101
|
Hu M, Li L, Sui Y, Li J, Wang Y, Lu W, Dupont S. Effect of pH and temperature on antioxidant responses of the thick shell mussel Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2015; 46:573-583. [PMID: 26235981 DOI: 10.1016/j.fsi.2015.07.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
This study evaluated the combined effects of seawater pH decrease and temperature increase on the activity of antioxidant enzymes in the thick shell mussel Mytilus coruscus, an ecological and economic bivalve species widely distributed along the East China Sea. Mussels were exposed to three pH levels (8.1, 7.7 and 7.3) and two temperatures (25 °C and 30 °C) for 14 days. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH), acid phosphatase (ACP), alkaline phosphatase (AKP) and glutamic-pyruvic transaminase (GPT) were measured in gills and digestive glands after 1, 3, 7 and 14 days of exposure. All enzymatic activities were significantly impacted by pH, temperature. Enzymatic activities at the high temperature were significantly higher than those at the low temperature, and the mussels exposed to pH 7.3 showed significantly higher activities than those under higher pH condition for all enzymes except ACP. There was no interaction between temperature and pH in two third of the measured activities suggesting similar mode of action for both drivers. Interaction was only consistently significant for GPX. PCA revealed positive relationships between the measured biochemical indicators in both gills and digestive glands. Overall, our results suggest that decreased pH and increased temperature induce a similar anti-oxidative response in the thick shell mussel.
Collapse
Affiliation(s)
- Menghong Hu
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center (ZF1206), Shanghai 201306, China; Department of Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Center for Polar- and Marine Research, 27570 Bremerhaven, Germany.
| | - Lisha Li
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yanming Sui
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Jiale Li
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center (ZF1206), Shanghai 201306, China
| | - Youji Wang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center (ZF1206), Shanghai 201306, China; Department of Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Center for Polar- and Marine Research, 27570 Bremerhaven, Germany.
| | - Weiqun Lu
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center (ZF1206), Shanghai 201306, China.
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Sciences, Kristineberg, Fiskebäckskil 45178, Sweden
| |
Collapse
|
102
|
Huang X, Gao Y, Jiang B, Zhou Z, Zhan A. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi. Gene 2015; 576:79-87. [PMID: 26428313 DOI: 10.1016/j.gene.2015.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022]
Abstract
As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
103
|
Saarman NP, Pogson GH. Introgression between invasive and native blue mussels (genusMytilus) in the central California hybrid zone. Mol Ecol 2015; 24:4723-38. [DOI: 10.1111/mec.13340] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Norah P. Saarman
- Department of Ecology and Evolutionary Biology; Yale University; PO Box 208106 New Haven CT 06520-8106 USA
| | - Grant H. Pogson
- Department of Ecology and Evolutionary Biology; UC Santa Cruz; Santa Cruz CA 95064 USA
| |
Collapse
|
104
|
Caza F, Betoulle S, Auffret M, Brousseau P, Fournier M, St-Pierre Y. Comparative analysis of hemocyte properties from Mytilus edulis desolationis and Aulacomya ater in the Kerguelen Islands. MARINE ENVIRONMENTAL RESEARCH 2015; 110:174-182. [PMID: 26382607 DOI: 10.1016/j.marenvres.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
The capability of bivalve molluscs to respond to environmental stresses largely depends upon their cellular immunity. Accordingly, shift in habitat conditions following thermal stress or exposure to pollutants may harm sensitive species differently, thereby modulating the biodiversity of a given ecosystem by favoring stress-tolerant species. Here, we have compared the sensitivity of hemocytes from Mytilus edulis desolationis (M. edulis desolationis) and Aulacomya ater (A. ater) to acute thermal stress and exposure to cadmium. The two subantarctic species are commonly found in the same habitat in the isolated Kerguelen archipelago. Our results showed that the phagocytic activity and viability of hemocytes from both species were equally sensitive to increasing concentrations of cadmium. However, although in vitro exposure to cadmium induced apoptosis in hemocytes of M. edulis desolationis and A. ater, flow cytometric analyses showed that the apoptotic profile of both species differed greatly when using Annexin V and YO-PRO-1 as apoptotic markers. We also found that the total hemocyte counts decreased strongly in A. ater but not in M. edulis desolationis following an acute thermal stress. Taken together, these results showed that stress responses differed significantly in hemocytes from both species. This suggests that the co-existence of both species may be at risk following exposure to pollutants and/or changes in temperature.
Collapse
Affiliation(s)
- France Caza
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Stéphane Betoulle
- Université Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Campus Moulin de la Housse, 51687 Reims, France
| | - Michel Auffret
- Laboratoire des Sciences de l'Environnement Marin, UMR CNRS 6539-LEMAR, Technopôle Brest-Iroise, 29280 Plouzane, France
| | - Pauline Brousseau
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Michel Fournier
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| |
Collapse
|
105
|
Zhang N, Belsterling B, Raszewski J, Tonsor SJ. Natural populations of Arabidopsis thaliana differ in seedling responses to high-temperature stress. AOB PLANTS 2015; 7:plv101. [PMID: 26286225 PMCID: PMC4598537 DOI: 10.1093/aobpla/plv101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/31/2015] [Indexed: 05/06/2023]
Abstract
Little is known about adaptive within-species variation in thermotolerance in wild plants despite its likely role in both functional adaptation at range limits and in predicting response to climate change. Heat shock protein Hsp101, rapidly heat induced in Arabidopsis thaliana, plays a central role in thermotolerance in laboratory studies, yet little is known about variation in its expression in natural populations. We explored variation in thermotolerance and Hsp101 expression in seedlings from 16 natural populations of A. thaliana sampled along an elevation and climate gradient. We tested both naive controls (maintained at 22 °C until heat stress) and thermally pre-acclimated plants (exposed to a 38 °C 3-h acclimation treatment). After acclimation, seedlings were exposed to one of two heat stresses: 42 or 45 °C. Thermotolerance was measured as post-stress seedling survival and root growth. When stressed at 45 °C, both thermotolerance and Hsp101 expression were significantly increased by pre-acclimation. However, thermotolerance did not differ between pre-acclimation and control when followed by a 42 °C stress. Immediately after heat stress, pre-acclimated seedlings contained significantly more Hsp101 than control seedlings. At 45 °C, Hsp101 expression was positively associated with survival (r(2) = 0.37) and post-stress root growth (r(2) = 0.15). Importantly, seedling survival, post-stress root growth at 45 °C and Hsp101 expression at 42 °C were significantly correlated with the home sites' first principal component of climate variation. This climate gradient mainly reflects a temperature and precipitation gradient. Thus, the extent of Hsp101 expression modulation and thermotolerance appear to be interrelated and to evolve adaptively in natural populations of A. thaliana.
Collapse
Affiliation(s)
- Nana Zhang
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave., Pittsburgh, PA 15260, USA
| | - Brian Belsterling
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave., Pittsburgh, PA 15260, USA
| | - Jesse Raszewski
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave., Pittsburgh, PA 15260, USA
| | - Stephen J Tonsor
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave., Pittsburgh, PA 15260, USA Carnegie Museum of Natural History, 4400 Forbes Ave., Pittsburgh, PA 15213, USA
| |
Collapse
|
106
|
Lockwood BL, Connor KM, Gracey AY. The environmentally tuned transcriptomes of Mytilus mussels. J Exp Biol 2015; 218:1822-33. [DOI: 10.1242/jeb.118190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
Transcriptomics is a powerful tool for elucidating the molecular mechanisms that underlie the ability of organisms to survive and thrive in dynamic and changing environments. Here, we review the major contributions in this field, and we focus on studies of mussels in the genus Mytilus, which are well-established models for the study of ecological physiology in fluctuating environments. Our review is organized into four main sections. First, we illustrate how the abiotic forces of the intertidal environment drive the rhythmic coupling of gene expression to diel and tidal cycles in Mytilus californianus. Second, we discuss the challenges and pitfalls of conducting transcriptomic studies in field-acclimatized animals. Third, we examine the link between transcriptomic responses to environmental stress and biogeographic distributions in blue mussels, Mytilus trossulus and Mytilus galloprovincialis. Fourth, we present a comparison of transcriptomic datasets and identify 175 genes that share common responses to heat stress across Mytilus species. Taken together, these studies demonstrate that transcriptomics can provide an informative snapshot of the physiological state of an organism within an environmental context. In a comparative framework, transcriptomics can reveal how natural selection has shaped patterns of transcriptional regulation that may ultimately influence biogeography.
