101
|
Horn A, Palumbo K, Cordazzo C, Dees C, Akhmetshina A, Tomcik M, Zerr P, Avouac J, Gusinde J, Zwerina J, Roudaut H, Traiffort E, Ruat M, Distler O, Schett G, Distler JHW. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. ACTA ACUST UNITED AC 2012; 64:2724-33. [PMID: 22354771 DOI: 10.1002/art.34444] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hedgehog signaling not only plays crucial roles during human development but also has been implicated in the pathogenesis of several diseases in adults. The aim of the present study was to investigate the role of the hedgehog pathway in fibroblast activation in systemic sclerosis (SSc). METHODS Activation of the hedgehog pathway was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). The effects of sonic hedgehog (SHH) on collagen synthesis were analyzed by reporter assays, real-time PCR, and Sircol assays. Myofibroblast differentiation was assessed by quantification of α-smooth muscle actin and stress fiber staining. The role of hedgehog signaling in vivo was analyzed by adenoviral overexpression of SHH and using mice lacking 1 allele of the gene for inhibitory receptor Patched homolog 1 (Ptch(+/-) mice). RESULTS SHH was overexpressed and resulted in activation of hedgehog signaling in patients with SSc, with accumulation of the transcription factors Gli-1 and Gli-2 and increased transcription of hedgehog target genes. Activation of hedgehog signaling induced an activated phenotype in cultured fibroblasts, with differentiation of resting fibroblasts into myofibroblasts and increased release of collagen. Adenoviral overexpression of SHH in the skin of mice was sufficient to induce skin fibrosis. Moreover, Ptch(+/-) mice with increased hedgehog signaling were more sensitive to bleomycin-induced dermal fibrosis. CONCLUSION We demonstrated that the hedgehog pathway is activated in patients with SSc. Hedgehog signaling potently stimulates the release of collagen and myofibroblast differentiation in vitro and is sufficient to induce fibrosis in vivo. These findings identify the hedgehog cascade as a profibrotic pathway in SSc.
Collapse
|
102
|
Fu J, Rodova M, Roy SK, Sharma J, Singh KP, Srivastava RK, Shankar S. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett 2012. [PMID: 23200667 DOI: 10.1016/j.canlet.2012.11.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple lines of evidence suggest that the Sonic Hedgehog (Shh) signaling pathway is aberrantly reactivated in pancreatic cancer stem cells (CSCs). The objectives of this study were to examine the molecular mechanisms by which GANT-61 (Gli transcription factor inhibitor) regulates stem cell characteristics and tumor growth. Effects of GANT-61 on CSC's viability, spheroid formation, apoptosis, DNA-binding and transcriptional activities, and epithelial-mesenchymal transition (EMT) were measured. Humanized NOD/SCID/IL2R gamma(null) mice were used to examine the effects of GANT-61 on CSC's tumor growth. GANT-61 inhibited cell viability, spheroid formation, and Gli-DNA binding and transcriptional activities, and induced apoptosis by activation of caspase-3 and cleavage of Poly-ADP ribose Polymerase (PARP). GANT-61 increased the expression of TRAIL-R1/DR4, TRAIL-R2/DR5 and Fas, and decreased expression of PDGFRα and Bcl-2. GANT-61 also suppressed EMT by up-regulating E-cadherin and inhibiting N-cadherin and transcription factors Snail, Slug and Zeb1. In addition, GANT-61 inhibited pluripotency maintaining factors Nanog, Oct4, Sox-2 and cMyc. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GANT-61-treated pancreatic CSCs. Furthermore, GANT-61 inhibited CSC tumor growth which was associated with up-regulation of DR4 and DR5 expression, and suppression of Gli1, Gli2, Bcl-2, CCND2 and Zeb1 expression in tumor tissues derived from NOD/SCID IL2Rγ null mice. Our data highlight the importance of Shh pathway for self-renewal and metastasis of pancreatic CSCs, and also suggest Gli as a therapeutic target for pancreatic cancer in eliminating CSCs.
Collapse
Affiliation(s)
- Junsheng Fu
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Inhibition of hedgehog signaling for the treatment of murine sclerodermatous chronic graft-versus-host disease. Blood 2012; 120:2909-17. [DOI: 10.1182/blood-2012-01-403428] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Chronic graft-versus-host disease (cGVHD) is a prognosis limiting complication of allogeneic stem cell transplantation. The molecular mechanisms underlying cGVHD are incompletely understood, and targeted therapies are not yet established for clinical use. Here we examined the role of the hedgehog pathway in sclerodermatous cGVHD. Hedgehog signaling was activated in human and murine cGVHD with increased expression of sonic hedgehog and accumulation of the transcription factors Gli-1 and Gli-2. Treatment with LDE223, a highly selective small-molecule antagonist of the hedgehog coreceptor Smoothened (Smo), abrogated the activation of hedgehog signaling and protected against experimental cGVHD. Preventive therapy with LDE223 almost completely impeded the development of clinical and histologic features of sclerodermatous cGVHD. Treatment with LDE223 was also effective, when initiated after the onset of clinical manifestations of cGVHD. Hedgehog signaling stimulated the release of collagen from cultured fibroblasts but did not affect leukocyte influx in murine cGVHD, suggesting direct, leukocyte-independent stimulatory effects on fibroblasts as the pathomechanism of hedgehog signaling in cGVHD. Considering the high morbidity of cGVHD, the current lack of efficient molecular therapies for clinical use, and the availability of well-tolerated inhibitors of Smo, targeting hedgehog signaling might be a novel strategy for clinical trials in cGVHD.
Collapse
|
104
|
Rapacioli M, Botelho J, Cerda G, Duarte S, Elliot M, Palma V, Flores V. Sonic hedgehog (Shh)/Gli modulates the spatial organization of neuroepithelial cell proliferation in the developing chick optic tectum. BMC Neurosci 2012; 13:117. [PMID: 23031710 PMCID: PMC3564940 DOI: 10.1186/1471-2202-13-117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sonic hedgehog (Shh)/Gli pathway plays an important regulatory role on the neuroepithelial cells (NEc) proliferation in the dorsal regions of the developing vertebrate Central Nervous System. The aim of this paper was to analyze the effect of the Shh/Gli signaling pathway activation on the proliferation dynamics and/or the spatial organization of the NEc proliferation activity during early stages of the developing chick optic tectum (OT). In ovo pharmacological gain and loss of hedgehog function approaches were complemented with in vivo electroporation experiments in order to create ectopic sources of either Shh or Gli activator (GliA) proteins in the OT. NEc proliferating activity was analyzed at ED 4/4.5 by recording the spatial co-ordinates of the entire population of mitotic NEc (mNEc) located along OT dorsal-ventral sections. Several space signals (numerical sequences) were derived from the mNEc spatial co-ordinate records and analyzed by different standardized non-linear methods of signal analysis. RESULTS In ovo pharmacologic treatment with cyclopamine resulted in dramatic failure in the OT expansion while the agonist purmorphamine produced the opposite result, a huge expansion of the OT vesicle. Besides, GliA and Shh misexpressions interfere with the formation of the intertectal fissure located along the dorsal midline. This morphogenetic alteration is accompanied by an increase in the mNEc density. There is a gradient in the response of NEcs to Shh and GliA: the increase in mNEc density is maximal near the dorsal regions and decrease towards the OT-tegmental boundary. Biomathematical analyses of the signals derived from the mNEc records show that both Shh and GliA electroporations change the proliferation dynamics and the spatial organization of the mNEc as revealed by the changes in the scaling index estimated by these methods. CONCLUSIONS The present results show that the Shh/Gli signaling pathway plays a critical role in the OT expansion and modelling. This effect is probably mediated by a differential mitogenic effect that increases the NEc proliferation and modulates the spatial organization of the NEc proliferation activity.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department Biostructural Sciences, Favaloro University, Solís 453 (1078), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
105
|
Liu Y, Melin BS, Rajaraman P, Wang Z, Linet M, Shete S, Amos CI, Lau CC, Scheurer ME, Tsavachidis S, Armstrong GN, Houlston RS, Hosking FJ, Claus EB, Barnholtz-Sloan J, Lai R, Il’yasova D, Schildkraut J, Sadetzki S, Johansen C, Bernstein JL, Olson SH, Jenkins RB, LaChance D, Vick NA, Wrensch M, Davis F, McCarthy BJ, Andersson U, Thompson PA, Chanock S, The Gliogene Consortium, Bondy ML. Insight in glioma susceptibility through an analysis of 6p22.3, 12p13.33-12.1, 17q22-23.2 and 18q23 SNP genotypes in familial and non-familial glioma. Hum Genet 2012; 131:1507-17. [PMID: 22688887 PMCID: PMC3604903 DOI: 10.1007/s00439-012-1187-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/29/2012] [Indexed: 01/24/2023]
Abstract
The risk of glioma has consistently been shown to be increased twofold in relatives of patients with primary brain tumors (PBT). A recent genome-wide linkage study of glioma families provided evidence for a disease locus on 17q12-21.32, with the possibility of four additional risk loci at 6p22.3, 12p13.33-12.1, 17q22-23.2, and 18q23. To identify the underlying genetic variants responsible for the linkage signals, we compared the genotype frequencies of 5,122 SNPs mapping to these five regions in 88 glioma cases with and 1,100 cases without a family history of PBT (discovery study). An additional series of 84 familial and 903 non-familial cases were used to replicate associations. In the discovery study, 12 SNPs showed significant associations with family history of PBT (P < 0.001). In the replication study, two of the 12 SNPs were confirmed: 12p13.33-12.1 PRMT8 rs17780102 (P = 0.031) and 17q12-21.32 SPOP rs650461 (P = 0.025). In the combined analysis of discovery and replication studies, the strongest associations were attained at four SNPs: 12p13.33-12.1 PRMT8 rs17780102 (P = 0.0001), SOX5 rs7305773 (P = 0.0001) and STKY1 rs2418087 (P = 0.0003), and 17q12-21.32 SPOP rs6504618 (P = 0.0006). Further, a significant gene-dosage effect was found for increased risk of family history of PBT with these four SNPs in the combined data set (P(trend) <1.0 × 10(-8)). The results support the linkage finding that some loci in the 12p13.33-12.1 and 17q12-q21.32 may contribute to gliomagenesis and suggest potential target genes underscoring linkage signals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Melissa L, Bondy
