101
|
Weeks O, Bhullar BAS, Abzhanov A. Molecular characterization of dental development in a toothed archosaur, the American alligatorAlligator mississippiensis. Evol Dev 2013; 15:393-405. [DOI: 10.1111/ede.12049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Olivia Weeks
- Department of Organismic and Evolutionary Biology; Harvard University; 16 Divinity Avenue Cambridge MA 02138 USA
| | - Bhart-Anjan S. Bhullar
- Department of Organismic and Evolutionary Biology; Harvard University; 16 Divinity Avenue Cambridge MA 02138 USA
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology; Harvard University; 16 Divinity Avenue Cambridge MA 02138 USA
| |
Collapse
|
102
|
Klein OD, Oberoi S, Huysseune A, Hovorakova M, Peterka M, Peterkova R. Developmental disorders of the dentition: an update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:318-32. [PMID: 24124058 DOI: 10.1002/ajmg.c.31382] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dental anomalies are common congenital malformations that can occur either as isolated findings or as part of a syndrome. This review focuses on genetic causes of abnormal tooth development and the implications of these abnormalities for clinical care. As an introduction, we describe general insights into the genetics of tooth development obtained from mouse and zebrafish models. This is followed by a discussion of isolated as well as syndromic tooth agenesis, including Van der Woude syndrome (VWS), ectodermal dysplasias (EDs), oral-facial-digital (OFD) syndrome type I, Rieger syndrome, holoprosencephaly, and tooth anomalies associated with cleft lip and palate. Next, we review delayed formation and eruption of teeth, as well as abnormalities in tooth size, shape, and form. Finally, isolated and syndromic causes of supernumerary teeth are considered, including cleidocranial dysplasia and Gardner syndrome.
Collapse
|
103
|
Polychronis G, Christou P, Mavragani M, Halazonetis DJ. Geometric morphometric 3D shape analysis and covariation of human mandibular and maxillary first molars. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 152:186-96. [PMID: 24009105 DOI: 10.1002/ajpa.22340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 12/31/2022]
Abstract
Dental casts of 160 Greek subjects (80 males, 80 females) were scanned by a structured-light scanner. The upper and lower right first molar occlusal surface 3D meshes were processed using geometric morphometric methods. A total of 265 and 274 curve and surface sliding semilandmarks were placed on the upper and lower molar surfaces, respectively. Principal component analysis and partial least square analysis were performed to assess shape parameters. Molars tended to vary between an elongated and a more square form. The first two principal components (PCs), comprising almost 1/3 of molar shape variation, were related to mesiodistal-buccolingual ratios and relative cusp position. Distal cusps displayed the greatest shape variability. Molars of males were larger than those of females (2.8 and 3.2% for upper and lower molars respectively), but no shape dimorphism was observed. Upper and lower molar sizes were significantly correlated (r(2) = 0.689). Allometry was observed for both teeth. Larger lower molars were associated with shorter cusps, expansion of the distal cusp, and constriction of the mesial cusps (predicted variance 3.25%). Upper molars displayed weaker allometry (predicted variance 1.59%). Upper and lower molar shape covariation proved significant (RV = 17.26%, P < 0.0001). The main parameter of molar covariation in partial least square axis 1, contributing to 30% of total covariation, was cusp height, in contrast to the primary variability traits exhibited by PC1 and PC2. The aim of this study was to evaluate shape variation and covariation, including allometry and sexual dimorphism, of maxillary and mandibular first permanent molar occlusal surfaces.
Collapse
Affiliation(s)
- Georgios Polychronis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | | | | | | |
Collapse
|
104
|
Mostowska A, Zadurska M, Rakowska A, Lianeri M, Jagodziński PP. NovelPAX9mutation associated with syndromic tooth agenesis. Eur J Oral Sci 2013; 121:403-11. [DOI: 10.1111/eos.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Małgorzata Zadurska
- Department of Orthodontics, Institute of Dentistry; The Medical University of Warsaw; Warsaw; Poland
| | - Adriana Rakowska
- Department of Dermatology; Central Clinical Hospital of Ministry of Internal Affaires; Warsaw; Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| |
Collapse
|
105
|
Li L, Wang Y, Lin M, Yuan G, Yang G, Zheng Y, Chen Y. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation. PLoS One 2013; 8:e66107. [PMID: 23776616 PMCID: PMC3680418 DOI: 10.1371/journal.pone.0066107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/01/2013] [Indexed: 01/11/2023] Open
Abstract
The importance of BMP receptor Ia (BMPRIa) mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa) in cranial neural crest (CNC) cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Ying Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Operative Dentistry and Endodontics, College of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Minkui Lin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Guohua Yuan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatric Dentistry, College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Guobin Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatric Dentistry, College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Yuqian Zheng
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
106
|
Ishida K, Yuge Y, Hanaoka M, Yasukawa M, Minami Y, Ogawa M, Masumoto KH, Shigeyoshi Y, Saito M, Tsuji T. Gadd45gregulates dental epithelial cell proliferation through p38 MAPK-mediatedp21expression. Genes Cells 2013; 18:660-71. [DOI: 10.1111/gtc.12067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Kentaro Ishida
- Research Institute for Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Yohei Yuge
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Mai Hanaoka
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Masato Yasukawa
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Yoko Minami
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Miho Ogawa
- Organ Technologies Inc.; Tokyo; 101-0048; Japan
| | - Ko-hei Masumoto
- Department of Anatomy and Neurobiology; Kiniki University Faculty of Medicine; Osaka; 589-8511; Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology; Kiniki University Faculty of Medicine; Osaka; 589-8511; Japan
| | | | | |
Collapse
|
107
|
Nakatomi M, Ida-Yonemochi H, Ohshima H. Lymphoid Enhancer-binding Factor 1 Expression Precedes Dentin Sialophosphoprotein Expression during Rat Odontoblast Differentiation and Regeneration. J Endod 2013; 39:612-8. [DOI: 10.1016/j.joen.2012.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 12/02/2012] [Accepted: 12/10/2012] [Indexed: 11/30/2022]
|
108
|
Lagronova-Churava S, Spoutil F, Vojtechova S, Lesot H, Peterka M, Klein OD, Peterkova R. The dynamics of supernumerary tooth development are differentially regulated by Sprouty genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:307-20. [PMID: 23606267 DOI: 10.1002/jez.b.22502] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
In mice, a toothless diastema separates the single incisor from the three molars in each dental quadrant. In the prospective diastema of the embryo, small rudimentary buds are found that are presumed to be rudiments of suppressed teeth. A supernumerary tooth occurs in the diastema of adult mice carrying mutations in either Spry2 or Spry4. In the case of Spry2 mutants, the origin of the supernumerary tooth involves the revitalization of a rudimentary tooth bud (called R2), whereas its origin in the Spry4 mutants is not known. In addition to R2, another rudimentary primordium (called MS) arises more anteriorly in the prospective diastema. We investigated the participation of both rudiments (MS and R2) in supernumerary tooth development in Spry2 and Spry4 mutants by comparing morphogenesis, proliferation, apoptosis, size and Shh expression in the dental epithelium of MS and R2 rudiments. Increased proliferation and decreased apoptosis were found in MS and R2 at embryonic day (ED) 12.5 and 13.5 in Spry2(-/-) embryos. Apoptosis was also decreased in both rudiments in Spry4(-/-) embryos, but the proliferation was lower (similar to WT mice), and supernumerary tooth development was accelerated, exhibiting a cap stage by ED13.5. Compared to Spry2(-/-) mice, a high number of Spry4(-/-) supernumerary tooth primordia degenerated after ED13.5, resulting in a low percentage of supernumerary teeth in adults. We propose that Sprouty genes were implicated during evolution in reduction of the cheek teeth in Muridae, and their deletion can reveal ancestral stages of murine dental evolution.
