101
|
Kolawole AO, Kolawole AN. Insecticides and Bio-insecticides Modulate the Glutathione-related Antioxidant Defense System of Cowpea Storage Bruchid ( Callosobruchus maculatus). INTERNATIONAL JOURNAL OF INSECT SCIENCE 2014; 6:10.4137_IJIS.S18029. [PMID: 35241959 PMCID: PMC8848080 DOI: 10.4137/ijis.s18029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 05/12/2023]
Abstract
The possible cellular involvements of cowpea storage bruchid (Callosobruchus maculatus (Fab.) [Coleoptera: Chrysomelidae]) glutathione and its related enzymes system in the cellular defense against insecticides (Cypermethrin and λ-cyhalothrin) and bio-insecticides (ethanolic extract of Tithonia diversifolia, Cyperus rotundus, Hyptis suavolens leaves, and Jatropha curcas seed) were investigated. The results showed that the effect of insecticides and bio-insecticides on the C. maculatus is a function of oxidative and nitrosative stresses generated in vivo. A significant (p < 0.05) increase in carbonyl protein (CP) and lipid peroxidation (LPO) contents in bio-insecticides and insecticides exposed groups compared to the control indicates the extent of vital organs damage. These stresses caused similar and significant increase of glutathione peroxidase and glutathione synthetase in response to insecticides and bio-insecticide exposure in a dose-dependent manner. There was no post-translational modification of glutathione transferases expression induced. The alterations of the insect glutathione-dependent antioxidant enzyme activities reflect the presence of a functional defense mechanism against the oxidative and nitrosative stress and are related firmly to the glutathione demands and metabolism but appear inadequate by the significant reduction in glutathione reductase (GR) activity to prevent the damages. Exogenous application of reduced glutathione (GSH), to complement the in vivo demand, could not protect against the onslaught.
Collapse
Affiliation(s)
- Ayodele O. Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
- ;
| | - Adejoke N. Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
102
|
|
103
|
Montero D, Tachibana C, Rahr Winther J, Appenzeller-Herzog C. Intracellular glutathione pools are heterogeneously concentrated. Redox Biol 2013; 1:508-13. [PMID: 24251119 PMCID: PMC3830055 DOI: 10.1016/j.redox.2013.10.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022] Open
Abstract
Glutathione is present in millimolar concentrations in the cell, but its relative distribution among cellular compartments remains elusive. We have chosen the endoplasmic reticulum (ER) as an example organelle to study compartment-specific glutathione levels. Using a glutaredoxin sensor (sCGrx1pER), which rapidly and specifically equilibrates with the reduced glutathione (GSH)–glutathione disulfide (GSSG) redox couple with known equilibrium constant, we showed that the [GSH]:[GSSG] ratio in the ER of intact HeLa cells is less than 7:1. Taking into consideration the previously determined value for [GSH]2:[GSSG] in the ER of 83 mM, this translates into a total glutathione concentration in the ER ([GStot]=[GSH]+2[GSSG]) of greater than 15 mM. Since the integrated, intracellular [GStot] was measured as ~7 mM, we conclude the existence of a [GStot] gradient across the ER membrane. A possible homeostatic mechanism by which cytosol-derived glutathione is trapped in the ER is discussed. We propose a high [GStot] as a distinguishing feature of the ER environment compared to the extracellular space. Glutathionylation status of a 1-Cys glutaredoxin is a readout for [GSH]:[GSSG]. Compartment-specific [GStot] is given by [GSH]:[GSSG] and [GSH]2:[GSSG]. [GStot] is higher in the ER than in the cytosol of human cells.