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas (Yanhong Liu, Michael E Scheurer, Spiridon Tsavachidis, Georgina N Armstrong, Ching C Lau, Melissa L Bondy); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland (Preetha Rajaraman, Zhaoming Wang, Martha Linet, Stephen Chanock); Departments of Biostatistics (Sanjay Shete), Genetics (Christopher I. Amos), The University of Texas MD Anderson Cancer Center, Houston, Texas; Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, United Kingdom (Richard S. Houlston, Fay J Hosking); Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut (Elizabeth B. Claus); Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts (Elizabeth B. Claus); Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio (Jill Barnholtz-Sloan); The Neurological Institute of Columbia University, New York, New York (Rose Lai); Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina (Dora Il’yasova, Joellen Schildkraut); Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel (Siegal Sadetzki); and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel (Siegal Sadetzki); Danish Cancer Society, Department of Neurology, Copenhagen, Denmark (Christoffer Johansen); Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (Jonine L. Bernstein, Sara H. Olson); Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota (Robert B. Jenkins, Daniel LaChance); Evanston Kellogg Cancer Care Center NorthShore University HealthSystem, Evanston, Illinois (Nicholas A Vick); Department of Neurological Surgery, University of California, San Francisco, San Francisco, California (Margaret Wrensch); Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois (Bridget J McCarthy, Faith Davis); Department of Radiation Sciences Oncology, Umeå University, Umeå, Sweden (Beatrice S. Melin, Ulrika Andersson); Arizona Cancer Center, University of Arizona, Tucson, Arizona (Patricia A. Thompson)
| |
Collapse
|
106
|
|
107
|
Queiroz KCS, Spek CA, Peppelenbosch MP. Targeting Hedgehog signaling and understanding refractory response to treatment with Hedgehog pathway inhibitors. Drug Resist Updat 2012; 15:211-22. [PMID: 22910179 DOI: 10.1016/j.drup.2012.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 12/01/2022]
Abstract
Hedgehog (Hh) signaling is a principal component of the morphogenetic code best known to direct pattern formation during embryogenesis. The Hh pathway remains active in adulthood however where it guides tissue regeneration and remodeling and Hh production in the niche plays an important role in maintaining stem cell compartment size. Deregulated Hh signaling activity is associated, depending on the context, with both cancer initiation and progression. Interestingly, the Hh pathway is remarkably druggable, raising hopes that inhibition of the pathway could support anticancer therapy. Indeed, a large body of preclinical data supports such an action, but promising clinical data are still limited to basal cell carcinoma (BSC) and medulloblastoma. Nevertheless cancer resistance against Hh targeting has already emerged as a major problem. Here we shall review the current situation with respect to targeting the Hh pathway in cancer in general and in chemotolerance in particular with a focus on the problems associated with the emergence of tumors resistant to treatment with inhibitors targeting the Hh receptor Smoothened (SMO).
Collapse
Affiliation(s)
- Karla C S Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
108
|
Danesin C, Houart C. A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 2012; 22:323-30. [DOI: 10.1016/j.gde.2012.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/17/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
109
|
Abstract
The Hedgehog (Hh) signaling pathway has been implicated in tumor initiation and metastasis across different malignancies. Major mechanisms by which the Hh pathway is aberrantly activated can be attributed to mutations of members of Hh pathway or excessive/inappropriate expression of Hh pathway ligands. The Hh signaling pathway also affects the regulation of cancer stem cells, leading to their capabilities in tumor formation, disease progression, and metastasis. Preliminary results of early phase clinical trials of Hh inhibitors administered as monotherapy demonstrated promising results in patients with basal cell carcinoma and medulloblastoma, but clinically meaningful anticancer efficacy across other tumor types seems to be lacking. Additionally, cases of resistance have been already observed. Mutations of SMO, activation of Hh pathway components downstream to SMO, and upregulation of alternative signaling pathways are possible mechanisms of resistance development. Determination of effective Hh inhibitor-based combination regimens and development of correlative biomarkers relevant to this pathway should remain as clear priorities for future research.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
110
|
Abstract
Primary brain tumours are difficult to manage clinically due to their abilities to invade adjacent tissue and infiltrate distant neuropil. These contribute to challenges in surgical management and also limit the effectiveness of radiotherapy. Despite initial responses to chemotherapy, most tumours become chemo-resistant, leading to relapse. Recent identification and isolation of brain cancer stem cells (BCSCs) have broadened our understanding of the molecular pathogenesis and potential Achilles' heel of brain tumours. BCSCs are thought to drive and propagate the tumour and therefore present an important target for further investigations. This review explores the history of the discovery of BCSCs and the evolving concept of "cancer stem cells" in neuro-oncology. We attempt to present a balanced view on the subject and also to update the readers on the molecular biology of BCSCs. Lastly, we outline the potential strategies to target BCSCs which will translate into specific and effective therapies for brain tumours.
Collapse
|
111
|
Komada M. Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex. Congenit Anom (Kyoto) 2012; 52:72-7. [PMID: 22639991 DOI: 10.1111/j.1741-4520.2012.00368.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sonic hedgehog (Shh) acts as a morphogen in normal development of various vertebrate tissues and organs. Shh signaling is essential for patterning and cell-fate specification, particularly in the central nervous system. Shh signaling plays different roles depending on its concentration, area, and timing of exposure. During the development of the neocortex, a low level of Shh is expressed in the neural stem/progenitor cells as well as in mature neurons in the dorsal telencephalon. Shh signaling in neocortex development has been shown to regulate cell cycle kinetics of radial glial cells and intermediate progenitor cells, thereby maintaining the proliferation, survival and differentiation of neurons in the neocortex. During the development of the telencephalon, endogenous Shh signaling is involved in the transition of slow-cycling neural stem cells to fast-cycling neural progenitor cells. It seems that high-level Shh signaling in the ventral telencephalon is essential for ventral specification, while low-level Shh signaling in the dorsal telencephalon plays important roles in the fine-tuning of cell cycle kinetics. The Shh levels and multiple functions of Shh signaling are important for proper corticogenesis in the developing brain. The present paper discusses the roles of Shh signaling in the proliferation and differentiation of neural stem/progenitor cells.
Collapse
Affiliation(s)
- Munekazu Komada
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, and Research and Education Program for Life Science, University of Fukui, Fukui, Japan.
| |
Collapse
|
112
|
Chen L, Han L, Zhang K, Shi Z, Zhang J, Zhang A, Wang Y, Song Y, Li Y, Jiang T, Pu P, Jiang C, Kang C. VHL regulates the effects of miR-23b on glioma survival and invasion via suppression of HIF-1α/VEGF and β-catenin/Tcf-4 signaling. Neuro Oncol 2012; 14:1026-36. [PMID: 22649212 DOI: 10.1093/neuonc/nos122] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aberrant microRNA expression has been implicated in the development of human cancers. Here, we investigated the oncogenic significance and function of miR-23b in glioma. We identified that the expression of miR-23b was elevated in both glioma samples and glioma cells, indicated by real-time polymerase chain reaction analyses. Down-regulation of miR-23b triggered growth inhibition, induced apoptosis, and suppressed invasion of glioma in vitro. Luciferase assay and Western blot analysis revealed that VHL is a direct target of miR-23b. Restoring expression of VHL inhibited glioma proliferation and invasion. Mechanistic investigation revealed that miR-23b deletion decreased HIF-1α/VEGF expression and suppressed β-catenin/Tcf-4 transcription activity by targeting VHL. Furthermore, expression of VHL was inversely correlated with miR-23b in glioma samples and was predictive of patient survival in a retrospective analysis. Therefore, we demonstrated that downregulation of miR-23b suppressed tumor survival through targeting VHL, leading to the inhibition of β-catenin/Tcf-4 and HIF-1α/VEGF signaling pathways.