Collapse
Affiliation(s)
- Brent L. Lockwood
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Kwasi M. Connor
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrew Y. Gracey
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| |
Collapse
|
107
|
Evans TG. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J Exp Biol 2015; 218:1925-35. [DOI: 10.1242/jeb.114306] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Transcriptomics has emerged as a powerful approach for exploring physiological responses to the environment. However, like any other experimental approach, transcriptomics has its limitations. Transcriptomics has been criticized as an inappropriate method to identify genes with large impacts on adaptive responses to the environment because: (1) genes with large impacts on fitness are rare; (2) a large change in gene expression does not necessarily equate to a large effect on fitness; and (3) protein activity is most relevant to fitness, and mRNA abundance is an unreliable indicator of protein activity. In this review, these criticisms are re-evaluated in the context of recent systems-level experiments that provide new insight into the relationship between gene expression and fitness during environmental stress. In general, these criticisms remain valid today, and indicate that exclusively using transcriptomics to screen for genes that underlie environmental adaptation will overlook constitutively expressed regulatory genes that play major roles in setting tolerance limits. Standard practices in transcriptomic data analysis pipelines may also be limiting insight by prioritizing highly differentially expressed and conserved genes over those genes that undergo moderate fold-changes and cannot be annotated. While these data certainly do not undermine the continued and widespread use of transcriptomics within environmental physiology, they do highlight the types of research questions for which transcriptomics is best suited and the need for more gene functional analyses. Such information is pertinent at a time when transcriptomics has become increasingly tractable and many researchers may be contemplating integrating transcriptomics into their research programs.
Collapse
|
108
|
Zeng T, Zhang L, Li J, Wang D, Tian Y, Lu L. De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Cell Stress Chaperones 2015; 20:483-93. [PMID: 25663538 PMCID: PMC4406934 DOI: 10.1007/s12192-015-0573-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/28/2014] [Accepted: 01/14/2015] [Indexed: 01/20/2023] Open
Abstract
High temperature is a major abiotic stress limiting animal growth and productivity worldwide. The Muscovy duck (Cairina moschata), sometimes called the Barbary drake, is a type of duck with a fairly unusual domestication history. In Southeast Asia, duck meat is one of the top meats consumed, and as such, the production of the meat is an important topic of research. The transcriptomic and genomic data presently available are insufficient to understanding the molecular mechanism underlying the heat tolerance of Muscovy ducks. Thus, transcriptome and expression profiling data for this species are required as important resource for identifying genes and developing molecular marker. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. More than 225 million clean reads were generated and assembled into 36,903 unique transcripts with an average length of 1,135 bp. A total of 21,221 (57.50 %) unigenes were annotated. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with transcription, signal transduction, and apoptosis. We also performed gene expression profiling analysis upon heat treatment in Muscovy ducks and identified 470 heat-response unique transcripts. GO term enrichment showed that protein folding and chaperone binding were significant enrichment, whereas KEGG pathway analyses showed that Ras and MAPKs were activated after heat stress in Muscovy ducks. Our research enriched sequences information of Muscovy duck, provided novel insights into responses to heat stress in these ducks, and serve as candidate genes or markers that can be used to guide future efforts to breed heat-tolerant duck strains.
Collapse
Affiliation(s)
- Tao Zeng
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Liping Zhang
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- />College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Jinjun Li
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Deqian Wang
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Yong Tian
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Lizhi Lu
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
109
|
Lennox R, Choi K, Harrison PM, Paterson JE, Peat TB, Ward TD, Cooke SJ. Improving science-based invasive species management with physiological knowledge, concepts, and tools. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0884-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
110
|
Seneca FO, Palumbi SR. The role of transcriptome resilience in resistance of corals to bleaching. Mol Ecol 2015; 24:1467-84. [DOI: 10.1111/mec.13125] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Francois O. Seneca
- Department of Biology; Stanford University; Hopkins Marine Station Pacific Grove CA 93950 USA
| | - Stephen R. Palumbi
- Department of Biology; Stanford University; Hopkins Marine Station Pacific Grove CA 93950 USA
| |
Collapse
|
111
|
Mu X, Hou G, Song H, Xu P, Luo D, Gu D, Xu M, Luo J, Zhang J, Hu Y. Transcriptome analysis between invasive Pomacea canaliculata and indigenous Cipangopaludina cahayensis reveals genomic divergence and diagnostic microsatellite/SSR markers. BMC Genet 2015; 16:12. [PMID: 25888264 PMCID: PMC4328836 DOI: 10.1186/s12863-015-0175-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pomacea canaliculata is an important invasive species worldwide. However, little is known about the molecular mechanisms behind species displacement, adaptational abilities, and pesticide resistance, partly because of the lack of genomic information that is available for this species. Here, the transcriptome sequences for the invasive golden apple snail P. canaliculata and the native mudsnail Cipangopaludina cahayensis were obtained by next-generation-sequencing and used to compare genomic divergence and identify molecular markers. RESULTS More than 46 million high quality sequencing reads were generated from P. canaliculata and C. cahayensis using Illumina paired-end sequencing technology. Our analysis indicated that 11,312 unigenes from P. canaliculata and C. cahayensis showed significant similarities to known proteins families, among which a total of 4,320 specific protein families were identified. KEGG pathway enrichment was analyzed for the unique unigenes with 17 pathways (p-value < 10(-5)) in P. canaliculata relating predominantly to lysosomes and vitamin digestion and absorption, and with 12 identified in C. cahayensis, including cancer and toxoplasmosis pathways, respectively. Our analysis also indicated that the comparatively high number of P450 genes in the P. canaliculata transcriptome may be associated with the pesticide resistance in this species. Additionally, 16,717 simple sequence repeats derived from expressed sequence tags (EST-SSRs) were identified from the 14,722 unigenes in P. canaliculata and 100 of them were examined by PCR, revealing a species-specific molecular marker that could distinguish between the morphologically similar P. canaliculata and C. cahayensis snails. CONCLUSIONS Here, we present the genomic resources of P. canaliculata and C. cahayensis. Differentially expressed genes in the transcriptome of P. canaliculata compared with C. cahayensis corresponded to critical metabolic pathways, and genes specifically related to environmental stress response were detected. The CYP4 family of P450 cytochromes that may be important factors in pesticide metabolism in P. canaliculata was identified. Overall, these findings will provide valuable genetic data for the further characterization of the molecular mechanisms that support the invasive and adaptive abilities of P. canaliculata.
Collapse
Affiliation(s)
- Xidong Mu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical&Subtropical Fishery Resource Application&Cultivation, Ministry of Agriculture, Guangzhou, 510380, China.
| | - Guangyuan Hou
- Center for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Hongmei Song
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical&Subtropical Fishery Resource Application&Cultivation, Ministry of Agriculture, Guangzhou, 510380, China.
| | - Peng Xu
- Center for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Du Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical&Subtropical Fishery Resource Application&Cultivation, Ministry of Agriculture, Guangzhou, 510380, China.
| | - Dangen Gu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical&Subtropical Fishery Resource Application&Cultivation, Ministry of Agriculture, Guangzhou, 510380, China.
| | - Meng Xu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical&Subtropical Fishery Resource Application&Cultivation, Ministry of Agriculture, Guangzhou, 510380, China.
| | - Jianren Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical&Subtropical Fishery Resource Application&Cultivation, Ministry of Agriculture, Guangzhou, 510380, China.
| | - Jiaen Zhang
- Department of Ecology, College of Agriculture, South China Agricultural University, Key Laboratory of Ecological Agriculture, Guangzhou, 510642, China.
| | - Yinchan Hu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical&Subtropical Fishery Resource Application&Cultivation, Ministry of Agriculture, Guangzhou, 510380, China.
| |
Collapse
|
112
|
Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snailChlorostoma funebralis. Mol Ecol 2015; 24:610-27. [DOI: 10.1111/mec.13047] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Lani U. Gleason
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| |
Collapse
|
113
|
Hu T, Sun X, Zhang X, Nevo E, Fu J. An RNA sequencing transcriptome analysis of the high-temperature stressed tall fescue reveals novel insights into plant thermotolerance. BMC Genomics 2014; 15:1147. [PMID: 25527327 PMCID: PMC4378353 DOI: 10.1186/1471-2164-15-1147] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tall fescue (Festuca arundinacea Schreb.) is major cool-season forage and turf grass species worldwide, but high-temperature is a major environmental stress that dramatically threaten forage production and turf management of tall fescue. However, very little is known about the whole-genome molecular mechanisms contributing to thermotolerance. The objectives of this study were to analyzed genome-wide gene expression profiles in the leaves of two tall fescue genotypes, heat tolerant 'PI578718' and heat sensitive 'PI234881' using high-throughput RNA sequencing. RESULTS A total of 262 million high-quality paired-end reads were generated and assembled into 31,803 unigenes with an average length of 1,840 bp. Of these, 12,974 unigenes showed different expression patterns in response to heat stress and were categorized into 49 Gene Ontology functional subcategories. In addition, the variance of enrichment degree in each functional subcategory between PI578718 and PI234881 increased with increasing treatment time. Cell division and cell cycle genes showed a massive increase in transcript abundance in heat-stressed plants and more activated genes were detected in PI 578718 by Kyoto Encyclopedia of Genes and Genomes pathways analysis. Low molecular weight heat shock protein (LMW-HSP, HSP20) showed activated in two stressed genotypes and high molecular weight HSP (HMW-HSP, HSP90) just in PI578718. Assimilation such as photosynthesis, carbon fixation, CH4, N, S metabolism decreased along with increased dissimilation such as oxidative phosphorylation. CONCLUSIONS The assembled transcriptome of tall fescue could serve as a global description of expressed genes and provide more molecular resources for future functional characterization analysis of genomics in cool-season turfgrass in response to high-temperature. Increased cell division, LMW/HMW-HSP, dissimilation and antioxidant transcript amounts in tall fescue were correlated with successful resistance to high temperature stress.
