be treatment-related. LIMITATION The trial was relatively short. CONCLUSION MIV-711 was not more effective than placebo for pain, but it significantly reduced bone and cartilage progression with a reassuring safety profile. This treatment may merit further evaluation as a disease-modifying osteoarthritis drug. PRIMARY FUNDING SOURCE Medivir.
Collapse
Affiliation(s)
- Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (P.G.C., S.R.K.)
| | | | - Sarah R Kingsbury
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (P.G.C., S.R.K.)
| | - Alan Brett
- Imorphics, Manchester, United Kingdom (M.A.B., A.B., G.G.)
| | | | - Biljana Rizoska
- Medivir, Huddinge, Sweden (B.R., N.S., P.G., Å.J., C.W., R.B., J.Ö.)
| | - Niclas Sjögren
- Medivir, Huddinge, Sweden (B.R., N.S., P.G., Å.J., C.W., R.B., J.Ö.)
| | - Philippa Graham
- Medivir, Huddinge, Sweden (B.R., N.S., P.G., Å.J., C.W., R.B., J.Ö.)
| | - Åsa Jansson
- Medivir, Huddinge, Sweden (B.R., N.S., P.G., Å.J., C.W., R.B., J.Ö.)
| | - Cecilia Wadell
- Medivir, Huddinge, Sweden (B.R., N.S., P.G., Å.J., C.W., R.B., J.Ö.)
| | - Richard Bethell
- Medivir, Huddinge, Sweden (B.R., N.S., P.G., Å.J., C.W., R.B., J.Ö.)
| | - John Öhd
- Medivir, Huddinge, Sweden (B.R., N.S., P.G., Å.J., C.W., R.B., J.Ö.)
| |
Collapse
|
129
|
Tan MSY, Davison D, Sanchez MI, Anderson BM, Howell S, Snijders A, Edgington-Mitchell LE, Deu E. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One 2020; 15:e0227341. [PMID: 31923258 PMCID: PMC6953825 DOI: 10.1371/journal.pone.0227341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Clan CA cysteine proteases, also known as papain-like proteases, play important roles throughout the malaria parasite life cycle and are therefore potential drug targets to treat this disease and prevent its transmission. In order to study the biological function of these proteases and to chemically validate some of them as viable drug targets, highly specific inhibitors need to be developed. This is especially challenging given the large number of clan CA proteases present in Plasmodium species (ten in Plasmodium falciparum), and the difficulty of designing selective inhibitors that do not cross-react with other members of the same family. Additionally, any efforts to develop antimalarial drugs targeting these proteases will also have to take into account potential off-target effects against the 11 human cysteine cathepsins. Activity-based protein profiling has been a very useful tool to determine the specificity of inhibitors against all members of an enzyme family. However, current clan CA proteases broad-spectrum activity-based probes either target endopeptidases or dipeptidyl aminopeptidases, but not both subfamilies efficiently. In this study, we present a new series of dipeptydic vinyl sulfone probes containing a free N-terminal tryptophan and a fluorophore at the P1 position that are able to label both subfamilies efficiently, both in Plasmodium falciparum and in mammalian cells, thus making them better broad-spectrum activity-based probes. We also show that some of these probes are cell permeable and can therefore be used to determine the specificity of inhibitors in living cells. Interestingly, we show that the choice of fluorophore greatly influences the specificity of the probes as well as their cell permeability.
Collapse
Affiliation(s)
| | - Dara Davison
- The Francis Crick Institute, London, United Kingdom
| | - Mateo I. Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
| | - Bethany M. Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville Victoria, Australia
| | | | | | - Laura E. Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Maxillofacial Surgery, College of Dentistry, New York University, New York, New York, United States of America
| | - Edgar Deu
- The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
130
|
Ma C, Geng B, Zhang X, Li R, Yang X, Xia Y. Fluid Shear Stress Suppresses Osteoclast Differentiation in RAW264.7 Cells through Extracellular Signal-Regulated Kinase 5 (ERK5) Signaling Pathway. Med Sci Monit 2020; 26:e918370. [PMID: 31914120 PMCID: PMC6977602 DOI: 10.12659/msm.918370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Although extracellular signal-regulated kinase 5 (ERK5) is known to be critical for osteoclast differentiation, there are few studies on how fluid shear stress (FSS) regulates osteoclast differentiation through the ERK5 signaling pathway. We examined the expression of nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells and its downstream factors, including cathepsin K (CTSK), tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases-9 (MMP-9) and their relationship with ERK5. Material/Methods RAW264.7 cells were treated with RANKL, XMD8-92 (ERK5 inhibitor), and then loaded onto 12 dyn/cm2 FSS for 4 days. Endpoints measured were osteoclast differentiation, bone resorption, and TRAP activity. Cell viability was detected by using the Cell Counting Kit-8 (CCK-8) assay. Western blot was used to analyze protein expression of phosphorylated-ERK5 (p-ERK5), NFATc1, CTSK, TRAP, and MMP-9. Results FSS inhibited osteoclast differentiation and expression of NFATc1, CTSK, TRAP, and MMP-9; cell viability was not affected. ERK5 expression increased by FSS but not by RANKL, and it was blocked by XMD8-92. Furthermore, FSS suppressed osteoclast differentiation in RAW264.7 cells through ERK5 pathway. Conclusions Our findings demonstrated that FSS inhibited osteoclast differentiation in RAW264.7 cells via the ERK5 pathway through reduced NFATc1 expression and its downstream factors MMP-9, CTSK, and TRAP.