Collapse
Affiliation(s)
- Lingchao Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Joubert syndrome: brain and spinal cord malformations in genotyped cases and implications for neurodevelopmental functions of primary cilia. Acta Neuropathol 2012; 123:695-709. [PMID: 22331178 DOI: 10.1007/s00401-012-0951-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 12/12/2022]
Abstract
Joubert syndrome (JS) is an autosomal recessive ciliopathy characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability. The brain is malformed, with severe vermian hypoplasia, fourth ventriculomegaly, and "molar tooth" appearance of the cerebral and superior cerebellar peduncles visible as consistent features on neuroimaging. Neuropathological studies, though few, suggest that several other brain and spinal cord structures, such as the dorsal cervicomedullary junction, may also be affected in at least some patients. Genetically, JS is heterogeneous, with mutations in 13 genes accounting for approximately 50% of patients. Here, we compare neuropathologic findings in five subjects with JS, including four with defined mutations in OFD1 (2 siblings), RPGRIP1L, or TCTN2. Characteristic findings in all JS genotypes included vermian hypoplasia, fragmented dentate and spinal trigeminal nuclei, hypoplastic pontine and inferior olivary nuclei, and nondecussation of corticospinal tracts. Other common findings, seen in multiple genotypes but not all subjects, were dorsal cervicomedullary heterotopia, nondecussation of superior cerebellar peduncles, enlarged arcuate nuclei, hypoplastic reticular formation, hypoplastic medial lemnisci, and dorsal spinal cord disorganization. Thus, while JS exhibits significant neuropathologic as well as genetic heterogeneity, no genotype-phenotype correlations are apparent as yet. Our findings suggest that primary cilia are important for neural patterning, progenitor proliferation, cell migration, and axon guidance in the developing human brain and spinal cord.
Collapse
|
114
|
FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep 2012; 32:113-30. [PMID: 22115363 DOI: 10.1042/bsr20110046] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When aberrant, factors critical for organ morphogenesis are also commonly involved in disease progression. FOXA1 (forkhead box A1), also known as HNF3α (hepatocyte nuclear factor 3α), is required for postnatal survival due to its essential role in controlling pancreatic and renal function. In addition to regulating a variety of tissues during embryogenesis and early life, rescue experiments have revealed a specific role for FOXA1 in the postnatal development of the mammary gland and prostate. Activity of the nuclear hormone receptors ERα (oestrogen receptor α) and AR (androgen receptor) is also required for proper development of the mammary gland and prostate respectively. FOXA1 modulates ER and AR function in breast and prostate cancer cells, supporting the postulate that FOXA1 is involved in ER and AR signalling under normal conditions, and that some carcinogenic processes in these tissues stem from hormonally regulated developmental pathways gone awry. In addition to broadly reviewing the function of FOXA1 in various aspects of development and cancer, this review focuses on the interplay of FOXA1/ER and FOXA1/AR, in normal and cancerous mammary and prostate epithelial cells. Given the hormone dependency of both breast and prostate cancer, a thorough understanding of FOXA1's role in both cancer types is critical for battling hormone receptor-positive disease and acquired anti-hormone resistance.
Collapse
|
115
|
Cage TA, Louie JD, Liu SR, Alvarez-Buylla A, Gupta N, Hyer J. Distinct patterns of human medulloblastoma dissemination in the developing chick embryo nervous system. Clin Exp Metastasis 2012; 29:371-80. [PMID: 22322278 DOI: 10.1007/s10585-012-9456-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 01/21/2012] [Indexed: 11/29/2022]
Abstract
Medulloblastoma (MB) is the most common malignant primary brain tumor in children. Aggressive tumors that disseminate along the leptomeninges carry extremely poor prognoses. Mechanisms that predict dissemination are poorly understood. Our objective was to develop a reliable and reproducible model to study MB dissemination. We have created a chicken-human xenograft to study features of MB with leptomeningeal dissemination. Human MB cell lines (D283, Daoy), primary human MB cells (SF8113), and primary genetic mouse model (Math1cre:SmoM2 flox/flox) MB cells were either transfected to express green fluorescent protein (GFP) or were labeled with a membrane permeable green fluorescent probe. Cells were then injected as aggregates or implanted as pellets into the developing chicken brain immediately after neural tube closure at embryonic day 2 (E2). Most embryos were harvested three days after implantation (E5) though some were harvested up to E15. The developing brain was analyzed via whole mount fluorescent imaging and tissue section immunohistochemistry. Human and mouse MBs survived in the developing chicken central nervous system (CNS). They exhibited distinct patterns of incorporation and dissemination into the CNS that were consistent with observed phenotypes of the corresponding human patient or mouse host. Specifically, metastatic D283 cells disseminated along the leptomeninges whereas Daoy, primary mouse MB, and primary human MB cells did not. This work supports an avian-human xenograft as a successful model to study patterns of MB dissemination. Our model provides a basis for manipulating cell signaling mechanisms to understand critical targets involved in MB dissemination.
Collapse
Affiliation(s)
- Tene A Cage
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA 94143-0112, USA
| | | | | | | | | | | |
Collapse
|
116
|
Ferruzzi P, Mennillo F, De Rosa A, Giordano C, Rossi M, Benedetti G, Magrini R, Pericot Mohr GL, Miragliotta V, Magnoni L, Mori E, Thomas R, Tunici P, Bakker A. In vitro and in vivo characterization of a novel Hedgehog signaling antagonist in human glioblastoma cell lines. Int J Cancer 2012; 131:E33-44. [PMID: 22072503 DOI: 10.1002/ijc.27349] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 10/21/2011] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is composed of heterogeneous and genetically different cells, which are highly invasive and motile. The standard chemotherapeutic agent, temozolomide, affects GBM cell proliferation but is generally unable to prevent tumor recurrence. Hedgehog pathway activation has been reported to be relevant in GBM and different pharmacological pathway modulators have been identified. We report that by growing a commercially available recurrent GBM cell line (DBTRG-05MG) without serum and in the presence of defined growth factors; we obtained a less differentiated cell population, growing in suspension as neurospheres, in which the Hedgehog pathway is activated. Furthermore, the expression profile of Hedgehog pathway components found in DBTRG-05MG neurospheres is similar to primary stem-like cells derived from recurrent GBM patients. We report the effect of our novel specific Smoothened receptor antagonist (SEN450) on neurosphere growing cells and compared its effect to that of well known benchmark compounds. Finally, we showed that SEN450 is both antiproliferative on its own and further reduces tumor volume after temozolomide pretreatment in a mouse xenograft model using DBTRG-05MG neurosphere cells. Altogether our data indicate that the Hedgehog pathway is not irreversibly switched off in adherent cells but can be reactivated when exposed to well-defined culture conditions, thus restoring the condition observed in primary tumor-derived material, and that pharmacological modulation of this pathway can have profound influences on tumor proliferation. Therefore, pharmacological inhibition of the Hedgehog pathway is a potentially useful therapeutic approach in GBM.
Collapse
Affiliation(s)
- Pietro Ferruzzi
- Department of Oncology, Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Cao X, Geradts J, Dewhirst M, Lo HW. Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene 2012; 31:104-15. [PMID: 21666711 PMCID: PMC3175334 DOI: 10.1038/onc.2011.219] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/30/2011] [Accepted: 04/28/2011] [Indexed: 12/22/2022]
Abstract
The Hedgehog signaling pathway is one of the most dysregulated pathways in human cancers. The glioma-associated oncogene homolog 1 (GLI1) transcription factor is the terminal effector of the Hedgehog pathway, frequently activated in human breast cancer and an emerging target of breast cancer therapy. While somatic mutations in the human GLI1 gene have never been reported in any cell or tumor type, we recently uncovered the existence of a novel alternatively spliced, truncated GLI1 (tGLI1) that has an in-frame deletion of 41 codons spanning the entire exon 3 and part of exon 4 of the GLI1 gene. Using glioblastoma models, we showed that tGLI1 has gained the ability to promote glioblastoma migration and invasion via its gain-of-function transcriptional activity. However, the pathological impact of tGLI1 on breast cancer remains undefined. Here, we report that tGLI1 is frequently expressed in human breast cancer cell lines and primary specimens we have examined to date, but is undetectable in normal breast tissues. We found for the first time that tGLI1, but not GLI1, binds to and enhances the human vascular endothelial growth factor-A (VEGF-A) gene promoter, leading to its upregulation. Consequently, tGLI1-expressing MDA-MB-231 breast cancer cells secret higher levels of VEGF-A and contain a higher propensity, than the isogenic cells with control vector and GLI1, to stimulate in vitro angiogenesis of human vascular endothelial cells. We further showed that tGLI1 has gained the ability to enhance the motility and invasiveness of breast cancer cells in a proliferation-independent manner and that this functional gain is associated with increased expression of migration/invasion-associated genes, CD24, MMP-2 and MMP-9. tGLI1 has also acquired the property to facilitate anchorage-independent growth of breast cancer cells. Collectively, our results define tGLI1 as a gain-of-function GLI1 transcription factor and a novel mediator of the behavior of clinically more aggressive breast cancer.
