101
|
Gifford SM, Liu W, Mader CC, Halo TL, Machida K, Boggon TJ, Koleske AJ. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin. J Biol Chem 2014; 289:19704-13. [PMID: 24891505 DOI: 10.1074/jbc.m114.556480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases.
Collapse
Affiliation(s)
| | | | | | | | - Kazuya Machida
- the Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, University of Connecticut Health Center, Farmington, Conneticut 06030
| | | | - Anthony J Koleske
- From the Departments of Molecular Biophysics and Biochemistry, the Yale Cancer Center, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
102
|
Molas S, Dierssen M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev 2014; 46 Pt 2:315-25. [PMID: 24879992 DOI: 10.1016/j.neubiorev.2014.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/13/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
The involvement of the cholinergic system in learning, memory and attention has long been recognized, although its neurobiological mechanisms are not fully understood. Recent evidence identifies the endogenous cholinergic signaling via nicotinic acetylcholine receptors (nAChRs) as key players in determining the morphological and functional maturation of the glutamatergic system. Here, we review the available experimental and clinical evidence of nAChRs contribution to the establishment of the glutamatergic system, and therefore to cognitive function. We provide some clues of the putative underlying molecular mechanisms and discuss recent human studies that associate genetic variability of the genes encoding nAChR subunits with cognitive disorders. Finally, we discuss the new avenues to therapeutically targeting nAChRs in persons with cognitive dysfunction for which the α7-nAChR subunit is an important etiological mechanism.
Collapse
Affiliation(s)
- Susanna Molas
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain.
| |
Collapse
|
103
|
M. Vargas L, Leal N, Estrada LD, González A, Serrano F, Araya K, Gysling K, Inestrosa NC, Pasquale EB, Alvarez AR. EphA4 activation of c-Abl mediates synaptic loss and LTP blockade caused by amyloid-β oligomers. PLoS One 2014; 9:e92309. [PMID: 24658113 PMCID: PMC3962387 DOI: 10.1371/journal.pone.0092309] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/21/2014] [Indexed: 01/04/2023] Open
Abstract
The early stages of Alzheimer's disease are characterised by impaired synaptic plasticity and synapse loss. Here, we show that amyloid-β oligomers (AβOs) activate the c-Abl kinase in dendritic spines of cultured hippocampal neurons and that c-Abl kinase activity is required for AβOs-induced synaptic loss. We also show that the EphA4 receptor tyrosine kinase is upstream of c-Abl activation by AβOs. EphA4 tyrosine phosphorylation (activation) is increased in cultured neurons and synaptoneurosomes exposed to AβOs, and in Alzheimer-transgenic mice brain. We do not detect c-Abl activation in EphA4-knockout neurons exposed to AβOs. More interestingly, we demonstrate EphA4/c-Abl activation is a key-signalling event that mediates the synaptic damage induced by AβOs. According to this results, the EphA4 antagonistic peptide KYL and c-Abl inhibitor STI prevented i) dendritic spine reduction, ii) the blocking of LTP induction and iii) neuronal apoptosis caused by AβOs. Moreover, EphA4-/- neurons or sh-EphA4-transfected neurons showed reduced synaptotoxicity by AβOs. Our results are consistent with EphA4 being a novel receptor that mediates synaptic damage induced by AβOs. EphA4/c-Abl signalling could be a relevant pathway involved in the early cognitive decline observed in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Lina M. Vargas
- Departamento de Biología Celular y Molecular, Laboratorio de Señalización Celular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Nancy Leal
- Departamento de Biología Celular y Molecular, Laboratorio de Señalización Celular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Lisbell D. Estrada
- Departamento de Biología Celular y Molecular, Laboratorio de Señalización Celular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Adrian González
- Departamento de Biología Celular y Molecular, Laboratorio de Señalización Celular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Felipe Serrano
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Katherine Araya
- Departamento de Biología Celular y Molecular, Millenium Nucleus in Stress and Addiction, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Departamento de Biología Celular y Molecular, Millenium Nucleus in Stress and Addiction, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Elena B. Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Alejandra R. Alvarez
- Departamento de Biología Celular y Molecular, Laboratorio de Señalización Celular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
104
|
Hutchinson CV, Natarajan S, Johnson SM, Adams JA, Rees-Unwin KS, Burthem J. Lymphocytes from chronic lymphocytic leukaemia undergo ABL1-linked amoeboid motility and homotypic interaction as an early adaptive change to ex vivo culture. Exp Hematol Oncol 2014; 3:7. [PMID: 24618035 PMCID: PMC3995717 DOI: 10.1186/2162-3619-3-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Those stimuli that together promote the survival, differentiation and proliferation of the abnormal B-lymphocytes of chronic lymphocytic leukaemia (CLL) are encountered within tissues, where together they form the growth-supporting microenvironment. Different tissue-culture systems promote the survival of the neoplastic lymphocytes from CLL, partly replicating the in vivo tissue environment of the disorder. In the present study, we focussed on the initial adaptive changes to the tissue culture environment focussing particularly on migratory behaviour and cellular interactions. METHODS A high-density CLL culture system was employed to test CLL cell-responses using a range of microscopic techniques and flow cytometric analyses, supported by mathematical measures of cell shape-change and by biochemical techniques. The study focussed on the evaluation of changes to the F-actin cytoskeleton and cell behaviour and on ABL1 signalling processes. RESULTS We showed that the earliest functional response by the neoplastic lymphocytes was a rapid shape-change caused through rearrangement of the F-actin cytoskeleton that resulted in amoeboid motility and promoted frequent homotypic interaction between cells. This initial response was functionally distinct from the elongated motility that was induced by chemokine stimulation, and which also characterised heterotypic interactions between CLL lymphocytes and accessory cells at later culture periods. ABL1 is highly expressed in CLL lymphocytes and supports their survival, it is also recognised however to have a major role in the control of the F-actin cytoskeleton. We found that the cytoplasmic fraction of ABL1 became co-localised with F-actin structures of the CLL lymphocytes and that the ABL1 substrate CRKL became phosphorylated during initial shape-change. The ABL-inhibitor imatinib mesylate prevented amoeboid movement and markedly reduced homotypic interactions, causing cells to acquire a globular shape to rearrange F-actin to a microvillus form that closely resembled that of CLL cells isolated directly from circulation. CONCLUSION We suggest that ABL1-induced amoeboid motility and homotypic interaction represent a distinctive early response to the tissue environment by CLL lymphocytes. This response is separate from that induced by chemokine or during heterotypic cell-contact, and may play a role in the initial entry and interactions of CLL lymphocytes in tissues.