Collapse
Affiliation(s)
| | | | | | - Eviatar Nevo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, Hubei, P,R, China.
| | | |
Collapse
|
114
|
|
115
|
Zhang Y, Sun J, Mu H, Li J, Zhang Y, Xu F, Xiang Z, Qian PY, Qiu JW, Yu Z. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J Proteome Res 2014; 14:304-17. [PMID: 25389644 DOI: 10.1021/pr500940s] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is one of the dominant sessile inhabitants of the estuarine intertidal zone, which is a physically harsh environment due to the presence of a number of stressors. Oysters have adapted to highly dynamic and stressful environments, but the molecular mechanisms underlying such stress adaptation are largely unknown. In the present study, we examined the proteomic responses in the gills of C. gigas exposed to three stressors (high temperature, low salinity, and aerial exposure) they often encounter in the field. We quantitatively compared the gill proteome profiles using iTRAQ-coupled 2-D LC-MS/MS. There were 3165 identified proteins among which 2379 proteins could be quantified. Heat shock, hyposalinity, and aerial exposure resulted in 50, 15, and 33 differentially expressed gill proteins, respectively. Venn diagram analysis revealed substantial different responses to the three stressors. Only xanthine dehydrogenase/oxidase showed a similar expression pattern across the three stress treatments, suggesting that reduction of ROS accumulation may be a conserved response to these stressors. Heat shock caused significant overexpression of molecular chaperones and production of S-adenosyl-l-methionine, indicating their crucial protective roles against protein denature. In addition, heat shock also activated immune responses, Ca(2+) binding protein expression. By contrast, hyposalinity and aerial exposure resulted in the up-regulation of 3-demethylubiquinone-9 3-methyltransferase, indicating that increase in ubiquinone synthesis may contribute to withstanding both the osmotic and desiccation stress. Strikingly, the majority of desiccation-responsive proteins, including those involved in metabolism, ion transportation, immune responses, DNA duplication, and protein synthesis, were down-regulated, indicating conservation of energy as an important strategy to cope with desiccation stress. There was a high consistency between the expression levels determined by iTRAQ and Western blotting, highlighting the high reproducibility of our proteomic approach and its great value in revealing molecular mechanisms of stress responses.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Chu ND, Miller LP, Kaluziak ST, Trussell GC, Vollmer SV. Thermal stress and predation risk trigger distinct transcriptomic responses in the intertidal snail Nucella lapillus. Mol Ecol 2014; 23:6104-13. [PMID: 25377436 DOI: 10.1111/mec.12994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Thermal stress and predation risk have profound effects on rocky shore organisms, triggering changes in their feeding behaviour, morphology and metabolism. Studies of thermal stress have shown that underpinning such changes in several intertidal species are specific shifts in gene and protein expression (e.g. upregulation of heat-shock proteins). But relatively few studies have examined genetic responses to predation risk. Here, we use next-generation RNA sequencing (RNA-seq) to examine the transcriptomic (mRNA) response of the snail Nucella lapillus to thermal stress and predation risk. We found that like other intertidal species, N. lapillus displays a pronounced genetic response to thermal stress by upregulating many heat-shock proteins and other molecular chaperones. In contrast, the presence of a crab predator (Carcinus maenas) triggered few significant changes in gene expression in our experiment, and this response showed no significant overlap with the snail's response to thermal stress. These different gene expression profiles suggest that thermal stress and predation risk could pose distinct and potentially additive challenges for N. lapillus and that genetic responses to biotic stresses such as predation risk might be more complex and less uniform across species than genetic responses to abiotic stresses such as thermal stress.
Collapse
Affiliation(s)
- Nathaniel D Chu
- Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | | | | | | | | |
Collapse
|
117
|
Cornman RS, Robertson LS, Galbraith H, Blakeslee C. Transcriptomic analysis of the mussel Elliptio complanata identifies candidate stress-response genes and an abundance of novel or noncoding transcripts. PLoS One 2014; 9:e112420. [PMID: 25375103 PMCID: PMC4223053 DOI: 10.1371/journal.pone.0112420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/06/2014] [Indexed: 01/21/2023] Open
Abstract
Mussels are useful indicator species of environmental stress and degradation, and the global decline in freshwater mussel diversity and abundance is of conservation concern. Elliptio complanata is a common freshwater mussel of eastern North America that can serve both as an indicator and as an experimental model for understanding mussel physiology and genetics. To support genetic components of these research goals, we assembled transcriptome contigs from Illumina paired-end reads. Despite efforts to collapse similar contigs, the final assembly was in excess of 136,000 contigs with an N50 of 982 bp. Even so, comparisons to the CEGMA database of conserved eukaryotic genes indicated that ∼20% of genes remain unrepresented. However, numerous candidate stress-response genes were present, and we identified lineage-specific patterns of diversification among molluscs for cytochrome P450 detoxification genes and two saccharide-modifying enzymes: 1,3 beta-galactosyltransferase and fucosyltransferase. Less than a quarter of contigs had protein-level similarity based on modest BLAST and Hmmer3 statistical thresholds. These results add comparative genomic resources for molluscs and suggest a wealth of novel proteins and noncoding transcripts.
Collapse
Affiliation(s)
- Robert S. Cornman
- Leetown Science Center, United States Geological Survey, Kearneysville, West Virginia, United States of America
- * E-mail:
| | - Laura S. Robertson
- Leetown Science Center, United States Geological Survey, Kearneysville, West Virginia, United States of America
| | - Heather Galbraith
- Northern Appalachian Research Branch (Leetown Science Center), United States Geological Survey, Wellsboro, Pennsylvania, United States of America
| | - Carrie Blakeslee
- Northern Appalachian Research Branch (Leetown Science Center), United States Geological Survey, Wellsboro, Pennsylvania, United States of America
| |
Collapse
|
118
|
Zhao X, Yu H, Kong L, Liu S, Li Q. Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions. PLoS One 2014; 9:e111915. [PMID: 25369077 PMCID: PMC4219811 DOI: 10.1371/journal.pone.0111915] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/01/2014] [Indexed: 12/29/2022] Open
Abstract
Environmental salinity creates a key barrier to limit the distribution of most aquatic organisms. Adaptation to osmotic fluctuation is believed to be a factor facilitating species diversification. Adaptive evolution often involves beneficial mutations at more than one locus. Bivalves hold great interest, with numerous species living in waters, as osmoconformers, who maintain the osmotic pressure balance mostly by free amino acids. In this study, 107,076,589 reads from two groups of Crassostrea hongkongensis were produced and the assembled into 130,629 contigs. Transcripts putatively involved in stress-response, innate immunity and cell processes were identified according to Gene ontology and KEGG pathway analyses. Comparing with the transcriptome of C. gigas to characterize the diversity of transcripts between species with osmotic divergence, we identified 182,806 high-quality single nucleotide polymorphisms (SNPs) for C. hongkongensis, and 196,779 SNPs for C. gigas. Comparison of 11,602 pairs of putative orthologs allowed for identification of 14 protein-coding genes that experienced strong positive selection (Ka/Ks>1). In addition, 45 genes that may show signs of moderate positive selection (1 ≥ Ka/Ks>0.5) were also identified. Based on Ks ratios and divergence time between the two species published previously, we estimated a neutral transcriptome-wide substitution mutation rate of 1.39 × 10(-9) per site per year. Several genes were differentially expressed across the control and treated groups of each species. This is the first time to sequence the transcriptome of C. hongkongensis and provide the most comprehensive transcriptomic resource available for it. The increasing amount of transcriptome data on Crassostrea provides an excellent resource for phylogenetic analysis. A large number of SNPs identified in this work are expected to provide valuable resources for future marker and genotyping assay development. The analysis of natural selection provides an innovative view on the adaptation within species and sets the basis for future genetic and evolutionary studies.