Collapse
|
109
|
Zhu X, Zhao P, Liu Y, Zhang X, Fu J, Ivy Yu HM, Qiu M, Chen Y, Hsu W, Zhang Z. Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis. J Biol Chem 2013; 288:12080-9. [PMID: 23525146 DOI: 10.1074/jbc.m113.462473] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple Wnt ligands are expressed in the developing tooth and play important and redundant functions during odontogenesis. However, the source of Wnt ligands and their targeting cells and action mechanism in tooth organogenesis remain largely elusive. Here we show that epithelial inactivation of Gpr177, the mouse Wntless (Wls) whose product regulates Wnt sorting and secretion, leads to arrest of tooth development at the early cap stage and abrogates tooth-forming capability of the dental epithelium. Gpr177 in the epithelium is necessary for the activation of canonical Wnt signaling in the dental epithelium and formation of a functional enamel knot. Epithelial deletion of Gpr177 results in defective gene expression and cellular behavior in the dental epithelium but does not alter odontogenic program in the mesenchyme. Furthermore, deletion of Axin2, a negative intracellular regulator of canonical Wnt signaling, rescues the tooth defects in mice carrying Gpr177 mutation in the dental epithelium. Together with the fact that active Wnt canonical signaling is present predominantly in the dental epithelium during tooth development, our results demonstrate that Gpr177-mediated Wnt ligands in the dental epithelium act primarily in an intra-epithelial context to regulate enamel knot formation and subsequent tooth development.
Collapse
Affiliation(s)
- XiaoJing Zhu
- From the Institute of Developmental and Regenerative Biology College of Life and Environmental Science, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 310036, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Molecular factors resulting in tooth agenesis and contemporary approaches for regeneration: a review. Eur Arch Paediatr Dent 2013; 13:297-304. [PMID: 23235129 DOI: 10.1007/bf03320830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM This review discusses the complex epithelial-mesenchymal interactions that occur during tooth development and systemic anomalies that may result in hypodontia. Emphasis is placed on four interacting signaling families (Shh, FGF, BMP, and Wnt) that have been identified for their integral role in complete tooth development and on several genetic mutations in the MSX1, PAX9, EDA, and AXIN2 genes that arrest tooth development. Proposed treatment options are presented, including signaling factor supplementation and stem cell isolation for bioengineering new teeth.
Collapse
|
111
|
Jia S, Zhou J, Gao Y, Baek JA, Martin JF, Lan Y, Jiang R. Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development 2013; 140:423-32. [PMID: 23250216 DOI: 10.1242/dev.081927] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have suggested that Bmp4 is a key Msx1-dependent mesenchymal odontogenic signal for driving tooth morphogenesis through the bud-to-cap transition. Whereas all tooth germs were arrested at the bud stage in Msx1(-/-) mice, we show that depleting functional Bmp4 mRNAs in the tooth mesenchyme, through neural crest-specific gene inactivation in Bmp4(f/f);Wnt1Cre mice, caused mandibular molar developmental arrest at the bud stage but allowed maxillary molars and incisors to develop to mineralized teeth. We found that expression of Osr2, which encodes a zinc finger protein that antagonizes Msx1-mediated activation of odontogenic mesenchyme, was significantly upregulated in the molar tooth mesenchyme in Bmp4(f/f);Wnt1Cre embryos. Msx1 heterozygosity enhanced maxillary molar developmental defects whereas Osr2 heterozygosity partially rescued mandibular first molar morphogenesis in Bmp4(f/f);Wnt1Cre mice. Moreover, in contrast to complete lack of supernumerary tooth initiation in Msx1(-/-)Osr2(-/-) mice, Osr2(-/-)Bmp4(f/f);Wnt1Cre compound mutant mice exhibited formation and subsequent arrest of supernumerary tooth germs that correlated with downregulation of Msx1 expression in the tooth mesenchyme. In addition, we found that the Wnt inhibitors Dkk2 and Wif1 were much more abundantly expressed in the mandibular than maxillary molar mesenchyme in wild-type embryos and that Dkk2 expression was significantly upregulated in the molar mesenchyme in Bmp4(f/f);Wnt1Cre embryos, which correlated with the dramatic differences in maxillary and mandibular molar phenotypes in Bmp4(f/f);Wnt1Cre mice. Together, these data indicate that Bmp4 signaling suppresses tooth developmental inhibitors in the tooth mesenchyme, including Dkk2 and Osr2, and synergizes with Msx1 to activate mesenchymal odontogenic potential for tooth morphogenesis and sequential tooth formation.
Collapse
Affiliation(s)
- Shihai Jia
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Buchtová M, Zahradníček O, Balková S, Tucker AS. Odontogenesis in the Veiled Chameleon (Chamaeleo calyptratus). Arch Oral Biol 2013. [DOI: 10.1016/j.archoralbio.2012.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
113
|
Abstract
The morphogenesis of ectodermal organs is regulated by epithelial mesenchymal interactions mediated by conserved signaling molecules. Analyzing the roles of these molecules will increase our understanding of mechanisms regulating organogenesis, and organ culture methods provide powerful tools in this context. Here we present two organ culture methods for skin and tooth development: the hanging drop method for the short-term culture of small explants and the Trowell-type method for the long-term cultures of variable size explants. The latter allows manipulations such as combining separated epithelial and mesenchymal tissues and the use of signal-releasing beads. The effects of signaling molecules on morphogenesis can be observed during culture by using tissues from GFP-reporter mice. After culture, the effects of signals on gene expression can be analyzed by in situ hybridization or quantitative RT-PCR.
Collapse
Affiliation(s)
- Pauliina M Munne
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
114
|
Salazar-Ciudad I. Tooth patterning and evolution. Curr Opin Genet Dev 2012; 22:585-92. [PMID: 23266218 DOI: 10.1016/j.gde.2012.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/28/2012] [Accepted: 10/24/2012] [Indexed: 11/28/2022]
Abstract
Teeth are a good system for studying development and evolution. Tooth development is largely independent of the rest of the body and teeth can be grown in culture to attain almost normal morphology. Their development is not affected by the patterns of movement or sensorial perception in the embryo. Teeth are hard and easily preserved. Thus, there is plenty of easily accessible information about the patterns of morphological variation occurring between and within species. This review summarises recent work and describes how tooth development can be understood as the coupling between a reaction-diffusion system and differential growth produced by diffusible growth factors: which growth factors are involved, how they affect each other's expression and how they affect the spatial patterns of proliferation that lead to final morphology. There are some aspects of tooth development, however, that do not conform to some common assumptions in many reaction-diffusion models. Those are discussed here since they provide clues about how reaction-diffusion systems may work in actual developmental systems. Mathematical models implementing what we know about tooth development are discussed.
Collapse
Affiliation(s)
- Isaac Salazar-Ciudad
- Evolutionary Phenomics Group, Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
115
|
Dahal GR, Rawson J, Gassaway B, Kwok B, Tong Y, Ptácek LJ, Bates E. An inwardly rectifying K+ channel is required for patterning. Development 2012; 139:3653-64. [PMID: 22949619 DOI: 10.1242/dev.078592] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations that disrupt function of the human inwardly rectifying potassium channel KIR2.1 are associated with the craniofacial and digital defects of Andersen-Tawil Syndrome, but the contribution of Kir channels to development is undefined. Deletion of mouse Kir2.1 also causes cleft palate and digital defects. These defects are strikingly similar to phenotypes that result from disrupted TGFβ/BMP signaling. We use Drosophila melanogaster to show that a Kir2.1 homolog, Irk2, affects development by disrupting BMP signaling. Phenotypes of irk2 deficient lines, a mutant irk2 allele, irk2 siRNA and expression of a dominant-negative Irk2 subunit (Irk2DN) all demonstrate that Irk2 function is necessary for development of the adult wing. Compromised Irk2 function causes wing-patterning defects similar to those found when signaling through a Drosophila BMP homolog, Decapentaplegic (Dpp), is disrupted. To determine whether Irk2 plays a role in the Dpp pathway, we generated flies in which both Irk2 and Dpp functions are reduced. Irk2DN phenotypes are enhanced by decreased Dpp signaling. In wild-type flies, Dpp signaling can be detected in stripes along the anterior/posterior boundary of the larval imaginal wing disc. Reducing function of Irk2 with siRNA, an irk2 deletion, or expression of Irk2DN reduces the Dpp signal in the wing disc. As Irk channels contribute to Dpp signaling in flies, a similar role for Kir2.1 in BMP signaling may explain the morphological defects of Andersen-Tawil Syndrome and the Kir2.1 knockout mouse.