Collapse
Affiliation(s)
- Claire V Hutchinson
- Institute of Cancer Sciences, Haematological Oncology, University of Manchester, Level 5 Research St. Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Shiva Natarajan
- Institute of Cancer Sciences, Haematological Oncology, University of Manchester, Level 5 Research St. Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Suzanne M Johnson
- Institute of Cancer Sciences, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester M20 4BX, UK
| | - Julie A Adams
- Clinical Haematology, Central Manchester University Hospitals, Oxford Road, Manchester M13 9WL, UK
| | - Karen S Rees-Unwin
- Institute of Cancer Sciences, Haematological Oncology, University of Manchester, Level 5 Research St. Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - John Burthem
- Institute of Cancer Sciences, Haematological Oncology, University of Manchester, Level 5 Research St. Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
- Clinical Haematology, Central Manchester University Hospitals, Oxford Road, Manchester M13 9WL, UK
| |
Collapse
|
105
|
Liu L, Wu CF. Distinct effects of Abelson kinase mutations on myocytes and neurons in dissociated Drosophila embryonic cultures: mimicking of high temperature. PLoS One 2014; 9:e86438. [PMID: 24466097 PMCID: PMC3897706 DOI: 10.1371/journal.pone.0086438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/07/2013] [Indexed: 11/18/2022] Open
Abstract
Abelson tyrosine kinase (Abl) is known to regulate axon guidance, muscle development, and cell-cell interaction in vivo. The Drosophila primary culture system offers advantages in exploring the cellular mechanisms mediated by Abl with utilizing various experimental manipulations. Here we demonstrate that single-embryo cultures exhibit stage-dependent characteristics of cellular differentiation and developmental progression in neurons and myocytes, as well as nerve-muscle contacts. In particular, muscle development critically depends on the stage of dissociated embryos. In wild-type (WT) cultures derived from embryos before stage 12, muscle cells remained within cell clusters and were rarely detected. Interestingly, abundant myocytes were spotted in Abl mutant cultures, exhibiting enhanced myocyte movement and fusion, as well as neuron-muscle contacts even in cultures dissociated from younger, stage 10 embryos. Notably, Abl myocytes frequently displayed well-expanded lamellipodia. Conversely, Abl neurons were characterized with fewer large veil-like lamellipodia, but instead had increased numbers of filopodia and darker nodes along neurites. These distinct phenotypes were equally evident in both homo- and hetero-zygous cultures (Abl/Abl vs. Abl/+) of different alleles (Abl1 and Abl4) indicating dominant mutational effects. Strikingly, in WT cultures derived from stage 10 embryos, high temperature (HT) incubation promoted muscle migration and fusion, partially mimicking the advanced muscle development typical of Abl cultures. However, HT enhanced neuronal growth with increased numbers of enlarged lamellipodia, distinct from the characteristic Abl neuronal morphology. Intriguingly, HT incubation also promoted Abl lamellipodia expansion, with a much greater effect on nerve cells than muscle. Our results suggest that Abl is an essential regulator for myocyte and neuron development and that high-temperature incubation partially mimics the faster muscle development typical of Abl cultures. Despite the extensive alterations by Abl mutations, we observed myocyte fusion events and nerve-muscle contact formation between WT and Abl cells in mixed WT and Abl cultures derived from labeled embryos.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| | - Chun-Fang Wu
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
106
|
Hayes KE, Walk EL, Ammer AG, Kelley LC, Martin KH, Weed SA. Ableson kinases negatively regulate invadopodia function and invasion in head and neck squamous cell carcinoma by inhibiting an HB-EGF autocrine loop. Oncogene 2013; 32:4766-77. [PMID: 23146907 PMCID: PMC3896120 DOI: 10.1038/onc.2012.513] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 01/24/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a proclivity for locoregional invasion. HNSCC mediates invasion in part through invadopodia-based proteolysis of the extracellular matrix (ECM). Activation of Src, Erk1/2, Abl and Arg downstream of epidermal growth factor receptor (EGFR) modulates invadopodia activity through phosphorylation of the actin regulatory protein cortactin. In MDA-MB-231 breast cancer cells, Abl and Arg function downstream of Src to phosphorylate cortactin, promoting invadopodia ECM degradation activity and thus assigning a pro-invasive role for Ableson kinases. We report that Abl kinases have an opposite, negative regulatory role in HNSCC where they suppress invadopodia and tumor invasion. Impairment of Abl expression or Abl kinase activity with imatinib mesylate enhanced HNSCC matrix degradation and 3D collagen invasion, functions that were impaired in MDA-MB-231. HNSCC lines with elevated EGFR and Src activation did not contain increased Abl or Arg kinase activity, suggesting that Src could bypass Abl/Arg to phosphorylate cortactin and promote invadopodia ECM degradation. Src-transformed Abl(-/-)/Arg(-/-) fibroblasts produced ECM degrading invadopodia containing pY421 cortactin, indicating that Abl/Arg are dispensable for invadopodia function in this system. Imatinib-treated HNSCC cells had increased EGFR, Erk1/2 and Src activation, enhancing cortactin pY421 and pS405/418 required for invadopodia function. Imatinib stimulated shedding of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) from HNSCC cells, where soluble HB-EGF enhanced invadopodia ECM degradation in HNSCC but not in MDA-MB-231. HNSCC cells treated with inhibitors of the EGFR-invadopodia pathway indicated that EGFR and Src are required for invadopodia function. Collectively, our results indicate that Abl kinases negatively regulate HNSCC invasive processes through suppression of an HB-EGF autocrine loop responsible for activating a EGFR-Src-cortactin cascade, in contrast to the invasion promoting functions of Abl kinases in breast and other cancer types. Our results provide mechanistic support for recent failed HNSCC clinical trials utilizing imatinib.
Collapse
Affiliation(s)
- Karen E. Hayes
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| | - Elyse L. Walk
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| | - Amanda Gatesman Ammer
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| | | | - Karen H. Martin
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| | - Scott A. Weed
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| |
Collapse
|
107
|
Abstract
Both humans and rodents can learn to associate specific actions with their outcomes, but with repeated performance or exposure to pathological stimuli, such as drugs of abuse, behaviors assume stimulus-elicited, or "habitual," qualities. Psychostimulants remodel dorsal striatal neurons, critical determinants of decision-making strategies, but cytoskeletal mechanisms associated with drug-induced habit formation are largely unknown. We first show that cocaine can bias decision-making strategies toward stimulus-response habits by interfering with learning about the predictive relationship between a response and its outcome. In the dorsomedial, but not ventral, striatum, cocaine decreases PSD95 expression and phosphorylation of cortactin, a cytoskeletal regulator that interacts with, and is phophorylated by, the Abl2 (Arg) kinase. Based on this pattern, we inhibited Abl-family kinase signaling in the dorsomedial striatum, impairing new response-outcome learning. Consistent with evidence that the dorsomedial striatum promotes response-outcome decision-making while the dorsolateral compartment promotes stimulus-response habits, inhibition of Abl-family kinases in the dorsolateral striatum reinstates goal sensitivity in over-trained "habitual" mice. These findings provide a structural mechanism by which even acute exposure to drugs of abuse can reorganize behavioral response strategies and promote outcome-insensitive stimulus-response habits.
Collapse
|
108
|
Kerrisk ME, Koleske AJ. Arg kinase signaling in dendrite and synapse stabilization pathways: memory, cocaine sensitivity, and stress. Int J Biochem Cell Biol 2013; 45:2496-500. [PMID: 23916785 DOI: 10.1016/j.biocel.2013.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 11/25/2022]
Abstract
The Abl2/Arg nonreceptor tyrosine kinase is enriched in dendritic spines where it is essential for maintaining dendrite and synapse stability in the postnatal mouse brain. Arg is activated downstream of integrin α3β1 receptors and it regulates the neuronal actin cytoskeleton by directly binding F-actin and via phosphorylation of substrates including p190RhoGAP and cortactin. Neurons in mice lacking Arg or integrin α3β1 develop normally through postnatal day 21 (P21), however by P42 mice exhibit major reductions in dendrite arbor size and complexity, and lose dendritic spines and synapses. As a result, mice with loss of Arg and Arg-dependent signaling pathways have impairments in memory tasks, heightened sensitivity to cocaine, and vulnerability to corticosteroid-induced neuronal remodeling. Therefore, understanding the molecular mechanisms of Arg regulation may lead to therapeutic approaches to treat human psychiatric and neurodegenerative diseases in which neuronal structure is destabilized.
Collapse
Affiliation(s)
- Meghan E Kerrisk
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
109
|
Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 2013; 13:559-71. [PMID: 23842646 PMCID: PMC3935732 DOI: 10.1038/nrc3563] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Abelson (ABL) family of nonreceptor tyrosine kinases, ABL1 and ABL2, transduces diverse extracellular signals to protein networks that control proliferation, survival, migration and invasion. ABL1 was first identified as an oncogene required for the development of leukaemias initiated by retroviruses or chromosome translocations. The demonstration that small-molecule ABL kinase inhibitors could effectively treat chronic myeloid leukaemia opened the door to the era of targeted cancer therapies. Recent reports have uncovered roles for ABL kinases in solid tumours. Enhanced ABL expression and activation in some solid tumours, together with altered cell polarity, invasion or growth induced by activated ABL kinases, suggest that drugs targeting these kinases may be useful for treating selected solid tumours.