Collapse
Affiliation(s)
- Xinyu Cao
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC 27710
| | - Joseph Geradts
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710
- Duke University Comprehensive Cancer Center, Durham, NC 27710
| | - Mark Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
- Duke University Comprehensive Cancer Center, Durham, NC 27710
| | - Hui-Wen Lo
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC 27710
- Duke University Comprehensive Cancer Center, Durham, NC 27710
| |
Collapse
|
118
|
Xu Q, Yuan X, Yu JS. Glioma stem cell research for the development of immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:216-25. [PMID: 22639171 DOI: 10.1007/978-1-4614-3146-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malignant gliomas are characterized by its invasiveness and dissemination, resulting in frequent tumor recurrence after surgical resection and/or conventional chemotherapy and radiation therapy. Various strategies of active and passive immunotherapy in developing stages have shown promise to increase patient survival time with little severe side effects. In recent years, glioma stem cells had been isolated from patient tumor specimens. Biochemical and biological characterization of these cancer initiating cells implicated their critical roles in cancer growth, malignancy and resistance to conventional treatments. In this chapter, we review recent research progress in targeting brain cancer using neural stem cells delivered cytotoxic factors and immune regulation factor, dendritic cell based vaccination, with special emphasis on targeting glioma stem cells. We present evidence supporting the notion that glioma stem cells may be preferred therapeutic targets not only for conventional therapies, but also for immunotherapies. Future progress in glioma stem cell research may fundamentally improve the prospect of malignant glioma treatments.
Collapse
Affiliation(s)
- Qijin Xu
- Maxine Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | | |
Collapse
|
119
|
Carpenter RL, Lo HW. Identification, functional characterization, and pathobiological significance of GLI1 isoforms in human cancers. VITAMINS AND HORMONES 2012; 88:115-40. [PMID: 22391302 DOI: 10.1016/b978-0-12-394622-5.00006-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glioma-associated oncogene homolog 1 (GLI1) is the nuclear mediator of Hedgehog signaling that activates gene transcription via its zinc finger DNA-binding and transactivation domains. GLI1 plays a critical role in several cellular processes, including embryonic development, tumorigenesis, and tumor growth and progression. The human GLI1 gene was identified in 1987 as an amplified gene in glioblastoma. Somatic mutations have never been reported in the GLI1 gene in any cell or tumor type. Very recently in 2008-2009, the full-length GLI1 transcript was discovered to undergo alternative splicing to form two shorter isoforms, namely N-terminal deletion variant (GLI1ΔN) and truncated GLI1 (tGLI1). Emerging evidence suggests that the three structurally different GLI1 isoforms are distinctly different in their expression patterns and functions in the context of human cancers. The tGLI1 isoform, in particular, has been shown to gain the ability to modulate expression of the genes that are not regulated by GLI1 and to support the biology of more aggressive cancer. Consequently, a key focus of this chapter is to summarize and compare the properties of the three GLI1 isoforms and their relations to malignant biology of human cancers.
Collapse
Affiliation(s)
- Richard L Carpenter
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
120
|
Winkler JD, Isaacs AK, Xiang C, Baubet V, Dahmane N. Design, synthesis, and biological evaluation of estrone-derived hedgehog signaling inhibitors. Tetrahedron 2011; 67:10261-10266. [PMID: 22199406 PMCID: PMC3244726 DOI: 10.1016/j.tet.2011.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design, synthesis and biological evaluation of new analogs of the naturally occurring compound cyclopamine, a Hedgehog signaling inhibitor, are described. Stucture-activity relationship studies lead to an evolving model for the pharmacophore of this medically promising compound class of anti-cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Jeffrey D Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
121
|
Abstract
The Hedgehog (Hh)-Gli signaling pathway is an essential pathway involved in development and cancer. It controls the Gli code-the sum of all activator and repressor functions of the Gli transcription factors. Through the Gli code, and Gli1 in particular, it modulates the fate and behavior of stem and cancer stem cells, as well as tumor growth and survival in many human cancer types. It also affects recurrence and metastasis and is enhanced in advanced tumors, where it promotes an embryonic stem (ES) cell-like gene expression signature. A central component of this signature, Nanog, is critical for glioblastoma and cancer stem cell survival and expansion. Gli1 activity is also enhanced by several oncogenic proteins, including Ras, Myc, and Akt, and by loss of tumor suppressors, such as p53 and PTEN. The oncogenic load boosts Gli1 levels, which supports tumor progression, and promotes a critical threshold of Gli1 activity that allows cells to enter the metastatic transition. In colon cancers, this transition is defined by enhanced Hh-Gli and, surprisingly, by repressed Wnt-Tcf signaling. Together our data support a model in which the Gli code, and Gli1 in particular, acts as a key sensor that responds to both Hh signals and the oncogenic load. We hypothesize that, in turn, the Gli-regulated ES-like factors induce a reprogramming event in cancer stem cells that promotes high invasion, growth and/or metastasis. Targeting the Gli code, the autoregulatory Gli1-Nanog module and interacting partners and pathways thus offers new therapeutic possibilities.
Collapse
Affiliation(s)
- Ariel Ruiz i Altaba
- University of Geneva Medical School, 8242 Centre Médicale Universitaire, Geneva, Switzerland.
| |
Collapse
|
122
|
Abstract
The Hedgehog (Hh) pathway is a major regulator of many fundamental processes in vertebrate embryonic development including stem cell maintenance, cell differentiation, tissue polarity and cell proliferation. Constitutive activation of the Hh pathway leading to tumorigenesis is seen in basal cell carcinomas and medulloblastoma. A variety of other human cancers, including brain, gastrointestinal, lung, breast and prostate cancers, also demonstrate inappropriate activation of this pathway. Paracrine Hh signaling from the tumor to the surrounding stroma was recently shown to promote tumorigenesis. This pathway has also been shown to regulate proliferation of cancer stem cells and to increase tumor invasiveness. Targeted inhibition of Hh signaling may be effective in the treatment and prevention of many types of human cancers. The discovery and synthesis of specific Hh pathway inhibitors have significant clinical implications in novel cancer therapeutics. Several synthetic Hh antagonists are now available, several of which are undergoing clinical evaluation. The orally available compound, GDC-0449, is the farthest along in clinical development. Initial clinical trials in basal cell carcinoma and treatment of select patients with medulloblastoma have shown good efficacy and safety. We review the molecular basis of Hh signaling, the current understanding of pathway activation in different types of human cancers and we discuss the clinical development of Hh pathway inhibitors in human cancer therapy.
Collapse
Affiliation(s)
- Sachin Gupta
- Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | | | | |
Collapse
|
123
|
Tzelepi V, Karlou M, Wen S, Hoang A, Logothetis C, Troncoso P, Efstathiou E. Expression of hedgehog pathway components in prostate carcinoma microenvironment: shifting the balance towards autocrine signalling. Histopathology 2011; 58:1037-47. [PMID: 21707705 DOI: 10.1111/j.1365-2559.2011.03860.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS The hedgehog (Hh) signalling pathway has been implicated in the pathogenesis and aggressiveness of prostate cancer through epithelial-mesenchymal interactions. The aim of this study was to elucidate the cell-type partitioned expression of the Hh pathway biomarkers in the non-neoplastic and tumour microenvironments and to correlate it with the grade and stage of prostate cancer. METHODS AND RESULTS Expression of the Hh pathway components (Shh, Smo, Ptch, Gli1) in the microenvironment of non-neoplastic peripheral zone (n = 119), hormone-naive primary prostate carcinoma (n = 141) and castrate-resistant bone marrow metastases (n = 53) was analysed using immunohistochemistry in tissue microarrays and bone marrow sections. Results showed that epithelial Shh, Smo and Ptch expression was up-regulated, whereas stromal Smo, Ptch, and Gli1 expression was down-regulated in prostate carcinomas compared to non-neoplastic peripheral zone tissue. Ptch expression was modulated further in high-grade and high-stage primary tumours and in bone marrow metastases. Hh signalling correlated with ki67 and vascular endothelial growth factor (VEGF) but not with CD31 expression. CONCLUSION Our results highlight the importance of Hh-mediated epithelial-mesenchymal interactions in the non-neoplastic prostate and imply that shifting the balance from paracrine towards autocrine signalling is important in the pathogenesis and progression of prostate carcinoma.