Collapse
Affiliation(s)
- Chongwen Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xiaohui Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Rui Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xinxin Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
131
|
Abstract
The 11 existing FDA-approved osteoporosis drug treatments include hormone replacement therapy, 2 SERMs (raloxifene and bazedoxifene), 5 inhibitors of bone-resorbing osteoclasts (4 bisphosphonates and anti-RANKL denosumab), 2 parathyroid hormone analogues (teriparatide and abaloparatide), and 1 WNT signaling enhancer (romosozumab). These therapies are effective and provide multiple options for patients and physicians. As the genomic revolution continues, potential novel targets for future drug development are identified. This review takes a wide perspective to describe potentially rewarding topics to explore, including knowledge of genes and pathways involved in bone cell metabolism, the utility of animal models, targeting drugs to bone, and ongoing advances in drug design and delivery.
Collapse
|
132
|
Lv F, Cai X, Yang W, Gao L, Chen L, Wu J, Ji L. Denosumab or romosozumab therapy and risk of cardiovascular events in patients with primary osteoporosis: Systematic review and meta- analysis. Bone 2020; 130:115121. [PMID: 31678488 DOI: 10.1016/j.bone.2019.115121] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Osteoporosis and cardiovascular (CV) diseases are closely correlated. RANKL/RANK/OPG pathway and Wnt signalling pathway both implicated in the pathogenesis of osteoporosis and cardiovascular diseases. We aimed to investigate the effect of denosumab or romosozumab therapy on cardiovascular outcomes in patients with primary osteoporosis. METHODS PubMed, Cochrane library, and EMBASE databases were systematically searched from the inception dates to June 4, 2019. Randomized clinical trials evaluating the effect of denosumab or romosozumab versus active comparators or placebo for at least 6 months in patients with primary osteoporosis or osteopenia were included. Two investigators independently extracted data for study characteristics, outcomes of interest, and risk of bias in accordance with PRISMA guidelines. RESULTS 17 relevant studies (denosumab: n=11, 13615 participants; romosozumab: n=6, 12219 participants) were included. No associations between denosumab therapy and risk of a composite cardiovascular outcome (1.06 [95 % CI, 0.88-1.28], p=0.54), three-point major adverse cardiovascular event (3P MACE, 1.01 [95 % CI, 0.83-1.23], p=0.93), and four-point major adverse cardiovascular event (4P MACE, 0.99 [95 % CI, 0.83-1.18], p=0.89) were identified. Romosozumab therapy did not increase the risk of composite cardiovascular outcome (1.26 [95 % CI, 0.95-1.68], p=0.11), and 3P MACE (1.41 [95 % CI, 0.99-2.02], p=0.06), while increased the risk of 4P MACE (1.39 [95 % CI, 1.01-1.90], p=0.04) among elderly men and postmenopausal woman with osteoporosis over a period of 12-36 months. Denosumab or romosozumab did not increase or reduce specific cardiovascular outcomes, including CV death or death, myocardial infarction, stroke, atrial fibrillation, heart failure, aortic and intracranial aneurysm, aortic dissection, aortic valve disease and hypertension (all p>0.05). Sensitivity analysis conducted by random effects model altered the result of 4P MACE in romosozumab (1.36 [0.99-1.87], p=0.06). No other significant difference was detected in the sensitivity analyses and subgroup analyses. CONCLUSIONS Denosumab therapy was not associated with any risk of composite and specific cardiovascular outcomes among patients with primary osteoporosis than active comparators or placebo, while romosozumab therapy might increase the risk of 4P MACE.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
133
|
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: The Action in and Beyond Bone. Front Cell Dev Biol 2020; 8:433. [PMID: 32582709 PMCID: PMC7287012 DOI: 10.3389/fcell.2020.00433] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, CatK is among the most attractive targets for anti-osteoporosis drug development. Although many pharmaceutical companies are working on the development of selective inhibitors for CatK, there is no FDA approved drug till now. Odanacatib (ODN) developed by Merck & Co. is the only CatK inhibitor candidate which demonstrated high therapeutic efficacy in patients with postmenopausal osteoporosis in Phase III clinical trials. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. Therefore, it arouses concerns on the undesirable CatK inhibition in non-bone sites. It is known that CatK has far-reaching actions throughout various organs besides bone. Many studies have also demonstrated the involvement of CatK in various diseases beyond the musculoskeletal system. This review not only summarized the functional roles of CatK in bone and beyond bone, but also discussed the potential relevance of the CatK action beyond bone to the adverse effects of inhibiting CatK in non-bone sites.