Collapse
Affiliation(s)
- Xuelin Zhao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- * E-mail:
| |
Collapse
|
119
|
Molecular and acute temperature stress response characterizations of caspase-8 gene in two mussels, Mytilus coruscus and Mytilus galloprovincialis. Comp Biochem Physiol B Biochem Mol Biol 2014; 177-178:10-20. [DOI: 10.1016/j.cbpb.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 11/21/2022]
|
120
|
Zeng T, Li JJ, Wang DQ, Li GQ, Wang GL, Lu LZ. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: evidence for differential thermal sensitivities. Cell Stress Chaperones 2014; 19:895-901. [PMID: 24796798 PMCID: PMC4389850 DOI: 10.1007/s12192-014-0514-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/20/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022] Open
Abstract
Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the thermal tolerance of Pekin and Muscovy ducks exposed to acute heat stress. Ducks were exposed to heat at 39 ± 0.5 °C for 1 h and then returned to 20 °C for 1 h followed by a 3-h recovery period. The liver and other tissues were collected from each individual for analysis. The mRNA levels of HSPs (70, 60, and 40) increased in both species, except for HSP10, which was upregulated in Muscovy ducks and had no difference in Pekin ducks after heat stress. Simultaneously, the mRNA level of HSP90 decreased in the stress group in both species. Morphological analysis indicated that heat stress induced tissue injury in both species, and the liver of Pekin ducks was severely damaged. The activities of several antioxidant enzymes increased in Muscovy duck liver, but decreased in Pekin duck. The mRNA levels of inflammatory factors were increased after heat stress in both duck species. These results suggested that heat stress could influence HSPs, inflammatory factors expression, and the activities of antioxidant enzymes. Moreover, the differential response to heat stress indicated that the Muscovy duck has a better thermal tolerance than does the Pekin duck.
Collapse
Affiliation(s)
- Tao Zeng
- />College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095 China
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, Zhejiang 310021 China
| | - Jin-jun Li
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, Zhejiang 310021 China
| | - De-qian Wang
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, Zhejiang 310021 China
| | - Guo-qin Li
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, Zhejiang 310021 China
| | - Gen-lin Wang
- />College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095 China
| | - Li-zhi Lu
- />College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095 China
- />Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, Zhejiang 310021 China
| |
Collapse
|
121
|
Wang W, Hui JHL, Chan TF, Chu KH. De novo transcriptome sequencing of the snail Echinolittorina malaccana: identification of genes responsive to thermal stress and development of genetic markers for population studies. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:547-559. [PMID: 24825364 DOI: 10.1007/s10126-014-9573-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Echinolittorina snails inhabit the upper intertidal rocky shore and face strong selection pressures from thermal extremes and fluctuations. Revealing the molecular processes of adaptive significance is greatly obstructed by the scarcity of genomic resource for these taxa. Here, we reported the first comprehensive transcriptome dataset for the genus Echinolittorina. Using Illumina HiSeq 2000 platform, about 52 M and 54 M paired-end clean reads were, respectively, generated for the control and heat-stressed libraries. Totally, 115,211 unique transcript fragments (unigenes) were assembled, with an average length of 453 bp and a N50 size of 492 bp. Approximately one third of the unigenes could be annotated according to their homology matches against the Nr, Swiss-Prot, COG, or KEGG databases, and they were found to represent 23,098 non-redundant genes. Gene expression comparison revealed that 1,267 and 6,663 annotated genes were, respectively, up- and downregulated with at least twofold changes upon heat stress. Gene Ontology and KEGG pathway analyses indicated that there were overrepresented amount of genes enriched in a broad spectrum of biological processes and pathways, including those associated with cytoskeleton organization, developmental regulation, signaling transduction, infection, and cardiac function. In addition, a transcriptome-wide search for polymorphic loci yielded a total of 11,228 simple sequence repeats (SSRs) from 9,938 unigenes and 138,631 single nucleotide polymorphism (SNP) and insertion/deletion (INDEL) sites among 22,770 unigenes. The large number of transcript sequences acquired, the biological pathways identified, and the candidate microsatellite and SNP/INDEL loci discovered in the study will serve as valuable resources for further investigations of genetic differentiation and thermal adaptation among populations.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong,
| | | | | | | |
Collapse
|
122
|
Poynton HC, Robinson WE, Blalock BJ, Hannigan RE. Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:129-141. [PMID: 25016106 DOI: 10.1016/j.aquatox.2014.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Marine biomonitoring programs in the U.S. and Europe have historically relied on monitoring tissue concentrations of bivalves to monitor contaminant levels and ecosystem health. By integrating 'omic methods with these tissue residue approaches we can uncover mechanistic insight to link tissue concentrations to potential toxic effects. In an effort to identify novel biomarkers and better understand the molecular toxicology of metal bioaccumulation in bivalves, we exposed the blue mussel, Mytilus edulis L., to sub-lethal concentrations (0.54 μM) of cadmium, lead, and a Cd+Pb mixture. Metal concentrations were measured in gill tissues at 1, 2, and 4 weeks, and increased linearly over the 4 week duration. In addition, there was evidence that Pb interfered with Cd uptake in the mixture treatment. Using a 3025 sequence microarray for M. edulis, we performed transcriptomic analysis, identifying 57 differentially expressed sequences. Hierarchical clustering of these sequences successfully distinguished the different treatment groups demonstrating that the expression profiles were reproducible among the treatments. Enrichment analysis of gene ontology terms identified several biological processes that were perturbed by the treatments, including nucleoside phosphate biosynthetic processes, mRNA metabolic processes, and response to stress. To identify transcripts whose expression level correlated with metal bioaccumulation, we performed Pearson correlation analysis. Several transcripts correlated with gill metal concentrations including mt10, mt20, and contig 48, an unknown transcript containing a wsc domain. In addition, three transcripts directly involved in the unfolded protein response (UPR) were induced in the metal treatments at 2 weeks and were further up-regulated at 4 weeks. Overall, correlation of tissue concentrations and gene expression responses indicates that as mussels accumulate higher concentrations of metals, initial stress responses are mobilized to protect tissues. However, given the role of UPR in apoptosis, it serves as an early indicator of stress, which once overwhelmed will result in adverse physiological effects.
Collapse
Affiliation(s)
- Helen C Poynton
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, United States.
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, United States
| | - Bonnie J Blalock
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, United States
| | - Robyn E Hannigan
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, United States
| |
Collapse
|
123
|
Harms L, Frickenhaus S, Schiffer M, Mark FC, Storch D, Held C, Pörtner HO, Lucassen M. Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming. BMC Genomics 2014; 15:789. [PMID: 25216596 PMCID: PMC4176836 DOI: 10.1186/1471-2164-15-789] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/09/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 μatm) and high (1,960 μatm) PCO2 at different temperatures (5°C and 10°C). RESULTS The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid-base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid-base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid-base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid-base compensation and metabolic down-regulation. CONCLUSION Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.
Collapse
Affiliation(s)
- Lars Harms
- Integrative Ecophysiology, Alfred Wegener Institute, Bremerhaven, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Gene discovery through transcriptome sequencing for the invasive mussel Limnoperna fortunei. PLoS One 2014; 9:e102973. [PMID: 25047650 PMCID: PMC4105566 DOI: 10.1371/journal.pone.0102973] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/24/2014] [Indexed: 11/22/2022] Open
Abstract
The success of the Asian bivalve Limnoperna fortunei as an invader in South America is related to its high acclimation capability. It can inhabit waters with a wide range of temperatures and salinity and handle long-term periods of air exposure. We describe the transcriptome of L. fortunei aiming to give a first insight into the phenotypic plasticity that allows non-native taxa to become established and widespread. We sequenced 95,219 reads from five main tissues of the mussel L. fortunei using Roche’s 454 and assembled them to form a set of 84,063 unigenes (contigs and singletons) representing partial or complete gene sequences. We annotated 24,816 unigenes using a BLAST sequence similarity search against a NCBI nr database. Unigenes were divided into 20 eggNOG functional categories and 292 KEGG metabolic pathways. From the total unigenes, 1,351 represented putative full-length genes of which 73.2% were functionally annotated. We described the first partial and complete gene sequences in order to start understanding bivalve invasiveness. An expansion of the hsp70 gene family, seen also in other bivalves, is present in L. fortunei and could be involved in its adaptation to extreme environments, e.g. during intertidal periods. The presence of toll-like receptors gives a first insight into an immune system that could be more complex than previously assumed and may be involved in the prevention of disease and extinction when population densities are high. Finally, the apparent lack of special adaptations to extremely low O2 levels is a target worth pursuing for the development of a molecular control approach.
