101
|
Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nat Commun 2017; 8:13991. [PMID: 28071661 PMCID: PMC5234075 DOI: 10.1038/ncomms13991] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Formation of organ-specific vasculatures requires cross-talk between developing tissue and specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1 restricting Vegfaa-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes sprout invasion into the neural tube. On loss of neuronal flt1, ectopic sprouts emanate from veins involving special angiogenic cell behaviours including nuclear positioning and a molecular signature distinct from primary arterial or secondary venous sprouting. Manipulation of arteriovenous identity or Notch signalling established that ectopic sprouting in flt1 mutants requires venous endothelium. Conceptually, our data suggest that spinal cord vascularization proceeds from veins involving two-tiered regulation of neuronal sFlt1 and Vegfaa via a novel sprouting mode. The generation of vasculature in organs is regulated by cross-talk between the developing tissue and specialized endothelial cells. Here, the authors show that vessel growth feeding the zebrafish spinal cord is coordinated by balancing neuron-derived pro-angiogenic ligand Vegfaa and its receptor, sFlt1.
Collapse
|
102
|
Padberg Y, Schulte-Merker S, van Impel A. The lymphatic vasculature revisited-new developments in the zebrafish. Methods Cell Biol 2016; 138:221-238. [PMID: 28129845 DOI: 10.1016/bs.mcb.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The lymphatic system is lined by endothelial cells and part of the vasculature. It is essential for tissue fluid homeostasis, absorption of dietary fats, and immune surveillance in vertebrates. Misregulation of lymphatic vessel formation and dysfunction of the lymphatic system have been indicated in a number of pathological conditions including lymphedema formation, obesity or chronic inflammatory diseases such as rheumatoid arthritis. In zebrafish, lymphatics were discovered about 10years ago, and the underlying molecular pathways involved in its development have since been studied in detail. Due to its superior live cell imaging possibilities and the broad tool kit for forward and reverse genetics, the zebrafish has become an important model organism to study the development of the lymphatic system during early embryonic development. In the current review, we will focus on the key players during zebrafish lymphangiogenesis and compare the roles of these genes to their mammalian counterparts. In particular, we will focus on novel findings that shed new light on the molecular mechanisms of lymphatic cell fate specification, as well as sprouting and migration of lymphatic precursor cells.
Collapse
Affiliation(s)
- Y Padberg
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC M 1003-CiM), University of Münster, Münster, Germany
| | - S Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC M 1003-CiM), University of Münster, Münster, Germany
| | - A van Impel
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC M 1003-CiM), University of Münster, Münster, Germany
| |
Collapse
|
103
|
Matsuoka RL, Marass M, Avdesh A, Helker CS, Maischein HM, Grosse AS, Kaur H, Lawson ND, Herzog W, Stainier DY. Radial glia regulate vascular patterning around the developing spinal cord. eLife 2016; 5:20253. [PMID: 27852438 PMCID: PMC5123865 DOI: 10.7554/elife.20253] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs. DOI:http://dx.doi.org/10.7554/eLife.20253.001
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Avdesh Avdesh
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann S Grosse
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Harmandeep Kaur
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Wiebke Herzog
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
104
|
Shin M, Beane TJ, Quillien A, Male I, Zhu LJ, Lawson ND. Vegfa signals through ERK to promote angiogenesis, but not artery differentiation. Development 2016; 143:3796-3805. [PMID: 27578780 PMCID: PMC5087643 DOI: 10.1242/dev.137919] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Abstract
Vascular endothelial growth factor a (Vegfa) is essential for blood vessel formation and can induce activation of numerous signaling effectors in endothelial cells. However, it is unclear how and where these function in developmental contexts during vascular morphogenesis. To address this issue, we have visualized activation of presumptive Vegfa effectors at single-cell resolution in zebrafish blood vessels. From these studies, we find that phosphorylation of the serine/threonine kinase ERK (pERK) preferentially occurs in endothelial cells undergoing angiogenesis, but not in committed arterial endothelial cells. pERK in endothelial cells was ectopically induced by Vegfa and lost in Vegfa signaling mutants. Both chemical and endothelial autonomous inhibition of ERK prevented endothelial sprouting, but did not prevent initial artery differentiation. Timed chemical inhibition during angiogenesis caused a loss of genes implicated in coordinating tip/stalk cell behaviors, including flt4 and, at later stages, dll4 ERK inhibition also blocked excessive angiogenesis and ectopic flt4 expression in Notch-deficient blood vessels. Together, these studies implicate ERK as a specific effector of Vegfa signaling in the induction of angiogenic genes during sprouting.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Timothy J Beane
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Aurelie Quillien
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ira Male
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
105
|
Nagasawa-Masuda A, Terai K. ERK activation in endothelial cells is a novel marker during neovasculogenesis. Genes Cells 2016; 21:1164-1175. [PMID: 27696620 DOI: 10.1111/gtc.12438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
Abstract
Vasculogenesis is essential during early development to construct networks transporting oxygen, blood and nutrients. Tip and stalk cells are specialized endothelial cells involved in novel vessel formation because of their behavior such as sprouting as a leading cell and following tip cell. However, the spatiotemporal details determining the emergence of these cells are unknown. Here, we first show that the ERK activity in endothelial cells represents the precursor of tip and stalk cells for vasculogenesis in zebrafish. We identified that tip and stalk cells for intersegmental vessel (ISV) formation were already specialized in the dorsal aorta (DA) before sprouting. Furthermore, similar specialization was observed in tip cells during parachordal vessel (PAV) formation in lymphangiogenesis. We also identified that the ERK activity was required for specialized cells to emerge from existing blood vessels. Our data show that the ERK activity is a novel marker for determining the emergence of cells in both angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Ayumi Nagasawa-Masuda
- Laboratory of Function and Morphology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kenta Terai
- Laboratory of Function and Morphology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-0032, Japan
| |
Collapse
|
106
|
Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc Natl Acad Sci U S A 2016; 113:11237-11242. [PMID: 27647901 DOI: 10.1073/pnas.1605431113] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zebrafish have a remarkable capacity to regenerate their heart. Efficient replenishment of lost tissues requires the activation of different cell types including the epicardium and endocardium. A complex set of processes is subsequently needed to support cardiomyocyte repopulation. Previous studies have identified important determinants of heart regeneration; however, to date, how revascularization of the damaged area happens remains unknown. Here, we show that angiogenic sprouting into the injured area starts as early as 15 h after injury. To analyze the role of vegfaa in heart regeneration, we used vegfaa mutants rescued to adulthood by vegfaa mRNA injections at the one-cell stage. Surprisingly, vegfaa mutants develop coronaries and revascularize after injury. As a possible explanation for these observations, we find that vegfaa mutant hearts up-regulate the expression of potentially compensating genes. Therefore, to overcome the lack of a revascularization phenotype in vegfaa mutants, we generated fish expressing inducible dominant negative Vegfaa. These fish displayed minimal revascularization of the damaged area. In the absence of fast angiogenic revascularization, cardiomyocyte proliferation did not occur, and the heart failed to regenerate, retaining a fibrotic scar. Hence, our data show that a fast endothelial invasion allows efficient revascularization of the injured area, which is necessary to support replenishment of new tissue and achieve efficient heart regeneration. These findings revisit the model where neovascularization is considered to happen concomitant with the formation of new muscle. Our work also paves the way for future studies designed to understand the molecular mechanisms that regulate fast revascularization.
