101
|
Ali GS, Prasad KVSK, Day I, Reddy ASN. Ligand-dependent reduction in the membrane mobility of FLAGELLIN SENSITIVE2, an arabidopsis receptor-like kinase. PLANT & CELL PHYSIOLOGY 2007; 48:1601-11. [PMID: 17925310 DOI: 10.1093/pcp/pcm132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arabidopsis Flagellin sensitive2 (FLS2) is a transmembrane leucine-rich repeat receptor-like kinase, which recognizes a conserved 22 amino acid peptide (flg22) of bacterial flagellin and activates downstream defense signaling pathways resulting in enhanced resistance against plant pathogens. The underlying mechanisms for the activation of FLS2 in the cell membrane, however, are not fully understood. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that approximately 75% of the FLS2 in the plasma membrane diffuses laterally with a diffusion coefficient of 0.34 microm(2) s(-1), indicating that it moves rapidly. Further, we show that FLS2 is less mobile in the presence of flg22, suggesting its ligand-dependent confinement to microdomains or transient interaction with other less mobile membrane proteins. Using an in vivo bimolecular fluorescence complementation (BiFC) system and fluorescence resonance energy transfer (FRET), which reveals in vivo protein-protein interactions, we show that FLS2 does not homodimerize either constitutively or in the presence of flg22. Our data suggest that the reduced mobility of FLS2 after binding flg22 and its existence in monomeric form are important mechanistic features of FLS2 early signaling.
Collapse
Affiliation(s)
- Gul Shad Ali
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
102
|
Chaperonin 10 as a putative modulator of multiple Toll-like receptors for the treatment of inflammatory diseases. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.10.1299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
103
|
Sorice M, Longo A, Capozzi A, Garofalo T, Misasi R, Alessandri C, Conti F, Buttari B, Riganò R, Ortona E, Valesini G. Anti-beta2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha and tissue factor by signal transduction pathways involving lipid rafts. ACTA ACUST UNITED AC 2007; 56:2687-97. [PMID: 17665396 DOI: 10.1002/art.22802] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate the association of beta(2)-glycoprotein I (beta(2)GPI) with lipid rafts in monocytic cells and to evaluate the proinflammatory and procoagulant effects of anti-beta(2)GPI binding to its target antigen on the monocyte plasma membrane. METHODS Human monocytes were fractionated by sucrose density-gradient centrifugation and analyzed by Western blotting. Immunoprecipitation experiments were performed to analyze the association of beta(2)GPI with lipid rafts and the possible interaction of beta(2)GPI with annexin A2 and Toll-like receptor 4 (TLR-4). Monocytes were then stimulated with affinity-purified anti-beta(2)GPI antibodies from patients with the antiphospholipid syndrome (APS). Interleukin-1 receptor-associated kinase (IRAK) phosphorylation and NF-kappaB activation were evaluated by immunoprecipitation and transcription factor assay, respectively. Supernatants from monocytes were tested for tumor necrosis factor alpha (TNFalpha) and tissue factor (TF) levels by enzyme-linked immunosorbent assay. RESULTS We found beta(2)GPI and its putative receptor annexin A2 in lipid raft fractions of human monocytes. Moreover, there was an association between beta(2)GPI and TLR-4, suggesting that it was partially dependent on raft integrity. Triggering with anti-beta(2)GPI antibodies induced IRAK phosphorylation and consequent NF-kappaB activation, which led to the release of TNFalpha and TF. CONCLUSION Anti-beta(2)GPI antibodies react with their target antigen, likely in association with annexin A2 and TLR-4, in lipid rafts in the monocyte plasma membrane. Anti-beta(2)GPI binding triggers IRAK phosphorylation and NF-kappaB translocation, leading to a proinflammatory and procoagulant monocyte phenotype characterized by the release of TNFalpha and TF, respectively. These findings provide new insight into the pathogenesis of APS, improving our knowledge of valuable therapeutic targets.