Collapse
Affiliation(s)
- Rongchen Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Jin Liu,
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- Ge Zhang,
| |
Collapse
|
134
|
Marini S, Barone G, Masini A, Dallolio L, Bragonzoni L, Longobucco Y, Maffei F. The Effect of Physical Activity on Bone Biomarkers in People With Osteoporosis: A Systematic Review. Front Endocrinol (Lausanne) 2020; 11:585689. [PMID: 33193098 PMCID: PMC7644859 DOI: 10.3389/fendo.2020.585689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bone imbalance between anabolic and catabolic processes at the level of remodeling unit due to the prevalence of resorbing activity, represents a health problem of aging. The consequence is the negative balance of bone turnover that can lead to osteoporosis. Physical activity (PA) can play a central role in the comprehensive management of osteoporosis, since it induces the anabolism of bone tissue. Bone turnover biomarkers, reflecting the cellular activity linked to bone metabolism, can represent an evaluation tool to assess the efficacy of PA in the osteoporotic population. The aim of this systematic review, conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, was to investigate the effects of PA interventions on bone biomarkers in people with osteoporosis. METHODS A comprehensive literature search of electronic databases was conducted through PubMed, Cochrane, Cinahl, Embase, Trip, to find randomized controlled trials (RCTs) investigating the topic of PA and bone turnover biomarkers in the osteoporosis population. In accordance with the Cochrane risk-of-bias tool, the quality of each study was assessed. RESULTS Out of 992 identified articles, 136 full texts were screened. Only three RTCs matched the eligibility criteria. In one study, sub-maximal aerobic exercise improved Bone-specific alkaline phosphatase (bone formation biomarker) and Amino-terminal Crosslinked Telopeptide of type 1 collagen (bone resorption biomarker) in osteoporotic women. The other two studies showed a positive effect on total alkaline phosphatase (a non-specific bone formation biomarker) in women with osteoporosis. CONCLUSION The systematic review revealed possible exercise benefits in terms of improving bone formation and decreasing bone resorption biomarkers in the osteoporotic population. However, these results should be interpreted with caution, especially due to the limited number and poor quality of the studies included. Further research is needed to estimate the influence of PA on bone biomarkers in the osteoporosis management.
Collapse
Affiliation(s)
- Sofia Marini
- Department of Life Quality Studies, University of Bologna, Campus of Rimini, Rimini, Italy
| | - Giuseppe Barone
- Department of Life Quality Studies, University of Bologna, Campus of Rimini, Rimini, Italy
| | - Alice Masini
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
- *Correspondence: Alice Masini,
| | - Laura Dallolio
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Laura Bragonzoni
- Department of Life Quality Studies, University of Bologna, Campus of Rimini, Rimini, Italy
| | - Yari Longobucco
- Clinical and Experimental Medicine Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Maffei
- Department of Life Quality Studies, University of Bologna, Campus of Rimini, Rimini, Italy
| |
Collapse
|
135
|
Dauth S, Rakov H, Sîrbulescu RF, Ilieş I, Weber J, Batbajar Dugershaw B, Braun D, Rehders M, Wirth EK, Führer D, Schweizer U, Brix K. Function of Cathepsin K in the Central Nervous System of Male Mice is Independent of Its Role in the Thyroid Gland. Cell Mol Neurobiol 2019; 40:695-710. [PMID: 31808010 DOI: 10.1007/s10571-019-00765-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Cathepsin K deficiency in male mice (Ctsk-/-) results in decreased numbers of hippocampal astrocytes and altered neuronal patterning as well as learning and memory deficits. Additionally, cathepsin K carries essential roles in the thyroid gland where it contributes to the liberation of thyroid hormones (TH). Because TH are essential for brain development, in particular for the cerebellum, we investigated whether cathepsin K's function in the thyroid is directly linked to the brain phenotype of Ctsk-/- mice. Serum levels of thyroid stimulating hormone, brain concentrations of free TH, and deiodinase 2 (Dio2) activity in brain parenchyma as well as cerebellar development were comparable in Ctsk-/- and WT animals, suggesting regular thyroid states and TH metabolism. Despite unaltered transcript levels, protein expression of two TH transporters was enhanced in specific brain regions in Ctsk-/- mice, suggesting altered TH supply to these regions. Thyrotropin releasing hormone (Trh) mRNA levels were enhanced threefold in the hippocampus of Ctsk-/- mice. In the striatum of Ctsk-/- mice the mRNA for Dio2 and hairless were approximately 1.3-fold enhanced, while mRNA levels for monocarboxylate transporter 8 and Trh were reduced to 60% and 40%, respectively, pointing to altered striatal physiology. We conclude that the role of cathepsin K in the thyroid gland is not directly associated with its function in the central nervous system (CNS) of mice. Future studies will show whether the brain region-specific alterations in Trh mRNA may eventually result in altered neuroprotection that could explain the neurobehavioral defects of Ctsk-/- mice.