Collapse
|
125
|
Yang C, Wang L, Wang J, Jiang Q, Qiu L, Zhang H, Song L. The polymorphism in the promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay scallops (Argopecten irradians irradians and A. i. concentricus). PLoS One 2014; 9:e102332. [PMID: 25028964 PMCID: PMC4100766 DOI: 10.1371/journal.pone.0102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background The heat shock protein 70 (HSP70) is one kind of molecular chaperones, which plays a key role in protein metabolism under normal and stress conditions. Methodology In the present study, the mRNA expressions of HSP70 under normal physiological condition and after acute heat stress were investigated in gills of two bay scallop populations (Argopecten irradians irradians and A. i. concentricus). The heat resistant scallops A. i. concentricus showed significantly lower basal level and higher induction of HSP70 compared with that of the heat sensitive scallops A. i. irradians. The promoter sequence of HSP70 gene from bay scallop (AiHSP70) was cloned and the polymorphisms within this region were investigated to analyze their association with heat tolerance. Totally 11 single nucleotide polymorphisms (SNPs) were identified, and four of them (−967, −480, −408 and −83) were associated with heat tolerance after HWE analysis and association analysis. Based on the result of linkage disequilibrium analysis, the in vitro transcriptional activities of AiHSP70 promoters with different genotype were further determined, and the results showed that promoter from A. i. concentricus exhibited higher transcriptional activity than that from A. i. irradians (P<0.05). Conclusions The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP70. Meanwhile, the −967 GG, −480 AA, −408 TT and −83 AG genotypes could be potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Jingjing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
126
|
Investigating hsp gene expression in liver of Channa striatus under heat stress for understanding the upper thermal acclimation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:381719. [PMID: 25003111 PMCID: PMC4070532 DOI: 10.1155/2014/381719] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 02/08/2023]
Abstract
Changes in hsp gene expression profiles in murrel Channa striatus experimentally exposed to temperature stress (36°C) for 4, 15, and 30 days were investigated; fish collected from aquaculture ponds and maintained in laboratory at the pond temperature (25 ± 1°C) served as control. Channa collected from a hot spring runoff (36°C) was included in the study to examine the hsp profiles beyond 30 days of exposure. Gene expression analyses of a battery of hsps in liver tissues were carried out by quantitative RT-PCR and protein expressions were analyzed by immunoblotting. hsps could be grouped into three clusters based on similarity in response to heat stress: hsp70, hsp78, and hsp60, whose transcript level continued to increase with duration of exposure; hsp90 and hsp110 that increased to a much higher level and then decreased; hsp27 and hsp47 that did not significantly vary as compared to control. The results suggest that Hsp70, Hsp78, and Hsp60 are involved in thermal acclimation and long term survival at high temperature. Fish living in the hot spring runoff appears to continuously express hsps that can be approximated by long term induction of hsps in farmed fish if temperature of their environment is raised to 36°C.
Collapse
|
127
|
Evans TG, Watson-Wynn P. Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins. THE BIOLOGICAL BULLETIN 2014; 226:237-254. [PMID: 25070868 DOI: 10.1086/bblv226n3p237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sea urchins are ecologically and economically important calcifying organisms threatened by acidification of the global ocean caused by anthropogenic CO2 emissions. Propelled by the sequencing of the purple sea urchin (Strongylocentrotus purpuratus) genome, profiling changes in gene expression during exposure to high pCO2 seawater has emerged as a powerful and increasingly common method to infer the response of urchins to ocean change. However, analyses of gene expression are sensitive to experimental methodology, and comparisons between studies of genes regulated by ocean acidification are most often made in the context of major caveats. Here we perform meta-analyses as a means of minimizing experimental discrepancies and resolving broader-scale trends regarding the effects of ocean acidification on gene expression in urchins. Analyses across eight studies and four urchin species largely support prevailing hypotheses about the impact of ocean acidification on marine calcifiers. The predominant expression pattern involved the down-regulation of genes within energy-producing pathways, a clear indication of metabolic depression. Genes with functions in ion transport were significantly over-represented and are most plausibly contributing to intracellular pH regulation. Expression profiles provided extensive evidence for an impact on biomineralization, epitomized by the down-regulation of seven spicule matrix proteins. In contrast, expression profiles provided limited evidence for CO2-mediated developmental delay or induction of a cellular stress response. Congruence between studies of gene expression and the ocean acidification literature in general validates the accuracy of gene expression in predicting the consequences of ocean change and justifies its continued use in future studies.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, California 94542
| | - Priscilla Watson-Wynn
- Department of Biological Sciences, California State University East Bay, Hayward, California 94542
| |
Collapse
|
128
|
Tomanek L. Proteomics to study adaptations in marine organisms to environmental stress. J Proteomics 2014; 105:92-106. [PMID: 24788067 DOI: 10.1016/j.jprot.2014.04.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/25/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Comparisons of proteomic responses of closely related congeners and populations have shown which cellular processes are critical to adapt to environmental stress. For example, several proteomic species comparisons showed that increasing abundances of oxidative stress proteins indicate that reactive oxygen species (ROS) represent a ubiquitous signal and possible co-stressor of warm and cold temperature, acute hyposaline and low pH stress, possibly causing a shift from pro-oxidant NADH-producing to anti-oxidant NADPH-producing and -consuming metabolic pathways. Changes in cytoskeletal and actin-binding proteins in response to several stressors, including ROS, suggest that both are important structural and functional elements in responding to stress. Disruption of protein homeostasis, e.g., increased abundance of molecular chaperones, was severe in response to acute heat stress, inducing proteolysis, but was also observed in response to chronic heat and cold stress and was concentrated to the endoplasmic reticulum during hyposaline stress. Small GTPases affecting vesicle formation and transport, Ca(2+)-signaling and ion transport responded to salinity stress in species- and population-specific ways. Aerobic energy metabolism was in general down-regulated in response to temperature, hypoxia, hyposalinity and low pH stress, but other metabolic pathways were activated to respond to increased oxidative stress or to switch metabolic fuels. Thus, comparative proteomics is a powerful approach to identify functionally adaptive variation. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA.
| |
Collapse
|
129
|
Zhang S, Han GD, Dong YW. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress. J Therm Biol 2014; 41:31-7. [DOI: 10.1016/j.jtherbio.2014.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/07/2014] [Accepted: 02/01/2014] [Indexed: 01/08/2023]
|
130
|
Barshis DJ, Ladner JT, Oliver TA, Palumbi SR. Lineage-Specific Transcriptional Profiles of Symbiodinium spp. Unaltered by Heat Stress in a Coral Host. Mol Biol Evol 2014; 31:1343-52. [DOI: 10.1093/molbev/msu107] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
131
|
Mohamed B, Hajer A, Susanna S, Caterina O, Flavio M, Hamadi B, Aldo V. Transcriptomic responses to heat stress and nickel in the mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:104-112. [PMID: 24468838 DOI: 10.1016/j.aquatox.2014.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/31/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
The exposure of marine organisms to stressing agents may affect the level and pattern of gene expression. Although many studies have examined the ecological effects of heat stress on mussels, little is known about the physiological mechanisms that maybe affected by co-exposure to heat stress and environmental contaminants such as nickel (Ni). In the present work, we investigated the effects of simultaneous changes in temperature and Ni supply on lysosomal membrane stability (LMS) and malondialdehyde accumulation (MDA) in the digestive gland (DG) of the blue mussel Mytilus galloprovincialis (Lam.). To elucidate how the molecular response to environmental stressors is modulated, we employed a cDNA microarray with 1673 sequences to measure relative transcript abundances in the DG of mussels exposed to Ni along with a temperature increase. A two-way ANOVA revealed that temperature and Ni rendered additive effects on LMS and MDA accumulation, increasing the toxic effects of metal cations. Ni loads in the DG were also affected by co-exposure to 26°C. In animals exposed only to heat stress, functional genomics analysis of the microarray data (171 differentially expressed genes (DEGs)) highlighted seven biological processes, largely dominated by the up-regulation of folding protein-related genes and the down-regulation of genes involved in cell migration and cellular component assembly. Exposure to Ni at 18°C and 26°C yielded 188 and 262 DEGs, respectively, exhibiting distinct patterns in terms of biological processes. In particular, the response of mussels exposed to Ni at 26°C was characterized by the up-regulation of proteolysis, ribosome biogenesis, response to unfolded proteins, and catabolic-related genes, as well as the down-regulation of genes encoding cellular metabolic processes. Our data provide new insights into the transcriptomic response in mussels experiencing temperature increases and Ni exposure; these data should be carefully considered in view of the biological effects of heat stress, particularly in polluted areas.
Collapse
Affiliation(s)
- Banni Mohamed
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia.
| | - Attig Hajer
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Sforzini Susanna
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy
| | - Oliveri Caterina
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy
| | - Mignone Flavio
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy
| | - Boussetta Hamadi
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Viarengo Aldo
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
132
|
Attig H, Kamel N, Sforzini S, Dagnino A, Jamel J, Boussetta H, Viarengo A, Banni M. Effects of thermal stress and nickel exposure on biomarkers responses in Mytilus galloprovincialis (Lam). MARINE ENVIRONMENTAL RESEARCH 2014; 94:65-71. [PMID: 24424117 DOI: 10.1016/j.marenvres.2013.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
The present work aimed to assess the Mytilus galloprovincialis digestive gland biomarkers responses to nickel (Ni) exposure along with a heat stress gradient. Mussels were exposed to a sublethal dose of nickel (13 μM) along with a temperature gradient (18 °C, 20 °C, 22 °C, 24 °C and 26 °C) for 4 days. Metallothionein (MTs) content was assessed as specific response to metals. Catalase (CAT), glutathione S-transferase (GST) activities and malondialdehyde (MDA) were measured as biomarkers of oxidative stress and lipid peroxidation. The cholinergic system was monitored using the acetylcholinesterase activity (AChE). Moreover, Ni uptakes along with the exposure temperatures were assessed. A correlation matrix (CM) between the investigated biomarkers and the exposure temperatures and a Principal Component Analysis (PCA) were achieved. Our data showed a negative effect of temperature increase on mussel's antioxidant and detoxification response to Ni exposure being more pronounced in animals exposed to the 24 °C and 26 °C.