Collapse
Affiliation(s)
- Maurizio Sorice
- Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, Hamann L, Schumann RR, Tapping RI. Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. THE JOURNAL OF IMMUNOLOGY 2007; 178:7520-4. [PMID: 17548585 DOI: 10.4049/jimmunol.178.12.7520] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
TLRs constitute an essential family of pattern recognition molecules that, through direct recognition of conserved microbial components, initiate inflammatory responses following infection. In this role, TLR1 enables host responses to a variety of bacteria, including pathogenic species of mycobacteria. In this study, we report that I602S, a common single nucleotide polymorphism within TLR1, is associated with aberrant trafficking of the receptor to the cell surface and diminished responses of blood monocytes to bacterial agonists. When expressed in heterologous systems, the TLR1 602S variant, but not the TLR1 602I variant, exhibits the expected deficiencies in trafficking and responsiveness. Among white Europeans, the 602S allele represents the most common single nucleotide polymorphism affecting TLR function identified to date. Surprisingly, the 602S allele is associated with a decreased incidence of leprosy, suggesting that Mycobacterium leprae subverts the TLR system as a mechanism of immune evasion.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Microbiology, College of Medicine, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Triantafilou M, Gamper FGJ, Lepper PM, Mouratis MA, Schumann C, Harokopakis E, Schifferle RE, Hajishengallis G, Triantafilou K. Lipopolysaccharides from atherosclerosis-associated bacteria antagonize TLR4, induce formation of TLR2/1/CD36 complexes in lipid rafts and trigger TLR2-induced inflammatory responses in human vascular endothelial cells. Cell Microbiol 2007; 9:2030-9. [PMID: 17419716 DOI: 10.1111/j.1462-5822.2007.00935.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.
Collapse
Affiliation(s)
- Martha Triantafilou
- Infection and Immunity Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Szabo G, Dolganiuc A, Dai Q, Pruett SB. TLR4, ethanol, and lipid rafts: a new mechanism of ethanol action with implications for other receptor-mediated effects. THE JOURNAL OF IMMUNOLOGY 2007; 178:1243-9. [PMID: 17237368 DOI: 10.4049/jimmunol.178.3.1243] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ethanol (EtOH) is the most widely abused substance in the United States, and it contributes to well-documented harmful (at high dosages) and beneficial (at low dosages) changes in inflammatory and immune responses. Lipid rafts have been implicated in the regulation and activation of several important receptor complexes in the immune system, including the TLR4 complex. Many questions remain about the precise mechanisms by which rafts regulate the assembly of these receptor complexes. Results summarized in this review indicate that EtOH acts by altering the LPS-induced redistribution of components of the TLR4 complex within the lipid raft and that this is related to changes in actin cytoskeleton rearrangement, receptor clustering, and subsequent signaling. EtOH provides an example of an immunomodulatory drug that acts at least in part by modifying lipid rafts, and it could represent a model to probe the relationships between rafts, receptor complexes, and signaling.
Collapse
Affiliation(s)
- Gyongyi Szabo
- University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
107
|
Moreno-Altamirano MMB, Aguilar-Carmona I, Sánchez-García FJ. Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and lipopolysaccharide responsiveness. Immunology 2007; 120:536-43. [PMID: 17250589 PMCID: PMC2265908 DOI: 10.1111/j.1365-2567.2006.02531.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Monocytes constitute 5-10% of total human peripheral blood leucocytes and remain in circulation for several days before replenishing the tissue macrophage populations. Monocytes display heterogeneity in size, granularity and nuclear morphology, and in the expression of cell membrane molecules, such as CD14, CD16, CD32, CD64, major histocompatibility complex class II, CCR2, CCR5, among others. This has led to the suggestion that individual monocyte/macrophage populations have specialized functions within their microenvironments. This study provides evidence for the occurrence of two peripheral blood monocyte subpopulations on the basis of their differential expression of GM1, a sphingolipid found mostly in lipid rafts, a CD14(+) GM1(low) population and a CD14(+) GM1(high) population comprising about 97.5% and 2.5% of total CD14(+) cells, respectively. GM1 expression correlates with functional differences in terms of endocytic activity, susceptibility to mycobacterial infection, and response to lipopolysaccharide (LPS) (modulation of Toll-like receptor-4 expression). CD14(+) GM1(low) cells proved to be less endocytic and more responsive to LPS, whereas CD14(+) GM1(high) cells are more endocytic and less responsive to LPS. In addition, during monocyte to macrophage differentiation in vitro, the percentage of CD14(+) GM1(high) cells increases from about 2.5% at day 1 to more than 50% at day 7 of culture. These results suggest that GM1(low) and GM1(high) monocytes in peripheral blood, represent either different stages of maturation or different subsets with specialized activities. The expression of CD16 on GM1(high) favours the first possibility and, on the other hand that up-regulation of GM1 expression and probably lipid rafts function is involved in the monocyte to macrophage differentiation process.