Collapse
Affiliation(s)
- Stephanie Dauth
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Helena Rakov
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Ruxandra F Sîrbulescu
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- Department of Mathematics and Logistics, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.,Healthcare Systems Engineering Institute, Northeastern University, 360 Huntington Avenue, 1200-177, Boston, MA, 02115, USA
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.,CisBio, Hamburg, Germany
| | - Battuja Batbajar Dugershaw
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.,Empa, Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Doreen Braun
- Charité-Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Augustenburger Platz 1, 13353, Berlin, Germany.,Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität Bonn, Nußallee 11, 53115, Bonn, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Eva K Wirth
- Charité-Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Ulrich Schweizer
- Charité-Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Augustenburger Platz 1, 13353, Berlin, Germany.,Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität Bonn, Nußallee 11, 53115, Bonn, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
136
|
McClung MR, O'Donoghue ML, Papapoulos SE, Bone H, Langdahl B, Saag KG, Reid IR, Kiel DP, Cavallari I, Bonaca MP, Wiviott SD, de Villiers T, Ling X, Lippuner K, Nakamura T, Reginster JY, Rodriguez-Portales JA, Roux C, Zanchetta J, Zerbini CAF, Park JG, Im K, Cange A, Grip LT, Heyden N, DaSilva C, Cohn D, Massaad R, Scott BB, Verbruggen N, Gurner D, Miller DL, Blair ML, Polis AB, Stoch SA, Santora A, Lombardi A, Leung AT, Kaufman KD, Sabatine MS. Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study. Lancet Diabetes Endocrinol 2019; 7:899-911. [PMID: 31676222 DOI: 10.1016/s2213-8587(19)30346-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Odanacatib, a cathepsin K inhibitor, reduces bone resorption while maintaining bone formation. Previous work has shown that odanacatib increases bone mineral density in postmenopausal women with low bone mass. We aimed to investigate the efficacy and safety of odanacatib to reduce fracture risk in postmenopausal women with osteoporosis. METHODS The Long-term Odanacatib Fracture Trial (LOFT) was a multicentre, randomised, double-blind, placebo-controlled, event-driven study at 388 outpatient clinics in 40 countries. Eligible participants were women aged at least 65 years who were postmenopausal for 5 years or more, with a femoral neck or total hip bone mineral density T-score between -2·5 and -4·0 if no previous radiographic vertebral fracture, or between -1·5 and -4·0 with a previous vertebral fracture. Women with a previous hip fracture, more than one vertebral fracture, or a T-score of less than -4·0 at the total hip or femoral neck were not eligible unless they were unable or unwilling to use approved osteoporosis treatment. Participants were randomly assigned (1:1) to either oral odanacatib (50 mg once per week) or matching placebo. Randomisation was done using an interactive voice recognition system after stratification for previous radiographic vertebral fracture, and treatment was masked to study participants, investigators and their staff, and sponsor personnel. If the study completed before 5 years of double-blind treatment, consenting participants could enrol in a double-blind extension study (LOFT Extension), continuing their original treatment assignment for up to 5 years from randomisation. Primary endpoints were incidence of vertebral fractures as assessed using radiographs collected at baseline, 6 and 12 months, yearly, and at final study visit in participants for whom evaluable radiograph images were available at baseline and at least one other timepoint, and hip and non-vertebral fractures adjudicated as being a result of osteoporosis as assessed by clinical history and radiograph. Safety was assessed in participants who received at least one dose of study drug. The adjudicated cardiovascular safety endpoints were a composite of cardiovascular death, myocardial infarction, or stroke, and new-onset atrial fibrillation or flutter. Individual cardiovascular endpoints and death were also assessed. LOFT and LOFT Extension are registered with ClinicalTrials.gov (number NCT00529373) and the European Clinical Trials Database (EudraCT number 2007-002693-66). FINDINGS Between Sept 14, 2007, and Nov 17, 2009, we randomly assigned 16 071 evaluable patients to treatment: 8043 to odanacatib and 8028 to placebo. After a median follow-up of 36·5 months (IQR 34·43-40·15) 4297 women assigned to odanacatib and 3960 assigned to placebo enrolled in LOFT Extension (total median follow-up 47·6 months, IQR 35·45-60·06). In LOFT, cumulative incidence of primary outcomes for odanacatib versus placebo were: radiographic vertebral fractures 3·7% (251/6770) versus 7·8% (542/6910), hazard ratio (HR) 0·46, 95% CI 0·40-0·53; hip fractures 0·8% (65/8043) versus 1·6% (125/8028), 0·53, 0·39-0·71; non-vertebral fractures 5·1% (412/8043) versus 6·7% (541/8028), 0·77, 0·68-0·87; all p<0·0001. Combined results from LOFT plus LOFT Extension for cumulative incidence of primary outcomes for odanacatib versus placebo were: radiographic vertebral fractures 4·9% (341/6909) versus 9·6% (675/7011), HR 0·48, 95% CI 0·42-0·55; hip fractures 1·1% (86/8043) versus 2·0% (162/8028), 0·52, 0·40-0·67; non-vertebral fractures 6·4% (512/8043) versus 8·4% (675/8028), 0·74, 0·66-0·83; all p<0·0001. In LOFT, the composite cardiovascular endpoint of cardiovascular death, myocardial infarction, or stroke occurred in 273 (3·4%) of 8043 patients in the odanacatib group versus 245 (3·1%) of 8028 in the placebo group (HR 1·12, 95% CI 0·95-1·34; p=0·18). New-onset atrial fibrillation or flutter occurred in 112 (1·4%) of 8043 patients in the odanacatib group versus 96 (1·2%) of 8028 in the placebo group (HR 1·18, 0·90-1·55; p=0·24). Odanacatib was associated with an increased risk of stroke (1·7% [136/8043] vs 1·3% [104/8028], HR 1·32, 1·02-1·70; p=0·034), but not myocardial infarction (0·7% [60/8043] vs 0·9% [74/8028], HR 0·82, 0·58-1·15; p=0·26). The HR for all-cause mortality was 1·13 (5·0% [401/8043] vs 4·4% [356/8028], 0·98-1·30; p=0·10). When data from LOFT Extension were included, the composite of cardiovascular death, myocardial infarction, or stroke occurred in significantly more patients in the odanacatib group than in the placebo group (401 [5·0%] of 8043 vs 343 [4·3%] of 8028, HR 1·17, 1·02-1·36; p=0·029, as did stroke (2·3% [187/8043] vs 1·7% [137/8028], HR 1·37, 1·10-1·71; p=0·0051). INTERPRETATION Odanacatib reduced the risk of fracture, but was associated with an increased risk of cardiovascular events, specifically stroke, in postmenopausal women with osteoporosis. Based on the overall balance between benefit and risk, the study's sponsor decided that they would no longer pursue development of odanacatib for treatment of osteoporosis. FUNDING Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc, Kenilworth, NJ, USA.
