101
|
Andersen AD, Blaabjerg M, Binzer M, Kamal A, Thagesen H, Kjaer TW, Stenager E, Gramsbergen JBP. Cerebrospinal fluid levels of catecholamines and its metabolites in Parkinson's disease: effect of l-DOPA treatment and changes in levodopa-induced dyskinesia. J Neurochem 2017; 141:614-625. [PMID: 28244186 DOI: 10.1111/jnc.13997] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/28/2022]
Abstract
Levodopa (l-DOPA, l-3,4-dihydroxyphenylalanine) is the most effective drug in the symptomatic treatment of Parkinson's disease (PD), but chronic use initiates a maladaptive process leading to l-DOPA-induced dyskinesia (LID). Risk factors for early onset LID include younger age, more severe disease at baseline and higher daily l-DOPA dose, but biomarkers to predict the risk of motor complications are not yet available. Here, we investigated whether CSF levels of catecholamines and its metabolites are altered in PD patients with LID [PD-LID, n = 8)] as compared to non-dyskinetic PD patients receiving l-DOPA (PD-L, n = 6), or not receiving l-DOPA (PD-N, n = 7) as well as non-PD controls (n = 16). PD patients were clinically assessed using the Unified Parkinson's Disease Rating Scale and Unified Dyskinesia Rating Scale and CSF was collected after overnight fasting and 1-2 h after oral intake of l-DOPA or other anti-Parkinson medication. CSF catecholamines and its metabolites were analyzed by HPLC with electrochemical detection. We observed (i) decreased levels of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid in PD patients not receiving l-DOPA (ii) higher dopamine (DA) levels in PD-LID as compared to controls (iii) higher DA/l-DOPA and lower DOPAC/DA ratio's in PD-LID as compared to PD-L and (iv) an age-dependent increase of DA and decrease of DOPAC/DA ratio in controls. These results suggest increased DA release from non-DA cells and deficient DA re-uptake in PD-LID. Monitoring DA and DOPAC in CSF of l-DOPA-treated PD patients may help identify patients at risk of developing LID.
Collapse
Affiliation(s)
- Andreas Dammann Andersen
- Department of Neurology, Hospital of Southern Jutland, Sønderborg, Denmark.,Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark.,Odense Patient data Exploratory Network, Odense University Hospital, Odense, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Binzer
- Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Akram Kamal
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Helle Thagesen
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | | | - Egon Stenager
- Department of Neurology, Hospital of Southern Jutland, Sønderborg, Denmark.,Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark.,The Multiple Sclerosis Clinic of Southern Jutland, Vejle, Sonderborg, Esbjerg, Denmark
| | - Jan Bert Paul Gramsbergen
- Institute of Molecular Medicine, Neurobiological Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
102
|
Hansson O, Janelidze S, Hall S, Magdalinou N, Lees AJ, Andreasson U, Norgren N, Linder J, Forsgren L, Constantinescu R, Zetterberg H, Blennow K. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder. Neurology 2017; 88:930-937. [PMID: 28179466 PMCID: PMC5333515 DOI: 10.1212/wnl.0000000000003680] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine if blood neurofilament light chain (NfL) protein can discriminate between Parkinson disease (PD) and atypical parkinsonian disorders (APD) with equally high diagnostic accuracy as CSF NfL, and can therefore improve the diagnostic workup of parkinsonian disorders. METHODS The study included 3 independent prospective cohorts: the Lund (n = 278) and London (n = 117) cohorts, comprising healthy controls and patients with PD, progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy (MSA), as well as an early disease cohort (n = 109) of patients with PD, PSP, MSA, or CBS with disease duration ≤3 years. Blood NfL concentration was measured using an ultrasensitive single molecule array (Simoa) method, and the diagnostic accuracy to distinguish PD from APD was investigated. RESULTS We found strong correlations between blood and CSF concentrations of NfL (ρ ≥ 0.73-0.84, p ≤ 0.001). Blood NfL was increased in patients with MSA, PSP, and CBS (i.e., all APD groups) when compared to patients with PD as well as healthy controls in all cohorts (p < 0.001). Furthermore, in the Lund cohort, blood NfL could accurately distinguish PD from APD (area under the curve [AUC] 0.91) with similar results in both the London cohort (AUC 0.85) and the early disease cohort (AUC 0.81). CONCLUSIONS Quantification of blood NfL concentration can be used to distinguish PD from APD. Blood-based NfL might consequently be included in the diagnostic workup of patients with parkinsonian symptoms in both primary care and specialized clinics. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that blood NfL levels discriminate between PD and APD.