Collapse
Affiliation(s)
- Giri Raj Dahal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Caspase-7 in molar tooth development. Arch Oral Biol 2012; 57:1474-81. [DOI: 10.1016/j.archoralbio.2012.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/03/2012] [Accepted: 06/18/2012] [Indexed: 11/23/2022]
|
117
|
Créton M, van den Boogaard MJ, Maal T, Verhamme L, Fennis W, Carels C, Kuijpers-Jagtman AM, Cune M. Three-dimensional analysis of tooth dimensions in the MSX1-missense mutation. Clin Oral Investig 2012; 17:1437-45. [PMID: 22936299 DOI: 10.1007/s00784-012-0828-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 08/07/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVES A novel, 3D technique to measure the differences in tooth crown morphology between the MSX1 cases and non-affected controls was designed to get a better understanding of dental phenotype-genotype associations. MATERIALS AND METHODS Eight Dutch subjects from a single family with tooth agenesis, all with an established nonsense mutation c.332 C > A, p. Ser 111 Stop in exon 1 of MSX1, were compared with unaffected controls regarding several aspects of tooth crown morphology of incisor and molar teeth. A novel method of quantitative three-dimensional analysis was used to detect differences. RESULTS Statistically significant shape differences were observed for the maxillary incisor in the MSX1 family compared with the controls on the following parameters: surface area, buccolingual dimension, squareness, and crown volume (P ≤ 0.002). Molar crown shape was unaffected. CONCLUSIONS A better understanding of dental phenotype-genotype associations may contribute to earlier diagnosis of some multiple-anomaly congenital syndromes involving dental anomalies. CLINICAL RELEVANCE A "shape database" that includes associated gene mutations resulting from developmental syndromes may facilitate the genetic identification of hypodontia cases.
Collapse
Affiliation(s)
- Marijn Créton
- Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Tokita M, Chaeychomsri W, Siruntawineti J. Developmental basis of toothlessness in turtles: insight into convergent evolution of vertebrate morphology. Evolution 2012; 67:260-73. [PMID: 23289576 DOI: 10.1111/j.1558-5646.2012.01752.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The tooth is a major component of the vertebrate feeding apparatus and plays a crucial role in species survival, thus subjecting tooth developmental programs to strong selective constraints. However, irrespective of their functional importance, teeth have been lost in multiple lineages of tetrapod vertebrates independently. To understand both the generality and the diversity of developmental mechanisms that cause tooth agenesis in tetrapods, we investigated expression patterns of a series of tooth developmental genes in the lower jaw of toothless turtles and compared them to that of toothed crocodiles and the chicken as a representative of toothless modern birds. In turtle embryos, we found impairment of Shh signaling in the oral epithelium and early-stage arrest of odontoblast development caused by termination of Msx2 expression in the dental mesenchyme. Our data indicate that such changes underlie tooth agenesis in turtles and suggest that the mechanism that leads to early-stage odontogenic arrest differs between birds and turtles. Our results demonstrate that the cellular and molecular mechanisms that regulate early-stage arrest of tooth development are diverse in tetrapod lineages, and odontogenic developmental programs may respond to changes in upstream molecules similarly thereby evolving convergently with feeding morphology.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | |
Collapse
|
119
|
Haku K, Muramatsu T, Hara A, Kikuchi A, Hashimoto S, Inoue T, Shimono M. Epithelial cell rests of Malassez modulate cell proliferation, differentiation and apoptosis via gap junctional communication under mechanical stretching in vitro. THE BULLETIN OF TOKYO DENTAL COLLEGE 2012; 52:173-82. [PMID: 22293587 DOI: 10.2209/tdcpublication.52.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epithelial cell rests of Malassez (ERM) are involved in the maintenance and homeostasis of the periodontal ligament. The objective of this study was to investigate the effect of mechanical stretching on cell growth, cell death and differentiation in the ERM. Cultured porcine ERM were stretched for 24 hr in cycles of 18% elongation for 1 sec followed by 1 sec relaxation. The numbers of cells and TUNEL-positive cells were then counted. The expression of mRNAs encoding gap junction protein α1 (Gja1), ameloblastin, bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 4 (BMP4) and noggin were evaluated using quantitative real-time PCR. The number of cells in the stretching group was approximately 1.3-fold higher than that in the non-stretching controls at 24 hr (p<0.01). Apoptotic cells ranged from 1.9-2.5% in the stretching group at 24 hr, but were only 0.6% in the control group (p<0.01). The expression of Gja1, ameloblastin and noggin mRNAs in the stretching group was decreased at 24 hr compared with in the non-stretching group (p<0.01), whereas the expression of BMP2 and BMP4 mRNAs in the stretching group was significantly higher than that in the control group (p<0.01). Incorporation of 18 α-glycyrrhetinic acid (18GA, a gap junction inhibitor) promoted proliferation and apoptosis and confirmed both the increase of BMP2 and BMP4 and the decline of Gja1, ameloblastin and noggin in ERM. Thus, the ERM modulate cell proliferation and apoptosis, and inhibit differentiation by reducing expression of Gja1 under mechanical stretching.
Collapse
Affiliation(s)
- Ken Haku
- Department of Clinical Pathophysiology, Tokyo Dental College, Japan
| | | | | | | | | | | | | |
Collapse
|
120
|
Satoh A, Bryant SV, Gardiner DM. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum). Dev Biol 2012; 366:374-81. [DOI: 10.1016/j.ydbio.2012.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/16/2022]
|
121
|
Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: the development and evolution of teeth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:165-82. [PMID: 24009032 DOI: 10.1002/wdev.63] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Teeth are unique to vertebrates and have played a central role in their evolution. The molecular pathways and morphogenetic processes involved in tooth development have been the focus of intense investigation over the past few decades, and the tooth is an important model system for many areas of research. Developmental biologists have exploited the clear distinction between the epithelium and the underlying mesenchyme during tooth development to elucidate reciprocal epithelial/mesenchymal interactions during organogenesis. The preservation of teeth in the fossil record makes these organs invaluable for the work of paleontologists, anthropologists, and evolutionary biologists. In addition, with the recent identification and characterization of dental stem cells, teeth have become of interest to the field of regenerative medicine. Here, we review the major research areas and studies in the development and evolution of teeth, including morphogenesis, genetics and signaling, evolution of tooth development, and dental stem cells.
Collapse
Affiliation(s)
- Andrew H Jheon
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
122
|
Rothová M, Peterková R, Tucker AS. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol 2012; 366:244-54. [PMID: 22542602 DOI: 10.1016/j.ydbio.2012.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/01/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022]
Abstract
At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.
Collapse
Affiliation(s)
- Michaela Rothová
- Department of Craniofacial Development, King's College London, Floor 27 Guy's Tower, Guy's Hospital, London Bridge, SE1 9RT, London, UK.
| | | | | |
Collapse
|
123
|
Ishikawa Y, Ida-Yonemochi H, Nakakura-Ohshima K, Ohshima H. The relationship between cell proliferation and differentiation and mapping of putative dental pulp stem/progenitor cells during mouse molar development by chasing BrdU-labeling. Cell Tissue Res 2012; 348:95-107. [DOI: 10.1007/s00441-012-1347-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
|
124
|
Matalova E, Svandova E, Tucker AS. Apoptotic signaling in mouse odontogenesis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 16:60-70. [PMID: 22204278 DOI: 10.1089/omi.2011.0039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members.