Collapse
Affiliation(s)
- Vassiliki Tzelepi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Kai M, Onishi H, Souzaki M, Tanaka H, Kubo M, Tanaka M, Katano M. Semi-quantitative evaluation of CD44(+) /CD24(-) tumor cell distribution in breast cancer tissue using a newly developed fluorescence immunohistochemical staining method. Cancer Sci 2011; 102:2132-8. [PMID: 21838786 DOI: 10.1111/j.1349-7006.2011.02063.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
CD44(+) /CD24(-) tumor cells are reported to contain cancer stem cells in breast cancer. The main purpose of the present study is to develop an immunohistofluorescence method that can quantitatively analyze CD44(+) /CD24(-) tumor cell distribution in breast cancer tissue and help better define the role of CD44(+) /CD24(-) tumor cells in breast cancer. The samples used were from 21 primary breast cancer patients who underwent neoadjuvant chemotherapy and 17 cases with sentinel lymph nodes that had lymph node micrometastasis. CD44(+) /CD24(-) tumor cells were distinguished at a single cell level using improved triple-staining immunohistofluorescence and a simulated laser capture microdissection method. The percentage of CD44(+) /CD24(-) cells significantly increased following neoadjuvant chemotherapy treatment (0.93% and 2.78%, before and after, respectively, P = 0.0043). The percentage of CD44(+) /CD24(-) cells was also significantly high in micrometastatic sentinel lymph nodes (0.49% and 1.91%, primary tumors and lymph nodes, respectively, P = 0.0246). The CD44(+) /CD24(-) tumor cell distribution was heterogeneous in both breast cancer tissue and lymph node metastasis. In a xenograft model using immunodeficient mice, the hedgehog signaling inhibitor cyclopamine repressed the tumorigenicity of CD44(+) /CD24(-) cells. Our results suggest that this semi-quantitative immunohistochemical analysis is valuable for detecting a small population of cells in cancer tissues and that the hedgehog signaling pathway inhibitor cyclopamine is useful for regulating the CD44(+) /CD24(-) tumor cells in breast cancer.
Collapse
Affiliation(s)
- Masaya Kai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
125
|
Isaacs AK, Xiang C, Baubet V, Dahmane N, Winkler JD. Studies directed toward the elucidation of the pharmacophore of steroid-based Sonic Hedgehog signaling inhibitors. Org Lett 2011; 13:5140-3. [PMID: 21905689 DOI: 10.1021/ol202020c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previous work from our laboratory has established that the readily available steroid-based analog 2 of cyclopamine 1 is, like 1, a highly potent inhibitor of Hedgehog signaling. The first structure-activity relationship studies on 2, i.e., the synthesis and biological evaluation of both the C-17 epi analog 4 and the C-3 deoxy analog 11, both of which are more potent than cyclopamine 1, are described. The implications of these results for the emerging pharmacophore of these Sonic Hedgehog signaling inhibitors are discussed.
Collapse
Affiliation(s)
- André K Isaacs
- Department of Chemistry, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
126
|
Zhang Z, Baubet V, Ventocilla C, Xiang C, Dahmane N, Winkler JD. Stereoselective synthesis of F-ring saturated estrone-derived inhibitors of Hedgehog signaling based on cyclopamine. Org Lett 2011; 13:4786-9. [PMID: 21842835 DOI: 10.1021/ol2017966] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous work in this laboratory established that the readily available F-ring aromatic analog of cyclopamine is a highly potent inhibitor of Hedgehog signaling. The synthesis and biological evaluation of two F-ring saturated analogs that are more potent than the F-ring aromatic structure are reported.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Chemistry, The University of Pennsylvania , Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
127
|
Mimeault M, Batra SK. Complex oncogenic signaling networks regulate brain tumor-initiating cells and their progenies: pivotal roles of wild-type EGFR, EGFRvIII mutant and hedgehog cascades and novel multitargeted therapies. Brain Pathol 2011; 21:479-500. [PMID: 21615592 DOI: 10.1111/j.1750-3639.2011.00505.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complex signaling cross-talks between different growth factor cascades orchestrate the primary brain cancer development. Among the frequent deregulated oncogenic pathways, the ligand-activated wild-type epidermal growth factor receptor (EGFR), constitutively activated EGFRvIII mutant and sonic hedgehog pathways have attracted much attention because of their pivotal roles in pediatric medulloblastomas and adult glioblastoma multiformes (GBM) brain tumors. The enhanced expression levels and activation of EGFR, EGFRvIII mutant and hedgehog signaling elements can provide key roles for the sustained growth, migration and local invasion of brain tumor-initiating cells (BTICs) and their progenies, resistance to current therapies and disease relapse. These tumorigenic cascades also can cooperate with Wnt/β-catenin, Notch, platelet-derived growth factor (PDGF)/PDGF receptors (PDGFRs), hepatocyte growth factor (HGF)/c-Met receptor and vascular endothelial growth factor (VEGF)/VEGF receptors (VEGFRs) for the acquisition of a more malignant behavior and survival advantages by brain tumor cells during disease progression. Therefore, the simultaneous targeting of these oncogenic signaling components including wild-type EGFR, EGFRvIII mutant and hedgehog pathways may constitute a potential therapeutic approach of great clinical interest to eradicate BTICs and improve the efficacy of current clinical treatments by radiation and/or chemotherapy against aggressive and recurrent medulloblastomas and GBMs.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Neb. 68198-5870, USA.
| | | |
Collapse
|
128
|
Singh S, Wang Z, Fei DL, Black KE, Goetz JA, Tokhunts R, Giambelli C, Rodriguez-Blanco J, Long J, Lee E, Briegel KJ, Bejarano PA, Dmitrovsky E, Capobianco AJ, Robbins DJ. Hedgehog-producing cancer cells respond to and require autocrine Hedgehog activity. Cancer Res 2011; 71:4454-63. [PMID: 21565978 PMCID: PMC3809996 DOI: 10.1158/0008-5472.can-10-2313] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A number of Smoothened (SMO) pathway antagonists are currently undergoing clinical trials as anticancer agents. These drugs are proposed to attenuate tumor growth solely through inhibition of Hedgehog (HH), which is produced in tumor cells but acts on tumor stromal cells. The pivotal argument underlying this model is that the growth-inhibitory properties of SMO antagonists on HH-producing cancer cells are due to their off-target effects. Here, we show that the tumorigenic properties of such lung cancer cells depend on their intrinsic level of HH activity. Notably, reducing HH signaling in these tumor cells decreases HH target gene expression. Taken together, these results question the dogma that autocrine HH signaling plays no role in HH-dependent cancers, and does so without using SMO antagonists.
Collapse
Affiliation(s)
- Samer Singh
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Zhiqiang Wang
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Dennis Liang Fei
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Kendall E. Black
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - John A. Goetz
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Robert Tokhunts
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Camilla Giambelli
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Jezabel Rodriguez-Blanco
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Jun Long
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Karoline J. Briegel
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Pablo A. Bejarano
- Department of Pathology, Jackson Memorial Hospital, University of Miami, Miami, Florida 33136
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
- Norris Cotton Cancer Center, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Anthony J. Capobianco
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136
| | - David J. Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136
| |
Collapse
|
129
|
Takezaki T, Hide T, Takanaga H, Nakamura H, Kuratsu JI, Kondo T. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci 2011; 102:1306-12. [PMID: 21453386 PMCID: PMC11158128 DOI: 10.1111/j.1349-7006.2011.01943.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent findings have demonstrated that malignant tumors, including glioblastoma multiforme, contain cancer-initiating cells (also known as cancer stem cells), which self-renew and are malignant, with features of tissue-specific stem cells. As these cells are resistant to irradiation and anti-cancer drugs, it is important to characterize them and find targeting therapies. In this study, we established two primary human glioma cell lines from anaplastic oligodendroglioma and glioblastoma multiforme. These lines were enriched in glioma-initiating cells, as just 10 cells formed malignant glioma when injected into mouse brain. We used these cell lines to examine the roles of the Notch, Hedgehog and Wnt signaling pathways, which are involved in stem-cell maintenance and tumorigenesis, to determine which of these pathways are crucial to glioma-initiating cells and their regulation. Here we show that the Hedgehog pathway is indispensable for glioma-initiating cell proliferation and tumorigenesis; the Hedgehog signaling inhibitors prevented glioma-initiating cell proliferation, while signaling inhibitors for Notch or Wnt did not. Overexpression of Gli2ΔC, a C-terminal-truncated form of Gli2 that antagonizes Gli transcription factor functions, blocked glioma-initiating cell proliferation in culture and tumorigenesis in vivo. Knockdown of the Gli downstream factor Cdc2 also prevented glioma-initiating cell proliferation. Taken together, these results show that the Hedgehog→ Gli→Cdc2 signaling cascade plays a role in the proliferation and malignancy of glioma-initiating cells.