Collapse
Affiliation(s)
- Oskar Hansson
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden.
| | - Shorena Janelidze
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Sara Hall
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Nadia Magdalinou
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Andrew J Lees
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Ulf Andreasson
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Niklas Norgren
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Jan Linder
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Lars Forsgren
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Radu Constantinescu
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Henrik Zetterberg
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | - Kaj Blennow
- From the Clinical Memory Research Unit (O.H., S.J., S.H.), Department of Clinical Sciences, Lund University; Memory Clinic (O.H., S.J., S.H.), Skåne University Hospital, Sweden; UCL Institute of Neurology (N.M., A.J.L., H.Z.), Queen Square, London, UK; Clinical Neurochemistry Laboratory (R.C., H.Z., K.B.), Institute of Neuroscience and Physiology (U.A.), The Sahlgrenska Academy at University of Gothenburg, Mölndal; UmanDiagnostics (N.N.), Umeå; and Department of Pharmacology and Clinical Neuroscience (J.L., L.F.), Umeå University, Sweden
| | | |
Collapse
|
106
|
Janelidze S, Hertze J, Nägga K, Nilsson K, Nilsson C, Wennström M, van Westen D, Blennow K, Zetterberg H, Hansson O. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging 2016; 51:104-112. [PMID: 28061383 PMCID: PMC5754327 DOI: 10.1016/j.neurobiolaging.2016.11.017] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/07/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023]
Abstract
Blood-brain barrier (BBB) dysfunction might be an important component of many neurodegenerative disorders. In this study, we investigated its role in dementia using large clinical cohorts. The cerebrospinal fluid (CSF)/plasma albumin ratio (Qalb), an indicator of BBB (and blood-CSF barrier) permeability, was measured in a total of 1015 individuals. The ratio was increased in patients with Alzheimer's disease, dementia with Lewy bodies or Parkinson's disease dementia, subcortical vascular dementia, and frontotemporal dementia compared with controls. However, this measure was not changed during preclinical or prodromal Alzheimer's disease and was not associated with amyloid positron emission tomography or APOE genotype. The Qalb was increased in diabetes mellitus and correlated positively with CSF biomarkers of angiogenesis and endothelial dysfunction (vascular endothelial growth factor, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1). In healthy elderly, high body mass index and waist-hip ratio predicted increased Qalb 20 years later. In summary, BBB permeability is increased in major dementia disorders but does not relate to amyloid pathology or APOE genotype. Instead, BBB impairment may be associated with diabetes and brain microvascular damage.
Collapse
Affiliation(s)
- Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Joakim Hertze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Katarina Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Karin Nilsson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Christer Nilsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | | | - Malin Wennström
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Wallenberg Laboratory, Malmö, Sweden
| | - Danielle van Westen
- Department of Clinical Sciences, Diagnostic radiology, Lund University, Lund, Sweden; Imaging and Function, Skåne University Health Care, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
109
|
Padel T, Özen I, Boix J, Barbariga M, Gaceb A, Roth M, Paul G. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease. Neurobiol Dis 2016; 94:95-105. [PMID: 27288154 DOI: 10.1016/j.nbd.2016.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/24/2016] [Accepted: 06/05/2016] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease where the degeneration of the nigrostriatal pathway leads to specific motor deficits. There is an unmet medical need for regenerative treatments that stop or reverse disease progression. Several growth factors have been investigated in clinical trials to restore the dopaminergic nigrostriatal pathway damaged in PD. Platelet-derived growth factor-BB (PDGF-BB), a molecule that recruits pericytes to stabilize microvessels, was recently investigated in a phase-1 clinical trial, showing a dose-dependent increase in dopamine transporter binding in the putamen of PD patients. Interestingly, evidence is accumulating that PD is paralleled by microvascular changes, however, whether PDGF-BB modifies pericytes in PD is not known. Using a pericyte reporter mouse strain, we investigate the functional and restorative effect of PDGF-BB in a partial 6-hydroxydopamine medial forebrain bundle lesion mouse model of PD, and whether this restorative effect is accompanied by changes in pericyte features. We demonstrate that a 2-week treatment with PDGF-BB leads to behavioural recovery using several behavioural tests, and partially restores the nigrostriatal pathway. Interestingly, we find that pericytes are activated in the striatum of PD lesioned mice and that these changes are reversed by PDGF-BB treatment. The modulation of brain pericytes may contribute to the PDGF-BB-induced neurorestorative effects, PDGF-BB allowing for vascular stabilization in PD. Pericytes might be a new cell target of interest for future regenerative therapies.