Collapse
|
107
|
Shin M, Male I, Beane TJ, Villefranc JA, Kok FO, Zhu LJ, Lawson ND. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development 2016; 143:3785-3795. [PMID: 27621059 DOI: 10.1242/dev.137901] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/25/2016] [Indexed: 01/03/2023]
Abstract
Vascular endothelial growth factor C (Vegfc) activates its receptor, Flt4, to induce lymphatic development. However, the signals that act downstream of Flt4 in this context in vivo remain unclear. To understand Flt4 signaling better, we generated zebrafish bearing a deletion in the Flt4 cytoplasmic domain that eliminates tyrosines Y1226 and 1227. Embryos bearing this deletion failed to initiate sprouting or differentiation of trunk lymphatic vessels and did not form a thoracic duct. Deletion of Y1226/7 prevented ERK phosphorylation in lymphatic progenitors, and ERK inhibition blocked trunk lymphatic sprouting and differentiation. Conversely, endothelial autonomous ERK activation rescued lymphatic sprouting and differentiation in flt4 mutants. Interestingly, embryos bearing the Y1226/7 deletion formed a functional facial lymphatic network enabling them to develop normally to adulthood. By contrast, flt4 null larvae displayed hypoplastic facial lymphatics and severe lymphedema. Thus, facial lymphatic vessels appear to be the first functional lymphatic network in the zebrafish, whereas the thoracic duct is initially dispensable for lymphatic function. Moreover, distinct signaling pathways downstream of Flt4 govern lymphatic morphogenesis and differentiation in different anatomical locations.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ira Male
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Timothy J Beane
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jacques A Villefranc
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Fatma O Kok
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
108
|
Venero Galanternik M, Stratman AN, Jung HM, Butler MG, Weinstein BM. Building the drains: the lymphatic vasculature in health and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:689-710. [PMID: 27576003 DOI: 10.1002/wdev.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
Abstract
The lymphatic vasculature is comprised of a network of endothelial vessels found in close proximity to but separated from the blood vasculature. An essential tissue component of all vertebrates, lymphatics are responsible for the maintenance of fluid homeostasis, dissemination of immune cells, and lipid reabsorption under healthy conditions. When lymphatic vessels are impaired due to invasive surgery, genetic disorders, or parasitic infections, severe fluid build-up accumulates in the affected tissues causing a condition known as lymphedema. Malignant tumors can also directly activate lymphangiogenesis and use these vessels to promote the spread of metastatic cells. Although their first description goes back to the times of Hippocrates, with subsequent anatomical characterization at the beginning of the 20th-century, the lack of identifying molecular markers and tools to visualize these translucent vessels meant that investigation of lymphatic vessels fell well behind research of blood vessels. However, after years under the shadow of the blood vasculature, recent advances in imaging technologies and new genetic and molecular tools have accelerated the pace of research on lymphatic vessel development. These new tools have facilitated both work in classical mammalian models and the emergence of new powerful vertebrate models like zebrafish, quickly driving the field of lymphatic development back into the spotlight. In this review, we summarize the highlights of recent research on the development and function of the lymphatic vascular network in health and disease. WIREs Dev Biol 2016, 5:689-710. doi: 10.1002/wdev.246 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amber N Stratman
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hyun Min Jung
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew G Butler
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Brant M Weinstein
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
109
|
Regulation of Vegf signaling by natural and synthetic ligands. Blood 2016; 128:2359-2366. [PMID: 27557946 DOI: 10.1182/blood-2016-04-711192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023] Open
Abstract
The mechanisms that allow cells to bypass anti-vascular endothelial growth factor A (VEGFA) therapy remain poorly understood. Here we use zebrafish to investigate this question and first show that vegfaa mutants display a severe vascular phenotype that can surprisingly be rescued to viability by vegfaa messenger RNA injections at the 1-cell stage. Using vegfaa mutants as an in vivo test tube, we found that zebrafish Vegfbb, Vegfd, and Pgfb can also rescue these animals to viability. Taking advantage of a new vegfr1 tyrosine kinase-deficient mutant, we determined that Pgfb rescues vegfaa mutants via Vegfr1. Altogether, these data reveal potential resistance routes against current anti-VEGFA therapies. In order to circumvent this resistance, we engineered and validated new dominant negative Vegfa molecules that by trapping Vegf family members can block vascular development. Thus, our results show that Vegfbb, Vegfd, and Pgfb can sustain vascular development in the absence of VegfA, and our newly engineered Vegf molecules expand the toolbox for basic research and antiangiogenic therapy.
Collapse
|
110
|
The endoderm indirectly influences morphogenetic movements of the zebrafish head kidney through the posterior cardinal vein and VegfC. Sci Rep 2016; 6:30677. [PMID: 27477767 PMCID: PMC4967926 DOI: 10.1038/srep30677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Integration of blood vessels and organ primordia determines organ shape and function. The head kidney in the zebrafish interacts with the dorsal aorta (DA) and the posterior cardinal vein (PCV) to achieve glomerular filtration and definitive hematopoiesis, respectively. How the head kidney co-develops with both the axial artery and vein remains unclear. We found that in endodermless sox32-deficient embryos, the head kidney associated with the PCV but not the DA. Disrupted convergent migration of the PCV and the head kidney in sox32-deficient embryos was rescued in a highly coordinated fashion through the restoration of endodermal cells. Moreover, grafted endodermal cells abutted the host PCV endothelium in the transplantation assay. Interestingly, the severely-disrupted head kidney convergence in the sox32-deficient embryo was suppressed by both the cloche mutation and the knockdown of endothelial genes, indicating that an interaction between the endoderm and the PCV restricts the migration of the head kidney. Furthermore, knockdown of either vegfC or its receptor vegfr3 suppressed the head kidney convergence defect in endodermless embryos and perturbed the head kidney-PCV association in wild-type embryos. Our findings thus underscore a role for PCV and VegfC in patterning the head kidney prior to organ assembly and function.
Collapse
|
111
|
Ahnelt H, Schade FM, Wegner M. Ocean acidification leads to deformations of caudal vein angio-architecture in juvenile threespine stickleback, Gasterosteus aculeatus Linnaeus. JOURNAL OF FISH DISEASES 2016; 39:1001-1005. [PMID: 27378184 DOI: 10.1111/jfd.12417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 06/06/2023]
Affiliation(s)
- H Ahnelt
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - F M Schade
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| | - M Wegner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| |
Collapse
|
112
|
Crawford J, Bower NI, Hogan BM, Taft RJ, Gabbett MT, McGaughran J, Simons C. Expanding the genotypic spectrum ofCCBE1mutations in Hennekam syndrome. Am J Med Genet A 2016; 170:2694-7. [DOI: 10.1002/ajmg.a.37803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Joanna Crawford
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
| | - Neil I. Bower
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
| | - Benjamin M. Hogan
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
| | - Ryan J. Taft
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
- Illumina, Inc.; San Diego California
- School of Medicine and Health; The George Washington University; Washington District of Columbia
| | - Michael T. Gabbett
- Genetic Health Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
- School of Medicine; The University of Queensland; Brisbane Queensland Australia
| | - Julie McGaughran
- Genetic Health Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
- School of Medicine; The University of Queensland; Brisbane Queensland Australia
| | - Cas Simons
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
113
|
Buttler K, Lohrberg M, Gross G, Weich HA, Wilting J. Integration of CD45-positive leukocytes into newly forming lymphatics of adult mice. Histochem Cell Biol 2016; 145:629-36. [PMID: 26748643 PMCID: PMC4848334 DOI: 10.1007/s00418-015-1399-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 10/28/2022]
Abstract
The embryonic origin of lymphatic endothelial cells (LECs) has been a matter of controversy since more than a century. However, recent studies in mice have supported the concept that embryonic lymphangiogenesis is a complex process consisting of growth of lymphatics from specific venous segments as well as the integration of lymphangioblasts into the lymphatic networks. Similarly, the mechanisms of adult lymphangiogenesis are poorly understood and have rarely been studied. We have recently shown that endothelial progenitor cells isolated from the lung of adult mice have the capacity to form both blood vessels and lymphatics when grafted with Matrigel plugs into the skin of syngeneic mice. Here, we followed up on these experiments and studied the behavior of host leukocytes during lymphangiogenesis in the Matrigel plugs. We observed a striking co-localization of CD45(+) leukocytes with the developing lymphatics. Numerous CD45(+) cells expressed the LEC marker podoplanin and were obviously integrated into the lining of lymphatic capillaries. This indicates that, similar to inflammation-induced lymphangiogenesis in man, circulating CD45(+) cells of adult mice are capable of initiating lymphangiogenesis and of adopting a lymphvasculogenic cellular differentiation program. The data are discussed in the context of embryonic and inflammation-induced lymphangiogenesis.