Collapse
Affiliation(s)
- Tatsuya Takezaki
- Laboratory for Cell Lineage Modulation, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Abstract
Bmi1 is a key stem cell regulatory gene implicated in the pathogenesis of many aggressive cancers, including medulloblastoma. Overexpression of Bmi1 promotes cell proliferation and is required for hedgehog (Hh) pathway-driven tumorigenesis. This study aimed to determine if Sonic hedgehog (Shh) modulates the key stem cell regulatory gene Bmi1 in childhood medulloblastoma brain tumor-initiating cells (BTICs). Although current literature suggests that there is a correlation between Shh pathway genes and Bmi1 expression, it is unclear whether there is indeed a direct regulatory mechanism. To address whether Shh induces expression of Bmi1, stem cell-enriched populations from medulloblastoma cell lines and primary samples were treated with Shh ligand and KAAD-cyclopamine (Shh antagonist). Our data indicate that Bmi1 expression positively correlates with increasing Shh ligand concentrations. Chromatin immunoprecipitation reveals that Gli1 preferentially binds to the Bmi1 promoter, and Bmi1 transcript levels are increased and decreased by Gli1 overexpression and downregulation, respectively. Knockdown experiments of Bmi1 in vitro and in vivo demonstrate that Hh signaling not only drives Bmi1 expression, but a feedback mechanism exists wherein downstream effectors of Bmi1 may, in turn, activate Hh pathway genes. These findings implicate Bmi1 and Hh as mutually indispensable pathways in medulloblastoma BTIC maintenance. Recent molecular characterization of medulloblastoma also reveals that Bmi1 is overexpressed across all subgroups of medulloblastoma, particularly in the most aggressive subtypes. Lastly, despite recent identification of BTIC markers, the molecular characterization of these cell populations remains unclear. In this work, we propose that the BTIC marker CD133 may segregate a cell population with a Hh-receptor phenotype, thus demonstrating a cell-cell interaction between the CD133+ Hh receptor cells and the CD133- Hh-secreting cells.
Collapse
|
131
|
Kim TJ, Lee JY, Hwang TK, Kang CS, Choi YJ. Hedgehog signaling protein expression and its association with prognostic parameters in prostate cancer: a retrospective study from the view point of new 2010 anatomic stage/prognostic groups. J Surg Oncol 2011; 104:472-9. [PMID: 21656527 DOI: 10.1002/jso.21988] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND The expression of Hedgehog (Hh) signaling pathway in prostate cancer is well-known but its clinicopathologic role has not been elucidated well. METHODS Prostatectomy cases of prostate cancer (n=155) were prepared and assessed by clinicopathologic parameters including new 2010 anatomic stage/prognostic groups (ASPG) of prostate cancer. The expression of five Hh signaling proteins including Sonic hedgehog (Shh), Patched, Smoothened, and GLIoma-associated oncogene, in addition with Suppressor of fused (Su(fu)) were analyzed immunohistochemically. Real-time polymerase chain reaction was performed to assess the mRNA expression status. RESULTS The expression of each Hh signaling protein was significantly correlated with poor prognostic parameters such as larger tumor size, high pretreatment prostate-specific antigen (PSA), high Gleason score, perineural invasion and new ASPG. Among Hh signaling proteins, Sonic hedgehog and Smoothened expressions tend to have a significantly higher risk of PSA recurrence (P<0.001 and P=0.011, respectively). Multivariate analysis proved Shh expression as independent prognostic factors of PSA recurrence along with Gleason score, ASPG, tumor volume, and pretreatment PSA. CONCLUSIONS Hh signaling activity is significantly associated with worse prognostic parameters. Shh can be regarded as a poor prognostic factor for PSA recurrence.
Collapse
Affiliation(s)
- Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
132
|
Primary cilia and organogenesis: is Hedgehog the only sculptor? Cell Tissue Res 2011; 345:21-40. [PMID: 21638207 DOI: 10.1007/s00441-011-1192-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/12/2011] [Indexed: 12/23/2022]
Abstract
The primary cilium is a small microtubule-based organelle projecting from the plasma membrane of practically all cells in the mammalian body. In the past 8 years, a flurry of papers has indicated a crucial role of this long-neglected organelle in the development of a wide variety of organs, including derivatives of all three germ layers. A common theme of these studies is the critical dependency of signal transduction of the Hedgehog pathway upon functionally intact cilia to regulate organogenesis. Another common theme is the role that the cilium plays, not necessarily in the determination of the embryonic anlagen of these organs, although this too occurs but rather in the proliferation and morphogenesis of the previously determined organ. We outline the various organ systems that are dependent upon primary cilia for their proper development and we discuss the cilia-dependent roles that Sonic and Indian Hedgehog play in these processes. In addition and most importantly for the field, we discuss the controversial involvement of another major developmental pathway, Wnt signaling, in cilia-dependent organogenesis.
Collapse
|
133
|
Zhu R, Liu Q, Tang J, Li H, Cao Z. Investigations on inhibitors of hedgehog signal pathway: a quantitative structure-activity relationship study. Int J Mol Sci 2011; 12:3018-33. [PMID: 21686166 PMCID: PMC3116172 DOI: 10.3390/ijms12053018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/20/2011] [Accepted: 04/28/2011] [Indexed: 12/30/2022] Open
Abstract
The hedgehog signal pathway is an essential agent in developmental patterning, wherein the local concentration of the Hedgehog morphogens directs cellular differentiation and expansion. Furthermore, the Hedgehog pathway has been implicated in tumor/stromal interaction and cancer stem cell. Nowadays searching novel inhibitors for Hedgehog Signal Pathway is drawing much more attention by biological, chemical and pharmological scientists. In our study, a solid computational model is proposed which incorporates various statistical analysis methods to perform a Quantitative Structure-Activity Relationship (QSAR) study on the inhibitors of Hedgehog signaling. The whole QSAR data contain 93 cyclopamine derivatives as well as their activities against four different cell lines (NCI-H446, BxPC-3, SW1990 and NCI-H157). Our extensive testing indicated that the binary classification model is a better choice for building the QSAR model of inhibitors of Hedgehog signaling compared with other statistical methods and the corresponding in silico analysis provides three possible ways to improve the activity of inhibitors by demethylation, methylation and hydroxylation at specific positions of the compound scaffold respectively. From these, demethylation is the best choice for inhibitor structure modifications. Our investigation also revealed that NCI-H466 served as the best cell line for testing the activities of inhibitors of Hedgehog signal pathway among others.
Collapse
Affiliation(s)
- Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; E-Mails: (R.Z.); (Q.L.)
| | - Qi Liu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; E-Mails: (R.Z.); (Q.L.)
| | - Jian Tang
- Department of Natural Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | - Huiliang Li
- Department of Natural Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | - Zhiwei Cao
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; E-Mails: (R.Z.); (Q.L.)
| |
Collapse
|
134
|
Delbroek H, Steyaert J, Legius E. An 8.9 year old girl with autism and Gorlin syndrome. Eur J Paediatr Neurol 2011; 15:268-70. [PMID: 21190878 DOI: 10.1016/j.ejpn.2010.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/05/2010] [Accepted: 12/05/2010] [Indexed: 11/30/2022]
Abstract
We present an 8.9 year old girl diagnosed with autism and macrocrania. Because of macrocrania, hypertelorism and epidermal punctiform lesions in the palm of the hand, Gorlin syndrome was clinically suspected and molecularly confirmed by finding a deletion of 22 base pairs in the PTCH1 gene. The possibility of an association between autism and Gorlin syndrome is discussed.
Collapse
Affiliation(s)
- Hanne Delbroek
- Department of Child and Adolescent Psychiatry, Catholic University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
135
|
Takahashi T, Kawakami K, Mishima S, Akimoto M, Takenaga K, Suzumiya J, Honma Y. Cyclopamine induces eosinophilic differentiation and upregulates CD44 expression in myeloid leukemia cells. Leuk Res 2011; 35:638-45. [DOI: 10.1016/j.leukres.2010.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 09/27/2010] [Indexed: 12/26/2022]
|
136
|
Van Hateren NJ, Das RM, Hautbergue GM, Borycki AG, Placzek M, Wilson SA. FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools. Development 2011; 138:1893-902. [PMID: 21521736 PMCID: PMC3082296 DOI: 10.1242/dev.064204] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2011] [Indexed: 01/09/2023]
Abstract
The size, composition and functioning of the spinal cord is likely to depend on appropriate numbers of progenitor and differentiated cells of a particular class, but little is known about how cell numbers are controlled in specific cell cohorts along the dorsoventral axis of the neural tube. Here, we show that FatJ cadherin, identified in a large-scale RNA interference (RNAi) screen of cadherin genes expressed in the neural tube, is localised to progenitors in intermediate regions of the neural tube. Loss of function of FatJ promotes an increase in dp4-vp1 progenitors and a concomitant increase in differentiated Lim1(+)/Lim2(+) neurons. Our studies reveal that FatJ mediates its action via the Hippo pathway mediator Yap1: loss of downstream Hippo components can rescue the defect caused by loss of FatJ. Together, our data demonstrate that RNAi screens are feasible in the chick embryonic neural tube, and show that FatJ acts through the Hippo pathway to regulate cell numbers in specific subsets of neural progenitor pools and their differentiated progeny.