Collapse
Affiliation(s)
- Emileigh K Greuber
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, BOX 3813, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
110
|
Abstract
In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease.
Collapse
|
111
|
Zhou S, Tang L, Wang H, Dai J, Zhang J, Shen L, Ng SW, Berkowitz RS. Overexpression of c-Abl predicts unfavorable outcome in epithelial ovarian cancer. Gynecol Oncol 2013; 131:69-76. [PMID: 23820113 DOI: 10.1016/j.ygyno.2013.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/21/2013] [Accepted: 06/23/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Abelson tyrosine kinase (c-Abl) has been shown to promote solid tumor invasion and metastasis. However, little is known regarding whether c-Abl contributes to the development or progression of epithelial ovarian cancer (EOC). The aims of this study are to determine the expression of c-Abl and investigate a possible relationship between c-Abl and prognosis in EOC. METHODS c-Abl protein level was evaluated in 137 EOC specimens by immunohistochemical staining and 32 EOC specimens by Western blot analysis. Expression of c-Abl in ovarian cancer cell lines was measured by Western blot analysis and immunofluorescence. Survival analysis was performed to assess the correlation between c-Abl expression and survival. RESULTS Immunohistochemical staining and Western blot analysis revealed that c-Abl was overexpressed in EOC compared with samples from a non-invasive ovarian tumor and normal ovaries (P<0.05). Furthermore, expression of c-Abl was significantly associated with advanced FIGO stage, poor grade, serum Ca-125 and residual tumor size (P<0.05). By Western blot analysis, c-Abl expression was examined in four ovarian cancer cell lines. Meanwhile, immunofluorescence was performed to show c-Abl expression in SKOV3 and 3AO cell lines. Survival analysis demonstrated that patients with low c-Abl staining had a significantly better survival compared to patients with high c-Abl staining (P<0.05). In multivariate analysis, c-Abl overexpression, poor grade, advanced stage and suboptimal surgical debulking were independent prognostic factors of poor survival. CONCLUSIONS Our present study finds that c-Abl overexpression is associated with an unfavorable outcome. c-Abl may be a crucial predictor for EOC metastasis.
Collapse
Affiliation(s)
- Suiyang Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
112
|
O'Donnell MP, Bashaw GJ. Distinct functional domains of the Abelson tyrosine kinase control axon guidance responses to Netrin and Slit to regulate the assembly of neural circuits. Development 2013; 140:2724-33. [PMID: 23720041 DOI: 10.1242/dev.093831] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To develop a functional nervous system, axons must initially navigate through a complex environment, directed by guidance ligands and receptors. These receptors must link to intracellular signaling cascades to direct axon pathfinding decisions. The Abelson tyrosine kinase (Abl) plays a crucial role in multiple Drosophila axon guidance pathways during development, though the mechanism by which Abl elicits a diverse set of guidance outputs is currently unknown. We identified Abl in a genetic screen for genes that contribute to Netrin-dependent axon guidance in midline-crossing (commissural) neurons. We find that Abl interacts both physically and genetically with the Netrin receptor Frazzled, and that disrupting this interaction prevents Abl from promoting midline axon crossing. Moreover, we find that Abl exerts its diverse activities through at least two different mechanisms: (1) a partly kinase-independent, structural function in midline attraction through its C-terminal F-actin binding domain (FABD) and (2) a kinase-dependent inhibition of repulsive guidance pathways that does not require the Abl C terminus. Abl also regulates motor axon pathfinding through a non-overlapping set of functional domains. These results highlight how a multifunctional kinase can trigger diverse axon guidance outcomes through the use of distinct structural motifs.
Collapse
Affiliation(s)
- Michael P O'Donnell
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
113
|
Bryce NS, Reynolds AB, Koleske AJ, Weaver AM. WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl. PLoS One 2013; 8:e64533. [PMID: 23691243 PMCID: PMC3654908 DOI: 10.1371/journal.pone.0064533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.
Collapse
Affiliation(s)
- Nicole S Bryce
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | | | |
Collapse
|
114
|
Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways. J Neurosci 2013; 33:1846-57. [PMID: 23365224 DOI: 10.1523/jneurosci.4284-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rho family GTPases coordinate cytoskeletal rearrangements in neurons, and mutations in their regulators are associated with mental retardation and other neurodevelopmental disorders (Billuart et al., 1998; Kutsche et al., 2000; Newey et al., 2005; Benarroch, 2007). Chromosomal microdeletions encompassing p190RhoGAP or its upstream regulator, the Abl2/Arg tyrosine kinase, have been observed in cases of mental retardation associated with developmental defects (Scarbrough et al., 1988; James et al., 1996; Takano et al., 1997; Chaabouni et al., 2006; Leal et al., 2009). Genetic knock-out of Arg in mice leads to synapse, dendritic spine, and dendrite arbor loss accompanied by behavioral deficits (Moresco et al., 2005; Sfakianos et al., 2007). To elucidate the cell-autonomous mechanisms by which Arg regulates neuronal stability, we knocked down Arg in mouse hippocampal neuronal cultures. We find that Arg knockdown significantly destabilizes dendrite arbors and reduces dendritic spine density by compromising dendritic spine stability. Inhibiting RhoA prevents dendrite arbor loss following Arg knockdown in neurons, but does not block spine loss. Interestingly, Arg-deficient neurons exhibit increased miniature EPSC amplitudes, and their remaining spines exhibit larger heads deficient in the actin stabilizing protein cortactin. Spine destabilization in Arg knockdown neurons is prevented by blocking NMDA receptor-dependent relocalization of cortactin from spines, or by forcing cortactin into spines via fusion to an actin-binding region of Arg. Thus, Arg employs distinct mechanisms to selectively regulate spine and dendrite stability: Arg dampens activity-dependent disruption of cortactin localization to stabilize spines and attenuates Rho activity to stabilize dendrite arbors.
Collapse
|
115
|
c-Abl mediates angiotensin II-induced apoptosis in podocytes. J Mol Histol 2013; 44:597-608. [PMID: 23515840 DOI: 10.1007/s10735-013-9505-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
Angiotensin II (Ang II) has been reported to cause podocyte apoptosis in rats both in vivo and in vitro studies. However, the underlying mechanisms are poorly understood. In the present study, we investigated the role of the nonreceptor tyrosine kinase c-Abl in Ang II-induced podocyte apoptosis. Male Sprague-Dawley rats in groups of 12 were administered either Ang II (400 kg/kg/min) or Ang II + STI-571 (50 mg/kg/day) by osmotic minipumps. In addition, 12 rats-receiving normal saline served as the control. Glomeruli c-Abl expression was carried out by real time PCR, Western blotting and immunolabeled, and occurrence of apoptosis was carried out by TUNEL staining and transmission electron microscopic analysis. In vitro studies, conditionally immortalized mouse podocytes were treated with Ang II (10(-9)-10(-6) M) in the presence or absence of either c-Abl inhibitor, Src-I1, specific c-Abl siRNA, or c-Abl plasmid alone. Quantification of podocyte c-Abl expression and c-Abl phosphorylation at Y245 and Y412 was carried out by real time PCR, Western blotting and immunofluorescence imaging. The nuclear c-Abl and p53 were quantified by co-immunoprecipitation and Western blotting studies. Podocyte apoptosis was analysed by flow cytometry and Hoechst-33342 staining. c-Abl expression was demonstrated in rat kidney podocytes in vivo and cultured mouse podocytes in vitro. Ang II-receiving rats displayed enhanced podocyte c-Abl expression. And Ang II significantly stimulated c-Abl expression in cultured podocytes. Furthermore Ang II upregulated podocyte c-Abl phosphorylation at Y245 and Y412. Ang II also induced an increase of nuclear p53 protein and nuclear c-Abl-p53 complexes in podocytes and podocyte apoptosis. Down-regulation of c-Abl expression by c-Abl inhibitor (Src-I1) as well as specific siRNA inhibited Ang II-induced podocyte apoptosis; conversely, podoctyes transfected with c-Abl plasmid displayed enhanced apoptosis. These findings indicate that c-Abl may mediates Ang II-induced podocyte apoptosis, and inhibition of c-Abl expression can protect podocytes from Ang II-induced injury.