Collapse
Affiliation(s)
- K Buttler
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - M Lohrberg
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - G Gross
- Department of Gene Regulation, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - H A Weich
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - J Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany.
| |
Collapse
|
114
|
Chávez MN, Aedo G, Fierro FA, Allende ML, Egaña JT. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol 2016; 7:56. [PMID: 27014075 PMCID: PMC4781882 DOI: 10.3389/fphys.2016.00056] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.
Collapse
Affiliation(s)
- Myra N Chávez
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de ChileSantiago, Chile; Department of Biochemistry and Molecular Biology, FONDAP Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| | - Geraldine Aedo
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - Fernando A Fierro
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA, USA
| | - Miguel L Allende
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - José T Egaña
- Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontifícia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
115
|
Koenig AL, Baltrunaite K, Bower NI, Rossi A, Stainier DYR, Hogan BM, Sumanas S. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Dev Biol 2016; 411:115-27. [PMID: 26769101 DOI: 10.1016/j.ydbio.2016.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/12/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The mechanisms underlying organ vascularization are not well understood. The zebrafish intestinal vasculature forms early, is easily imaged using transgenic lines and in-situ hybridization, and develops in a stereotypical pattern thus making it an excellent model for investigating mechanisms of organ specific vascularization. Here, we demonstrate that the sub-intestinal vein (SIV) and supra-intestinal artery (SIA) form by a novel mechanism from angioblasts that migrate out of the posterior cardinal vein and coalesce to form the intestinal vasculature in an anterior to posterior wave with the SIA forming after the SIV. We show that vascular endothelial growth factor aa (vegfaa) is expressed in the endoderm at the site where intestinal vessels form and therefore likely provides a guidance signal. Vegfa/Vegfr2 signaling is required for early intestinal vasculature development with mutation in vegfaa or loss of Vegfr2 homologs causing nearly complete inhibition of the formation of the intestinal vasculature. Vegfc and Vegfr3 function, however, are dispensable for intestinal vascularization. Interestingly, ubiquitous overexpression of Vegfc resulted in an overgrowth of the SIV, suggesting that Vegfc is sufficient to induce SIV development. These results argue that Vegfa signaling directs endothelial cells to migrate out of existing vasculature and coalesce to form the intestinal vessels. It is likely that a similar mechanism is utilized during vascularization of other organs.
Collapse
Affiliation(s)
- Andrew L Koenig
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Kristina Baltrunaite
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4073, Australia.
| | - Andrea Rossi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4073, Australia.
| | - Saulius Sumanas
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
116
|
Astin JW, Crosier PS. Lymphatics, Cancer and Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:199-218. [DOI: 10.1007/978-3-319-30654-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
117
|
Koltowska K, Lagendijk A, Pichol-Thievend C, Fischer J, Francois M, Ober E, Yap A, Hogan B. Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish. Cell Rep 2015; 13:1828-41. [DOI: 10.1016/j.celrep.2015.10.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022] Open
|
118
|
Yokota Y, Nakajima H, Wakayama Y, Muto A, Kawakami K, Fukuhara S, Mochizuki N. Endothelial Ca 2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo. eLife 2015; 4. [PMID: 26588168 PMCID: PMC4720519 DOI: 10.7554/elife.08817] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022] Open
Abstract
Sprouting angiogenesis is a well-coordinated process controlled by multiple extracellular inputs, including vascular endothelial growth factor (VEGF). However, little is known about when and how individual endothelial cell (EC) responds to angiogenic inputs in vivo. Here, we visualized endothelial Ca2+ dynamics in zebrafish and found that intracellular Ca2+ oscillations occurred in ECs exhibiting angiogenic behavior. Ca2+ oscillations depended upon VEGF receptor-2 (Vegfr2) and Vegfr3 in ECs budding from the dorsal aorta (DA) and posterior cardinal vein, respectively. Thus, visualizing Ca2+ oscillations allowed us to monitor EC responses to angiogenic cues. Vegfr-dependent Ca2+ oscillations occurred in migrating tip cells as well as stalk cells budding from the DA. We investigated how Dll4/Notch signaling regulates endothelial Ca2+ oscillations and found that it was required for the selection of single stalk cell as well as tip cell. Thus, we captured spatio-temporal Ca2+ dynamics during sprouting angiogenesis, as a result of cellular responses to angiogenic inputs. DOI:http://dx.doi.org/10.7554/eLife.08817.001 Throughout life, new blood vessels grow out like branches from existing vessels in a process called “sprouting angiogenesis”. This involves some of the endothelial cells that line the inner surface of the blood vessel migrating outwards, creating a vessel sprout made up of tip cells and stalk cells. Sprouting is controlled by two opposing signaling systems. One pathway is triggered by a molecule called vascular endothelial growth factor (VEGF). This molecule binds to receptor proteins to activate a range of signaling processes that stimulate endothelial cells to become tip cells, and so encourage the formation of new sprouts. However, it was not known exactly when or how the endothelial cells respond to these signals. By contrast, the Notch signaling pathway inhibits sprouting angiogenesis. The two signaling pathways interact with each other: VEGF signaling in tip cells activates Notch signaling in neighboring cells, which then prevents VEGF signaling in these cells. This feedback mechanism helps a new sprout to form by suppressing tip-like activity in the cells surrounding a new tip cell, forcing these cells to become stalk cells. Activating VEGF receptors also causes brief increases, or oscillations, in the level of calcium ions inside the endothelial cells. Now, Yokota, Nakajima et al. have investigated VEGF activity by genetically engineering zebrafish embryos so that fluorescent proteins inside their endothelial cells emit more light when calcium ion levels inside the cell increase. As zebrafish embryos are transparent, this change in fluorescence can be seen in the living animal. Imaging the embryos revealed that calcium ion oscillations occur in both tip and stalk cells in response to VEGF signaling as they bud from vessels. Notch signaling can also regulate the calcium ion oscillations; this controls whether an individual cell becomes a tip or a stalk cell, and restricts the number of stalk cells in the sprout. The flow of blood through the vessels is also thought to influence calcium ion oscillations in endothelial cells. Future studies could therefore use the imaging technique developed by Yokota, Nakajima et al. to investigate how blood flow influences the development of new blood vessels. DOI:http://dx.doi.org/10.7554/eLife.08817.002
Collapse
Affiliation(s)
- Yasuhiro Yokota
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Akira Muto
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), National Institute of Genetics, Mishima, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), National Institute of Genetics, Mishima, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Suita, Japan
| |
Collapse
|
119
|
Hen G, Nicenboim J, Mayseless O, Asaf L, Shin M, Busolin G, Hofi R, Almog G, Tiso N, Lawson ND, Yaniv K. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development. Development 2015; 142:4266-78. [PMID: 26525671 PMCID: PMC4689221 DOI: 10.1242/dev.129247] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/25/2015] [Indexed: 01/04/2023]
Abstract
Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds. Highlighted article: A specialized pool of angioblasts is the origin of the zebrafish subintestinal plexus, a structure that gives rise to the organ-specific vessels of the gut, liver and pancreas.