Collapse
Affiliation(s)
- Eva Matalova
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences, Brno, Czech Republic.
| | | | | |
Collapse
|
125
|
Ida-Yonemochi H, Nakatomi M, Harada H, Takata H, Baba O, Ohshima H. Glucose uptake mediated by glucose transporter 1 is essential for early tooth morphogenesis and size determination of murine molars. Dev Biol 2011; 363:52-61. [PMID: 22226978 DOI: 10.1016/j.ydbio.2011.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/11/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022]
Abstract
Glucose is an essential source of energy for body metabolism and is transported into cells by glucose transporters (GLUTs). Well-characterized class I GLUT is subdivided into GLUTs1-4, which are selectively expressed depending on tissue glucose requirements. However, there is no available data on the role of GLUTs during tooth development. This study aims to clarify the functional significance of class I GLUT during murine tooth development using immunohistochemistry and an in vitro organ culture experiment with an inhibitor of GLUTs1/2, phloretin, and Glut1 and Glut2 short interfering RNA (siRNA). An intense GLUT1-immunoreaction was localized in the enamel organ of bud-stage molar tooth germs, where the active cell proliferation occurred. By the bell stage, the expression of GLUT1 in the dental epithelium was dramatically decreased in intensity, and subsequently began to appear in the stratum intermedium at the late bell stage. On the other hand, GLUT2-immunoreactivity was weakly observed in the whole tooth germs throughout all stages. The inhibition of GLUTs1/2 by phloretin in the bud-stage tooth germs induced the disturbance of primary enamel knot formation, resulting in the developmental arrest of the explants and the squamous metaplasia of dental epithelial cells. Furthermore, the inhibition of GLUTs1/2 in cap-to-bell-stage tooth germs reduced tooth size in a dose dependent manner. These findings suggest that the expression of GLUT1 and GLUT2 in the dental epithelial and mesenchymal cells seems to be precisely and spatiotemporally controlled, and the glucose uptake mediated by GLUT1 plays a crucial role in the early tooth morphogenesis and tooth size determination.
Collapse
Affiliation(s)
- Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | | | | | | | | | | |
Collapse
|
126
|
The novel function of Oct3/4 in mouse tooth development. Histochem Cell Biol 2011; 137:367-76. [DOI: 10.1007/s00418-011-0895-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|
127
|
Handrigan GR, Richman JM. Unicuspid and bicuspid tooth crown formation in squamates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:598-608. [DOI: 10.1002/jez.b.21438] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 11/08/2022]
|
128
|
Cai J, Mutoh N, Shin JO, Tani-Ishii N, Ohshima H, Cho SW, Jung HS. Wnt5a plays a crucial role in determining tooth size during murine tooth development. Cell Tissue Res 2011; 345:367-77. [PMID: 21879290 DOI: 10.1007/s00441-011-1224-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
We have previously demonstrated that tooth size is determined by dental mesenchymal factors. Exogenous bone morphogenetic protein (BMP)4, Noggin, fibroblast growth factor (FGF)3 and FGF10 have no effect on tooth size, despite the expressions of Bmp2, Bmp4, Fgf3, Fgf10 and Lef1 in the dental mesenchyme. Among the wingless (Wnt) genes that are differentially expressed during tooth development, only Wnt5a is expressed in the dental mesenchyme. The aims of the present study were to clarify the expression pattern of Wnt5a in developing tooth germs and the role of Wnt5a in the regulation of tooth size by treatment with exogenous WNT5A with/without an apoptosis inhibitor on in vitro tooth germs combined with transplantation into kidney capsules. Wnt5a was intensely expressed in both the dental epithelium and mesenchyme during embryonic days 14-17, overlapping partly with the expressions of both Shh and Bmp4. Moreover, WNT5A retarded the development of tooth germs by markedly inducing cell death in the non-dental epithelium and mesenchyme but not widely in the dental region, where the epithelial-mesenchymal gene interactions among Wnt5a, Fgf10, Bmp4 and Shh might partly rescue the cells from death in the WNT5A-treated tooth germ. Together, these results indicate that WNT5A-induced cell death inhibited the overall development of the tooth germ, resulting in smaller teeth with blunter cusps after tooth-germ transplantation. Thus, it is suggested that Wnt5a is involved in regulating cell death in non-dental regions, while in the dental region it acts as a regulator of other genes that rescue tooth germs from cell death.
Collapse
Affiliation(s)
- Jinglei Cai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Oral Science Research Center, College of Dentistry, Brain Korea 21 Project for Medical Science, Yonsei University, Seoul
| | | | | | | | | | | | | |
Collapse
|
129
|
Li L, Yuan G, Liu C, Zhang L, Zhang Y, Chen Y, Chen Z. Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo. Dev Dyn 2011; 240:1344-53. [PMID: 21412937 PMCID: PMC3092827 DOI: 10.1002/dvdy.22596] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 12/21/2022] Open
Abstract
Regression of vestigial tooth buds results in the formation of the toothless diastema, a unique feature of the mouse dentition. Revitalization of the diastemal vestigial tooth bud provides an excellent model for studying tooth regeneration and replacement. It has been previously shown that suppression of fibroblast growth factor (FGF) signaling in the diastema results in vestigial tooth bud regression. In this study, we report that application of exogenous FGF8 to the mouse embryonic diastemal region rescues diastemal tooth development. However, this rescue of diastemal tooth development occurs only in an isolated diastemal regions and not in the mandibular quadrant, which includes the incisor and molar germs. FGF8 promotes cell proliferation and inhibits apoptosis in diastemal tooth epithelium, and revitalizes the tooth developmental program, as evidenced by the expression of genes critical for normal tooth development. Our results also support the idea that the adjacent tooth germs contribute to the suppression of diastemal vestigial tooth buds by means of multiple signals.
Collapse
Affiliation(s)
- Lu Li
- Hubei-MOST KLOS and KLOBM School and Hospital of Stomatology Wuhan University Wuhan, Hubei Province, P.R. China
- Department of Cell and Molecular Biology Tulane University New Orleans, LA 70118, USA
| | - Guohua Yuan
- Hubei-MOST KLOS and KLOBM School and Hospital of Stomatology Wuhan University Wuhan, Hubei Province, P.R. China
| | - Chao Liu
- Department of Cell and Molecular Biology Tulane University New Orleans, LA 70118, USA
| | - Lu Zhang
- Hubei-MOST KLOS and KLOBM School and Hospital of Stomatology Wuhan University Wuhan, Hubei Province, P.R. China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neuro Biology College of Life Sciences Fujian Normal University Fuzhou, Fujian Province, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology Tulane University New Orleans, LA 70118, USA
- Fujian Key Laboratory of Developmental and Neuro Biology College of Life Sciences Fujian Normal University Fuzhou, Fujian Province, P.R. China
| | - Zhi Chen
- Hubei-MOST KLOS and KLOBM School and Hospital of Stomatology Wuhan University Wuhan, Hubei Province, P.R. China
| |
Collapse
|
130
|
Yu Y, Li M, Sun J, Yang M, Long J, Tian W, Tang W, Li T, Liu L. Differential expression of signaling pathways in odontogenic differentiation of ectomesenchymal cells isolated from the first branchial arch. Mol Cell Biochem 2011; 351:85-92. [PMID: 21249430 DOI: 10.1007/s11010-011-0714-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023]
Abstract
The aim of this study was to screen for differential expression of signaling pathways in odontogenic differentiation of ectomesenchymal cells isolated from the first branchial arch of embryonic day 10 (E10) mice by real time RT-PCR microarray. Observations of cellular morphology, immunocytochemistry, and RT-PCR were used to identify the cell source. A real time RT-PCR microarray was then used to detect the differential expression of signaling pathways in cells dissected from animals at two different developmental stages. These assays identified 25 up-regulated genes and 16 down-regulated genes involved in odontogenic differentiation of the ectomesenchymal cells of the first branchial arch. They represented the main members of Wnt, Hedgehog, TGF-β, NF-κB, and LDL signaling pathways. This study determined that these signaling pathways are important for odontogenic differentiation of ectomesenchymal cells of the first branchial arch.