Collapse
Affiliation(s)
- Michael R McClung
- Oregon Osteoporosis Center, Portland, OR, USA; Mary MacKillop Center for Health Research, Australian Catholic Unversity, Melbourne, VIC, Australia
| | - Michelle L O'Donoghue
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Henry Bone
- Michigan Bone and Mineral Clinic, Detroit, MI, USA
| | | | - Kenneth G Saag
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ian R Reid
- University of Auckland, Auckland, New Zealand
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Ilaria Cavallari
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Marc P Bonaca
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stephen D Wiviott
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Xu Ling
- Peking Union Medical College, Dongcheng, Beijing, China
| | - Kurt Lippuner
- Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics and WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | | | - Christian Roux
- Paris Descartes University, Cochin Hospital, Paris, France
| | - José Zanchetta
- Institute of Metabolic Research, Buenos Aires, Argentina
| | | | - Jeong-Gun Park
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - KyungAh Im
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Abby Cange
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura T Grip
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marc S Sabatine
- Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
137
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
138
|
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond) 2019; 39:76. [PMID: 31753020 PMCID: PMC6873445 DOI: 10.1186/s40880-019-0425-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis is the leading cause of death in prostate cancer patients, for which there is currently no effective treatment. Since the bone microenvironment plays an important role in this process, attentions have been directed to the interactions between cancer cells and the bone microenvironment, including osteoclasts, osteoblasts, and bone stromal cells. Here, we explained the mechanism of interactions between prostate cancer cells and metastasis-associated cells within the bone microenvironment and further discussed the recent advances in targeted therapy of prostate cancer bone metastasis. This review also summarized the effects of bone microenvironment on prostate cancer metastasis and the related mechanisms, and provides insights for future prostate cancer metastasis studies.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, No. 6 Jiankang Road, Jining, 272000, Shandong, P. R. China.
| |
Collapse
|
139
|
Wang J, Peng W, Li X, Fan W, Wei D, Wu B, Fan L, Wu C, Li L. Towards to potential 2-cyano-pyrimidines cathepsin-K inhibitors: An in silico design and screening research based on comprehensive application of quantitative structure–activity relationships, molecular docking and ADMET prediction. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
140
|
Fujii Y, Inoue H, Arai Y, Shimomura S, Nakagawa S, Kishida T, Tsuchida S, Kamada Y, Kaihara K, Shirai T, Terauchi R, Toyama S, Ikoma K, Mazda O, Mikami Y. Treadmill Running in Established Phase Arthritis Inhibits Joint Destruction in Rat Rheumatoid Arthritis Models. Int J Mol Sci 2019; 20:ijms20205100. [PMID: 31618828 PMCID: PMC6834114 DOI: 10.3390/ijms20205100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022] Open
Abstract
Exercise therapy inhibits joint destruction by suppressing pro-inflammatory cytokines. The efficacy of pharmacotherapy for rheumatoid arthritis differs depending on the phase of the disease, but that of exercise therapy for each phase is unknown. We assessed the differences in the efficacy of treadmill running on rheumatoid arthritis at various phases, using rat rheumatoid arthritis models. Rats with collagen-induced arthritis were used as rheumatoid arthritis models, and the phase after immunization was divided as pre-arthritis and established phases. Histologically, the groups with forced treadmill running in the established phase had significantly inhibited joint destruction compared with the other groups. The group with forced treadmill running in only the established phase had significantly better bone morphometry and reduced expression of connexin 43 and tumor necrosis factor α in the synovial membranes compared with the no treadmill group. Furthermore, few cells were positive for cathepsin K immunostaining in the groups with forced treadmill running in the established phase. Our results suggest that the efficacy of exercise therapy may differ depending on rheumatoid arthritis disease activity. Active exercise during phases of decreased disease activity may effectively inhibit arthritis and joint destruction.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental
- Arthritis, Rheumatoid/diagnostic imaging
- Arthritis, Rheumatoid/etiology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Biomarkers
- Body Weight
- Bone Resorption/diagnostic imaging
- Bone Resorption/metabolism
- Cartilage, Articular/diagnostic imaging
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Connexin 43/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Inflammation Mediators/metabolism