Collapse
|
108
|
Abstract
In plants, perception of pathogen-associated molecular patterns at the surface is the first line of defence in cellular immunity. This review summarizes recent evidence of the involvement of vesicle trafficking in the plant's immune response against pathogens. I first discuss aspects of ligand-stimulated receptor endocytosis. The best-characterized pattern-recognition receptor (PRR), FLS2, is a transmembrane leucine-rich repeat receptor kinase that recognizes bacterial flagellin. FLS2 was recently shown to undergo internalization upon activation with its cognate ligand. An animal PRR, TLR4 that mediates perception of bacterial-derived lipopolysaccharides, similarly exhibits ligand-stimulated endocytosis. The second focus is N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE)-mediated immunity involving syntaxins and their cognate partners. One of the genes involved in basal immunity in Arabidopsis, PEN1, encodes a syntaxin that focally accumulates at fungal penetration sites, raising the possibility that induced exocytosis is important for active defence. Pathogen-triggered endocytic and exocytic processes have to be balanced to ensure host cell homeostasis. Thus, understanding how phytopathogens have evolved strategies to exploit host cell vesicle trafficking to manipulate immune responses is currently an area of intense study.
Collapse
Affiliation(s)
- Silke Robatzek
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50829 Köln, Germany.
| |
Collapse
|
109
|
Walton KA, Gugiu BG, Thomas M, Basseri RJ, Eliav DR, Salomon RG, Berliner JA. A role for neutral sphingomyelinase activation in the inhibition of LPS action by phospholipid oxidation products. J Lipid Res 2006; 47:1967-74. [PMID: 16775254 DOI: 10.1194/jlr.m600060-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies from our laboratory and others presented evidence that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylcholine (OxPAPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylethanolamine can inhibit lipopolysaccharide (LPS)-mediated induction of interleukin-8 (IL-8) in endothelial cells. Using synthetic derivatives of phosphatidylethanolamine, we now demonstrate that phospholipid oxidation products containing alpha,beta-unsaturated carboxylic acids are the most active inhibitors we examined. 5-Keto-6-octendioic acid ester of 2-phosphatidylcholine (KOdiA-PC) was 500-fold more inhibitory than OxPAPC, being active in the nanomolar range. Our studies in human aortic endothelial cells identify one important mechanism of the inhibitory response as involving the activation of neutral sphingomyelinase. There is evidence that Toll-like receptor-4 and other members of the LPS receptor complex must be colocalized to the caveolar/lipid raft region of the cell, where sphingomyelin is enriched, for effective LPS signaling. Previous work from our laboratory suggested that OxPAPC could disrupt this caveolar fraction. These studies present evidence that OxPAPC activates sphingomyelinase, increasing the levels of 16:0, 22:0, and 24:0 ceramide and that the neutral sphingomyelinase inhibitor GW4869 reduces the inhibitory effect of OxPAPC and KOdiA-PC. We also show that cell-permeant C6 ceramide, like OxPAPC, causes the inhibition of LPS-induced IL-8 synthesis and alters caveolin distribution similar to OxPAPC. Together, these data identify a new pathway by which oxidized phospholipids inhibit LPS action involving the activation of neutral sphingomyelinase, resulting in a change in caveolin distribution. Furthermore, we identify specific oxidized phospholipids responsible for this inhibition.
Collapse
Affiliation(s)
- Kimberly A Walton
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Chun J, Prince A. Activation of Ca2+-dependent signaling by TLR2. THE JOURNAL OF IMMUNOLOGY 2006; 177:1330-7. [PMID: 16818794 DOI: 10.4049/jimmunol.177.2.1330] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Upon contact with airway epithelial cells, bacterial products activate Ca(2+) fluxes that are required for induction of NF-kappaB-dependent gene expression. TLR2 is apically displayed on airway cells, making it a likely transducer linking bacterial stimuli and kinases that affect Ca(2+) release. Using biochemical and genetic approaches, we demonstrate that TLR2 ligands stimulate release of Ca(2+) from intracellular stores by activating TLR2 phosphorylation by c-Src, and recruiting PI3K and phospholipase Cgamma to affect Ca(2+) release through inositol (1,4,5) trisphosphate receptors. In the absence of TLR2, murine macrophages as well as airway cells do not generate Ca(2+) fluxes or induce proinflammatory signaling. Thus, Ca(2+) participates as a second messenger in TLR2-dependent signaling and provides another target to modulate proinflammatory responses to bacterial infection.