Collapse
Affiliation(s)
- Gideon Hen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Oded Mayseless
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lihee Asaf
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Masahiro Shin
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Giorgia Busolin
- Department of Biology, University of Padova, Padova I-35131, Italy
| | - Roy Hofi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gabriella Almog
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova I-35131, Italy
| | - Nathan D Lawson
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
120
|
Goi M, Childs SJ. Patterning mechanisms of the sub-intestinal venous plexus in zebrafish. Dev Biol 2015; 409:114-128. [PMID: 26477558 DOI: 10.1016/j.ydbio.2015.10.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
Abstract
Despite considerable interest in angiogenesis, organ-specific angiogenesis remains less well characterized. The vessels that absorb nutrients from the yolk and later provide blood supply to the developing digestive system are primarily venous in origin. In zebrafish, these are the vessels of the Sub-intestinal venous plexus (SIVP) and they represent a new candidate model to gain an insight into the mechanisms of venous angiogenesis. Unlike other vessel beds in zebrafish, the SIVP is not stereotypically patterned and lacks obvious sources of patterning information. However, by examining the area of vessel coverage, number of compartments, proliferation and migration speed we have identified common developmental steps in SIVP formation. We applied our analysis of SIVP development to obd mutants that have a mutation in the guidance receptor PlexinD1. obd mutants show dysregulation of nearly all parameters of SIVP formation. We show that the SIVP responds to a unique combination of pathways that control both arterial and venous growth in other systems. Blocking Shh, Notch and Pdgf signaling has no effect on SIVP growth. However Vegf promotes sprouting of the predominantly venous plexus and Bmp promotes outgrowth of the structure. We propose that the SIVP is a unique model to understand novel mechanisms utilized in organ-specific angiogenesis.
Collapse
Affiliation(s)
- Michela Goi
- Department of Biochemistry and Molecular Biology and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - Sarah J Childs
- Department of Biochemistry and Molecular Biology and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
121
|
Koltowska K, Paterson S, Bower NI, Baillie GJ, Lagendijk AK, Astin JW, Chen H, Francois M, Crosier PS, Taft RJ, Simons C, Smith KA, Hogan BM. mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev 2015; 29:1618-30. [PMID: 26253536 PMCID: PMC4536310 DOI: 10.1101/gad.263210.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Koltowska et al. used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. Vegfc signaling increases mafba expression to control downstream transcription, and this relationship is SoxF transcription factor-dependent. The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc–SoxF–Mafba pathway in lymphatic development.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mathias Francois
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Ryan J Taft
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
122
|
Okuda KS, Misa JP, Oehlers SH, Hall CJ, Ellett F, Alasmari S, Lieschke GJ, Crosier KE, Crosier PS, Astin JW. A zebrafish model of inflammatory lymphangiogenesis. Biol Open 2015; 4:1270-80. [PMID: 26369931 PMCID: PMC4610225 DOI: 10.1242/bio.013540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a disabling chronic inflammatory disease of the gastrointestinal tract. IBD patients have increased intestinal lymphatic vessel density and recent studies have shown that this may contribute to the resolution of IBD. However, the molecular mechanisms involved in IBD-associated lymphangiogenesis are still unclear. In this study, we established a novel inflammatory lymphangiogenesis model in zebrafish larvae involving colitogenic challenge stimulated by exposure to 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sodium sulphate (DSS). Treatment with either TNBS or DSS resulted in vascular endothelial growth factor receptor (Vegfr)-dependent lymphangiogenesis in the zebrafish intestine. Reduction of intestinal inflammation by the administration of the IBD therapeutic, 5-aminosalicylic acid, reduced intestinal lymphatic expansion. Zebrafish macrophages express vascular growth factors vegfaa, vegfc and vegfd and chemical ablation of these cells inhibits intestinal lymphatic expansion, suggesting that the recruitment of macrophages to the intestine upon colitogenic challenge is required for intestinal inflammatory lymphangiogenesis. Importantly, this study highlights the potential of zebrafish as an inflammatory lymphangiogenesis model that can be used to investigate the role and mechanism of lymphangiogenesis in inflammatory diseases such as IBD.
Collapse
Affiliation(s)
- Kazuhide S Okuda
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - June Pauline Misa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Stefan H Oehlers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham 27710, USA
| | - Christopher J Hall
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Felix Ellett
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kathryn E Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jonathan W Astin
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
123
|
Schuermann A, Helker CSM, Herzog W. Metallothionein 2 regulates endothelial cell migration through transcriptional regulation of vegfc expression. Angiogenesis 2015. [PMID: 26198291 PMCID: PMC4596909 DOI: 10.1007/s10456-015-9473-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of developmental angiogenesis can help to identify regulatory networks, which also contribute to disease-related vascular growth. Vascular endothelial growth factors (Vegf) drive angiogenic processes such as sprouting, endothelial cell (EC) migration and proliferation. However, how Vegf expression is regulated during development is not well understood. By analyzing developmental zebrafish angiogenesis, we have identified Metallothionein 2 (Mt2) as a novel regulator of vegfc expression. While Metallothioneins (Mts) have been extensively analyzed for their capability of regulating homeostasis and metal detoxification, we demonstrate that Mt2 is required for EC migration, proliferation and angiogenic sprouting upstream of vegfc expression. We further demonstrate that another Mt family member cannot compensate Mt2 deficiency and therefore postulate that Mt2 regulates angiogenesis independent of its canonical Mt function. Our data not only reveal a non-canonical function of Mt2 in angiogenesis, but also propose Mt2 as a novel regulator of vegfc expression.
Collapse
Affiliation(s)
- Annika Schuermann
- University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Christian S M Helker
- University of Muenster, Muenster, Germany.,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wiebke Herzog
- University of Muenster, Muenster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany. .,Max-Planck-Institute for Molecular Biomedicine, Muenster, Germany.
| |
Collapse
|
124
|
Park JA, Kim DY, Kim YM, Lee IK, Kwon YG. Endothelial Snail Regulates Capillary Branching Morphogenesis via Vascular Endothelial Growth Factor Receptor 3 Expression. PLoS Genet 2015; 11:e1005324. [PMID: 26147525 PMCID: PMC4493050 DOI: 10.1371/journal.pgen.1005324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels.