Collapse
Affiliation(s)
- Yongchun Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Wise SB, Stock DW. bmp2b and bmp4 are dispensable for zebrafish tooth development. Dev Dyn 2011; 239:2534-46. [PMID: 21038444 DOI: 10.1002/dvdy.22411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic protein (Bmp) signaling has been shown to play important roles in tooth development at virtually all stages from initiation to hard tissue formation. The specific ligands involved in these processes have not been directly tested by loss-of-function experiments, however. We used morpholino antisense oligonucleotides and mutant analysis in the zebrafish to reduce or eliminate the function of bmp2b and bmp4, two ligands known to be expressed in zebrafish teeth and whose mammalian orthologs are thought to play important roles in tooth development. Surprisingly, we found that elimination of function of these two genes singly and in combination did not prevent the formation of mature, attached teeth. The mostly likely explanation for this result is functional redundancy with other Bmp ligands, which may differ between the zebrafish and the mouse.
Collapse
Affiliation(s)
- Sarah B Wise
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0449, USA
| | | |
Collapse
|
132
|
Porntaveetus T, Otsuka-Tanaka Y, Basson MA, Moon AM, Sharpe PT, Ohazama A. Expression of fibroblast growth factors (Fgfs) in murine tooth development. J Anat 2011; 218:534-43. [PMID: 21332717 DOI: 10.1111/j.1469-7580.2011.01352.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fgf signalling is known to play critical roles in tooth development. Twenty-two Fgf ligands have been identified in mammals, but expression of only 10 in molars and three in the incisor loop stem cell region have been documented in murine tooth development. Our understanding of Fgf signalling in tooth development thus remains incomplete and we therefore carried out comparative in situ hybridisation analysis of unexamined Fgf ligands (eight in molars and 15 in cervical loops of incisors; Fgf11-Fgf14 were excluded from this analysis because they are not secreted and do not activate Fgf receptors) during tooth development. To identify where Fgf signalling is activated, we also examined the expression of Etv4 and Etv5, considered to be transcriptional targets of the Fgf signalling pathway. In molar tooth development, the expression of Fgf15 and Fgf20 was restricted to the primary enamel knots, whereas Etv4 and Etv5 were expressed in cells surrounding the primary enamel knots. Fgf20 expression was observed in the secondary enamel knots, whereas Fgf15 showed localised expression in the adjacent mesenchyme. Fgf16, Etv4 and Etv5 were strongly expressed in the ameloblasts of molars. In the incisor cervical loop stem cell region, Fgf17, Fgf18, Etv4 and Etv5 showed a restricted expression pattern. These molecules thus show dynamic temporo-spatial expression in murine tooth development. We also analysed teeth in Fgf15(-/-) and Fgf15(-/-) ;Fgf8(+/-) mutant mice. Neither mutant showed significant abnormalities in tooth development, indicating likely functional redundancy.
Collapse
Affiliation(s)
- Thantrira Porntaveetus
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
133
|
Li L, Lin M, Wang Y, Cserjesi P, Chen Z, Chen Y. BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development. Dev Biol 2011; 349:451-61. [PMID: 21034733 PMCID: PMC3019275 DOI: 10.1016/j.ydbio.2010.10.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/30/2010] [Accepted: 10/20/2010] [Indexed: 01/09/2023]
Abstract
The BMP signaling plays a pivotal role in the development of craniofacial organs, including the tooth and palate. BmprIa and BmprIb encode two type I BMP receptors that are primarily responsible for BMP signaling transduction. We investigated mesenchymal tissue-specific requirement of BmprIa and its functional redundancy with BmprIb during the development of mouse tooth and palate. BmprIa and BmprIb exhibit partially overlapping and distinct expression patterns in the developing tooth and palatal shelf. Neural crest-specific inactivation of BmprIa leads to formation of an unusual type of anterior clefting of the secondary palate, an arrest of tooth development at the bud/early cap stages, and severe hypoplasia of the mandible. Defective tooth and palate development is accompanied by the down-regulation of BMP-responsive genes and reduced cell proliferation levels in the palatal and dental mesenchyme. To determine if BmprIb could substitute for BmprIa during tooth and palate development, we expressed a constitutively active form of BmprIb (caBmprIb) in the neural crest cells in which BmprIa was simultaneously inactivated. We found that substitution of BmprIa by caBmprIb in neural rest cells rescues the development of molars and maxillary incisor, but the rescued teeth exhibit a delayed odontoblast and ameloblast differentiation. In contrast, caBmprIb fails to rescue the palatal and mandibular defects including the lack of lower incisors. Our results demonstrate an essential role for BmprIa in the mesenchymal component and a limited functional redundancy between BmprIa and BmprIb in a tissue-specific manner during tooth and palate development.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
- College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Minkui Lin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
- College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Ying Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Peter Cserjesi
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Zhi Chen
- College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
134
|
Cao H, Florez S, Amen M, Huynh T, Skobe Z, Baldini A, Amendt BA. Tbx1 regulates progenitor cell proliferation in the dental epithelium by modulating Pitx2 activation of p21. Dev Biol 2010; 347:289-300. [PMID: 20816801 PMCID: PMC3334818 DOI: 10.1016/j.ydbio.2010.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 11/19/2022]
Abstract
Tbx1(-/-) mice present with phenotypic effects observed in DiGeorge syndrome patients however, the molecular mechanisms of Tbx1 regulating craniofacial and tooth development are unclear. Analyses of the Tbx1 null mice reveal incisor microdontia, small cervical loops and BrdU labeling reveals a defect in epithelial cell proliferation. Furthermore, Tbx1 null mice molars are lacking normal cusp morphology. Interestingly, p21 (associated with cell cycle arrest) is up regulated in the dental epithelium of Tbx1(-/-) embryos. These data suggest that Tbx1 inhibits p21 expression to allow for cell proliferation in the dental epithelial cervical loop, however Tbx1 does not directly regulate p21 expression. A new molecular mechanism has been identified where Tbx1 inhibits Pitx2 transcriptional activity and decreases the expression of Pitx2 target genes, p21, Lef-1 and Pitx2c. p21 protein is increased in PITX2C transgenic mouse embryo fibroblasts (MEF) and chromatin immunoprecipitation assays demonstrate endogenous Pitx2 binding to the p21 promoter. Tbx1 attenuates PITX2 activation of endogenous p21 expression and Tbx1 null MEFs reveal increased Pitx2a and activation of Pitx2c isoform expression. Tbx1 physically interacts with the PITX2 C-terminus and represses PITX2 transcriptional activation of the p21, LEF-1, and Pitx2c promoters. Tbx1(-/+)/Pitx2(-/+) double heterozygous mice present with an extra premolar-like tooth revealing a genetic interaction between these factors. The ability of Tbx1 to repress PITX2 activation of p21 may promote cell proliferation. In addition, PITX2 regulation of p21 reveals a new role for PITX2 in repressing cell proliferation. These data demonstrate new functional mechanisms for Tbx1 in tooth morphogenesis and provide a molecular basis for craniofacial defects in DiGeorge syndrome patients.