- Physical Conditioning, Animal
- Rats
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Yuta Fujii
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Hiroaki Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Seiji Shimomura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yoichiro Kamada
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kenta Kaihara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Toshiharu Shirai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Ryu Terauchi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Shogo Toyama
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yasuo Mikami
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
141
|
Lian WS, Ko JY, Chen YS, Ke HJ, Hsieh CK, Kuo CW, Wang SY, Huang BW, Tseng JG, Wang FS. MicroRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12. Cell Death Dis 2019; 10:705. [PMID: 31543513 PMCID: PMC6755134 DOI: 10.1038/s41419-019-1942-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
Osteoporosis deteriorates bone mass and biomechanical strength, becoming a life-threatening cause to the elderly. MicroRNA is known to regulate tissue remodeling; however, its role in the development of osteoporosis remains elusive. In this study, we uncovered that silencing miR-29a expression decreased mineralized matrix production in osteogenic cells, whereas osteoclast differentiation and pit formation were upregulated in bone marrow macrophages as co-incubated with the osteogenic cells in transwell plates. In vivo, decreased miR-29a expression occurred in ovariectomy-mediated osteoporotic skeletons. Mice overexpressing miR-29a in osteoblasts driven by osteocalcin promoter (miR-29aTg/OCN) displayed higher bone mineral density, trabecular volume and mineral acquisition than wild-type mice. The estrogen deficiency-induced loss of bone mass, trabecular morphometry, mechanical properties, mineral accretion and osteogenesis of bone marrow mesenchymal cells were compromised in miR-29aTg/OCN mice. miR-29a overexpression also attenuated the estrogen loss-mediated excessive osteoclast surface histopathology, osteoclast formation of bone marrow macrophages, receptor activator nuclear factor-κ ligand (RANKL) and C–X–C motif chemokine ligand 12 (CXCL12) expression. Treatment with miR-29a precursor improved the ovariectomy-mediated skeletal deterioration and biomechanical property loss. Mechanistically, miR-29a inhibited RANKL secretion in osteoblasts through binding to 3′-UTR of RANKL. It also suppressed the histone acetyltransferase PCAF-mediated acetylation of lysine 27 in histone 3 (H3K27ac) and decreased the H3K27ac enrichment in CXCL12 promoters. Taken together, miR-29a signaling in osteogenic cells protects bone tissue from osteoporosis through repressing osteoclast regulators RANKL and CXCL12 to reduce osteoclastogenic differentiation. Arrays of analyses shed new light on the miR-29a regulation of crosstalk between osteogenic and osteoclastogenic cells. We also highlight that increasing miR-29a function in osteoblasts is beneficial for bone anabolism to fend off estrogen deficiency-induced excessive osteoclastic resorption and osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jing Ke
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chin-Kuei Hsieh
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bo-Wun Huang
- Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung, Taiwan
| | - Jung-Ge Tseng
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
142
|
Pazianas M. Bones, heart and the new anabolic agent romosozumab. Postgrad Med J 2019; 95:521-523. [DOI: 10.1136/postgradmedj-2019-136699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/21/2019] [Indexed: 11/04/2022]
|
143
|
Alberca LN, Chuguransky SR, Álvarez CL, Talevi A, Salas-Sarduy E. In silico Guided Drug Repurposing: Discovery of New Competitive and Non-competitive Inhibitors of Falcipain-2. Front Chem 2019; 7:534. [PMID: 31448257 PMCID: PMC6691349 DOI: 10.3389/fchem.2019.00534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria is among the leading causes of death worldwide. The emergence of Plasmodium falciparum resistant strains with reduced sensitivity to the first line combination therapy and suboptimal responses to insecticides used for Anopheles vector management have led to renewed interest in novel therapeutic options. Here, we report the development and validation of an ensemble of ligand-based computational models capable of identifying falcipain-2 inhibitors, and their subsequent application in the virtual screening of DrugBank and Sweetlead libraries. Among four hits submitted to enzymatic assays, two (odanacatib, an abandoned investigational treatment for osteoporosis and bone metastasis, and the antibiotic methacycline) confirmed inhibitory effects on falcipain-2, with Ki of 98.2 nM and 84.4 μM. Interestingly, Methacycline proved to be a non-competitive inhibitor (α = 1.42) of falcipain-2. The effects of both hits on falcipain-2 hemoglobinase activity and on the development of P. falciparum were also studied.