Collapse
Affiliation(s)
- Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Dong Young Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Kangwon-Do, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine and Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Medical Center, Daegu, Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
125
|
Roukens MG, Peterson-Maduro J, Padberg Y, Jeltsch M, Leppänen VM, Bos FL, Alitalo K, Schulte-Merker S, Schulte D. Functional Dissection of the CCBE1 Protein. Circ Res 2015; 116:1660-9. [DOI: 10.1161/circresaha.116.304949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 03/26/2015] [Indexed: 01/15/2023]
Affiliation(s)
- M. Guy Roukens
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| | - Josi Peterson-Maduro
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| | - Yvonne Padberg
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| | - Michael Jeltsch
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| | - Veli-Matti Leppänen
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| | - Frank L. Bos
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| | - Kari Alitalo
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| | - Stefan Schulte-Merker
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| | - Dörte Schulte
- From the Hubrecht Institute, KNAW–UMC Utrecht, Utrecht, The Netherlands (M.G.R., J.P.M., Y.P., F.L.B., S.S.-M., D.S.); Cardiovascular Research Institute, University of California San Francisco (F.L.B.); Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (M.J., V.-M. L., K.A.); Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU,
| |
Collapse
|
126
|
Hermkens DMA, van Impel A, Urasaki A, Bussmann J, Duckers HJ, Schulte-Merker S. Sox7 controls arterial specification in conjunction with hey2 and efnb2 function. Development 2015; 142:1695-704. [PMID: 25834021 DOI: 10.1242/dev.117275] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022]
Abstract
SoxF family members have been linked to arterio-venous specification events and human pathological conditions, but in contrast to Sox17 and Sox18, a detailed in vivo analysis of a Sox7 mutant model is still lacking. In this study we generated zebrafish sox7 mutants to understand the role of Sox7 during vascular development. By in vivo imaging of transgenic zebrafish lines we show that sox7 mutants display a short circulatory loop around the heart as a result of aberrant connections between the lateral dorsal aorta (LDA) and either the venous primary head sinus (PHS) or the common cardinal vein (CCV). In situ hybridization and live observations in flt4:mCitrine transgenic embryos revealed increased expression levels of flt4 in arterial endothelial cells at the exact location of the aberrant vascular connections in sox7 mutants. An identical circulatory short loop could also be observed in newly generated mutants for hey2 and efnb2. By genetically modulating levels of sox7, hey2 and efnb2 we demonstrate a genetic interaction of sox7 with hey2 and efnb2. The specific spatially confined effect of loss of Sox7 function can be rescued by overexpressing the Notch intracellular domain (NICD) in arterial cells of sox7 mutants, placing Sox7 upstream of Notch in this aspect of arterial development. Hence, sox7 levels are crucial in arterial specification in conjunction with hey2 and efnb2 function, with mutants in all three genes displaying shunt formation and an arterial block.
Collapse
Affiliation(s)
- Dorien M A Hermkens
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Erasmus MC Rotterdam, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Andreas van Impel
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Akihiro Urasaki
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jeroen Bussmann
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Henricus J Duckers
- Erasmus MC Rotterdam, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, 48149 Münster, Germany Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster (WWU), Mendelstrasse 7, 48149 Münster, Germany
| |
Collapse
|
127
|
Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 2014; 32:97-108. [PMID: 25533206 DOI: 10.1016/j.devcel.2014.11.018] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/19/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
The widespread availability of programmable site-specific nucleases now enables targeted gene disruption in the zebrafish. In this study, we applied site-specific nucleases to generate zebrafish lines bearing individual mutations in more than 20 genes. We found that mutations in only a small proportion of genes caused defects in embryogenesis. Moreover, mutants for ten different genes failed to recapitulate published Morpholino-induced phenotypes (morphants). The absence of phenotypes in mutant embryos was not likely due to maternal effects or failure to eliminate gene function. Consistently, a comparison of published morphant defects with the Sanger Zebrafish Mutation Project revealed that approximately 80% of morphant phenotypes were not observed in mutant embryos, similar to our mutant collection. Based on these results, we suggest that mutant phenotypes become the standard metric to define gene function in zebrafish, after which Morpholinos that recapitulate respective phenotypes could be reliably applied for ancillary analyses.
Collapse
|
128
|
Ren B. Endothelial Cells: A Key Player in Angiogenesis and Lymphangiogenesis. MOJ CELL SCIENCE & REPORT 2014; 1. [DOI: 10.15406/mojcsr.2014.01.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
129
|
Coxam B, Neyt C, Grassini DR, Le Guen L, Smith KA, Schulte-Merker S, Hogan BM. carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (cad) regulates Notch signaling and vascular development in zebrafish. Dev Dyn 2014; 244:1-9. [PMID: 25294789 DOI: 10.1002/dvdy.24209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The interplay between Notch and Vegf signaling regulates angiogenesis in the embryo. Notch signaling limits the responsiveness of endothelial cells to Vegf to control sprouting. Despite the importance of this regulatory relationship, much remains to be understood about extrinsic factors that modulate the pathway. RESULTS During a forward genetic screen for novel regulators of lymphangiogenesis, we isolated a mutant with reduced lymphatic vessel development. This mutant also exhibited hyperbranching arteries, reminiscent of Notch pathway mutants. Positional cloning identified a missense mutation in the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (cad) gene. Cad is essential for UDP biosynthesis, which is necessary for protein glycosylation and de novo biosynthesis of pyrimidine-based nucleotides. Using a transgenic reporter of Notch activity, we demonstrate that Notch signaling is significantly reduced in cad(hu10125) mutants. In this context, genetic epistasis showed that increased endothelial cell responsiveness to Vegfc/Vegfr3 signaling drives excessive artery branching. CONCLUSIONS These findings suggest important posttranslational modifications requiring Cad as an unappreciated mechanism that regulates Notch/Vegf signaling during angiogenesis.
Collapse
Affiliation(s)
- Baptiste Coxam
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
130
|
Pichol-Thievend C, Hogan BM, Francois M. Lymphatic vascular specification and its modulation during embryonic development. Microvasc Res 2014; 96:3-9. [PMID: 25107456 DOI: 10.1016/j.mvr.2014.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/29/2014] [Indexed: 11/17/2022]
Abstract
Despite its essential roles in development and disease, the lymphatic vascular system has been less studied than the blood vascular network. In recent years, significant advances have been made in understanding the mechanisms that regulate lymphatic vessel formation, both during development and in pathological conditions. Remarkably, lymphatic endothelial cells are specified as a subpopulation of pre-existing venous endothelial cells. Here, we summarize the current knowledge of the transcription factor pathways responsible for lymphatic specification and we also focus on the factors that promote or restrict this event.
Collapse
Affiliation(s)
- Cathy Pichol-Thievend
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
131
|
Carroll KJ, North TE. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp Hematol 2014; 42:684-96. [PMID: 24816275 PMCID: PMC4461861 DOI: 10.1016/j.exphem.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023]
Abstract
Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor, and effector cell emergence, expansion, and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell types can be identified and characterized. Further, myriad transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of blood stem and progenitor cell biology during development, in response to infection or injury, or in the setting of hematologic malignancy continues to deepen, zebrafish will remain essential for exploring the spatiotemporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease.