Collapse
Affiliation(s)
- Hajer Attig
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Naouel Kamel
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Susanna Sforzini
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100 Alessandria, Italy
| | - Alessandro Dagnino
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100 Alessandria, Italy
| | - Jebali Jamel
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Hamadi Boussetta
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Aldo Viarengo
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100 Alessandria, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100 Alessandria, Italy.
| |
Collapse
|
133
|
Banni M, Hajer A, Sforzini S, Oliveri C, Boussetta H, Viarengo A. Transcriptional expression levels and biochemical markers of oxidative stress in Mytilus galloprovincialis exposed to nickel and heat stress. Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:23-9. [PMID: 24291086 DOI: 10.1016/j.cbpc.2013.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 11/20/2022]
Abstract
The present study aims to evaluate transcriptional expression levels and biochemical markers of oxidative stress responses to nickel (Ni) exposure along with heat stress gradient in a mussel (Mytilus galloprovincialis). For this purpose, we investigated the response of oxidative stress markers, metallothionein accumulation and gene expression in digestive gland of mussels exposed to a sublethal concentration of Ni (2.5μM) along with a temperature gradient (18°C, 22°C, and 26°C) for 24h and 72h. Ni digestive gland uptake was evaluated after the exposure periods. Co-exposure to Ni and higher temperature (26°C) for 72h significantly decreased the antioxidant enzyme activities termed as catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST) and caused a pronounced increase of lipofuscin and neutral lipid (NL) accumulation. Ni-uptake was different with respect to the exposure periods and temperatures in Ni-exposed mussels. Sod, cat, gst, mt-10 and mt20 gene expression levels showed a substantial increased pattern in animals exposed for one day to heat stress compared to the control condition (18°C). The same pattern but with highest level was registered in animals co-exposed to Ni and temperatures within one day. Three days exposure to 18°C, 22°C and 26°C, resulted in a significant decrease in mRNA abundance of cat, gst and sod and a significant down-regulation of mts targets (22°C and 26°C). Our data provide new insights into the importance of the early protective response of oxidative stress related-gene expression and regulation in mussels challenging heat stress and sublethal Ni concentration.
Collapse
Affiliation(s)
- Mohamed Banni
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25G, 15100 Alessandria, Italy; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia.
| | - Attig Hajer
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Suzanna Sforzini
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25G, 15100 Alessandria, Italy
| | - Caterina Oliveri
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25G, 15100 Alessandria, Italy
| | - Hamadi Boussetta
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Aldo Viarengo
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25G, 15100 Alessandria, Italy
| |
Collapse
|
134
|
Transcriptomic profiling of differential responses to drought in two freshwater mussel species, the giant floater Pyganodon grandis and the pondhorn Uniomerus tetralasmus. PLoS One 2014; 9:e89481. [PMID: 24586812 PMCID: PMC3934898 DOI: 10.1371/journal.pone.0089481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/22/2014] [Indexed: 11/29/2022] Open
Abstract
The southeastern US has experienced recurrent drought during recent decades. Increasing demand for water, as precipitation decreases, exacerbates stress on the aquatic biota of the Southeast: a global hotspot for freshwater mussel, crayfish, and fish diversity. Freshwater unionid mussels are ideal candidates to study linkages between ecophysiological and behavioral responses to drought. Previous work on co-occurring mussel species suggests a coupling of physiology and behavior along a gradient ranging from intolerant species such as Pyganodon grandis (giant floater) that track receding waters and rarely burrow in the substrates to tolerant species such as Uniomerus tetralasmus (pondhorn) that rarely track receding waters, but readily burrow into the drying sediments. We utilized a next-generation sequencing-based RNA-Seq approach to examine heat/desiccation-induced transcriptomic profiles of these two species in order to identify linkages between patterns of gene expression, physiology and behavior. Sequencing produced over 425 million 100 bp reads. Using the de novo assembly package Trinity, we assembled the short reads into 321,250 contigs from giant floater (average length 835 bp) and 385,735 contigs from pondhorn (average length 929 bp). BLAST-based annotation and gene expression analysis revealed 2,832 differentially expressed genes in giant floater and 2,758 differentially expressed genes in pondhorn. Trancriptomic responses included changes in molecular chaperones, oxidative stress profiles, cell cycling, energy metabolism, immunity, and cytoskeletal rearrangements. Comparative analyses between species indicated significantly higher induction of molecular chaperones and cytoskeletal elements in the intolerant P. grandis as well as important differences in genes regulating apoptosis and immunity.
Collapse
|
135
|
|
136
|
Suárez-Ulloa V, Fernández-Tajes J, Manfrin C, Gerdol M, Venier P, Eirín-López JM. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs 2013; 11:4370-89. [PMID: 24189277 PMCID: PMC3853733 DOI: 10.3390/md11114370] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 12/26/2022] Open
Abstract
The extraordinary progress experienced by sequencing technologies and bioinformatics has made the development of omic studies virtually ubiquitous in all fields of life sciences nowadays. However, scientific attention has been quite unevenly distributed throughout the different branches of the tree of life, leaving molluscs, one of the most diverse animal groups, relatively unexplored and without representation within the narrow collection of well established model organisms. Within this Phylum, bivalve molluscs play a fundamental role in the functioning of the marine ecosystem, constitute very valuable commercial resources in aquaculture, and have been widely used as sentinel organisms in the biomonitoring of marine pollution. Yet, it has only been very recently that this complex group of organisms became a preferential subject for omic studies, posing new challenges for their integrative characterization. The present contribution aims to give a detailed insight into the state of the art of the omic studies and functional information analysis of bivalve molluscs, providing a timely perspective on the available data resources and on the current and prospective applications for the biomonitoring of harmful marine compounds.
Collapse
Affiliation(s)
- Victoria Suárez-Ulloa
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
| | - Juan Fernández-Tajes
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; E-Mail:
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Paola Venier
- Department of Biology, University of Padova, Padova 35121, Italy; E-Mail:
| | - José M. Eirín-López
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-919-4000; Fax: +1-305-919-4030
| |
Collapse
|
137
|
Marden JH. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection. Mol Ecol 2013; 22:5743-64. [PMID: 24106889 DOI: 10.1111/mec.12534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 01/01/2023]
Abstract
Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
138
|
Fu X, Sun Y, Wang J, Xing Q, Zou J, Li R, Wang Z, Wang S, Hu X, Zhang L, Bao Z. Sequencing-based gene network analysis provides a core set of gene resource for understanding thermal adaptation in Zhikong scallop Chlamys farreri. Mol Ecol Resour 2013; 14:184-98. [PMID: 24128079 DOI: 10.1111/1755-0998.12169] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/28/2013] [Accepted: 09/07/2013] [Indexed: 12/14/2022]
Abstract
Marine organisms are commonly exposed to variable environmental conditions, and many of them are under threat from increased sea temperatures caused by global climate change. Generating transcriptomic resources under different stress conditions are crucial for understanding molecular mechanisms underlying thermal adaptation. In this study, we conducted transcriptome-wide gene expression profiling of the scallop Chlamys farreri challenged by acute and chronic heat stress. Of the 13 953 unique tags, more than 850 were significantly differentially expressed at each time point after acute heat stress, which was more than the number of tags differentially expressed (320-350) under chronic heat stress. To obtain a systemic view of gene expression alterations during thermal stress, a weighted gene coexpression network was constructed. Six modules were identified as acute heat stress-responsive modules. Among them, four modules involved in apoptosis regulation, mRNA binding, mitochondrial envelope formation and oxidation reduction were downregulated. The remaining two modules were upregulated. One was enriched with chaperone and the other with microsatellite sequences, whose coexpression may originate from a transcription factor binding site. These results indicated that C. farreri triggered several cellular processes to acclimate to elevated temperature. No modules responded to chronic heat stress, suggesting that the scallops might have acclimated to elevated temperature within 3 days. This study represents the first sequencing-based gene network analysis in a nonmodel aquatic species and provides valuable gene resources for the study of thermal adaptation, which should assist in the development of heat-tolerant scallop lines for aquaculture.