Collapse
Affiliation(s)
- Lucas N Alberca
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sara R Chuguransky
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cora L Álvarez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Farmacia y Bioquímica, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde", Universidad Nacional de San Martín, CONICET, Buenos Aires, Argentina
| |
Collapse
|
144
|
Cianni L, Feldmann CW, Gilberg E, Gütschow M, Juliano L, Leitão A, Bajorath J, Montanari CA. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity? J Med Chem 2019; 62:10497-10525. [DOI: 10.1021/acs.jmedchem.9b00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Christian Wolfgang Feldmann
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Luiz Juliano
- A. C. Camargo Cancer Center and São Paulo Medical School of Federal University of São Paulo, Rua Professor Antônio Prudente, 211, 01509-010 São Paulo, SP, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Carlos A. Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| |
Collapse
|
145
|
High Concentrations of Polyelectrolyte Complex Nanoparticles Decrease Activity of Osteoclasts. Molecules 2019; 24:molecules24122346. [PMID: 31242715 PMCID: PMC6630339 DOI: 10.3390/molecules24122346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022] Open
Abstract
Fracture treatment in osteoporotic patients is still challenging. Osteoporosis emerges when there is an imbalance between bone formation and resorption in favor of resorption by osteoclasts. Thus, new implant materials for osteoporotic fracture treatment should promote bone formation and reduce bone resorption. Nanoparticles can serve as drug delivery systems for growth factors like Brain-Derived Neurotrophic Factor (BDNF), which stimulated osteoblast differentiation. Therefore, polyelectrolyte complex nanoparticles (PEC-NPs) consisting of poly(l-lysine) (PLL) and cellulose sulfate (CS), with or without addition of BDNF, were used to analyze their effect on osteoclasts in vitro. Live cell images showed that osteoclast numbers decreased after application of high PLL/CS PEC-NPs concentrations independent of whether BDNF was added or not. Real-time RT-PCR revealed that relative mRNA expression of cathepsin K and calcitonin receptor significantly declined after incubation of osteoclasts with high concentrations of PLL/CS PEC-NPs. Furthermore, Enzyme-Linked Immunosorbent Assay indicated that tartrate-resistant acidic phosphatase 5b activity was significantly reduced in the presence of high PLL/CS PEC-NPs concentrations. Consistent with these results, the pit formation analysis showed that less hydroxyapatite was resorbed by osteoclasts after incubation with high concentrations of PLL/CS PEC-NPs. BDNF had no influence on osteoclasts. We conclude that highly concentrated PLL/CS PEC-NPs dosages decreased osteoclastogenesis and osteoclasts activity. Moreover, BDNF might be a promising growth factor for osteoporotic fracture treatment since it did not increase osteoclast activity.
Collapse
|
146
|
Shockey WA, Kieslich CA, Wilder CL, Watson V, Platt MO. Dynamic Model of Protease State and Inhibitor Trafficking to Predict Protease Activity in Breast Cancer Cells. Cell Mol Bioeng 2019; 12:275-288. [PMID: 31719914 DOI: 10.1007/s12195-019-00580-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction Cysteine cathepsins are implicated in breast cancer progression, produced by both transformed epithelial cells and infiltrated stromal cells in tumors, but to date, no cathepsin inhibitor has been approved for clinical use due to unexpected side effects. This study explores cellular feedback to cathepsin inhibitors that might yield non-intuitive responses, and uses computational models to determine underlying cathepsin-inhibitor dynamics. Methods MDA-MB-231 cells treated with E64 were tested by multiplex cathepsin zymography and immunoblotting to quantify total, active, and inactive cathepsins S and L. This data was used to parameterize mathematical models of intracellular free and inhibited cathepsins, and then applied to a dynamic model predicting cathepsin responses to other classes of cathepsin inhibitors that have also failed clinical trials. Results E64 treated cells exhibited increased amounts of active cathepsin S and reduced amount of active cathepsin L, although E64 binds tightly to both. This inhibitor response was not unique to cancer cells or any one cell type, suggesting an underlying fundamental mechanism of E64 preserving activity of cathepsin S, but not cathepsin L. Computational models were able to predict and differentiate between inhibitor-bound, active, and inactive cathepsin species and demonstrate how different classes of cathepsin inhibitors can have drastically divergent effects on active cathepsins located in different intracellular compartments. Conclusions Together, this work has important implications for the development of mathematical model systems for protease inhibition in tissue destructive diseases, and consideration of preservation mechanisms by inhibitors that could alter perceived benefits of these treatment modalities.
Collapse
Affiliation(s)
- W Andrew Shockey
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, 950 Atlantic Drive, Suite 3015, Atlanta, GA 30332 USA
| | - Christopher A Kieslich
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, 950 Atlantic Drive, Suite 3015, Atlanta, GA 30332 USA
| | - Catera L Wilder
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, 950 Atlantic Drive, Suite 3015, Atlanta, GA 30332 USA
| | - Valencia Watson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, 950 Atlantic Drive, Suite 3015, Atlanta, GA 30332 USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, 950 Atlantic Drive, Suite 3015, Atlanta, GA 30332 USA
| |
Collapse
|
147
|
Zhao C, Huang D, Li R, Xu Y, Su S, Gu Q, Xu J. Identifying Novel Anti-Osteoporosis Leads with a Chemotype-Assembly Approach. J Med Chem 2019; 62:5885-5900. [DOI: 10.1021/acs.jmedchem.9b00517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chao Zhao
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Dane Huang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China
| | - Ruyue Li
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China
| | - Yida Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shimin Su
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbin Road, Jiangmen 529020, China
| |
Collapse
|
148
|
Si M, Zeng C, Goodluck H, Shen S, Mohan S, Xing W. A small molecular inhibitor of LRRK1 identified by homology modeling and virtual screening suppresses osteoclast function, but not osteoclast differentiation, in vitro. Aging (Albany NY) 2019; 11:3250-3261. [PMID: 31113907 PMCID: PMC6555463 DOI: 10.18632/aging.101977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/12/2019] [Indexed: 01/31/2023]
Abstract
We used TGFβ activation kinase 1 as a template to build a 3D structure of the human LRRK1 kinase domain (hLRRK1 KD) and performed small molecule docking. One of the chemicals (IN04) that docked into the pocket was chosen for evaluation of biological effects on osteoclasts (OCs) in vitro. INO4 at 16 nM completely blocked ATP binding to hLRRK1 KD in an in vitro pulldown assay. In differentiation and pit assays, while the number of OCs on bone slices were comparable for OCs treated with IN04 and DMSO, IN04 treatment of OCs significantly impaired their ability to resorb bone. The area of pits on bone slices was reduced by 43% at 5 μM and 83% at 10 μM as compared to DMSO. Individual pits appeared smaller and shallower. F-actin staining revealed that DMSO-treated OCs displayed clear actin rings, and F-actin forms a peripheral sealing zone. By contrast, IN04-treated OCs showed disarranged F-actin in the cytoplasm, and F-actin failed to form a sealing zone on bone slices. IN04 treatment had no effects on OC-derived coupling factor production nor on osteoblast nodule formation. Our data indicate IN04 is a potent inhibitor of LRRK1, suppressing OC function with no effect on OC formation.