Collapse
Affiliation(s)
- Jarin Chun
- College of Physicians and Surgeons, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
111
|
Triantafilou M, Gamper FGJ, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 2006; 281:31002-11. [PMID: 16880211 DOI: 10.1074/jbc.m602794200] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptors (TLRs) are receptors of the innate immune system responsible for recognizing pathogen-associated molecular patterns. TLR2 seems to be the most promiscuous TLR receptor able to recognize the most diverse set of pathogen-associated patterns. Its promiscuity has been attributed to its unique ability to heterodimerize with TLRs 1 and 6 and, most recently, to its association with CD36 in response to diacylated lipoproteins. Thus, it seems that TLR2 forms receptor clusters in response to different microbial ligands. In this study we investigated TLR2 cell surface heterotypic interactions in response to different ligands as well as internalization and intracellular trafficking. Our data show that TLR2 forms heterodimers with TLR1 and TLR6 and that these heterodimer pre-exist and are not induced by the ligand. Upon stimulation by the specific ligand, these heterodimers are recruited within lipid rafts. In contrast, heterotypic associations of TLR2/6 with CD36 are not preformed and are ligand-induced. All TLR2 receptor clusters accumulate in lipid rafts and are targeted to the Golgi apparatus. This localization and targeting is ligand-specific. Activation occurs at the cell surface, and the observed trafficking is independent of signaling.
Collapse
Affiliation(s)
- Martha Triantafilou
- Infection and Immunity Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
112
|
Velupillai P, Garcea RL, Benjamin TL. Polyoma virus-like particles elicit polarized cytokine responses in APCs from tumor-susceptible and -resistant mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:1148-53. [PMID: 16394003 DOI: 10.4049/jimmunol.176.2.1148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PERA/Ei (PE) mice are highly susceptible to tumor induction by polyoma virus, whereas C57BR/cdj (BR) mice are highly resistant. PE mice respond to viral infection with a type 2 (IL-10) and BR mice with a type 1 (IL-12) cytokine response, underlining the importance of a sustained T cell response for effective antitumor immunity. PE and BR mice showed comparable Ab responses to the virus, indicating that a Th1 response is fully compatible with strong humoral immunity. Tumor susceptibility is dominant, and a type 2 response prevails in F1 mice derived from these strains. In this study, we show that the different cytokine responses of virus-infected hosts are recapitulated in vitro by exposure of APCs from uninfected PE, BR, and F1 animals to the virus. Importantly, virus-like particles formed from recombinant VP1, the major viral capsid protein, elicited the same host-specific cytokine responses as infectious virus. Assembly of VP1 pentamers into capsid shells is required because unassembled VP1 pentamers were ineffective. Binding of virus-like particles to sialic acid is required because pretreatment of APCs with neuraminidase prevented the response. Expression of TLR2 and TLR4 differed among different subpopulations of APCs and also between resistant and susceptible mice. Evidence is presented indicating that these TLRs play a role in mediating the host-specific cytokine responses to the virus.
Collapse
|
113
|
Husebye H, Halaas Ø, Stenmark H, Tunheim G, Sandanger Ø, Bogen B, Brech A, Latz E, Espevik T. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J 2006; 25:683-92. [PMID: 16467847 PMCID: PMC1383569 DOI: 10.1038/sj.emboj.7600991] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 01/13/2006] [Indexed: 12/12/2022] Open
Abstract
Immune responses are initiated when molecules of microbial origin are sensed by the Toll-like receptors (TLRs). We now report the identification of essential molecular components for the trafficking of the lipopolysaccharide (LPS) receptor complex. LPS was endocytosed by a receptor-mediated mechanism dependent on dynamin and clathrin and colocalized with TLR4 on early/sorting endosomes. TLR4 was ubiquitinated and associated with the ubiquitin-binding endosomal sorting protein hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs. Inhibition of endocytosis and endosomal sorting increased LPS signaling. Finally, the LPS receptor complex was sorted to late endosomes/lysosomes for degradation and loading of associated antigens onto HLA class II molecules for presentation to CD4+ T cells. Our results show that endosomal trafficking of the LPS receptor complex is essential for signal termination and LPS-associated antigen presentation, thus controlling both innate and adaptive immunity through TLR4.