Collapse
Key Words
- DTT, Dithiothreitol
- EGSH, Half cell reduction potential of glutathione
- ER, Endoplasmic reticulum
- Endoplasmic reticulum
- GSH, Reduced glutathione
- GSSG, Glutathione disulfide
- Glutaredoxin
- Glutathione
- NEM, N-ethylmaleimide
- OxD, Percentage of oxidation
- PDI, Protein disulfide isomerase
- PERK, Double stranded RNA-activated protein kinase (PKR)-like ER kinase
- RGS, [GSH]:[GSSG]
- Redox Homeostasis
- Redox compartmentalization
- Redox, Reduction–oxidation
- Reduction potential
- TMM(PEG)12, Maleimide-activated polyethylene glycol
- UPR, Unfolded protein response
- XBP1, X-box binding protein 1
- [GStot], Total glutathione concentration
- sCGrx1p, C30S mutant of yeast glutaredoxin 1
Collapse
Affiliation(s)
- Davide Montero
- Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
104
|
Quantifying Changes in the Cellular Thiol-Disulfide Status during Differentiation of B Cells into Antibody-Secreting Plasma Cells. Int J Cell Biol 2013; 2013:898563. [PMID: 24223594 PMCID: PMC3800581 DOI: 10.1155/2013/898563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023] Open
Abstract
Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells and by an up-regulation of enzymes involved in redox regulation and protein folding. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated proteins in whole cells. The results show that while the global thiol-disulfide state is affected to some extent by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion of the ER does not affect global protein redox status until an extensive production of cargo proteins has started.
Collapse
|
105
|
Wright J, Birk J, Haataja L, Liu M, Ramming T, Weiss MA, Appenzeller-Herzog C, Arvan P. Endoplasmic reticulum oxidoreductin-1α (Ero1α) improves folding and secretion of mutant proinsulin and limits mutant proinsulin-induced endoplasmic reticulum stress. J Biol Chem 2013; 288:31010-8. [PMID: 24022479 DOI: 10.1074/jbc.m113.510065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon chronic up-regulation of proinsulin synthesis, misfolded proinsulin can accumulate in the endoplasmic reticulum (ER) of pancreatic β-cells, promoting ER stress and type 2 diabetes mellitus. In Mutant Ins-gene-induced Diabetes of Youth (MIDY), misfolded mutant proinsulin impairs ER exit of co-expressed wild-type proinsulin, limiting insulin production and leading to eventual β-cell death. In this study we have investigated the hypothesis that increased expression of ER oxidoreductin-1α (Ero1α), despite its established role in the generation of H2O2, might nevertheless be beneficial in limiting proinsulin misfolding and its adverse downstream consequences. Increased Ero1α expression is effective in promoting wild-type proinsulin export from cells co-expressing misfolded mutant proinsulin. In addition, we find that upon increased Ero1α expression, some of the MIDY mutants themselves are directly rescued from ER retention. Secretory rescue of proinsulin-G(B23)V is correlated with improved oxidative folding of mutant proinsulin. Indeed, using three different variants of Ero1α, we find that expression of either wild-type or an Ero1α variant lacking regulatory disulfides can rescue mutant proinsulin-G(B23)V, in parallel with its ability to provide an oxidizing environment in the ER lumen, whereas beneficial effects were less apparent for a redox-inactive form of Ero1. Increased expression of protein disulfide isomerase antagonizes the rescue provided by oxidatively active Ero1. Importantly, ER stress induced by misfolded proinsulin was limited by increased expression of Ero1α, suggesting that enhancing the oxidative folding of proinsulin may be a viable therapeutic strategy in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jordan Wright
- From the Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Durante M, Reppingen N, Held KD. Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol Med 2013; 19:565-82. [DOI: 10.1016/j.molmed.2013.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
107
|
Kakihana T, Araki K, Vavassori S, Iemura SI, Cortini M, Fagioli C, Natsume T, Sitia R, Nagata K. Dynamic regulation of Ero1α and peroxiredoxin 4 localization in the secretory pathway. J Biol Chem 2013; 288:29586-94. [PMID: 23979138 PMCID: PMC3795256 DOI: 10.1074/jbc.m113.467845] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H2O2 as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H2O2 to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1α, whereas ERp44 equally retains Ero1α and Prx4. The different binding properties of Ero1α and Prx4 increase the robustness of ER redox homeostasis.