Collapse
Affiliation(s)
- X Fu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Comparative proteomic analysis of the hepatic response to heat stress in Muscovy and Pekin ducks: insight into thermal tolerance related to energy metabolism. PLoS One 2013; 8:e76917. [PMID: 24116183 PMCID: PMC3792036 DOI: 10.1371/journal.pone.0076917] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/05/2013] [Indexed: 11/22/2022] Open
Abstract
The Pekin duck, bred from the mallard (Anas platyrhynchos) in china, is one of the most famous meat duck species in the world. However, it is more sensitive to heat stress than Muscovy duck, which is believed to have originated in South America. With temperature raising, mortality, laying performance, and meat quality of the Pekin duck are severely affected. This study aims to uncover the temperature-dependent proteins of two duck species using comparative proteomic approach. Duck was cultured under 39°C ± 0.5°C for 1 h, and then immediately returned to 20°C for a 3 h recovery period, the liver proteins were extracted and electrophoresed in two-dimensional mode. After analysis of gel images, 61 differentially expressed proteins were detected, 54 were clearly identified by MALDI TOF/TOF MS. Of the 54 differentially expressed protein spots identified, 7 were found in both species, whereas 47 were species specific (25 in Muscovy duck and 22 in Pekin duck). As is well known, chaperone proteins, such as heat shock protein (HSP) 70 and HSP10, were abundantly up-regulated in both species in response to heat stress. However, we also found that several proteins, such as α-enolase, and S-adenosylmethionine synthetase, showed different expression patterns in the 2 duck species. The enriched biological processes were grouped into 3 main categories according to gene ontology analysis: cell death and apoptosis (20.93%), amino acid metabolism (13.95%) and oxidation reduction (20.93%). The mRNA levels of several differentially expressed protein were investigated by real-time RT-PCR. To our knowledge, this study is the first to provide insights into the differential expression of proteins following heat stress in ducks and enables better understanding of possible heat stress response mechanisms in animals.
Collapse
|
140
|
Boltaña S, Rey S, Roher N, Vargas R, Huerta M, Huntingford FA, Goetz FW, Moore J, Garcia-Valtanen P, Estepa A, Mackenzie S. Behavioural fever is a synergic signal amplifying the innate immune response. Proc Biol Sci 2013; 280:20131381. [PMID: 23843398 PMCID: PMC3730603 DOI: 10.1098/rspb.2013.1381] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coupling of the immune response to fever acts at the gene–environment level to promote a robust, highly specific time-dependent anti-viral response that, under viral infection, increases survival. Fish that are not offered a choice of temperatures and that therefore cannot express behavioural fever show decreased survival under viral challenge. This phenomenon provides an underlying explanation for the varied functional responses observed during systemic fever. Given the effects of behavioural fever on survival and the fact that it exists across considerable phylogenetic space, such immunity–environment interactions are likely to be under strong positive selection.
Collapse
Affiliation(s)
- Sebastian Boltaña
- Institut de Biotecnologia i de Biomedicina, Universitat Autonoma de Barcelona, , Bellaterra (Barcelona) 08193, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Negri A, Oliveri C, Sforzini S, Mignione F, Viarengo A, Banni M. Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PLoS One 2013; 8:e66802. [PMID: 23825565 PMCID: PMC3692493 DOI: 10.1371/journal.pone.0066802] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
Global warming is a major factor that may affect biological organization, especially in marine ecosystems and in coastal areas that are particularly subject to anthropogenic pollution. We evaluated the effects of simultaneous changes in temperature and copper concentrations on lysosomal membrane stability (N-acetyl-hexosaminidase activity) and malondialdehyde accumulation (MDA) in the gill of the blue mussel Mytilus galloprovincialis (Lam.). Temperature and copper exerted additive effects on lysosomal membrane stability, exacerbating the toxic effects of metal cations present in non-physiological concentrations. Mussel lysosomal membrane stability is known to be positively related to scope for growth, indicating possible effects of increasing temperature on mussel populations in metal-polluted areas. To clarify the molecular response to environmental stressors, we used a cDNA microarray with 1,673 sequences to measure the relative transcript abundances in the gills of mussels exposed to copper (40 µg/L) and a temperature gradient (16°C, 20°C, and 24°C). In animals exposed only to heat stress, hierarchical clustering of the microarray data revealed three main clusters, which were largely dominated by down-regulation of translation-related differentially expressed genes, drastic up-regulation of protein folding related genes, and genes involved in chitin metabolism. The response of mussels exposed to copper at 24°C was characterized by an opposite pattern of the genes involved in translation, most of which were up-regulated, as well as the down-regulation of genes encoding heat shock proteins and "microtubule-based movement" proteins. Our data provide novel information on the transcriptomic modulations in mussels facing temperature increases and high copper concentrations; these data highlight the risk of marine life exposed to toxic chemicals in the presence of temperature increases due to climate change.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Catherina Oliveri
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Susanna Sforzini
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Flavio Mignione
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Aldo Viarengo
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Mohamed Banni
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
- * E-mail:
| |
Collapse
|
142
|
Diaz de Cerio O, Hands E, Humble J, Cajaraville MP, Craft JA, Cancio I. Construction and characterization of a forward subtracted library of blue mussels Mytilus edulis for the identification of gene transcription signatures and biomarkers of styrene exposure. MARINE POLLUTION BULLETIN 2013; 71:230-239. [PMID: 23623663 DOI: 10.1016/j.marpolbul.2013.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Transcriptional profiling can elucidate adaptive/toxicity pathways participating in achieving homeostasis or leading to pathogenesis in marine biota exposed to chemical substances. With the aim of analyzing transcriptional responses in the mussel Mytilus edulis exposed to the corrosive and putatively carcinogenic hydrocarbon styrene (3-5 ppm, 3days), a forward subtracted (SSH) cDNA library was produced. Female mussels were selected and digestive gland mRNA was isolated. A library with 1440 clones was produced and a total of 287 clones were sequenced, 53% being identified through BlastN analysis against Mytibase and DeepSeaVent databases. Those genes included GO terms such as 'response to drugs', 'immune defense' and 'cell proliferation'. Furthermore, sequences related to chitin and beta-1-3-glucan metabolism were also up-regulated by styrene. Many of the obtained sequences could not be annotated constituting new mussel sequences. In conclusion, this SSH study reveals novel sequences useful to generate molecular biomarkers of styrene exposure in mussels.
Collapse
Affiliation(s)
- O Diaz de Cerio
- CBET Res. Ctr. Experimental Marine Biology and Biotechnology of Plentzia (PIE-UPV/EHU) & Zoology & Cell Biology Dept. (Science and Technology Fac.), University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
143
|
Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: Cell cycle regulation and DNA repair. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:159-68. [DOI: 10.1016/j.cbpa.2013.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 01/05/2023]
|
144
|
Han GD, Zhang S, Marshall DJ, Ke CH, Dong YW. Metabolic energy sensors (AMPK and SIRT1), protein carbonylation and cardiac failure as biomarkers of thermal stress in an intertidal limpet: linking energetic allocation with environmental temperature during aerial emersion. ACTA ACUST UNITED AC 2013; 216:3273-82. [PMID: 23685977 DOI: 10.1242/jeb.084269] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of heat stress on organisms are manifested at the levels of organ function, metabolic activity, protein stability and gene expression. Here, we examined effects of high temperature on the intertidal limpet Cellana toreuma to determine how the temperatures at which (1) organ failure (cardiac function), (2) irreversible protein damage (carbonylation) and (3) expression of genes encoding proteins involved in molecular chaperoning (hsp70 and hsp90) and metabolic regulation (ampk and sirt1) occur compare with field temperatures, which commonly exceed 30°C and can reach 46°C. Heart failure, indexed by the Arrhenius break temperature, occurred at 34.3°C. Protein carbonylation rose significantly at 38°C. Genes for heat shock proteins HSP70 (hsp70) and HSP90 (hsp90), for two subunits of AMP-activated protein kinase (AMPK) (ampkα and ampkβ) and for histone/protein deacetylase SIRT1 (sirt1) all showed increased expression at 30°C. Temperatures of maximal expression differed among genes, as did temperatures at which upregulation ceased. Expression patterns for ampk and sirt1 indicate that heat stress influenced cellular energy homeostasis; above ~30°C, upregulation of ATP-generating pathways is suggested by elevated expression of genes for ampk; an altered balance between reliance on carbohydrate and lipid fuels is indicated by changes in expression of sirt1. These results show that C. toreuma commonly experiences temperatures that induce expression of genes associated with the stress response (hsp70 and hsp90) and regulation of energy metabolism (ampk and sirt1). At high temperatures, there is likely to be a shift away from anabolic processes such as growth to catabolic processes, to provide energy for coping with stress-induced damage, notably to proteins.
Collapse
Affiliation(s)
- Guo-dong Han
- State Key Laboratory of Marine Environmental Science, College of Marine and Earth Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
145
|
Padilla-Gamiño JL, Kelly MW, Evans TG, Hofmann GE. Temperature and CO(2) additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus. Proc Biol Sci 2013; 280:20130155. [PMID: 23536595 DOI: 10.1098/rspb.2013.0155] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.