Collapse
|
116
|
Fang Z, Grütter C, Rauh D. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 2013; 8:58-70. [PMID: 23249378 DOI: 10.1021/cb300663j] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modulation of kinase function has become an important goal in modern drug discovery and chemical biology research. In cancer-targeted therapies, kinase inhibitors have been experiencing an upsurge, which can be measured by the increasing number of kinase inhibitors approved by the FDA in recent years. However, lack of efficacy, limited selectivity, and the emergence of acquired drug resistance still represent major bottlenecks in the clinic and challenge inhibitor development. Most known kinase inhibitors target the active kinase and are ATP competitive. A second class of small organic molecules, which address remote sites of the kinase and stabilize enzymatically inactive conformations, is rapidly moving to the forefront of kinase inhibitor research. Such allosteric modulators bind to sites that are less conserved across the kinome and only accessible upon conformational changes. These molecules are therefore thought to provide various advantages such as higher selectivity and extended drug target residence times. This review highlights various strategies that have been developed to utilizing exclusive structural features of kinases and thereby modulating their activity allosterically.
Collapse
Affiliation(s)
- Zhizhou Fang
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| | - Christian Grütter
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| | - Daniel Rauh
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| |
Collapse
|
117
|
Tong H, Zhao B, Shi H, Ba X, Wang X, Jiang Y, Zeng X. c-Abl tyrosine kinase plays a critical role in β2 integrin-dependent neutrophil migration by regulating Vav1 activity. J Leukoc Biol 2013; 93:611-22. [PMID: 23325923 DOI: 10.1189/jlb.1012487] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The recruitment and migration of neutrophils are critical for innate immunity and acute inflammatory responses. However, the mechanism that regulates the recruitment and migration of neutrophils has not been well characterized. We here reveal a novel function of c-Abl kinase in regulating neutrophil migration. Our results demonstrate that c-Abl kinase is required for neutrophil recruitment in vivo and migration in vitro, and the inhibition of c-Abl kinase activity has a significant impact on neutrophil migratory behavior. Moreover, c-Abl kinase activation depends on β2 integrin engagement, and the activated c-Abl kinase further regulates actin polymerization and membrane protrusion dynamics at the extended leading edges during neutrophil migration. In addition, we identify the Rho GEF Vav1 as a major downstream effector of c-Abl kinase. The C-terminal SH3-SH2-SH3 domain and proline-rich region of Vav1 are required for its interaction with c-Abl kinase, and c-Abl kinase probably regulates the activity of Vav1 by direct phosphorylation at Tyr-267 in the DH domain. Together, these results indicate that c-Abl kinase plays a critical role in β2 integrin-dependent neutrophil migration by regulating Vav1 activity.
Collapse
Affiliation(s)
- Haibin Tong
- Changchun Teachers College, 677 Changji Northroad, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Gleevec, an Abl family inhibitor, produces a profound change in cell shape and migration. PLoS One 2013; 8:e52233. [PMID: 23300967 PMCID: PMC3534684 DOI: 10.1371/journal.pone.0052233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/13/2012] [Indexed: 01/27/2023] Open
Abstract
The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed.
Collapse
|
119
|
Aman J, van Bezu J, Damanafshan A, Huveneers S, Eringa EC, Vogel SM, Groeneveld ABJ, Vonk Noordegraaf A, van Hinsbergh VWM, van Nieuw Amerongen GP. Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation 2012; 126:2728-38. [PMID: 23099479 DOI: 10.1161/circulationaha.112.134304] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tissue edema and endothelial barrier dysfunction as observed in sepsis and acute lung injury carry high morbidity and mortality, but currently lack specific therapy. In a recent case report, we described fast resolution of pulmonary edema on treatment with the tyrosine kinase inhibitor imatinib through an unknown mechanism. Here, we explored the effect of imatinib on endothelial barrier dysfunction and edema formation. METHODS AND RESULTS We evaluated the effect of imatinib on endothelial barrier function in vitro and in vivo. In human macro- and microvascular endothelial monolayers, imatinib attenuated endothelial barrier dysfunction induced by thrombin and histamine. Small interfering RNA knock-downs of the imatinib-sensitive kinases revealed that imatinib attenuates endothelial barrier dysfunction via inhibition of Abl-related gene kinase (Arg/Abl2), a previously unknown mediator of endothelial barrier dysfunction. Indeed, Arg was activated by endothelial stimulation with thrombin, histamine, and vascular endothelial growth factor. Imatinib limited Arg-mediated endothelial barrier dysfunction by enhancing Rac1 activity and enforcing adhesion of endothelial cells to the extracellular matrix. Using mouse models of vascular leakage as proof-of-concept, we found that pretreatment with imatinib protected against vascular endothelial growth factor-induced vascular leakage in the skin, and effectively prevented edema formation in the lungs. In a murine model of sepsis, imatinib treatment (6 hours and 18 hours after induction of sepsis) attenuated vascular leakage in the kidneys and the lungs (24 hours after induction of sepsis). CONCLUSIONS Thus, imatinib prevents endothelial barrier dysfunction and edema formation via inhibition of Arg. These findings identify imatinib as a promising approach to permeability edema and indicate Arg as novel target for edema treatment.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Physiology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Greuber EK, Pendergast AM. Abl family kinases regulate FcγR-mediated phagocytosis in murine macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 189:5382-92. [PMID: 23100514 DOI: 10.4049/jimmunol.1200974] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis of Ab-coated pathogens is mediated through FcγRs, which activate intracellular signaling pathways to drive actin cytoskeletal rearrangements. Abl and Arg define a family of nonreceptor tyrosine kinases that regulate actin-dependent processes in a variety of cell types, including those important in the adaptive immune response. Using pharmacological inhibition as well as dominant negative and knockout approaches, we demonstrate a role for the Abl family kinases in phagocytosis by macrophages and define a mechanism whereby Abl kinases regulate this process. Bone marrow-derived macrophages from mice lacking Abl and Arg kinases exhibit inefficient phagocytosis of sheep erythrocytes and zymosan particles. Treatment with the Abl kinase inhibitors imatinib and GNF-2 or overexpression of kinase-inactive forms of the Abl family kinases also impairs particle internalization in murine macrophages, indicating Abl kinase activity is required for efficient phagocytosis. Further, Arg kinase is present at the phagocytic cup, and Abl family kinases are activated by FcγR engagement. The regulation of phagocytosis by Abl family kinases is mediated in part by the spleen tyrosine kinase (Syk). Loss of Abl and Arg expression or treatment with Abl inhibitors reduced Syk phosphorylation in response to FcγR ligation. The link between Abl family kinases and Syk may be direct, as purified Arg kinase phosphorylates Syk in vitro. Further, overexpression of membrane-targeted Syk in cells treated with Abl kinase inhibitors partially rescues the impairment in phagocytosis. Together, these findings reveal that Abl family kinases control the efficiency of phagocytosis in part through the regulation of Syk function.