Collapse
Affiliation(s)
- Huojun Cao
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX
| | - Sergio Florez
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX
| | - Melanie Amen
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX
| | - Tuong Huynh
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX
| | - Ziedonis Skobe
- Department of Biomineralization, The Forsyth Institute, Boston, MA
| | - Antonio Baldini
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX
- Institute of Genetics and Biophysics CNR, Naples, Italy
| | - Brad A. Amendt
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX
| |
Collapse
|
135
|
Fujimori S, Novak H, Weissenböck M, Jussila M, Gonçalves A, Zeller R, Galloway J, Thesleff I, Hartmann C. Wnt/β-catenin signaling in the dental mesenchyme regulates incisor development by regulating Bmp4. Dev Biol 2010; 348:97-106. [PMID: 20883686 PMCID: PMC2997430 DOI: 10.1016/j.ydbio.2010.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 11/25/2022]
Abstract
Loss- and gain-of function approaches modulating canonical Wnt/β-catenin activity have established a role for the Wnt/β-catenin pathway during tooth development. Here we show that Wnt/β-catenin signaling is required in the dental mesenchyme for normal incisor development, as locally restricted genetic inactivation of β-catenin results in a splitting of the incisor placode, giving rise to two incisors. Molecularly this is first associated with down-regulation of Bmp4 and subsequent splitting of the Shh domain at a subsequent stage. The latter phenotype can be mimicked by ectopic application of the BMP antagonist Noggin. Conditional genetic inactivation of Bmp4 in the mesenchyme reveals that mesenchymal BMP4 activity is required for maintenance of Shh expression in the dental ectoderm. Taken together our results indicate that β-catenin together with Lef1 and Tcf1 are required to activate Bmp4 expression in order to maintain Shh expression in the dental ectoderm. This provides a mechanism whereby the number of incisors arising from one placode can be varied through local alterations of a mesenchymal signaling circuit involving β-catenin, Lef1, Tcf1 and Bmp4.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G. BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development 2010; 137:3025-35. [PMID: 20685737 DOI: 10.1242/dev.049528] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Notch signalling pathway is an evolutionarily conserved intercellular signalling mechanism that is essential for cell fate specification and proper embryonic development. We have analysed the expression, regulation and function of the jagged 2 (Jag2) gene, which encodes a ligand for the Notch family of receptors, in developing mouse teeth. Jag2 is expressed in epithelial cells that give rise to the enamel-producing ameloblasts from the earliest stages of tooth development. Tissue recombination experiments showed that its expression in epithelium is regulated by mesenchyme-derived signals. In dental explants cultured in vitro, the local application of fibroblast growth factors upregulated Jag2 expression, whereas bone morphogenetic proteins provoked the opposite effect. Mice homozygous for a deletion in the Notch-interaction domain of Jag2 presented a variety of severe dental abnormalities. In molars, the crown morphology was misshapen, with additional cusps being formed. This was due to alterations in the enamel knot, an epithelial signalling structure involved in molar crown morphogenesis, in which Bmp4 expression and apoptosis were altered. In incisors, cytodifferentiation and enamel matrix deposition were inhibited. The expression of Tbx1 in ameloblast progenitors, which is a hallmark for ameloblast differentiation and enamel formation, was dramatically reduced in Jag2(-/-) teeth. Together, these results demonstrate that Notch signalling mediated by Jag2 is indispensable for normal tooth development.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
137
|
Matalova E, Dubska L, Fleischmannova J, Chlastakova I, Janeckova E, Tucker AS. Cell proliferation and apoptosis in the primary enamel knot measured by flow cytometry of laser microdissected samples. Arch Oral Biol 2010; 55:570-5. [PMID: 20554269 DOI: 10.1016/j.archoralbio.2010.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/09/2010] [Accepted: 05/17/2010] [Indexed: 12/25/2022]
Abstract
Laser capture microdissection (LCM) uniquely allows the selection of specific cell populations from histological sections. These selected cells are then catapulted into a test tube without any contamination from surrounding tissues. During the last ten years, many significant results have been achieved, particularly at the level of DNA and RNA where amplification techniques are available. However, where amplification procedures are difficult, the benefits of LCM diminish. To overcome such difficulties, a novel approach, combining laser capture microdissection and flow cytometry, has been tested here for detection of apoptosis and proliferation in tissue bound cell populations without any amplification steps. The mouse cap stage molar tooth germ was used as a model. At the centre of the inner enamel epithelium, the primary enamel knot is a clearly defined apoptotic population with minimal proliferation, flanked by the highly proliferative cervical loops on each side. Thus within the tooth germ epithelium at this stage, two distinct populations of cells are found side by side. These populations were selected by laser capture microdissection and then analysed by flow cytometry for apoptosis and proliferation. Flow cytometric results correlated well with immunohistochemical findings, demonstrating the success and sensitivity of this combined procedure.
Collapse
Affiliation(s)
- E Matalova
- Department of Physiology and Pathophysiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
138
|
Catón J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 2010; 214:502-15. [PMID: 19422427 DOI: 10.1111/j.1469-7580.2008.01014.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The integument forms a number of different types of mineralized element, including dermal denticles, scutes, ganoid scales, elasmoid scales, fin rays and osteoderms found in certain fish, reptiles, amphibians and xenarthran mammals. To this list can be added teeth, which are far more widely represented and studied than any of the other mineralized elements mentioned above, and as such can be thought of as a model mineralized system. In recent years the focus for studies on tooth development has been the mouse, with a wealth of genetic information accrued and the availability of cutting edge techniques. It is the mouse dentition that this review will concentrate on. The development of the tooth will be followed, looking at what controls the shape of the tooth and how signals from the mesenchyme and epithelium interact to lead to formation of a molar or incisor. The number of teeth generated will then be investigated, looking at how tooth germ number can be reduced or increased by apoptosis, fusion of tooth germs, creation of new tooth germs, and the generation of additional teeth from existing tooth germs. The development of mineralized tissue will then be detailed, looking at how the asymmetrical deposition of enamel is controlled in the mouse incisor. The continued importance of epithelial-mesenchymal interactions at these later stages of tooth development will also be discussed. Tooth anomalies and human disorders have been well covered by recent reviews, therefore in this paper we wish to present a classical review of current knowledge of tooth development, fitting together data from a large number of recent research papers to draw general conclusions about tooth development.
Collapse
Affiliation(s)
- Javier Catón
- Department of Craniofacial Development and Orthodontics, King's College London, Guy's Hospital, UK
| | | |
Collapse
|
139
|
Nakatomi M, Wang XP, Key D, Lund JJ, Turbe-Doan A, Kist R, Aw A, Chen Y, Maas RL, Peters H. Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Dev Biol 2010; 340:438-49. [PMID: 20123092 DOI: 10.1016/j.ydbio.2010.01.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 01/28/2023]
Abstract
Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller "incisor field" forms in Pax9(+/-);Msx1(+/-) mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia.
Collapse
Affiliation(s)
- Mitsushiro Nakatomi
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Explant culture of embryonic craniofacial tissues: analyzing effects of signaling molecules on gene expression. Methods Mol Biol 2010; 666:253-67. [PMID: 20717789 DOI: 10.1007/978-1-60761-820-1_16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The in vitro culture of embryonic tissue explants allows the continuous monitoring of growth and morphogenesis at specific embryonic stages. The functions of soluble regulatory molecules can be examined by adding them into culture medium or by introducing them with beads to specific locations in the tissue. Gene expression analysis using in situ hybridization, quantitative PCR, and reporter constructs can be combined with organ culture to examine the functions of the regulatory molecules.