Collapse
Affiliation(s)
- Thomas Padel
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Ilknur Özen
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Jordi Boix
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Marco Barbariga
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Department of Neurology, Scania University Hospital, 22185 Lund, Sweden.
| |
Collapse
|
112
|
Walker DG, Lue LF, Serrano G, Adler CH, Caviness JN, Sue LI, Beach TG. Altered Expression Patterns of Inflammation-Associated and Trophic Molecules in Substantia Nigra and Striatum Brain Samples from Parkinson's Disease, Incidental Lewy Body Disease and Normal Control Cases. Front Neurosci 2016; 9:507. [PMID: 26834537 PMCID: PMC4712383 DOI: 10.3389/fnins.2015.00507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence of inflammation has been consistently associated with pathology in Parkinson's disease (PD)-affected brains, and has been suggested as a causative factor. Dopaminergic neurons in the substantia nigra (SN) pars compacta, whose loss results in the clinical symptoms associated with PD, are particularly susceptible to inflammatory damage and oxidative stress. Inflammation in the striatum, where SN dopaminergic neurons project, is also a feature of PD brains. It is not known whether inflammatory changes occur first in striatum or SN. Many animal models of PD have implicated certain inflammatory molecules with dopaminergic cell neuronal loss; however, there have been few studies to validate these findings by measuring the levels of these and other inflammatory factors in human PD brain samples. This study also included samples from incidental Lewy body disease (ILBD) cases, since ILBD is considered a non-symptomatic precursor to PD, with subjects having significant loss of tyrosine hydroxylase-producing neurons. We hypothesized that there may be a progressive change in key inflammatory factors in ILBD samples intermediate between neurologically normal and PD. To address this, we used a quantitative antibody-array platform (Raybiotech-Quantibody arrays) to measure the levels of 160 different inflammation-associated cytokines, chemokines, growth factors, and related molecules in extracts of SN and striatum from clinically and neuropathologically characterized PD, ILBD, and normal control cases. Patterns of changes in inflammation and related molecules were distinctly different between SN and striatum. Our results showed significantly different levels of interleukin (IL)-5, IL-15, monokine induced by gamma interferon, and IL-6 soluble receptor in SN between disease groups. A different panel of 13 proteins with significant changes in striatum, with IL-15 as the common feature, was identified. Although the ability to detect some proteins was limited by sensitivity, patterns of expression indicated involvement of certain T-cell cytokines, vascular changes, and loss of certain growth factors, with disease progression. The results demonstrate the feasibility of profiling inflammatory molecules using diseased human brain samples, and have provided additional targets to validate in relation to PD pathology.
Collapse
Affiliation(s)
- Douglas G Walker
- Banner Sun Health Research InstituteSun City, AZ, USA; Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Lih-Fen Lue
- Banner Sun Health Research InstituteSun City, AZ, USA; Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute Sun City, AZ, USA
| | - Charles H Adler
- Neurology, Mayo Clinic College of Medicine Scottsdale, AZ, USA
| | - John N Caviness
- Neurology, Mayo Clinic College of Medicine Scottsdale, AZ, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute Sun City, AZ, USA
| | | |
Collapse
|