Collapse
Affiliation(s)
- Mingjue Si
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
- Equal contribution
| | - Canjun Zeng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Equal contribution
| | - Helen Goodluck
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Equal contribution
| | - Sandi Shen
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| |
Collapse
|
149
|
Hu X, Ma S, Yang C, Wang W, Chen L. Relationship between senile osteoporosis and cardiovascular and cerebrovascular diseases. Exp Ther Med 2019; 17:4417-4420. [PMID: 31105781 PMCID: PMC6507516 DOI: 10.3892/etm.2019.7518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
The relationship between senile osteoporosis and cardiovascular hypertension, coronary heart disease and cerebral infarction was investigated. A retrospective study on 428 elderly patients hospitalized in Harrison International Peace Hospital from June 2014 to January 2017 was conducted. There were 207 cases of coronary heart disease, 102 cases of hypertension and 119 cases of cerebral infarction. According to bone density measurement results, the subjects were divided into the osteoporosis group and the non-osteoporosis group. Risk factors for osteoporosis were analyzed, and the incidence of osteoporosis in hypertension, coronary heart disease, and cerebral infarction populations of different severity was analyzed. Hypertension, coronary heart disease and cerebral infarction were the main risk factors for osteoporosis in the elderly. Incidence of osteoporosis in the double-vessel disease group and the three-vessel disease group was significantly higher than that in the single-vessel disease group. Incidence of osteoporosis was significantly higher in the three-vessel disease group than that in the double-vessel disease group (P<0.05). Incidence of osteoporosis was significantly higher in the moderate hypertension and severe hypertension groups than that in the mild hypertension group. Incidence of osteoporosis was significantly higher in patients with severe hypertension than that in the moderate hypertension group (P<0.05). Incidence of osteoporosis in patients with moderate cerebral infarction and severe cerebral infarction was significantly higher than that in the mild cerebral infarction group (P<0.05). Incidence of osteoporosis in patients with severe cerebral infarction was significantly higher than that in the moderate cerebral infarction group (P<0.05). The results indicated that there is a close correlation between senile osteoporosis and hypertension, coronary heart disease and cerebral infarction. Osteoporosis can be used as a predictor of early screening for hypertension, coronary heart disease and cerebral infarction in the elderly population.
Collapse
Affiliation(s)
- Xiaoying Hu
- The First Department of Geriatric Medicine, Harrison International Peace Hospital, Hengshui, Hebei 053000, P.R. China
| | - Shucan Ma
- The First Department of Geriatric Medicine, Harrison International Peace Hospital, Hengshui, Hebei 053000, P.R. China
| | - Caixia Yang
- The First Department of Geriatric Medicine, Harrison International Peace Hospital, Hengshui, Hebei 053000, P.R. China
| | - Weiwei Wang
- The First Department of Geriatric Medicine, Harrison International Peace Hospital, Hengshui, Hebei 053000, P.R. China
| | - Liman Chen
- The First Department of Geriatric Medicine, Harrison International Peace Hospital, Hengshui, Hebei 053000, P.R. China
| |
Collapse
|
150
|
Laube M, Frizler M, Wodtke R, Neuber C, Belter B, Kniess T, Bachmann M, Gütschow M, Pietzsch J, Löser R. Synthesis and preliminary radiopharmacological characterisation of an 11 C-labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins. J Labelled Comp Radiopharm 2019; 62:448-459. [PMID: 30912586 DOI: 10.1002/jlcr.3729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
An O-methyltyrosine-containing azadipeptide nitrile was synthesised and investigated for its inhibitory activity towards cathepsins L, S, K, and B. Labelling with carbon-11 was accomplished by reaction of the corresponding phenolic precursor with [11 C]methyl iodide starting from cyclotron-produced [11 C]methane. Radiopharmacological evaluation of the resulting radiotracer in a mouse xenograft model derived from a mammary tumour cell line by small animal PET imaging indicates tumour targeting with complex pharmacokinetics. Radiotracer uptake in the tumour region was considerably lower under treatment with the nonradioactive reference compound and the epoxide-based irreversible cysteine cathepsin inhibitor E64. The in vivo behaviour observed for this radiotracer largely confirms that of the corresponding 18 F-fluoroethylated analogue and suggests the limited suitability of azadipeptide nitriles for the imaging of tumour-associated cysteine cathepsins despite target-mediated uptake is evidenced.
Collapse
Affiliation(s)
- Markus Laube
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Torsten Kniess
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|