Collapse
Affiliation(s)
- Nick J. Van Hateren
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Raman M. Das
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Guillaume M. Hautbergue
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Anne-Gaëlle Borycki
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Marysia Placzek
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart A. Wilson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
137
|
Mainwaring LA, Kenney AM. Divergent functions for eIF4E and S6 kinase by sonic hedgehog mitogenic signaling in the developing cerebellum. Oncogene 2011; 30:1784-97. [PMID: 21339731 PMCID: PMC3583293 DOI: 10.1038/onc.2010.564] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/02/2010] [Accepted: 09/29/2010] [Indexed: 01/29/2023]
Abstract
Cerebellar development entails rapid peri-natal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells-of-origin for certain medulloblastomas. CGNPs require insulin-like growth factor (IGF) for survival and sonic hedgehog (Shh)-implicated in medulloblastoma-for proliferation. The IGF-responsive kinase mammalian target of rapamycin (mTOR) drives proliferation-associated protein synthesis. We asked whether Shh signaling regulates mTOR targets to promote CGNP proliferation despite constitutive IGF signaling under proliferative and differentiation-promoting conditions. Surprisingly, Shh promoted eukaryotic initiation factor 4E (eIF4E) expression, but inhibited S6 kinase (S6K). In vivo, S6K activity specifically marked the CGNP population transitioning from proliferation-competent to post-mitotic. Indeed, eIF4E was required for CGNP proliferation, while S6K activation drove cell cycle exit. Protein phosphatase 2A (PP2A) inhibition rescued S6K activity. Moreover, Shh upregulated the PP2A B56γ subunit, which targets S6K for inactivation and was required for CGNP proliferation. These findings reveal unique developmental functions for eIF4E and S6 kinase wherein their activity is specifically uncoupled by mitogenic Shh signaling.
Collapse
Affiliation(s)
- Lori A. Mainwaring
- Biochemistry, Cell, and Molecular Biology Program, Weill Medical College of Cornell University, New York NY 10021 USA
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 USA
| | - Anna Marie Kenney
- Biochemistry, Cell, and Molecular Biology Program, Weill Medical College of Cornell University, New York NY 10021 USA
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 USA
| |
Collapse
|
138
|
Malek R, Matta J, Taylor N, Perry ME, Mendrysa SM. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation. PLoS One 2011; 6:e17884. [PMID: 21437245 PMCID: PMC3060880 DOI: 10.1371/journal.pone.0017884] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/16/2011] [Indexed: 02/07/2023] Open
Abstract
Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro)), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/-) mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.
Collapse
Affiliation(s)
- Reem Malek
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Jennifer Matta
- Laboratory Animal Sciences Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Natalie Taylor
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Mary Ellen Perry
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Susan M. Mendrysa
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
139
|
Uchida H, Arita K, Yunoue S, Yonezawa H, Shinsato Y, Kawano H, Hirano H, Hanaya R, Tokimura H. Role of sonic hedgehog signaling in migration of cell lines established from CD133-positive malignant glioma cells. J Neurooncol 2011; 104:697-704. [PMID: 21380601 DOI: 10.1007/s11060-011-0552-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 02/18/2011] [Indexed: 01/11/2023]
Abstract
The sonic hedgehog (SHH) signaling pathway is essential for normal development and embryogenic morphogenesis. In malignant neoplasms its inappropriate activation correlates with tumorigenesis, proliferation, and migration. However, the role of SHH in infiltrative growth of glioblastoma remains to be elucidated. CD133 is a marker of tumor stem cells in glioblastoma, which are thought to play important roles in tumorigenesis, drug resistance, and tumor recurrence. We investigated the role of the SHH signaling pathway in migration of glioblastoma cell lines derived from CD133-positive cells. Two cell lines, GBM1 and GBM2, were established from CD133-positive cells sorted on an automagnetic cell separator from dispersed human glioblastoma cells. Both cell lines exhibited sphere-like growth in serum-free medium containing growth factor. Expression of patched (PTCH)-, a receptor of SHH, of smoothened (SMO)-, a 7 transmembrane receptor, and of GLI1- and GLI2, PTCH cascade signal proteins, was evaluated by reverse-transcription polymerase chain reaction (RT-PCR). The effects of recombinant SHH in the medium, and of knockdown of SMO-, GLI1- or GLI2 messenger RNA (mRNA) on the migratory ability of neoplastic cells were evaluated by scratch assays. RT-PCR revealed the presence of PTCH-, SMO-, GLI1-, and GLI2 mRNA in these cells. Their migratory ability was significantly enhanced (P < 0.05) by addition of recombinant SHH to the medium. Knockdown of SMO-, GLI1- or GLI2 mRNA resulted in significant decrease in the mobility of the neoplastic cells. Our study suggests that the SHH pathway plays an important role in the migratory ability of cells derived from CD133-positive human glioblastoma cells.
Collapse
Affiliation(s)
- Hiroyuki Uchida
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG. A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 2011; 11:464-73. [PMID: 21193839 DOI: 10.4161/cbt.11.5.14410] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Curcumin is a polyphenolic compound derived from the Indian spice turmeric. We used nanoparticle-encapsulated curcumin to treat medulloblastoma and glioblastoma cells. This formulation caused a dose-dependent decrease in growth of multiple brain tumor cell cultures, including the embryonal tumor derived lines DAOY and D283Med, and the glioblastoma neurosphere lines HSR-GBM1 and JHH-GBM14. The reductions in viable cell mass observed were associated with a combination of G(2)/M arrest and apoptotic induction. Curcumin also significantly decreased anchorage-independent clonogenic growth and reduced the CD133-positive stem-like population. Down-regulation of the insulin-like growth factor pathway in DAOY medulloblastoma cells was observed, providing one possible mechanism for the changes. Levels of STAT3 were also attenuated. Hedgehog signaling was blocked in DAOY cells but Notch signaling was not inhibited. Our data suggest that curcumin nanoparticles can inhibit malignant brain tumor growth through the modulation of cell proliferation, survival and stem cell phenotype.
Collapse
Affiliation(s)
- Kah Jing Lim
- Graduate Program in Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
141
|
Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors. PLoS One 2011; 6:e14680. [PMID: 21379383 PMCID: PMC3040755 DOI: 10.1371/journal.pone.0014680] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 01/03/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling is crucial for the generation and maintenance of both embryonic and adult stem cells, thereby regulating development and tissue homeostasis. In the developing neocortex, Sonic Hedgehog (Shh) regulates neural progenitor cell proliferation. During neurogenesis, radial glial cells of the ventricular zone (VZ) are the predominant neocortical progenitors that generate neurons through both symmetric and asymmetric divisions. Despite its importance, relatively little is known of the molecular pathways that control the switch from symmetric proliferative to differentiative/neurogenic divisions in neural progenitors. PRINCIPAL FINDINGS Here, we report that conditional inactivation of Patched1, a negative regulator of the Shh pathway, in Nestin positive neural progenitors of the neocortex leads to lamination defects due to improper corticogenesis and an increase in the number of symmetric proliferative divisions of the radial glial cells. Hedgehog-activated VZ progenitor cells demonstrated a concomitant upregulation of Hes1 and Blbp, downstream targets of Notch signaling. The Notch signaling pathway plays a pivotal role in the maintenance of stem/progenitor cells and the regulation of glial versus neuronal identity. To study the effect of Notch signaling on Hh-activated neural progenitors, we inactivated both Patched1 and Rbpj, a transcriptional mediator of Notch signaling, in Nestin positive cells of the neocortex. CONCLUSIONS Our data indicate that by mid neurogenesis (embryonic day 14.5), attenuation of Notch signaling reverses the effect of Patched1 deletion on neurogenesis by restoring the balance between symmetric proliferative and neurogenic divisions. Hence, our results demonstrate that correct corticogenesis is an outcome of the interplay between the Hh and Notch signaling pathways.
Collapse
|
142
|
Treatment resistance mechanisms of malignant glioma tumor stem cells. Cancers (Basel) 2011; 3:621-35. [PMID: 24212632 PMCID: PMC3756380 DOI: 10.3390/cancers3010621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/14/2010] [Accepted: 01/26/2011] [Indexed: 12/17/2022] Open
Abstract
Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed.