Collapse
Affiliation(s)
- Kelli J Carroll
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
132
|
Mommaerts H, Esguerra CV, Hartmann U, Luyten FP, Tylzanowski P. Smoc2 modulates embryonic myelopoiesis during zebrafish development. Dev Dyn 2014; 243:1375-90. [PMID: 25044883 DOI: 10.1002/dvdy.24164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/14/2014] [Accepted: 07/02/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND SMOC2 is a member of the BM-40 (SPARC) family of matricellular proteins, reported to influence signaling in the extracellular compartment. In mice, Smoc2 is expressed in many different tissues and was shown to enhance the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. Additionally, SMOC2 is associated with vitiligo and craniofacial and dental defects. The function of Smoc2 during early zebrafish development has not been determined to date. RESULTS In pregastrula zebrafish embryos, smoc2 is expressed ubiquitously. As development progresses, the expression pattern becomes more anteriorly restricted. At the onset of blood cell circulation, smoc2 morphants presented a mild ventralization of posterior structures. Molecular analysis of the smoc2 morphants indicated myelopoietic defects in the rostral blood islands during segmentation stages. Hemangioblast development and further specification of the myeloid progenitor cells were shown to be impaired. Additional experiments indicated that Bmp target genes were down-regulated in smoc2 morphants. CONCLUSIONS Our findings reveal that Smoc2 is an essential player in the development of myeloid cells of the anterior lateral plate mesoderm during embryonic zebrafish development. Furthermore, our data show that Smoc2 affects the transcription of Bmp target genes without affecting initial dorsoventral patterning or mesoderm development.
Collapse
Affiliation(s)
- Hendrik Mommaerts
- Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
133
|
Astin JW, Jamieson SMF, Eng TCY, Flores MV, Misa JP, Chien A, Crosier KE, Crosier PS. An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis. Mol Cancer Ther 2014; 13:2450-62. [PMID: 25053822 DOI: 10.1158/1535-7163.mct-14-0469-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growth of new lymphatic vessels (lymphangiogenesis) in tumors is an integral step in the metastatic spread of tumor cells, first to the sentinel lymph nodes that surround the tumor and then elsewhere in the body. Currently, no selective agents designed to prevent lymphatic vessel growth have been approved for clinical use, and there is an important potential clinical niche for antilymphangiogenic agents. Using a zebrafish phenotype-based chemical screen, we have identified drug compounds, previously approved for human use, that have antilymphatic activity. These include kaempferol, a natural product found in plants; leflunomide, an inhibitor of pyrimidine biosynthesis; and cinnarizine and flunarizine, members of the type IV class of calcium channel antagonists. Antilymphatic activity was confirmed in a murine in vivo lymphangiogenesis Matrigel plug assay, in which kaempferol, leflunomide, and flunarizine prevented lymphatic growth. We show that kaempferol is a novel inhibitor of VEGFR2/3 kinase activity and is able to reduce the density of tumor-associated lymphatic vessels as well as the incidence of lymph node metastases in a metastatic breast cancer xenograft model. However, in this model, kaempferol administration was also associated with tumor deposits in the pancreas and diaphragm, and flunarizine was found to be tumorigenic. Although this screen revealed that zebrafish is a viable platform for the identification and development of mammalian antilymphatic compounds, it also highlights the need for focused secondary screens to ensure appropriate efficacy of hits in a tumor context.
Collapse
Affiliation(s)
- Jonathan W Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand. Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tiffany C Y Eng
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand. Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Maria V Flores
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - June P Misa
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Annie Chien
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn E Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand. Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand. Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
134
|
Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish. Blood 2014; 124:1578-85. [PMID: 25006126 DOI: 10.1182/blood-2013-11-541391] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nuclear receptor corepressors (Ncors) are important for developmental and homeostatic processes in vertebrates, which exert transcriptional repression by coordinating with histone deacetylases. However, little is known about their roles in definitive hematopoiesis. In this study, we show that in zebrafish, ncor2 is required for hematopoietic stem cell (HSC) development by repressing fos-vegfd signaling. ncor2 is specifically expressed in the aorta-gonad-mesonephros (AGM) region in zebrafish embryos. ncor2 deficiency reduced the population of HSCs in both the AGM region and T cells in the thymus. Mechanistically, ncor2 knockdown upregulated fos transcription by modulating the acetylation level in the fos promoter region, which then enhanced Vegfd signaling. Consequently, the augmented Vegfd signaling induced Notch signaling to promote the arterial endothelial fate, therefore, possibly repressing the hemogenic endothelial specification, which is a prerequisite for HSC emergence. Thus, our findings identify a novel regulatory mechanism for Ncor2 through Fos-Vegfd-Notch signaling cascade during HSC development in zebrafish embryos.
Collapse
|
135
|
Angiogenesis in zebrafish. Semin Cell Dev Biol 2014; 31:106-14. [DOI: 10.1016/j.semcdb.2014.04.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
|
136
|
Mulligan TS, Weinstein BM. Emerging from the PAC: studying zebrafish lymphatic development. Microvasc Res 2014; 96:23-30. [PMID: 24928500 DOI: 10.1016/j.mvr.2014.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/03/2014] [Indexed: 12/30/2022]
Abstract
Recently the zebrafish has emerged as a promising vertebrate model of lymphatic vasculature development. The establishment of numerous transgenic lines that label the lymphatic endothelium in the zebrafish has allowed the fine examination of the developmental timing and the anatomy of their lymphatic vasculature. Although many questions remain, studying lymphatic development in the zebrafish has resulted in the identification and characterization of novel and established mediators of lymphatic development and lymphangiogenesis. Here, we review the main stages involved in the development of the lymphatic vasculature in the zebrafish from its origins in the embryonic veins to the formation of the primary lymphatic vessels and highlight some of the key molecules necessary for these stages.
Collapse
Affiliation(s)
- Timothy S Mulligan
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Building 6B, Room 309, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Brant M Weinstein
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Building 6B, Room 309, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
137
|
Astin JW, Haggerty MJL, Okuda KS, Le Guen L, Misa JP, Tromp A, Hogan BM, Crosier KE, Crosier PS. Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development 2014; 141:2680-90. [PMID: 24903752 DOI: 10.1242/dev.106591] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lymphangiogenesis is a dynamic process that involves the sprouting of lymphatic endothelial cells (LECs) from veins to form lymphatic vessels. Vegfr3 signalling, through its ligand Vegfc and the extracellular protein Ccbe1, is essential for the sprouting of LECs to form the trunk lymphatic network. In this study we determined whether Vegfr3, Vegfc and Ccbe1 are also required for development of the facial and intestinal lymphatic networks in the zebrafish embryo. Whereas Vegfr3 and Ccbe1 are required for the development of all lymphatic vessels, Vegfc is dispensable for facial lymphatic sprouting but not for the complete development of the facial lymphatic network. We show that zebrafish vegfd is expressed in the head, genetically interacts with ccbe1 and can rescue the lymphatic defects observed following the loss of vegfc. Finally, whereas knockdown of vegfd has no phenotype, double knockdown of both vegfc and vegfd is required to prevent facial lymphatic sprouting, suggesting that Vegfc is not essential for all lymphatic sprouting and that Vegfd can compensate for loss of Vegfc during lymphatic development in the zebrafish head.