Collapse
Affiliation(s)
- Emileigh K Greuber
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
121
|
Gu JJ, Lavau CP, Pugacheva E, Soderblom EJ, Moseley MA, Pendergast AM. Abl family kinases modulate T cell-mediated inflammation and chemokine-induced migration through the adaptor HEF1 and the GTPase Rap1. Sci Signal 2012; 5:ra51. [PMID: 22810897 DOI: 10.1126/scisignal.2002632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemokine signaling is critical for T cell function during homeostasis and inflammation and directs T cell polarity and migration through the activation of specific intracellular pathways. Here, we uncovered a previously uncharacterized role for the Abl family tyrosine kinases Abl and Arg in the regulation of T cell-dependent inflammatory responses and showed that the Abl family kinases were required for chemokine-induced T cell polarization and migration. Our data demonstrated that Abl and Arg were activated downstream of chemokine receptors and mediated the chemokine-induced tyrosine phosphorylation of human enhancer of filamentation 1 (HEF1), an adaptor protein that is required for the activity of the guanosine triphosphatase Rap1, which mediates cell adhesion and migration. Phosphorylation of HEF1 by Abl family kinases and activation of Rap1 were required for chemokine-induced T cell migration. Mouse T cells that lacked Abl and Arg exhibited defective homing to lymph nodes and impaired migration to sites of inflammation. These findings suggest that Abl family kinases are potential therapeutic targets for the treatment of T cell-dependent immune disorders that are characterized by chemokine-mediated inflammation.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
122
|
Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ. Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Oncogene 2012; 32:2622-30. [PMID: 22777352 PMCID: PMC3473103 DOI: 10.1038/onc.2012.284] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor progression is a complex, multistep process involving accumulation of genetic aberrations and alterations in gene-expression patterns leading to uncontrolled cell division, invasion into surrounding tissue and finally dissemination and metastasis. We have previously shown that the Arg/Abl2 non-receptor tyrosine kinase acts downstream of the EGF receptor and Src tyrosine kinases to promote invadopodium function in breast cancer cells, thereby promoting their invasiveness. However, whether and how Arg contributes to tumor development and dissemination in vivo has never been investigated. Using a mouse xenograft model, we show that knocking down Arg in breast cancer cells leads to increased tumor cell proliferation and significantly enlarged tumor size. Despite having larger tumors, the Arg knockdown tumor-bearing mice exhibit significant reductions in tumor cell invasion, intravasation into blood vessels, and spontaneous metastasis to lungs. Interestingly, we found that proliferation-associated genes in the Ras-MAPK pathway are upregulated in Arg-knockdown breast cancer cells, as is Ras-MAPK signaling, while invasion-associated genes are significantly downregulated. These data suggest that Arg promotes tumor cell invasion and dissemination, while simultaneously inhibiting tumor growth. We propose that Arg acts as a switch in metastatic cancer cells that governs the decision to “grow or go” (divide or invade).
Collapse
Affiliation(s)
- H Gil-Henn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
123
|
Ball SG, Shuttleworth A, Kielty CM. Inhibition of platelet-derived growth factor receptor signaling regulates Oct4 and Nanog expression, cell shape, and mesenchymal stem cell potency. Stem Cells 2012; 30:548-60. [PMID: 22213560 PMCID: PMC3537888 DOI: 10.1002/stem.1015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining the signaling mechanisms that regulate the fate of adult stem cells is an essential step toward their use in regenerative medicine. Platelet-derived growth factor receptor (PDGFR) signaling plays a crucial role in specifying mesenchymal stem cell (MSC) commitment to mesenchymal lineages. Based on the hypothesis that selective inhibition of signaling pathways involved in differentiation may increase stem cell potency, we examined the role of PDGFR signaling in controlling the fate of human MSCs. Using a small molecular PDGFR inhibitor that induced MSCs toward a more rounded shape, expression of Oct4 and Nanog were markedly upregulated. In these PDGFR inhibitor-treated MSCs, Oct4 and Nanog expression and cell shape were regulated by janus kinase (JAK), MAPK kinase (MEK), and epidermal growth factor receptor (EGFR) signaling. Under defined differentiation conditions, these PDGFR-inhibited MSCs expressed definitive endodermal, ectodermal, and mesodermal markers. We also confirmed that depletion of individual PDGF receptors upregulated expression of Oct4A and Nanog. This study identifies PDGFR signaling as a key regulator of Oct4 and Nanog expression and of MSC potency. Thus, inhibiting these specific receptor tyrosine kinases, which play essential roles in tissue formation, offers a novel approach to unlock the therapeutic capacity of MSCs. STEM CELLS 2012;30:548–560
Collapse
Affiliation(s)
- Stephen G Ball
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
124
|
The Abl and Arg kinases mediate distinct modes of phagocytosis and are required for maximal Leishmania infection. Mol Cell Biol 2012; 32:3176-86. [PMID: 22665498 DOI: 10.1128/mcb.00086-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania, an obligate intracellular parasite, binds several receptors to trigger engulfment by phagocytes, leading to cutaneous or visceral disease. These receptors include complement receptor 3 (CR3), used by promastigotes, and the Fc receptor (FcR), used by amastigotes. The mechanisms mediating uptake are not well understood. Here we show that Abl family kinases mediate both phagocytosis and the uptake of Leishmania amazonensis by macrophages (Ms). Imatinib, an Abl/Arg kinase inhibitor, decreases opsonized polystyrene bead phagocytosis and Leishmania uptake. Interestingly, phagocytosis of IgG-coated beads is decreased in Arg-deficient Ms, while that of C3bi-coated beads is unaffected. Conversely, uptake of C3bi-coated beads is decreased in Abl-deficient Ms, but that of IgG-coated beads is unaffected. Consistent with these results, Abl-deficient Ms are inefficient at C3bi-opsonized promastigote uptake, and Arg-deficient Ms are defective in IgG1-opsonized amastigote uptake. Finally, genetic loss of Abl or Arg reduces infection severity in murine cutaneous leishmaniasis, and imatinib treatment results in smaller lesions with fewer parasites than in controls. Our studies are the first to demonstrate that efficient phagocytosis and maximal Leishmania infection require Abl family kinases. These results highlight Abl family kinase-mediated signaling pathways as potential therapeutic targets for leishmaniasis.
Collapse
|
125
|
Functional mechanisms and roles of adaptor proteins in abl-regulated cytoskeletal actin dynamics. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:414913. [PMID: 22675626 PMCID: PMC3362954 DOI: 10.1155/2012/414913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 01/20/2023]
Abstract
Abl is a nonreceptor tyrosine kinase and plays an essential role in the modeling and remodeling of F-actin by transducing extracellular signals. Abl and its paralog, Arg, are unique among the tyrosine kinase family in that they contain an unusual extended C-terminal half consisting of multiple functional domains. This structural characteristic may underlie the role of Abl as a mediator of upstream signals to downstream signaling machineries involved in actin dynamics. Indeed, a group of SH3-containing accessory proteins, or adaptor proteins, have been identified that bind to a proline-rich domain of the C-terminal portion of Abl and modulate its kinase activity, substrate recognition, and intracellular localization. Moreover, the existence of signaling cascade and biological outcomes unique to each adaptor protein has been demonstrated. In this paper, we summarize functional roles and mechanisms of adaptor proteins in Abl-regulated actin dynamics, mainly focusing on a family of adaptor proteins, Abi. The mechanism of Abl's activation and downstream signaling mediated by Abi is described in comparison with those by another adaptor protein, Crk.
Collapse
|
126
|
Giniger E. Notch signaling and neural connectivity. Curr Opin Genet Dev 2012; 22:339-46. [PMID: 22608692 DOI: 10.1016/j.gde.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/02/2012] [Accepted: 04/11/2012] [Indexed: 01/23/2023]
Abstract
The cell surface receptor Notch contributes to the development of nearly every tissue in most metazoans by controlling the fates and differentiation of cells. Recent results have now established that Notch also regulates the connectivity of the nervous system, and does so at a variety of levels, including specification of neuronal identity, division, survival and migration, as well as axon guidance, morphogenesis of dendritic arbors and weighting of synapse strength. To these ends, Notch engages at least two signal transduction pathways, one that controls nuclear gene expression and another that directly targets the cytoskeleton. Coordinating the many functions of Notch to produce neural structure is thus a pivotal aspect of building and maintaining the nervous system.