Collapse
|
141
|
Xie M, Kobayashi I, Kiyoshima T, Nagata K, Ookuma Y, Fujiwara H, Sakai H. In situ expression of ribosomal protein L21 in developing tooth germ of the mouse lower first molar. J Mol Histol 2009; 40:361-7. [PMID: 20043235 DOI: 10.1007/s10735-009-9249-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 12/15/2009] [Indexed: 11/28/2022]
Abstract
We previously performed cDNA subtraction between the mouse mandibles at embryonic day 10.5 (E10.5) in the pre-initiation stage of the odontogenesis and E12.0 in the late initiation stage to investigate the key regulator genes in odontogenesis. Ribosomal protein L21 (Rpl21) is one of differentially expressed genes in the E12.0 mandible. This study examined the precise expression pattern of Rpl21 mRNA in the mouse mandibular first molar by in situ hybridization. Rpl21 mRNA was expressed in the presumptive dental epithelium and the underlying mesenchyme at E10.5, and in the thickened dental epithelium at E12.0. Strong in situ signals were observed in the epithelial bud at E14.0, and in the enamel organ at E15.0. However, either no (E14.0) or only a weak (E15.0) in situ signal was found in the primary enamel knot at these gestational days. Rpl21 was strongly expressed in the inner enamel epithelium, cervical loop and dental lamina from E16.0 to E18.0. In addition, Rpl21 mRNA was also demonstrated in various developing cranio-facial organs. These results suggest that Rpl21 participates in the synthesis of various polypeptides which might be related to the initiation and the development of such tooth germ, and also in the synthesis of enamel components in the presecretory stage of the ameloblast. Rpl21 for protein synthesis might also be related to the morphogenesis of the developing cranio-facial organs.
Collapse
Affiliation(s)
- Ming Xie
- Laboratory of Oral Pathology and Medicine, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
142
|
Fleischmannova J, Matalova E, Sharpe PT, Misek I, Radlanski RJ. Formation of the tooth-bone interface. J Dent Res 2009; 89:108-15. [PMID: 20042740 DOI: 10.1177/0022034509355440] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Not only are teeth essential for mastication, but also missing teeth are considered a social handicap due to speech and aesthetic problems, with a resulting high impact on emotional well-being. Several treatment procedures are currently available for tooth replacement with mostly inert prosthetic materials and implants. Natural tooth substitution based on copying the developmental process of tooth formation is particularly challenging and creates a rapidly developing area of molecular dentistry. In any approach, functional interactions among the tooth, the surrounding bone, and the periodontium must be established. Therefore, recent research in craniofacial genetics searches for mechanisms responsible for correct cell and tissue interactions, not only within a specific structure, but also in the context of supporting structures. A tooth crown that is not functionally anchored to roots and bone is useless. This review aims to summarize the developmental and tissue homeostatic aspects of the tooth-bone interface, from the initial patterning toward tooth eruption and lifelong interactions between the tooth and its surrounding alveolar bone.
Collapse
Affiliation(s)
- J Fleischmannova
- Institute of Animal Physiology and Genetics CAS v.v.i., Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
143
|
Miyagawa S, Moon A, Haraguchi R, Inoue C, Harada M, Nakahara C, Suzuki K, Matsumaru D, Kaneko T, Matsuo I, Yang L, Taketo MM, Iguchi T, Evans SM, Yamada G. Dosage-dependent hedgehog signals integrated with Wnt/beta-catenin signaling regulate external genitalia formation as an appendicular program. Development 2009; 136:3969-78. [PMID: 19906864 PMCID: PMC2778744 DOI: 10.1242/dev.039438] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2009] [Indexed: 12/22/2022]
Abstract
Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/beta-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/beta-catenin signaling activity are downregulated. beta-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/beta-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/beta-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3' conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development.
Collapse
Affiliation(s)
- Shinichi Miyagawa
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Anne Moon
- Departments of Pediatrics, Neurobiology and Anatomy, and Human Genetics, University of Utah, UT 84112, USA
| | - Ryuma Haraguchi
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Chie Inoue
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masayo Harada
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
| | - Chiaki Nakahara
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
| | - Daisuke Matsumaru
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takehito Kaneko
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Isao Matsuo
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Lei Yang
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Makoto M. Taketo
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Taisen Iguchi
- National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Sylvia M. Evans
- Skaggs School of Pharmacy, University of California, San Diego, CA 92093, USA
| | - Gen Yamada
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
144
|
Brook AH. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol 2009; 54 Suppl 1:S3-17. [PMID: 19913215 PMCID: PMC2981858 DOI: 10.1016/j.archoralbio.2009.09.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 01/13/2023]
Abstract
Dental anomalies are caused by complex interactions between genetic, epigenetic and environmental factors during the long process of dental development. This process is multifactorial, multilevel, multidimensional and progressive over time. In this paper the evidence from animal models and from human studies is integrated to outline the current position and to construct and evaluate models, as a basis for future work. Dental development is multilevel entailing molecular and cellular interactions which have macroscopic outcomes. It is multidimensional, requiring developments in the three spatial dimensions and the fourth dimension of time. It is progressive, occurring over a long period, yet with critical stages. The series of interactions involving multiple genetic signalling pathways are also influenced by extracellular factors. Interactions, gradients and spatial field effects of multiple genes, epigenetic and environmental factors all influence the development of individual teeth, groups of teeth and the dentition as a whole. The macroscopic, clinically visible result in humans is a complex unit of four different tooth types formed in morphogenetic fields, in which teeth within each field form directionally and erupt at different times, reflecting the spatio-temporal control of development. Even when a specific mutation of a single gene or one major environmental insult has been identified in a patient with a dental anomaly, detailed investigation of the phenotype often reveals variation between affected individuals in the same family, between dentitions in the same individual and even between different teeth in the same dentition. The same, or closely similar phenotypes, whether anomalies of tooth number or structure, may arise from different aetiologies: not only mutations in different genes but also environmental factors may result in similar phenotypes. Related to the action of a number of the developmental regulatory genes active in odontogenesis, in different tissues, mutations can result in syndromes of which dental anomalies are part. Disruption of the antagonistic balance between developmental regulatory genes, acting as activators or inhibitors can result in dental anomalies. There are critical stages in the development of the individual tooth germs and, if progression fails, the germ will not develop further or undergoes apoptosis. The reiterative signalling patterns over time during the sequential process of initiation and morphogenesis are reflected in the clinical association of anomalies of number, size and form and the proposed models. An initial step in future studies is to combine the genetic investigations with accurate recording and measurement of the phenotype. They also need to collate findings at each level and exploit the accurate definition of both human and murine phenotypes now possible.
Collapse
Affiliation(s)
- A H Brook
- International Collaborating Centre in Oro-facial Genetics and Development, University of Liverpool, School of Dental Sciences, Edwards Building, Daulby Street, Pembroke Place, Liverpool, L69 3GN, UK.