Collapse
|
143
|
Friedman GK, Gillespie GY. Cancer Stem Cells and Pediatric Solid Tumors. Cancers (Basel) 2011; 3:298-318. [PMID: 21394230 PMCID: PMC3050504 DOI: 10.3390/cancers3010298] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 12/21/2022] Open
Abstract
Recently, a subpopulation of cells, termed tumor-initiating cells or tumor stem cells (TSC), has been identified in many different types of solid tumors. These TSC, which are typically more resistant to chemotherapy and radiation compared to other tumor cells, have properties similar to normal stem cells including multipotency and the ability to self-renew, proliferate, and maintain the neoplastic clone. Much of the research on TSC has focused on adult cancers. With considerable differences in tumor biology between adult and pediatric cancers, there may be significant differences in the presence, function and behavior of TSC in pediatric malignancies. We discuss what is currently known about pediatric solid TSC with specific focus on TSC markers, tumor microenvironment, signaling pathways, therapeutic resistance and potential future therapies to target pediatric TSC.
Collapse
Affiliation(s)
- Gregory K. Friedman
- Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - G. Yancey Gillespie
- Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; E-Mail:
| |
Collapse
|
144
|
Feijóo CG, Oñate MG, Milla LA, Palma VA. Sonic hedgehog (Shh)-Gli signaling controls neural progenitor cell division in the developing tectum in zebrafish. Eur J Neurosci 2011; 33:589-98. [PMID: 21219478 DOI: 10.1111/j.1460-9568.2010.07560.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite considerable progress, the mechanisms that control neural progenitor differentiation and behavior, as well as their functional integration into adult neural circuitry, are far from being understood. Given the complexity of the mammalian brain, non-mammalian models provide an excellent model to study neurogenesis, including both the cellular composition of the neurogenic microenvironment, and the factors required for precursor growth and maintenance. In particular, we chose to address the question of the control of progenitor proliferation by Sonic hedgehog (Shh) using the zebrafish dorsal mesencephalon, known as the optic tectum (OT), as a model system. Here we show that either inhibiting pharmacologically or eliminating hedgehog (Hh) signaling by using mutants that lack essential components of the Hh pathway reduces neural progenitor cell proliferation affecting neurogenesis in the OT. On the contrary, pharmacological gain-of-function experiments result in significant increase in proliferation. Importantly, Shh-dependent function controls neural progenitor cell behavior as sox2-positive cell populations were lost in the OT in the absence of Hh signaling, as evidenced in slow-muscle-omitted (smu) mutants and with timed cyclopamine inhibition. Expressions of essential components of the Hh pathway reveal for the first time a late dorsal expression in the embryonic OT. Our observations argue strongly for a role of Shh in neural progenitor biology in the OT and provide comparative data to our current understanding of progenitor/stem cell mechanisms that place Shh as a key niche factor in the dorsal brain.
Collapse
Affiliation(s)
- Carmen G Feijóo
- Center for Genomics of the Cell, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|
145
|
Abstract
AbstractGlioblastoma Multiforme (GBM) is the most malignant and devastating primary brain tumour with a median survival of ∼12–16 months. Although recent large scale sequencing projects have shed considerable light into the complexity of the disease, there remains much to be elucidated in the hopes of generating effective therapeutic strategies. Although these studies investigate the mutations and expression of bulk tumour they have limits with respect to cell of origin and the concept of brain tumour initiating cells (BTIC). Current research has challenged the old paradigm of the stochastic model as recent evidence suggests that a subset of cancer cells within a tumor is responsible for tumor initiation, maintenance, and resistance to therapy. To gain a better understanding of the different compartment of cells that GBM comprise of require careful and elegant experiments. In addition to studying GBM, exploring the role of normal neural stem cells and progenitors cells is essential to partially explain whether these GBM BTIC behave similarly or differently then their non transformed counterparts. Here we discuss the recent literature between the two models, candidate regions of glioma genesis, candidate cells of origin for GBM, and possible therapeutic avenues to explore.
Collapse
|
146
|
Alcantara Llaguno SR, Chen Y, McKay RM, Parada LF. Stem Cells in Brain Tumor Development. Curr Top Dev Biol 2011; 94:15-44. [DOI: 10.1016/b978-0-12-380916-2.00002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
147
|
Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 2011; 17:103-12. [PMID: 20957337 PMCID: PMC3022974 DOI: 10.2119/molmed.2010.00062] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/14/2010] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas are currently treated with temozolomide (TMZ), but often exhibit resistance to this agent. CD133(+) cancer stem cells, a population believed to contribute to the tumor's chemoresistance, bear the activation of Notch and Sonic hedgehog (SHH) pathways. In this study, we examined whether inhibition of both pathways enhances the efficacy of TMZ monotherapy in the context of glioma stem cells. Transcriptional analysis of Notch and SHH pathways in CD133(+)-enriched glioma cell populations showed the activity of these pathways. CD133(+) cells were less susceptible to TMZ treatment than the unsorted glioma counterparts. Interestingly, Notch and SHH pathway transcriptional activity in CD133(+) glioma cells was further enhanced by TMZ exposure, which led to NOTCH 1, NCOR2, and GLI1 upregulation (6.64-, 3.73-, and 2.79-fold, respectively) and CFLAR downregulation (4.22-fold). The therapeutic effect of TMZ was enhanced by Notch and SHH pathway pharmacological antagonism with GSI-1 and cyclopamine. More importantly, simultaneous treatment involving TMZ with both of these compounds led to a significant increase in CD133(+) glioma cytotoxicity than treatment with any of these agents alone (P < 0.05). In conclusion, CD133(+) glioma cells overexpress genes involved in Notch and SHH pathways. These pathways contribute to the chemoresistant phenotype of CD133(+) glioma cells, as their antagonism leads to an additive effect when used in combination with TMZ.
Collapse
MESH Headings
- AC133 Antigen
- Antigens, CD
- Antigens, Surface
- Antineoplastic Agents, Alkylating/pharmacology
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Cell Line, Tumor
- Dacarbazine/analogs & derivatives
- Dacarbazine/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Glioma/drug therapy
- Glioma/genetics
- Glycoproteins
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/metabolism
- Humans
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Peptides
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/metabolism
- Signal Transduction
- Temozolomide
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ilya V Ulasov
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Suvobroto Nandi
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Mahua Dey
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Adam M Sonabend
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Maciej S Lesniak
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
148
|
Neural Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
149
|
Charles N, Holland EC. The perivascular niche microenvironment in brain tumor progression. Cell Cycle 2010; 9:3012-21. [PMID: 20714216 DOI: 10.4161/cc.9.15.12710] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma, the most frequent and aggressive malignant brain tumor, has a very poor prognosis of approximately 1-year. The associated aggressive phenotype and therapeutic resistance of glioblastoma is postulated to be due to putative brain tumor stem-like cells (BTSC). The best hope for improved therapy lies in the ability to understand the molecular biology that controls BTSC behavior. The tumor vascular microenvironment of brain tumors has emerged as important regulators of BTSC behavior. Emerging data have identified the vascular microenvironment as home to a multitude of cell types engaged in various signaling that work collectively to foster a supportive environment for BTSCs. Characterization of the signaling pathways and intercellular communication between resident cell types in the microvascular niche of brain tumors is critical to the identification of potential BTSC-specific targets for therapy.
Collapse
Affiliation(s)
- Nikki Charles
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
150
|
Steg A, Amm HM, Novak Z, Frost AR, Johnson MR. Gli3 mediates cell survival and sensitivity to cyclopamine in pancreatic cancer. Cancer Biol Ther 2010; 10:893-902. [PMID: 20814245 DOI: 10.4161/cbt.10.9.13252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Activation of the hedgehog (HH) pathway plays a critical role in the development and continued growth of pancreatic adenocarcinoma (PAC). Cyclopamine, a HH pathway inhibitor, has been shown to suppress PAC cell proliferation in vitro and in vivo. However, the molecular basis of response to cyclopamine has not been fully elucidated nor have genes that predict sensitivity to this compound been identified. To better understand these features of HH pathway inhibition, we evaluated the biological and molecular effects of cyclopamine in vitro. The viability of 9 human PAC cell lines following cyclopamine exposure was determined using MTS assay. Proliferation and induction of apoptosis in treated cells were examined by bromo-deoxyuridine incorporation, caspase activation, and mitochondrial membrane potential. Gene expression before and after cyclopamine treatment was determined using Taqman real-time quantitative polymerase chain reaction (RTQ-PCR) and Taqman low-density array (TLDA). Among the cell lines examined, cyclopamine IC50 values ranged from 8.79 to >30 µM. Response to cyclopamine included reduced cell proliferation and induction of apoptosis with and without mitochondrial membrane depolarization. Regression analysis revealed that GLI3 expression significantly correlated with cyclopamine resistance (r = 0.80; p = 0.0102). Knockdown of GLI3 using siRNAs increased sensitivity to cyclopamine. In addition, GLI3 siRNAs decreased PAC cell viability and reduced expression of genes involved in HH signaling (Patched 1 and GLI1) and cell proliferation, similar to cyclopamine. These effects were not observed in PAC cells with undetectable GLI3 expression. These data suggest that Gli3 mediates cell survival and sensitivity to cyclopamine in pancreatic cancer.
Collapse
Affiliation(s)
- Adam Steg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|