Collapse
Affiliation(s)
- Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
127
|
Arg kinase regulates prefrontal dendritic spine refinement and cocaine-induced plasticity. J Neurosci 2012; 32:2314-23. [PMID: 22396406 DOI: 10.1523/jneurosci.2730-11.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adolescence is characterized by vulnerability to the development of neuropsychiatric disorders including drug addiction, as well as prefrontal cortical refinement that culminates in structural stability in adulthood. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, although intracellular mechanisms are largely unknown. We characterized layer V prefrontal dendritic spine development and refinement in adolescent wild-type mice and mice lacking the cytoskeletal regulatory protein Abl-related gene (Arg) kinase. Relative to hippocampal CA1 pyramidal neurons, which exhibited a nearly linear increase in spine density up to postnatal day 60 (P60), wild-type prefrontal spine density peaked at P31, and then declined by 18% by P56-P60. In contrast, dendritic spines in mice lacking Arg destabilized by P31, leading to a net loss in both structures. Destabilization corresponded temporally to the emergence of exaggerated psychomotor sensitivity to cocaine. Moreover, cocaine reduced dendritic spine density in wild-type orbitofrontal cortex and enlarged remaining spine heads, but arg(-/-) spines were unresponsive. Local application of Arg or actin polymerization inhibitors exaggerated cocaine sensitization, as did reduced gene dosage of the Arg substrate, p190RhoGAP. Genetic and pharmacological Arg inhibition also retarded instrumental reversal learning and potentiated responding for reward-related cues, providing evidence that Arg regulates both psychomotor sensitization and decision-making processes implicated in addiction. These findings also indicate that structural refinement in the adolescent orbitofrontal cortex mitigates psychostimulant sensitivity and support the emerging perspective that the structural response to cocaine may, at any age, have behaviorally protective consequences.
Collapse
|
128
|
Echarri A, Muriel O, Pavón DM, Azegrouz H, Escolar F, Terrón MC, Sanchez-Cabo F, Martínez F, Montoya MC, Llorca O, Del Pozo MA. Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci 2012; 125:3097-113. [PMID: 22454521 DOI: 10.1242/jcs.090134] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The biology of caveolin-1 (Cav1)/caveolae is intimately linked to actin dynamics and adhesion receptors. Caveolar domains are organized in hierarchical levels of complexity from curved or flattened caveolae to large, higher-order caveolar rosettes. We report that stress fibers controlled by Abl kinases and mDia1 determine the level of caveolar domain organization, which conditions the subsequent inward trafficking of caveolar domains induced upon loss of cell adhesion from the extracellular matrix. Abl-deficient cells have fewer stress fibers, a smaller pool of stress-fiber co-aligned Cav1 and increased clustering of Cav1/caveolae at the cell surface. Defective caveolar linkage to stress fibers prevents the formation of big caveolar rosettes upon loss of cell adhesion, correlating with a lack of inward trafficking. Live imaging of stress fibers and Cav1 showed that the actin-linked Cav1 pool loses its spatial organization in the absence of actin polymerization and is dragged and clustered by depolymerizing filaments. We identified mDia1 as the actin polymerization regulator downstream of Abl kinases that controls the stress-fiber-linked Cav1 pool. mDia1 knockdown results in Cav1/caveolae clustering and defective inward trafficking upon loss of cell adhesion. By contrast, cell elongation imposed by the excess of stress fibers induced by active mDia1 flattens caveolae. Furthermore, active mDia1 rescues the actin co-aligned Cav1 pool and Cav1 inward trafficking upon loss of adhesion in Abl-deficient cells. Thus, caveolar domain organization and trafficking are tightly coupled to adhesive and stress fiber regulatory pathways.
Collapse
Affiliation(s)
- Asier Echarri
- Integrin Signaling Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, [corrected] Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abl-1-bridged tyrosine phosphorylation of VASP by Abelson kinase impairs association of VASP to focal adhesions and regulates leukaemic cell adhesion. Biochem J 2012; 441:889-99. [PMID: 22014333 DOI: 10.1042/bj20110951] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mena [mammalian Ena (Enabled)]/VASP (vasodilator-stimulated phosphoprotein) proteins are the homologues of Drosophila Ena. In Drosophila, Ena is a substrate of the tyrosine kinase DAbl (Drosophila Abl). However, the link between Abl and the Mena/VASP family is not fully understood in mammals. We previously reported that Abi-1 (Abl interactor 1) promotes phosphorylation of Mena and BCAP (B-cell adaptor for phosphoinositide 3-kinase) by bridging the interaction between c-Abl and the substrate. In the present study we have identified VASP, another member of the Mena/VASP family, as an Abi-1-bridged substrate of Abl. VASP is phosphorylated by Abl when Abi-1 is co-expressed. We also found that VASP interacted with Abi-1 both in vitro and in vivo. VASP was tyrosine-phosphorylated in Bcr-Abl-positive leukaemic cells in an Abi-1-dependent manner. Co-expression of c-Abl and Abi-1 or the phosphomimetic Y39D mutation in VASP resulted in less accumulation of VASP at focal adhesions. VASP Y39D had a reduced affinity to the proline-rich region of zyxin. Interestingly, overexpression of both phosphomimetic and unphosphorylated forms of VASP, but not wild-type VASP, impaired adhesion of K562 cells to fibronectin. These results suggest that the phosphorylation and dephosphorylation cycle of VASP by the Abi-1-bridged mechanism regulates association of VASP with focal adhesions, which may regulate adhesion of Bcr-Abl-transformed leukaemic cells.
Collapse
|
130
|
Tamada M, Farrell DL, Zallen JA. Abl regulates planar polarized junctional dynamics through β-catenin tyrosine phosphorylation. Dev Cell 2012; 22:309-19. [PMID: 22340496 PMCID: PMC3327890 DOI: 10.1016/j.devcel.2011.12.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/17/2011] [Accepted: 12/30/2011] [Indexed: 01/11/2023]
Abstract
Interactions between epithelial cells are mediated by adherens junctions that are dynamically regulated during development. Here we show that the turnover of β-catenin is increased at cell interfaces that are targeted for disassembly during Drosophila axis elongation. The Abl tyrosine kinase is concentrated at specific planar junctions and is necessary for polarized β-catenin localization and dynamics. abl mutant embryos have decreased β-catenin turnover at shrinking edges, and these defects are accompanied by a reduction in multicellular rosette formation and axis elongation. Abl promotes β-catenin phosphorylation on the conserved tyrosine 667 and expression of an unphosphorylatable β-catenin mutant recapitulates the defects of abl mutants. Notably, a phosphomimetic β-catenin(Y667E) mutation is sufficient to increase β-catenin turnover and rescue axis elongation in abl deficient embryos. These results demonstrate that the asymmetrically localized Abl tyrosine kinase directs planar polarized junctional remodeling during Drosophila axis elongation through the tyrosine phosphorylation of β-catenin.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 USA
| | - Dene L. Farrell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 USA
| | - Jennifer A. Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
131
|
Li R, Pendergast AM. Arg kinase regulates epithelial cell polarity by targeting β1-integrin and small GTPase pathways. Curr Biol 2011; 21:1534-42. [PMID: 21906945 DOI: 10.1016/j.cub.2011.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/11/2011] [Accepted: 08/10/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Establishment and maintenance of epithelial cell polarity is regulated in part by signaling from adhesion receptors. Loss of cell polarity is associated with multiple pathologies including the initiation and progression of various cancers. The β1-integrin adhesion receptor plays a role in the regulation of cell polarity; however, the identity of the signaling pathways that modulate β1-integrin function and connect it to the regulation of polarity pathways remains largely unknown. RESULTS The present work identifies a role for Arg, a member of the Abl family nonreceptor tyrosine kinases, in the regulation of adhesive signals and epithelial cell polarity. In a three-dimensional cell culture model, activation of Arg kinase leads to a striking inversion of apical-basal polarity. In contrast, loss of Arg function impairs the establishment of a polarized epithelial cyst structure. Activated Arg kinase disrupts β1-integrin signaling and localization and impairs Rac1-mediated laminin assembly. Disruption of β1-integrin function by active Arg results in altered distribution of selected polarity complex components mediated in part by Rap1 GTPase signaling. Whereas polarity inversion is partially rescued by a constitutively active Rap1, Rac1-dependent laminin assembly is not, indicating that Rap1 and Rac1 signal independently during epithelial polarity. CONCLUSIONS These findings suggest that modulation of Arg kinase function may contribute not only to normal epithelial polarity regulation but also may promote pathologies associated with loss of cell polarity.