| |
Collapse
|
145
|
Huang X, Bringas P, Slavkin HC, Chai Y. Fate of HERS during tooth root development. Dev Biol 2009; 334:22-30. [PMID: 19576204 PMCID: PMC2744848 DOI: 10.1016/j.ydbio.2009.06.034] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 06/20/2009] [Accepted: 06/22/2009] [Indexed: 01/16/2023]
Abstract
Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice. HERS cells are detectable on the surface of the root throughout root formation and do not disappear. Most of the HERS cells are attached to the surface of the cementum, and others separate to become the epithelial rest of Malassez. HERS cells secrete extracellular matrix components onto the surface of the dentin before dental follicle cells penetrate the HERS network to contact dentin. HERS cells also participate in the cementum development and may differentiate into cementocytes. During root development, the HERS is not interrupted, and instead the HERS cells continue to communicate with each other through the network structure. Furthermore, HERS cells interact with cranial neural crest derived mesenchyme to guide root development. Taken together, the network of HERS cells is crucial for tooth root development.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Pablo Bringas
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Harold C. Slavkin
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
146
|
Welsh IC, O'Brien TP. Signaling integration in the rugae growth zone directs sequential SHH signaling center formation during the rostral outgrowth of the palate. Dev Biol 2009; 336:53-67. [PMID: 19782673 DOI: 10.1016/j.ydbio.2009.09.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 01/12/2023]
Abstract
Evolution of facial morphology arises from variation in the activity of developmental regulatory networks that guide the formation of specific craniofacial elements. Importantly, the acquisition of novel morphology must be integrated with a phylogenetically inherited developmental program. We have identified a unique region of the secondary palate associated with the periodic formation of rugae during the rostral outgrowth of the face. Rugae function as SHH signaling centers to pattern the elongating palatal shelves. We have found that a network of signaling genes and transcription factors is spatially organized relative to palatal rugae. Additionally, the first formed ruga is strategically positioned at the presumptive junction of the future hard and soft palate that defines anterior-posterior differences in regional growth, mesenchymal gene expression, and cell fate. We propose a molecular circuit integrating FGF and BMP signaling to control proliferation and differentiation during the sequential formation of rugae and inter-rugae domains in the palatal epithelium. The loss of p63 and Sostdc1 expression and failed rugae differentiation highlight that coordinated epithelial-mesenchymal signaling is lost in the Fgf10 mutant palate. Our results establish a genetic program that reiteratively organizes signaling domains to coordinate the growth of the secondary palate with the elongating midfacial complex.
Collapse
Affiliation(s)
- Ian C Welsh
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
147
|
Denaxa M, Sharpe PT, Pachnis V. The LIM homeodomain transcription factors Lhx6 and Lhx7 are key regulators of mammalian dentition. Dev Biol 2009; 333:324-36. [PMID: 19591819 PMCID: PMC2738952 DOI: 10.1016/j.ydbio.2009.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 07/01/2009] [Accepted: 07/01/2009] [Indexed: 12/30/2022]
Abstract
Genes encoding LIM homeodomain transcription factors are implicated in cell type specification and differentiation during embryogenesis. Two closely related members of this family, Lhx6 and Lhx7, are expressed in the ectomesenchyme of the maxillary and mandibular processes and have been suggested to control patterning of the first branchial arch (BA1) and odontogenesis. However, mice homozygous for single mutations either have no cranial defects (Lhx6) or show only cleft palate (Lhx7). To reveal the potential redundant activities of Lhx6 and Lhx7 in cranial morphogenesis, we generated mice with all combinations of wild-type and mutant alleles. Double homozygous mice have characteristic defects of the cranial skeleton and die shortly after birth, most likely because of cleft palate. In addition, Lhx6/7 deficient embryos lack molar teeth. The absence of molars in double mutants is not due to patterning defects of BA1 but results from failure of specification of the molar mesenchyme. Despite molar agenesis, Lhx6/7-deficient animals have normal incisors which, in the maxilla, are flanked by a supernumerary pair of incisor-like teeth. Our experiments demonstrate that the redundant activities of the LIM homeodomain proteins Lhx6 and Lhx7 are critical for craniofacial development and patterning of mammalian dentition.
Collapse
Affiliation(s)
- Myrto Denaxa
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | |
Collapse
|
148
|
Nait Lechguer A, Kuchler-Bopp S, Lesot H. Crown formation during tooth development and tissue engineering. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:399-407. [PMID: 19132735 DOI: 10.1002/jez.b.21256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Considering tooth crown engineering, three main parameters have to be taken into account: (1) the relationship between crown morphology and tooth functionality, (2) the growth of the organ, which is hardly compatible with the use of preformed scaffolds, and (3) the need for easily available nondental competent cell sources. In vitro reassociation experiments using either dental tissues or bone marrow-derived cells (BMDC) have been designed to get information about the mechanisms to be preserved in order to allow crown engineering. As the primary enamel knot (PEK) is involved in signaling crown morphogenesis, the formation and fate of this structure was investigated (1) in heterotopic reassociations between embryonic day 14 (ED14) incisor and molar enamel organs and mesenchymes, and (2) in reassociations between ED14 molar enamel organs and BMDC. A PEK formed in cultured heterotopic dental tissue reassociations. The mesenchyme controls the fate of the EK cells, incisor or molar-specific using apoptosis as criterion, and functionality to drive single/multiple cusps tooth development. Although previous investigations showed that they might differentiate as odontoblast- or ameloblast-like cells, BMDC reassociated to an enamel organ could not support the development of multicusp teeth. These cells apparently could neither maintain nor stimulate the formation of a PEK.
Collapse
|
149
|
Callahan N, Modesto A, Deeley K, Meira R, Vieira AR. Transforming growth factor-alfa gene (TGFA), human tooth agenesis, and evidence of segmental uniparental isodisomy. Eur J Oral Sci 2009; 117:20-6. [PMID: 19196314 DOI: 10.1111/j.1600-0722.2008.00593.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously reported an association between variants in the transforming growth factor-alfa gene (TGFA) and human tooth agenesis. To demonstrate in greater detail that TGFA contributes to tooth agenesis, we investigated additional markers in the gene. Cheek swab samples were obtained for DNA analysis from 116 patient/parent trios. Probands had at least one developmentally missing tooth, excluding third molars. Genotyping was performed using TaqMan assays. Linkage disequilibrium analysis and test of the transmission distortion of the marker alleles were performed. We confirmed that TGFA variants and haplotypes are associated with tooth agenesis. Moreover, it appears that preferential premolar agenesis is associated with TGFA, and patients with a family history of tooth agenesis would have an associated haplotype. Finally, we excluded that a TGFA microdeletion could cause sporadic agenesis in a case of upper lateral incisors and lower second premolars and suggest this case may be consequence of a segmental uniparental isodisomy.
Collapse
Affiliation(s)
- Nicholas Callahan
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
150
|
Peterkova R, Churava S, Lesot H, Rothova M, Prochazka J, Peterka M, Klein OD. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:292-308. [PMID: 19127536 PMCID: PMC2880865 DOI: 10.1002/jez.b.21266] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An understanding of the factors that promote or inhibit tooth development is essential for designing biological tooth replacements. The embryonic mouse dentition provides an ideal system for studying such factors because it consists of two types of tooth primordia. One type of primordium will go on to form a functional tooth, whereas the other initiates development but arrests at or before the bud stage. This developmental arrest contributes to the formation of the toothless mouse diastema. It is accompanied by the apoptosis of the rudimentary diastemal buds, which presumably results from the insufficient activity of anti-apoptotic signals such as fibroblast growth factors (FGFs). We have previously shown that the arrest of a rudimentary tooth bud can be rescued by inactivating Spry2, an antagonist of FGF signaling. Here, we studied the role of the epithelial cell death and proliferation in this process by comparing the development of a rudimentary diastemal tooth bud (R(2)) and the first molar in the mandibles of Spry2(-/-) and wild-type (WT) embryos using histological sections, image analysis and 3D reconstructions. In the WT R(2) at embryonic day 13.5, significantly increased apoptosis and decreased proliferation were found compared with the first molar. In contrast, increased levels of FGF signaling in Spry2(-/-) embryos led to significantly decreased apoptosis and increased proliferation in the R(2) bud. Consequently, the R(2) was involved in the formation of a supernumerary tooth primordium. Studies of the revitalization of rudimentary tooth primordia in mutant mice can help to lay the foundation for tooth regeneration by enhancing our knowledge of mechanisms that regulate tooth formation.
Collapse
Affiliation(s)
- Renata Peterkova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Svatava Churava
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Anthropology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Herve Lesot
- INSERM U595, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université Louis Pasteur, Strasbourg, France
- International Collaborating Centre in Oro-Facial Genetics and Development, University of Liverpool, Liverpool, United Kingdom
| | - Michaela Rothova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Developmental Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Prochazka
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Developmental Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslav Peterka
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Anthropology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
- Institutes of Human Genetics and Regeneration Medicine, University of California, San Francisco, California
| |
Collapse
|