Collapse
Affiliation(s)
- Harald Husebye
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Halaas
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Harald Stenmark
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biochemistry, The Norwegian Radiumhospital, Oslo, Norway
| | - Gro Tunheim
- Institute of Immunology, Rikshospitalet University Hospital, Oslo, Norway
| | - Øystein Sandanger
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjarne Bogen
- Institute of Immunology, Rikshospitalet University Hospital, Oslo, Norway
| | - Andreas Brech
- Department of Biochemistry, The Norwegian Radiumhospital, Oslo, Norway
| | - Eicke Latz
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terje Espevik
- Institute of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway. Tel.: +47 7359 8668; Fax: +47 7359 8801; E-mail:
| |
Collapse
|
114
|
Blanco AM, Vallés SL, Pascual M, Guerri C. Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. THE JOURNAL OF IMMUNOLOGY 2006; 175:6893-9. [PMID: 16272348 DOI: 10.4049/jimmunol.175.10.6893] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated astroglial cells are implicated in neuropathogenesis of many infectious and inflammatory diseases of the brain. A number of inflammatory mediators and cytokines have been proposed to play a key role in glial cell-related brain damage. Cytokine production seems to be initiated by signaling through TLR4/type I IL-1R (IL-1RI) in response to their ligands, LPS and IL-1beta, playing vital roles in innate host defense against infections, inflammation, injury, and stress. We have shown that glial cells are stimulated by ethanol, up-regulating cytokines and inflammatory mediators associated with TLR4 and IL-1RI signaling pathways in brain, suggesting that ethanol may contribute to brain damage via inflammation. We explore the possibility that ethanol, in the absence of LPS or IL-1beta, triggers signaling pathways and inflammatory mediators through TLR4 and/or IL-1RI activation in astrocytes. We show in this study that ethanol, at physiologically relevant concentrations, is capable of inducing rapid phosphorylation within 10 min of IL-1R-associated kinase, ERK1/2, stress-activated protein kinase/JNK, and p38 MAPK in astrocytes. Then an activation of NF-kappaB and AP-1 occurs after 30 min of ethanol treatment along with an up-regulation of inducible NO synthase and cyclooxygenase-2 expression. Finally, we note an increase in cell death after 3 h of treatment. Furthermore, by using either anti-TLR4- or anti-IL-1RI-neutralizing Abs, before and during ethanol treatment, we inhibit ethanol-induced signaling events, including NF-kappaB and AP-1 activation, inducible NO synthase, and cyclooxygenase-2 up-regulation and astrocyte death. In summary, these findings indicate that both TLR4 and IL-1RI activation occur upon ethanol treatment, and suggest that signaling through these receptors mediates ethanol-induced inflammatory events in astrocytes and brain.
Collapse
Affiliation(s)
- Ana M Blanco
- Unidad de Patología Celular, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
115
|
Lepper PM, Triantafilou M, Schumann C, Schneider EM, Triantafilou K. Lipopolysaccharides from Helicobacter pylori can act as antagonists for Toll-like receptor 4. Cell Microbiol 2005; 7:519-28. [PMID: 15760452 DOI: 10.1111/j.1462-5822.2005.00482.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infection with Helicobacter pylori, a Gram-negative bacterium, is strongly associated with gastric ulcers and adenocarcinoma. The mechanisms by which the innate immune system recognizes H. pylori lipopolysaccharide (LPS) remain unclear. Contradictory reports exist that suggest that Toll-like receptors are involved. In this study we evaluated the interactions of Toll-like receptors with LPS from different strains of H. pylori. Using reporter cell lines, as well as HEK293 cells transfected with either CD14 and TLR4, or CD14 and TLR2, we show that H. pylori LPS-induced cell activation is mediated through TLR2. In addition, for the first time, we report that LPS from some H. pylori strains are able to antagonize TLR4. The antagonistic activity of H. pylori LPS from certain strains, as well as the activation via TLR2, might give H. pylori an advantage over the host that may be associated with the clinical outcome of H. pylori infection.
Collapse
Affiliation(s)
- Philipp M Lepper
- Department of Medical Microbiology and Hygiene, University of Ulm, 89075 Ulm, Germany
| | | | | | | | | |
Collapse
|
116
|
Zeisel MB, Druet VA, Sibilia J, Klein JP, Quesniaux V, Wachsmann D. Cross Talk between MyD88 and Focal Adhesion Kinase Pathways. THE JOURNAL OF IMMUNOLOGY 2005; 174:7393-7. [PMID: 15905587 DOI: 10.4049/jimmunol.174.11.7393] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in signaling downstream of integrins, linking bacterial detection, cell entry, and initiation of proinflammatory response through MAPKs and NF-kappaB activation. In this study, using protein I/II from Streptococcus mutans as a model activator of FAK, we investigated the potential link between FAK and TLR pathways. Using macrophages from TLR- or MyD88-deficient mice, we report that MyD88 plays a major role in FAK-dependent protein I/II-induced cytokine release. However, response to protein I/II stimulation was independent of TLR4, TLR2, and TLR6. The data suggest that there is a cross talk between FAK and MyD88 signaling pathways. Moreover, MyD88-dependent, LPS-induced IL-6 secretion by human and murine fibroblasts required the presence of FAK, confirming that MyD88 and FAK pathways are interlinked.
Collapse
Affiliation(s)
- Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale 392, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | | | |
Collapse
|