Collapse
Affiliation(s)
- Jonathan W Astin
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Michael J L Haggerty
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Kazuhide S Okuda
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Ludovic Le Guen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - June P Misa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Alisha Tromp
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Benjamin M Hogan
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Kathryn E Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
138
|
Coxam B, Sabine A, Bower NI, Smith KA, Pichol-Thievend C, Skoczylas R, Astin JW, Frampton E, Jaquet M, Crosier PS, Parton RG, Harvey NL, Petrova TV, Schulte-Merker S, Francois M, Hogan BM. Pkd1 regulates lymphatic vascular morphogenesis during development. Cell Rep 2014; 7:623-33. [PMID: 24767999 DOI: 10.1016/j.celrep.2014.03.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/13/2014] [Accepted: 03/26/2014] [Indexed: 01/21/2023] Open
Abstract
Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by known signaling and transcriptional mechanisms. The ongoing elaboration of vessels to form a network is less well understood. This involves cell polarization, coordinated migration, adhesion, mixing, regression, and shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. A mutation in polycystic kidney disease 1a was responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial lymphatic precursor sprouting is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice has no effect on precursor sprouting but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation, and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development.
Collapse
Affiliation(s)
- Baptiste Coxam
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Amélie Sabine
- Department of Oncology, University Hospital of Lausanne, and Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Neil I Bower
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kelly A Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cathy Pichol-Thievend
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Renae Skoczylas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, 1142 Auckland, New Zealand
| | - Emmanuelle Frampton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Muriel Jaquet
- Department of Oncology, University Hospital of Lausanne, and Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, 1142 Auckland, New Zealand
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Natasha L Harvey
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Tatiana V Petrova
- Department of Oncology, University Hospital of Lausanne, and Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | | | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
139
|
Wacker A, Gerhardt H, Phng LK. Tissue guidance without filopodia. Commun Integr Biol 2014; 7:e28820. [PMID: 25346793 PMCID: PMC4203535 DOI: 10.4161/cib.28820] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 02/05/2023] Open
Abstract
Filopodia are highly dynamic, rod-like protrusions that are found in abundance at the leading edge of migrating cells such as endothelial tip cells and at axonal growth cones of developing neurons. One proposed function of filopodia is that of an environmental probe, which serves to sense guidance cues during neuronal pathfinding and blood vessel patterning. However, recent studies show that tissue guidance occurs unhindered in the absence of filopodia, suggesting a dispensability of filopodia in this process. Here, we discuss evidence that support as well as dispute the role of filopodia in guiding the formation of stereotypic neuronal and blood vessel patterns.
Collapse
Affiliation(s)
- Andrin Wacker
- Department of Oncology; Vascular Patterning Laboratory; VRC; Leuven, Belgium ; VIB; Vascular Patterning Laboratory; VRC; Leuven, Belgium
| | - Holger Gerhardt
- Department of Oncology; Vascular Patterning Laboratory; VRC; Leuven, Belgium ; VIB; Vascular Patterning Laboratory; VRC; Leuven, Belgium ; Vascular Biology Laboratory; London Research Institute; Cancer Research UK; London, UK
| | - Li-Kun Phng
- Department of Oncology; Vascular Patterning Laboratory; VRC; Leuven, Belgium ; VIB; Vascular Patterning Laboratory; VRC; Leuven, Belgium
| |
Collapse
|
140
|
Abstract
Key Points
Haploinsufficiency of Sox18 reveals an important role for VEGFD in regulating blood vascular development in vivo in vertebrates. VEGFD acts through mitogen-activated protein kinase kinase–extracellular signal-regulated kinase to modulate the activity and nuclear concentration of endothelial-specific transcription factor SOX18.
Collapse
|
141
|
Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, Bower NI, van Impel A, Stacker SA, Achen MG, Schulte-Merker S, Hogan BM. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 2014; 141:1239-49. [PMID: 24523457 DOI: 10.1242/dev.100495] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The VEGFC/VEGFR3 signaling pathway is essential for lymphangiogenesis (the formation of lymphatic vessels from pre-existing vasculature) during embryonic development, tissue regeneration and tumor progression. The recently identified secreted protein CCBE1 is indispensible for lymphangiogenesis during development. The role of CCBE1 orthologs is highly conserved in zebrafish, mice and humans with mutations in CCBE1 causing generalized lymphatic dysplasia and lymphedema (Hennekam syndrome). To date, the mechanism by which CCBE1 acts remains unknown. Here, we find that ccbe1 genetically interacts with both vegfc and vegfr3 in zebrafish. In the embryo, phenotypes driven by increased Vegfc are suppressed in the absence of Ccbe1, and Vegfc-driven sprouting is enhanced by local Ccbe1 overexpression. Moreover, Vegfc- and Vegfr3-dependent Erk signaling is impaired in the absence of Ccbe1. Finally, CCBE1 is capable of upregulating the levels of fully processed, mature VEGFC in vitro and the overexpression of mature VEGFC rescues ccbe1 loss-of-function phenotypes in zebrafish. Taken together, these data identify Ccbe1 as a crucial component of the Vegfc/Vegfr3 pathway in the embryo.
Collapse
Affiliation(s)
- Ludovic Le Guen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4073, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
van Impel A, Zhao Z, Hermkens DMA, Roukens MG, Fischer JC, Peterson-Maduro J, Duckers H, Ober EA, Ingham PW, Schulte-Merker S. Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 2014; 141:1228-38. [PMID: 24523456 DOI: 10.1242/dev.105031] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed in different endothelial compartments, becoming restricted to lymphatic endothelial cells only at later stages. Second, using targeted mutagenesis, we show that Prox1a is dispensable for lymphatic specification and subsequent lymphangiogenesis in zebrafish. In line with this result, we found that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways.
Collapse
Affiliation(s)
- Andreas van Impel
- Hubrecht Institute - KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Wilkinson RN, van Eeden FJ. The Zebrafish as a Model of Vascular Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:93-122. [DOI: 10.1016/b978-0-12-386930-2.00005-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
144
|
van Impel A, Schulte-Merker S. A Fisheye View on Lymphangiogenesis. DEVELOPMENTAL ASPECTS OF THE LYMPHATIC VASCULAR SYSTEM 2014; 214:153-65. [DOI: 10.1007/978-3-7091-1646-3_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
145
|
Kwon HB, Fukuhara S, Asakawa K, Ando K, Kashiwada T, Kawakami K, Hibi M, Kwon YG, Kim KW, Alitalo K, Mochizuki N. The parallel growth of motoneuron axons with the dorsal aorta depends on Vegfc/Vegfr3 signaling in zebrafish. Development 2013; 140:4081-90. [PMID: 24046321 PMCID: PMC3913045 DOI: 10.1242/dev.091702] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blood vessels and neurons grow often side by side. However, the molecular and cellular mechanisms underlying their parallel development remain unclear. Here, we report that a subpopulation of secondary motoneurons extends axons ventrally outside of the neural tubes and rostrocaudally as a fascicle beneath the dorsal aorta (DA) in zebrafish. We tried to clarify the mechanism by which these motoneuron axons grow beneath the DA and found that Vegfc in the DA and Vegfr3 in the motoneurons were essential for the axon growth. Forced expression of either Vegfc in arteries or Vegfr3 in motoneurons resulted in enhanced axon growth of motoneurons over the DA. Both vegfr3 morphants and vegfc morphants lost the alignment of motoneuron axons with DA. In addition, forced expression of two mutant forms of Vegfr3 in motoneurons, potentially trapping endogenous Vegfc, resulted in failure of growth of motoneuron axons beneath the DA. Finally, a vegfr3 mutant fish lacked the motoneuron axons beneath the DA. Collectively, Vegfc from the preformed DA guides the axon growth of secondary motoneurons.