Collapse
Affiliation(s)
- Ran Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
132
|
Gourley SL, Taylor JR, Koleske AJ. Cell adhesion signaling pathways: First responders to cocaine exposure? Commun Integr Biol 2011; 4:30-3. [PMID: 21509173 DOI: 10.4161/cib.4.1.14083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022] Open
Abstract
The 100 billion neurons comprising the human brain are wired together using structural extensions termed axons, dendrites and dendritic spines. Addictive drugs remodel dendritic spine structure in certain brain regions and with repeated exposure, induce psychomotor sensitization and impair behavioral flexibility. We recently reported that low-dose cocaine exposure, in combination with knockout of Arg-an adhesion-regulated nonreceptor tyrosine kinase that stabilizes neuronal shape starting in adolescence-recapitulates both features of chronic drug exposure in rodents. In light of these and other recent findings in the field, we suggest that cell adhesion receptors and their downstream cytoskeletal effectors act as "first responders" to psychostimulant exposure. In this model, cell adhesion factors act to stabilize existing dendritic spines in response to cocaine, and reduced expression/function is expected to increase vulnerability. Moreover, this model anticipates that increased sensitivity to psychostimulants in adolescence relates to neuronal pruning processes that occur during this developmental period.
Collapse
|
133
|
Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a001800. [PMID: 21106647 DOI: 10.1101/cshperspect.a001800] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Anatomy, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
134
|
Wessler S, Backert S. Abl family of tyrosine kinases and microbial pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:271-300. [PMID: 21199784 DOI: 10.1016/b978-0-12-385859-7.00006-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abl nonreceptor tyrosine kinases are activated by multiple stimuli and regulate cytoskeletal reorganization, cell proliferation, survival, and stress responses. Several downstream pathways have direct impact on physiological processes, including development and maintenance of the nervous and immune systems and epithelial morphogenesis. Recent studies also indicated that numerous viral and bacterial pathogens highjack Abl signaling for different purposes. Abl kinases are activated to reorganize the host actin cytoskeleton and promote the direct tyrosine phosphorylation of viral surface proteins and injected bacterial type-III and type-IV effector molecules. However, Abl kinases also play other roles in infectious processes of bacteria, viruses, and prions. These activities have crucial impact on microbial invasion and release from host cells, actin-based motility, pedestal formation, as well as cell-cell dissociation involved in epithelial barrier disruption and other responses. Thus, Abl kinases exhibit important functions in pathological signaling during microbial infections. Here, we discuss the different signaling pathways activated by pathogens and highlight possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billrothstrasse, Salzburg, Austria
| | | |
Collapse
|
135
|
|
136
|
Abl family tyrosine kinases are essential for basement membrane integrity and cortical lamination in the cerebellum. J Neurosci 2010; 30:14430-9. [PMID: 20980600 DOI: 10.1523/jneurosci.2861-10.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Abl family nonreceptor tyrosine kinases, consisting of closely related Abl and Arg (Abl-related gene), play essential roles in mouse neurulation, but their functions in the subsequent development of CNS are poorly understood. Here, we show that conditional deletion of Abl in precursors of neurons and glia on an Arg knock-out background leads to striking cerebellar malformations, including defects in anterior cerebellar morphogenesis, granule cell ectopia, and hypoplasia. Time course analyses reveal that the abnormal anterior cerebellar foliation results from local disruptions of the basement membrane (BM) located between radial glial endfeet and the meninges during embryonic cerebellar development. Granule cell ectopia and hypoplasia are also associated with the breaches in the BM and abnormal Bergmann glial networks during postnatal cerebellar development. In vitro culture experiments indicate that Abl/Arg-deficient granule cells can interact with glial processes and proliferate normally in response to sonic hedgehog compared to cells isolated from control mice. Consistent with these findings, selective ablation of Abl family kinases in cerebellar granule cells alone does not cause any abnormality, suggesting that deletion of Abl/Arg from glia is likely required for the mutant phenotype. Together, these results provide compelling evidence that Abl and Arg play key redundant roles in BM maintenance and cortical lamination in the cerebellum.
Collapse
|
137
|
Krause M. ABL at the leading edge. Nat Rev Mol Cell Biol 2010; 12:8. [PMID: 21102623 DOI: 10.1038/nrm3026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthias Krause
- King's College London, Randall Division of Cell and Molecular Biophysics, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
138
|
Wang L, Chiang ET, Simmons JT, Garcia JGN, Dudek SM. FTY720-induced human pulmonary endothelial barrier enhancement is mediated by c-Abl. Eur Respir J 2010; 38:78-88. [PMID: 21071472 DOI: 10.1183/09031936.00047810] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies to improve pulmonary endothelial barrier function are needed to reverse the devastating effects of vascular leak in acute respiratory distress syndrome. FTY720 is a pharmaceutical analogue of the potent barrier-enhancing phospholipid sphingosine 1-phosphate (S1P). FTY720 decreases vascular permeability by an incompletely characterised mechanism that differs from S1P. Here, we describe its barrier-promoting effects on intracellular signalling and junctional assembly formation in human pulmonary endothelium. Permeability of cultured human pulmonary endothelial cells was assessed using transendothelial electrical resistance and dextran transwell assays. Junctional complex formation was assessed using membrane fractionation and immunofluorescence. Pharmacological inhibitors and small interfering (si)RNA were utilised to determine the effects of individual components on permeability. Unlike S1P, FTY720 failed to induce membrane translocation of adherens junction or tight junction proteins. β-catenin, occludin, claudin-5 or zona occludens protein (ZO)-1/ZO-2 siRNAs did not alter FTY720-induced barrier enhancement. FTY720 induced focal adhesion kinase (FAK) phosphorylation and focal adhesion formation, with FAK siRNA partially attenuating the prolonged phase of barrier enhancement. Inhibition of Src, protein kinase (PK)A, PKG, PKC or protein phosphatase 2A failed to alter FTY720-induced barrier enhancement. FTY720 increased c-Abl tyrosine kinase activity and c-Abl siRNA attenuated peak barrier enhancement after FTY720. FTY720 enhances endothelial barrier function by a novel pathway involving c-Abl signalling.
Collapse
Affiliation(s)
- L Wang
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
139
|
Baratchi S, Kanwar RK, Kanwar JR. Survivin: A target from brain cancer to neurodegenerative disease. Crit Rev Biochem Mol Biol 2010; 45:535-54. [DOI: 10.3109/10409238.2010.516740] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
140
|
Abstract
ABL-family proteins comprise one of the best conserved branches of the tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. This cassette is coupled to an actin-binding and -bundling domain, which makes ABL proteins capable of connecting phosphoregulation with actin-filament reorganization. Two vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain through which it mediates DNA damage-repair functions, whereas ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. Information on ABL regulatory mechanisms is being mined to provide new therapeutic strategies against hematopoietic malignancies caused by BCR-ABL1 and related leukemogenic proteins.