Collapse
Affiliation(s)
- Taichi Kakihana
- From the Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8397, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Birk J, Ramming T, Odermatt A, Appenzeller-Herzog C. Green fluorescent protein-based monitoring of endoplasmic reticulum redox poise. Front Genet 2013; 4:108. [PMID: 23781233 PMCID: PMC3680709 DOI: 10.3389/fgene.2013.00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/27/2013] [Indexed: 01/08/2023] Open
Abstract
Pathological endoplasmic reticulum (ER) stress is tightly linked to the accumulation of reactive oxidants, which can be both upstream and downstream of ER stress. Accordingly, detrimental intracellular stress signals are amplified through establishment of a vicious cycle. An increasing number of human diseases are characterized by tissue atrophy in response to ER stress and oxidative injury. Experimental monitoring of stress-induced, time-resolved changes in ER reduction-oxidation (redox) states is therefore important. Organelle-specific examination of redox changes has been facilitated by the advent of genetically encoded, fluorescent probes, which can be targeted to different subcellular locations by means of specific amino acid extensions. These probes include redox-sensitive green fluorescent proteins (roGFPs) and the yellow fluorescent protein-based redox biosensor HyPer. In the case of roGFPs, variants with known specificity toward defined redox couples are now available. Here, we review the experimental framework to measure ER redox changes using ER-targeted fluorescent biosensors. Advantages and drawbacks of plate-reader and microscopy-based measurements are discussed, and the power of these techniques demonstrated in the context of selected cell culture models for ER stress.
Collapse
Affiliation(s)
- Julia Birk
- Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel Basel, Switzerland
| | | | | | | |
Collapse
|
109
|
Aller I, Rouhier N, Meyer AJ. Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings. FRONTIERS IN PLANT SCIENCE 2013; 4:506. [PMID: 24379821 PMCID: PMC3863748 DOI: 10.3389/fpls.2013.00506] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/26/2013] [Indexed: 05/05/2023]
Abstract
Glutathione is important for detoxification, as a cofactor in biochemical reactions and as a thiol-redox buffer. The cytosolic glutathione buffer is normally highly reduced with glutathione redox potentials (E GSH ) of more negative than -310 mV. Maintenance of such negative redox potential is achieved through continuous reduction of glutathione disulfide by glutathione reductase (GR). Deviations from steady state glutathione redox homeostasis have been discussed as a possible mean to alter the activity of redox-sensitive proteins through switching of critical thiol residues. To better understand such signaling mechanisms it is essential to be able to measure E GSH over a wide range from highly negative redox potentials down to potentials found in mutants that show already severe phenotypes. With the advent of redox-sensitive GFPs (roGFPs), understanding the in vivo dynamics of the thiol-based redox buffer system became within reach. The original roGFP versions, roGFP1 and roGFP2, however, have midpoint potentials between -280 and -290 mV rendering them fully oxidized in the ER and almost fully reduced in the cytosol, plastids, mitochondria, and peroxisomes. To extend the range of suitable probes we have engineered a roGFP2 derivative, roGFP2-iL, with a midpoint potential of about -238 mV. This value is within the range of redox potentials reported for homologous roGFP1-iX probes, albeit with different excitation properties. To allow rapid and specific equilibration with the glutathione pool, fusion constructs with human glutaredoxin 1 (GRX1) were generated and characterized in vitro. GRX1-roGFP2-iL proved to be suitable for in vivo redox potential measurements and extends the range of E GSH values that can be measured in vivo with roGFP2-based probes from about -320 mV for GRX1-roGFP2 down to about -210 mV for GRX1-roGFP2-iL. Using both probes in the cytosol of severely glutathione-deficient rml1 seedlings revealed an E GSH of about -260 mV in this mutant.
Collapse
Affiliation(s)
- Isabel Aller
- INRES-Chemical Signalling, University of BonnBonn, Germany
| | - Nicolas Rouhier
- Interactions Arbres Microorganismes, IFR 110 EFABA, Faculté des sciences, Université de Lorraine, UMR 1136 Université de Lorraine/INRAVandoeuvre lès-Nancy, France
| | - Andreas J. Meyer
- INRES-Chemical Signalling, University of BonnBonn, Germany
- *Correspondence: Andreas J. Meyer, INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany e-mail:
| |
Collapse
|