Collapse
Affiliation(s)
- Hyouk-Bum Kwon
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Kartopawiro J, Bower NI, Karnezis T, Kazenwadel J, Betterman KL, Lesieur E, Koltowska K, Astin J, Crosier P, Vermeren S, Achen MG, Stacker SA, Smith KA, Harvey NL, François M, Hogan BM. Arap3 is dysregulated in a mouse model of hypotrichosis–lymphedema–telangiectasia and regulates lymphatic vascular development. Hum Mol Genet 2013; 23:1286-97. [DOI: 10.1093/hmg/ddt518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
147
|
Phng LK, Stanchi F, Gerhardt H. Filopodia are dispensable for endothelial tip cell guidance. Development 2013; 140:4031-40. [DOI: 10.1242/dev.097352] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Actin filaments are instrumental in driving processes such as migration, cytokinesis and endocytosis and provide cells with mechanical support. During angiogenesis, actin-rich filopodia protrusions have been proposed to drive endothelial tip cell functions by translating guidance cues into directional migration and mediating new contacts during anastomosis. To investigate the structural organisation, dynamics and functional importance of F-actin in endothelial cells (ECs) during angiogenesis in vivo, we generated a transgenic zebrafish line expressing Lifeact-EGFP in ECs. Live imaging identifies dynamic and transient F-actin-based structures, such as filopodia, contractile ring and cell cortex, and more persistent F-actin-based structures, such as cell junctions. For functional analysis, we used low concentrations of Latrunculin B that preferentially inhibited F-actin polymerisation in filopodia. In the absence of filopodia, ECs continued to migrate, albeit at reduced velocity. Detailed morphological analysis reveals that ECs generate lamellipodia that are sufficient to drive EC migration when filopodia formation is inhibited. Vessel guidance continues unperturbed during intersegmental vessel development in the absence of filopodia. Additionally, hypersprouting induced by loss of Dll4 and attraction of aberrant vessels towards ectopic sources of Vegfa165 can occur in the absence of endothelial filopodia protrusion. These results reveal that the induction of tip cells and the integration of endothelial guidance cues do not require filopodia. Anastomosis, however, shows regional variations in filopodia requirement, suggesting that ECs might rely on different protrusive structures depending on the nature of the environment or of angiogenic cues.
Collapse
Affiliation(s)
- Li-Kun Phng
- KU Leuven, Department of Oncology, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
- VIB, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
| | - Fabio Stanchi
- KU Leuven, Department of Oncology, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
- VIB, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
| | - Holger Gerhardt
- KU Leuven, Department of Oncology, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
- VIB, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
- Vascular Biology Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
148
|
Weijts BGMW, van Impel A, Schulte-Merker S, de Bruin A. Atypical E2fs control lymphangiogenesis through transcriptional regulation of Ccbe1 and Flt4. PLoS One 2013; 8:e73693. [PMID: 24069224 PMCID: PMC3771987 DOI: 10.1371/journal.pone.0073693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/30/2013] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessels are derived from venous endothelial cells and their formation is governed by the Vascular endothelial growth factor C (VegfC)/Vegf receptor 3 (Vegfr3; Flt4) signaling pathway. Recent studies show that Collagen and Calcium Binding EGF domains 1 protein (Ccbe1) enhances VegfC-dependent lymphangiogenesis. Both Ccbe1 and Flt4 have been shown to be indispensable for lymphangiogenesis. However, how these essential players are transcriptionally regulated remains poorly understood. In the case of angiogenesis, atypical E2fs (E2f7 and E2f8) however have been recently shown to function as transcriptional activators for VegfA. Using a genome-wide approach we here identified both CCBE1 and FLT4 as direct targets of atypical E2Fs. E2F7/8 directly bind and stimulate the CCBE1 promoter, while recruitment of E2F7/8 inhibits the FLT4 promoter. Importantly, inactivation of e2f7/8 in zebrafish impaired venous sprouting and lymphangiogenesis with reduced ccbe1 expression and increased flt4 expression. Remarkably, over-expression of e2f7/8 rescued Ccbe1- and Flt4-dependent lymphangiogenesis phenotypes. Together these results identified E2f7/8 as novel in vivo transcriptional regulators of Ccbe1 and Flt4, both essential genes for venous sprouting and lymphangiogenesis.
Collapse
Affiliation(s)
- Bart G. M. W. Weijts
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
- EZO Department, University of Wageningen, Wageningen, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
149
|
Lauter G, Söll I, Hauptmann G. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon. J Comp Neurol 2013; 521:1093-118. [PMID: 22949352 DOI: 10.1002/cne.23221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect an underlying common vertebrate bauplan. When compared to the rich body of comparative gene expression studies of tetrapods, there is considerably less comparative data available for teleost fish. We used sensitive multicolor fluorescent in situ hybridization to generate a detailed map of regulatory gene expression domains in the embryonic zebrafish diencephalon. The high resolution of this technique allowed us to resolve abutting and overlapping gene expression of different transcripts. We found that the relative topography of gene expression patterns in zebrafish was highly similar to those of orthologous genes in tetrapods and consistent with a three-prosomere organization of the alar and basal diencephalon. Our analysis further demonstrated a conservation of intraprosomeric subdivisions within prosomeres 1, 2, and 3 (p1, p2, and p3). A tripartition of zebrafish p1 was identified reminiscent of precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) pretectal domains of tetrapods. The constructed detailed diencephalic transcription factor gene expression map further identified molecularly distinct thalamic and prethalamic rostral and caudal domains and a prethalamic eminence histogenetic domain in zebrafish. Our comparative gene expression analysis conformed with the idea of a common bauplan for the diencephalon of anamniote and amniote vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
150
|
Cioffi S, Martucciello S, Fulcoli FG, Bilio M, Ferrentino R, Nusco E, Illingworth E. Tbx1 regulates brain vascularization. Hum Mol Genet 2013; 23:78-89. [PMID: 23945394 DOI: 10.1093/hmg/ddt400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transcription factor TBX1 is the major gene involved in 22q11.2 deletion syndrome (22q11.2DS). Using mouse models of these diseases, we have previously shown that TBX1 activates VEGFR3 in endothelial cells (EC), and that this interaction is critical for the development of the lymphatic vasculature. In this study, we show that TBX1 regulates brain angiogenesis. Using loss-of-function genetics and molecular approaches, we show that TBX1 regulates the VEGFR3 and DLL4 genes in brain ECs. In mice, loss of TBX1 causes global brain vascular defects, comprising brain vessel hyperplasia, enhanced angiogenic sprouting and vessel network disorganization. This phenotype is recapitulated in EC-specific Tbx1 conditional mutants and in an EC-only 3-dimensional cell culture system (matrigel), indicating that the brain vascular phenotype is cell autonomous. Furthermore, EC-specific conditional Tbx1 mutants have poorly perfused brain vessels and brain hypoxia, indicating that the expanded vascular network is functionally impaired. In EC-matrigel cultures, a Notch1 agonist is able to partially rescue microtubule hyperbranching induced by TBX1 knockdown. Thus, we have identified a novel transcriptional regulator of angiogenesis that exerts its effect in brain by negatively regulating angiogenesis through the DLL4/Notch1-VEGFR3 regulatory axis. Given the similarity of the phenotypic consequences of TBX1 mutation in humans and mice, this unexpected role of TBX1 in murine brain vascularization should stimulate clinicians to search for brain microvascular anomalies in 22q11.2DS patients and to evaluate whether some of the anatomical and functional brain anomalies in patients may have a microvascular origin.
Collapse
|