Collapse
Affiliation(s)
- Jacqueline L Padilla-Gamiño
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
146
|
Evans TG, Chan F, Menge BA, Hofmann GE. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Mol Ecol 2013; 22:1609-25. [PMID: 23317456 DOI: 10.1111/mec.12188] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 01/06/2023]
Abstract
Some marine ecosystems already experience natural declines in pH approximating those predicted with future anthropogenic ocean acidification (OA), the decline in seawater pH caused by the absorption of atmospheric CO2 . The molecular mechanisms that allow organisms to inhabit these low pH environments, particularly those building calcium carbonate skeletons, are unknown. Also uncertain is whether an enhanced capacity to cope with present day pH variation will confer resistance to future OA. To address these issues, we monitored natural pH dynamics within an intertidal habitat in the Northeast Pacific, demonstrating that upwelling exposes resident species to pH regimes not predicted to occur elsewhere until 2100. Next, we cultured the progeny of adult purple sea urchins (Strongylocentrotus purpuratus) collected from this region in CO2 -acidified seawater representing present day and near future ocean scenarios and monitored gene expression using transcriptomics. We hypothesized that persistent exposure to upwelling during evolutionary history will have selected for increased pH tolerance in this population and that their transcriptomic response to low pH seawater would provide insight into mechanisms underlying pH tolerance in a calcifying species. Resulting expression patterns revealed two important trends. Firstly, S. purpuratus larvae may alter the bioavailability of calcium and adjust skeletogenic pathways to sustain calcification in a low pH ocean. Secondly, larvae use different strategies for coping with different magnitudes of pH stress: initiating a robust transcriptional response to present day pH regimes but a muted response to near future conditions. Thus, an enhanced capacity to cope with present day pH variation may not translate into success in future oceans.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA.
| | | | | | | |
Collapse
|
147
|
Timmins-Schiffman E, Nunn BL, Goodlett DR, Roberts SB. Shotgun proteomics as a viable approach for biological discovery in the Pacific oyster. CONSERVATION PHYSIOLOGY 2013; 1:cot009. [PMID: 27293593 PMCID: PMC4732435 DOI: 10.1093/conphys/cot009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 05/03/2023]
Abstract
Shotgun proteomics offers an efficient means to characterize proteins in a complex mixture, particularly when sufficient genomic resources are available. In order to assess the practical application of shotgun proteomics in the Pacific oyster (Crassostrea gigas), liquid chromatography coupled with tandem mass spectrometry was used to characterize the gill proteome. Using information from the recently published Pacific oyster genome, 1043 proteins were identified. Biological samples (n = 4) and corresponding technical replicates (three) were similar in both specific proteins identified and expression, as determined by normalized spectral abundance factor. A majority of the proteins identified (703) were present in all biological samples. Functional analysis of the protein repertoire illustrates that these proteins represent a wide range of biological processes, supporting the dynamic function of the gill. These insights are important for understanding environmental influences on the oyster, because the gill tissue acts as the interface between the oyster and its environment. In silico analysis indicated that this sequencing effort identified a large proportion of the complete gill proteome. Together, these data demonstrate that shotgun sequencing is a viable approach for biological discovery and will play an important role in future studies of oyster physiology.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA
| | - Brook L. Nunn
- Genomic Sciences, University of Washington, Box 355065, Seattle, WA 98195, USA
| | - David R. Goodlett
- Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA
| | - Steven B. Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA
- Corresponding author: School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA. Tel: +1 206 685 3742.
| |
Collapse
|
148
|
Kamel N, Attig H, Dagnino A, Boussetta H, Banni M. Increased temperatures affect oxidative stress markers and detoxification response to benzo[a]pyrene exposure in mussel Mytilus galloprovincialis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 63:534-543. [PMID: 22903631 DOI: 10.1007/s00244-012-9790-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
The present research work was designed to study mussel's (Mytilus galloprovincialis) digestive gland biotransformation and detoxification responses to benzo[a]pyrene (B[a]P) exposure along with heat stress. Mussels were exposed to a sublethal dose of B[a]P [75 nM (19 μg/L/animal)] + temperature gradient (18, 20, 22, 24 and 26 °C) for 7 days. B[a]P hydroxylase (BPH) and glutathione-S-transferase (GST) activities were assessed in digestive gland tissues as phase I and phase II biotransformation parameters. Catalase (CAT) activity and malonedialdehyde (MDA) were measured as potential biomarkers of oxidative stress and lipid peroxidation. The cholinergic system was evaluated using acetylcholinesterase (AChE) activity. DNA damage was assessed using micronuclei (MN) test. BPH and GST activities showed a decreasing trend in B[a]P-exposed animals at 24 and 26 °C. CAT activity showed a bell-shaped response in B[a]P-exposed and in heat-stressed organisms at a maximum temperature of 22 °C. AChE activity was significantly inhibited in response to B[a]P being more pronounced at a temperature of 26 °C. MN in digestive gland cells suggest that B[a]P exposure induced significant DNA alteration with a maximum response in organisms coexposed to B[a]P and a temperature of 26 °C. Biomarker data are further discussed in relation B[a]P accumulation in mussels digestive gland. These data should be carefully considered in view of the biological effects of organic pollutants, particularly in organisms under the challenging effects of extreme temperature fluctuations.
Collapse
Affiliation(s)
- Naouel Kamel
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, ISA, Chott-Mariem, Sousse, Tunisia
| | | | | | | | | |
Collapse
|
149
|
Tomanek L. Environmental proteomics of the mussel Mytilus: implications for tolerance to stress and change in limits of biogeographic ranges in response to climate change. Integr Comp Biol 2012; 52:648-64. [PMID: 22966064 DOI: 10.1093/icb/ics114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Climate change will affect temperature extremes and averages, and hyposaline conditions in coastal areas due to extreme precipitation events and oceanic pH. How climate change will push species close to, or beyond, their physiological tolerance limits as well as change the limits of their biogeographic ranges can probably be investigated best in species that have already responded to climate change and whose distribution ranges are currently in flux. Blue mussels provide such a study system, with the invading warm-adapted Mediterranean Mytilus galloprovincialis having replaced the native more cold-adapted Mytilus trossulus from the southern part of its range in southern California over the past century, possibly due to climate change. However, freshwater input may prevent the latter species from expanding further north. We used a proteomics approach to characterize the responses of the two congeners to acute heat stress, chronic thermal acclimation, and hyposaline stress. In addition, we investigated the proteomic changes in response to decreasing seawater pH in another bivalve, the eastern oyster Crassostrea virginica. The results suggest that reactive oxygen species (ROS) are a common costressor during environmental stress, including oceanic acidification, and possibly cause modifications of cytoskeletal elements. All stressors disrupted protein homeostasis, indicated by the induction of molecular chaperones and, in the case of acute heat stress, proteasome isoforms, possibly due both to protein denaturation directly by the stressor and to the production of ROS. Acute stress by heat and hyposalinity changed several small G-proteins implicated in cytoskeletal modifications and vesicular transport, respectively. Changes in abundance of proteins involved in energy metabolism and ROS scavenging further suggest a possible trade-off during acute and chronic stress from heat and cold between ROS-generating NADH-producing pathways and ROS-scavenging NADPH-producing pathways, especially through the reaction of NADPH-dependent isocitrate dehydrogenase and the pentose-phosphate pathway. Some of the proteomic changes may not constitute de novo protein synthesis but rather shifts in abundance of isoforms differing in posttranslational modifications, specifically acetylation by a NAD-dependent deacetylase (sirtuin). Interspecific differences suggest that these processes set physiological tolerance limits and thereby contribute to recent biogeographic shifts in range, possibly caused by climate change.
Collapse
Affiliation(s)
- Lars Tomanek
- Department of Biological Sciences, Center for Coastal Marine Science, Environmental Proteomics Laboratory, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA.
| |
Collapse
|
150
|
Schoville SD, Barreto FS, Moy GW, Wolff A, Burton RS. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. BMC Evol Biol 2012; 12:170. [PMID: 22950661 PMCID: PMC3499277 DOI: 10.1186/1471-2148-12-170] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Geographic variation in the thermal environment impacts a broad range of biochemical and physiological processes and can be a major selective force leading to local population adaptation. In the intertidal copepod Tigriopus californicus, populations along the coast of California show differences in thermal tolerance that are consistent with adaptation, i.e., southern populations withstand thermal stresses that are lethal to northern populations. To understand the genetic basis of these physiological differences, we use an RNA-seq approach to compare genome-wide patterns of gene expression in two populations known to differ in thermal tolerance. RESULTS Observed differences in gene expression between the southern (San Diego) and the northern (Santa Cruz) populations included both the number of affected loci as well as the identity of these loci. However, the most pronounced differences concerned the amplitude of up-regulation of genes producing heat shock proteins (Hsps) and genes involved in ubiquitination and proteolysis. Among the hsp genes, orthologous pairs show markedly different thermal responses as the amplitude of hsp response was greatly elevated in the San Diego population, most notably in members of the hsp70 gene family. There was no evidence of accelerated evolution at the sequence level for hsp genes. Among other sets of genes, cuticle genes were up-regulated in SD but down-regulated in SC, and mitochondrial genes were down-regulated in both populations. CONCLUSIONS Marked changes in gene expression were observed in response to acute sub-lethal thermal stress in the copepod T. californicus. Although some qualitative differences were observed between populations, the most pronounced differences involved the magnitude of induction of numerous hsp and ubiquitin genes. These differences in gene expression suggest that evolutionary divergence in the regulatory pathway(s) involved in acute temperature stress may offer at least a partial explanation of population differences in thermal tolerance observed in Tigriopus.
Collapse
Affiliation(s)
- Sean D Schoville
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | | | | | | | |
Collapse
|