Collapse
Affiliation(s)
- John Colicelli
- Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
141
|
Espejo R, Rengifo-Cam W, Schaller MD, Evers BM, Sastry SK. PTP-PEST controls motility, adherens junction assembly, and Rho GTPase activity in colon cancer cells. Am J Physiol Cell Physiol 2010; 299:C454-63. [PMID: 20519451 DOI: 10.1152/ajpcell.00148.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An important step in carcinoma progression is loss of cell-cell adhesion leading to increased invasion and metastasis. We show here that the protein tyrosine phosphatase, PTP-PEST, is a critical regulator of cell-cell junction integrity and epithelial cell motility. Using colon carcinoma cells, we show that the expression level of PTP-PEST regulates cell motility. Either transient small interfering RNA or stable short hairpin RNA knockdown of PTP-PEST enhances haptotactic and chemotactic migration of KM12C colon carcinoma cells. Furthermore, KM12C cells with stably knocked down PTP-PEST exhibit a mesenchymal-like phenotype with prominent membrane ruffles and lamellae. In contrast, ectopic expression of PTP-PEST in KM20 or DLD-1 cells, which lack detectable endogenous PTP-PEST expression, suppresses haptotactic migration. Importantly, we find that PTP-PEST localizes in adherens junctions. Concomitant with enhanced motility, stable knockdown of PTP-PEST causes a disruption of cell-cell junctions. These effects are due to a defect in junctional assembly and not to a loss of E-cadherin expression. Adherens junction assembly is impaired following calcium switch in KM12C cells with stably knocked down PTP-PEST and is accompanied by an increase in the activity of Rac1 and a suppression of RhoA activity in response to cadherin engagement. Taken together, these results suggest that PTP-PEST functions as a suppressor of epithelial cell motility by controlling Rho GTPase activity and the assembly of adherens junctions.
Collapse
Affiliation(s)
- Rosario Espejo
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1074, USA
| | | | | | | | | |
Collapse
|
142
|
Parallel genetic and proteomic screens identify Msps as a CLASP-Abl pathway interactor in Drosophila. Genetics 2010; 185:1311-25. [PMID: 20498300 DOI: 10.1534/genetics.110.115626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of cytoskeletal structure and dynamics is essential for multiple aspects of cellular behavior, yet there is much to learn about the molecular machinery underlying the coordination between the cytoskeleton and its effector systems. One group of proteins that regulate microtubule behavior and its interaction with other cellular components, such as actin-regulatory proteins and transport machinery, is the plus-end tracking proteins (MT+TIPs). In particular, evidence suggests that the MT+TIP, CLASP, may play a pivotal role in the coordination of microtubules with other cellular structures in multiple contexts, although the molecular mechanism by which it functions is still largely unknown. To gain deeper insight into the functional partners of CLASP, we conducted parallel genetic and proteome-wide screens for CLASP interactors in Drosophila melanogaster. We identified 36 genetic modifiers and 179 candidate physical interactors, including 13 that were identified in both data sets. Grouping interactors according to functional classifications revealed several categories, including cytoskeletal components, signaling proteins, and translation/RNA regulators. We focused our initial investigation on the MT+TIP Minispindles (Msps), identified among the cytoskeletal effectors in both genetic and proteomic screens. Here, we report that Msps is a strong modifier of CLASP and Abl in the retina. Moreover, we show that Msps functions during axon guidance and antagonizes both CLASP and Abl activity. Our data suggest a model in which CLASP and Msps converge in an antagonistic balance in the Abl signaling pathway.
Collapse
|
143
|
Michael M, Vehlow A, Navarro C, Krause M. c-Abl, Lamellipodin, and Ena/VASP proteins cooperate in dorsal ruffling of fibroblasts and axonal morphogenesis. Curr Biol 2010; 20:783-91. [PMID: 20417104 PMCID: PMC2946563 DOI: 10.1016/j.cub.2010.03.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/06/2022]
Abstract
Background Tight regulation of cell motility is essential for many physiological processes, such as formation of a functional nervous system and wound healing. Drosophila Abl negatively regulates the actin cytoskeleton effector protein Ena during neuronal development in flies, and it has been postulated that this may occur through an unknown intermediary. Lamellipodin (Lpd) regulates cell motility and recruits Ena/VASP proteins (Ena, Mena, VASP, EVL) to the leading edge of cells. However, the regulation of this recruitment has remained unsolved. Results Here we show that Lpd is a substrate of Abl kinases and binds to the Abl SH2 domain. Phosphorylation of Lpd positively regulates the interaction between Lpd and Ena/VASP proteins. Consistently, efficient recruitment of Mena and EVL to Lpd at the leading edge requires Abl kinases. Furthermore, transient Lpd phosphorylation by Abl kinases upon netrin-1 stimulation of primary cortical neurons positively correlates with an increase in Lpd-Mena coprecipitation. Lpd is also transiently phosphorylated by Abl kinases upon platelet-derived growth factor (PDGF) stimulation, regulates PDGF-induced dorsal ruffling of fibroblasts and axonal morphogenesis, and cooperates with c-Abl in an Ena/VASP-dependent manner. Conclusions Our findings suggest that Abl kinases positively regulate Lpd-Ena/VASP interaction, Ena/VASP recruitment to Lpd at the leading edge, and Lpd-Ena/VASP function in axonal morphogenesis and in PDGF-induced dorsal ruffling. Our data do not support the suggested negative regulatory role of Abl for Ena. Instead, we propose that Lpd is the hitherto unknown intermediary between Abl and Ena/VASP proteins.
Collapse
Affiliation(s)
- Magdalene Michael
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
144
|
Dorsten JN, Varughese BE, Karmo S, Seeger MA, VanBerkum MFA. In the absence of frazzled over-expression of Abelson tyrosine kinase disrupts commissure formation and causes axons to leave the embryonic CNS. PLoS One 2010; 5:e9822. [PMID: 20352105 PMCID: PMC2843715 DOI: 10.1371/journal.pone.0009822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/27/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In the Drosophila embryonic nerve cord, the formation of commissures require both the chemoattractive Netrin receptor Frazzled (Fra) and the Abelson (Abl) cytoplasmic tyrosine kinase. Abl binds to the cytoplasmic domain of Fra and loss-of-function mutations in abl enhance fra-dependent commissural defects. To further test Abl's role in attractive signaling, we over-expressed Abl in Fra mutants anticipating rescue of commissures. METHODOLOGY/PRINCIPAL FINDINGS The Gal4-UAS system was used to pan-neurally over-express Abl in homozygous fra embryos. Surprisingly, this led to a significant decrease in both posterior and anterior commissure formation and induced some commissural and longitudinal axons to project beyond the CNS/PNS border. Re-expressing wild-type Fra, or Fra mutants with a P-motif deleted, revert both commissural and exiting phenotypes, indicating that Fra is required but not a specific P-motif. This is supported by S2 cell experiments demonstrating that Abl binds to Fra independent of any specific P-motif and that Fra continues to be phosphorylated when individual P-motifs are removed. Decreasing midline repulsion by reducing Robo signaling had no effect on the Abl phenotype and the phenotypes still occur in a Netrin mutant. Pan-neural over-expression of activated Rac or Cdc42 in a fra mutant also induced a significant loss in commissures, but axons did not exit the CNS. CONCLUSION/SIGNIFICANCE Taken together, these data suggest that Fra activity is required to correctly regulate Abl-dependent cytoskeletal dynamics underlying commissure formation. In the absence of Fra, increased Abl activity appears to be incorrectly utilized downstream of other guidance receptors resulting in a loss of commissures and the abnormal projections of some axons beyond the CNS/PNS border.
Collapse
Affiliation(s)
- Joy N. Dorsten
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Bridget E. Varughese
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Stephanie Karmo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Mark A. Seeger
- Department of Molecular Genetics and Center for Molecular Neurobiology, Ohio State University, Columbus, Ohio, United States of America
| | - Mark F. A. VanBerkum
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|